Topic 4. Linear Wire and Small Circular Loop Antennas. Tamer Abuelfadl

Σχετικά έγγραφα
Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Spherical Coordinates

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Answer sheet: Third Midterm for Math 2339

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Areas and Lengths in Polar Coordinates

ECE 5318/6352 Antenna Engineering. Spring 2006 Dr. Stuart Long. Chapter 6. Part 1 Array Basics

Note: Please use the actual date you accessed this material in your citation.

Περιεχόμενα. Συστήματα Κεραιών & Ασύρματη Διάδοση. Γραμμικές κεραίες σύρματος

the total number of electrons passing through the lamp.

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

[1] P Q. Fig. 3.1

Homework 8 Model Solution Section

6.4 Superposition of Linear Plane Progressive Waves

11.4 Graphing in Polar Coordinates Polar Symmetries

CYLINDRICAL & SPHERICAL COORDINATES

D Alembert s Solution to the Wave Equation

Strain gauge and rosettes

ANTENNAS and WAVE PROPAGATION. Solution Manual

Parametrized Surfaces


derivation of the Laplacian from rectangular to spherical coordinates

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

ΤΗΛ412 Ανάλυση & Σχεδίαση (Σύνθεση) Τηλεπικοινωνιακών Διατάξεων. Διαλέξεις 8-9. Άγγελος Μπλέτσας ΗΜΜΥ Πολυτεχνείου Κρήτης, Φθινόπωρο 2014

Areas and Lengths in Polar Coordinates

3.5 - Boundary Conditions for Potential Flow

Example 1: THE ELECTRIC DIPOLE

4.4 Superposition of Linear Plane Progressive Waves

Chapter 7 Transformations of Stress and Strain

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

1 String with massive end-points

Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Reminders: linear functions

CURVILINEAR COORDINATES

Κεραίες & Ασύρματες Ζεύξεις

Partial Differential Equations in Biology The boundary element method. March 26, 2013

ADVANCED STRUCTURAL MECHANICS

Γe jβ 0 z Be jβz 0 < z < t t < z The associated magnetic fields are found using Maxwell s equation H = 1. e jβ 0 z = ˆx β 0

is like multiplying by the conversion factor of. Dividing by 2π gives you the

Rectangular Polar Parametric

Magnetically Coupled Circuits

Section 9.2 Polar Equations and Graphs

ECE 468: Digital Image Processing. Lecture 8

Graded Refractive-Index

Second Order Partial Differential Equations

Second Order RLC Filters

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Lecture 21: Scattering and FGR

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

UNIVERSITÀ DI PISA. Plane waves 07/10/2011 1

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI

Approximation of distance between locations on earth given by latitude and longitude

Technical Report. General Design Data of a Three Phase Induction Machine 90kW Squirrel Cage Rotor

For a wave characterized by the electric field

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Capacitors - Capacitance, Charge and Potential Difference

Notes 6 Coordinate Systems

Trigonometric Formula Sheet

for fracture orientation and fracture density on physical model data

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

The Relationship Between Flux Density and Brightness Temperature

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Section 8.2 Graphs of Polar Equations

SMD Power Inductor-VLH

EE512: Error Control Coding

Double Integrals, Iterated Integrals, Cross-sections

TECNICAL BOOKLET ANTENNES amateur radio antennas

Section 8.3 Trigonometric Equations

Geometry of the 2-sphere

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

SMD Power Inductor-VLH

EE 570: Location and Navigation

NKT NTC Thermistor. Negative Temperature Coefficient Thermistor FEATURES

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Variational Wavefunction for the Helium Atom

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

Tutorial Note - Week 09 - Solution

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

Solutions to Exercise Sheet 5

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

New bounds for spherical two-distance sets and equiangular lines

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

ISM 868 MHz Ceramic Antenna Ground cleared under antenna, clearance area mm x 8.25 mm. Pulse Part Number: W3013

ITU-R SA (2010/01)! " # $% & '( ) * +,

Transcript:

Topic 4 Linear Wire and Small Circular Loop Antennas Tamer Abuelfadl Electronics and Electrical Communications Department Faculty of Engineering Cairo University Tamer Abuelfadl (EEC, Cairo University) Topic 4 ELC45A, ELCN45 1 / 35

Linear Wire Antennas and Small Circular Loop Antenna 1 Innitesimal Dipole Small Dipole 3 Finite Length Dipole 4 Conductor Losses and Loss Resistance 5 Linear Elements Near or on Innite Conductor 6 Loop Antennas Tamer Abuelfadl (EEC, Cairo University) Topic 4 ELC45A, ELCN45 / 35

Outline 1 Innitesimal Dipole Small Dipole 3 Finite Length Dipole 4 Conductor Losses and Loss Resistance 5 Linear Elements Near or on Innite Conductor 6 Loop Antennas Tamer Abuelfadl (EEC, Cairo University) Topic 4 ELC45A, ELCN45 3 / 35

Innitesimal Dipole l λ (l λ/5) End plates are to maintain uniform current, however they are very small to aect radiation! Not very practical, however they are considered as a basic building blocks for complex structures. I e (z ) = ^a z I A(r,θ,φ) = µ 4π ˆ C e jkr I e R dl µi l = ^a z 4πr e jkr Tamer Abuelfadl (EEC, Cairo University) Topic 4 ELC45A, ELCN45 4 / 35

Innitesimal Dipole Transformation from rectangular spherical components, A r sinθ cosφ sinθ sinφ cosθ A x A θ = cosθ cosφ cosθ sinφ sinθ A y A φ sinφ cosφ A z Magnetic eld H = 1 µ A = ^a φ A r = µi le jkr 4πr cosθ, A θ = µi le jkr 4πr sinθ [ 1 µr r (ra θ ) A ] r = j ki le jkr [ sinθ 1 + 1 ] ^a φ θ 4πr jkr Electric eld E = 1 jωε H Tamer Abuelfadl (EEC, Cairo University) Topic 4 ELC45A, ELCN45 5 / 35

Innitesimal Dipole E = jη ki [ ( l 1 4πr e jkr cosθ jkr 1 ) ( ^a k r r + sinθ 1 + 1 H = j ki le jkr 4πr sinθ [ 1 + 1 ] ^a φ jkr Radiation Power Density, W = 1 (E H ) = 1 (^ar E θ Hφ ^a θ E r H ) φ Radiated Power, { P rad = R = ηπ 4 S I l λ } W ds = η k I l 3π [ cosθ + cos3 θ 3 ˆ π ] π dφ = ηπ 3 ˆ π jkr 1 ] )^a k r θ sin θ sinθdθ I l λ Radiation Resistance P rad = ηπ 3 I l λ = 1 I R r = ( l R r = 8π λ )

Radiation Regions Near eld region kr 1, E = jη I l 4πkr 3 e jkr [cosθ^a r + sinθ^a θ ] H = I le jkr 4πr sinθ^a φ Intermediate-eld (Fresnel) region kr > 1, E = jη ki l 4πr e jkr [ jkr cosθ^a r + sinθ^a θ H = j ki le jkr sinθ^a φ 4πr Far-eld (Fraunhover) region kr 1, E = jη ki l sinθ e jkr^a θ, 4πr H = 1 η^a r E H = j ki le jkr 4πr ] sinθ^a φ Tamer Abuelfadl (EEC, Cairo University) Topic 4 ELC45A, ELCN45 7 / 35

Directivity W rad = E θ η U = r W rad = r E θ η = η k I l 3π sin θ = η 8 I l λ sin θ P rad = ηπ 3 I l λ D = 4πU P rad = 1.5sin θ Tamer Abuelfadl (EEC, Cairo University) Topic 4 ELC45A, ELCN45 8 / 35

Outline 1 Innitesimal Dipole Small Dipole 3 Finite Length Dipole 4 Conductor Losses and Loss Resistance 5 Linear Elements Near or on Innite Conductor 6 Loop Antennas Tamer Abuelfadl (EEC, Cairo University) Topic 4 ELC45A, ELCN45 9 / 35

Small Dipole ( ) ( I e z ) ^a z I 1 z l = ( ) ^a z I 1 + z l [ 1 µi le jkr ] A = ^a z 4πr E = jη ki (l/)e kr 4πr H = j ki (l/)e kr 4πr z l/ l/ z sinθ^a θ sinθ^a φ ( ) l/ Radiation resistance R r = 8π λ Small dipole of length l is equivalent to innitesimal dipole of length l/.

Outline 1 Innitesimal Dipole Small Dipole 3 Finite Length Dipole 4 Conductor Losses and Loss Resistance 5 Linear Elements Near or on Innite Conductor 6 Loop Antennas Tamer Abuelfadl (EEC, Cairo University) Topic 4 ELC45A, ELCN45 11 / 35

Finite Length Dipole I e ( z ) = {^az I sin [ k ( l z )], z l ^a z I sin [ k ( l + z )], l z

Finite Length Dipole E jω [ A θ^a θ + A φ^a φ ], A(r,θ,φ) µ 4π A = µ 4π E = jη ke jkr 4πr e jkr r e jkr ˆ l/ r sinθ ˆ C l/ ˆ l/ I e ( r,θ,φ ) e j k r dl I e ( z ) e jkz cosθ dz ^a z l/ I e ( z ) e jkz cosθ dz ^a θ

( I e z ) {^az I sin [ k ( l = z )], z l ^a z I sin [ k ( l + z )], l z E = jη ke jkr 4πr ˆ l/ ( sinθ I e z ) e jkz cosθ dz ^a θ l/ E = jη ki e jkr 4πr + ˆ l/ sin {ˆ [ ( l sinθ sin k l/ [ ( l k z )] + z e jkz cosθ dz } )]e jkz cosθ dz The integrals can be evaluated using ˆ e αx sin(βx + γ)dx = eαx [α sin(βx + γ) β cos(βx + γ)] α + β ( ) ( ) kl kl E = jη I e jkr cos cosθ cos πr sinθ ^a θ ^a θ

Radiation Intensity, and Radiation Resistance P rad = U = r η E θ = η I 8π ˆ π ˆ π cos U sinθdθdφ = η I 4π ( ) kl cosθ cos ˆ π sinθ ( kl ) [ ( ) ( )] kl kl cos cosθ cos dθ sinθ P rad = 1 I in R r = 1 I sin (kl/)r r 1 η R r = sin (kl/) π ˆ π [ cos ( ) ( )] kl kl cosθ cos dθ sinθ

Outline 1 Innitesimal Dipole Small Dipole 3 Finite Length Dipole 4 Conductor Losses and Loss Resistance 5 Linear Elements Near or on Innite Conductor 6 Loop Antennas Tamer Abuelfadl (EEC, Cairo University) Topic 4 ELC45A, ELCN45 16 / 35

Conductor Losses Skin depth: δ s = 1/ πf µσ Resistance of the segment with dimensions ( x, y, δ s ): R = y σδ s x Current owing through length x: I s = J s x

Conductor Losses R = y σδ s x Current owing through length x: I s = J s x Power loss in the area x y, P loss = 1 I s R = 1 J s 1 σδ s x y Total Power loss in a conductor area S, P loss = 1 ˆ S J s R s ds, where R s = 1 πf µ = σδ s σ

Conductor Losses P loss = 1 ˆ S J s R s ds, where R s = 1 πf µ = σδ s σ R s is called the surface resistance of the conductor. The surface current can be obtained using the approximation of a perfect conductor boundary conditions, J s = n H = J s = H where n is the normal unit vector on the conductor. Total Power loss in a conductor area S, P loss = 1 ˆ S H R s ds, where R s = 1 πf µ = σδ s σ

Loss resistance P loss = 1 P loss = 1 = 1 ˆ l/ ˆ l/ S ˆ l/ J s R s ds l/ I e (z ) (πb) R s (πb)dz I e (z ) πb R sdz = 1 I e () R L R L = R ˆ l/ s πb l/ I e (z ) I e () dz Tamer Abuelfadl (EEC, Cairo University) Topic 4 ELC45A, ELCN45 / 35

Half-wavelength (λ/) dipole P rad = ( π ) U = r η E θ = η I cos cosθ 8π sinθ ˆ π ˆ π D = 4πU P rad = R r = η π η πr r U sinθdθdφ = η I ˆ π 4π P rad = 1 I R r ( π ) cos cosθ sinθ ( π ) cos cosθ sinθ ˆ π cos ( π cosθ ) dθ = 73 Ω sinθ dθ ( π ) = 1.64 cos cosθ sinθ

Outline 1 Innitesimal Dipole Small Dipole 3 Finite Length Dipole 4 Conductor Losses and Loss Resistance 5 Linear Elements Near or on Innite Conductor 6 Loop Antennas Tamer Abuelfadl (EEC, Cairo University) Topic 4 ELC45A, ELCN45 / 35

Linear Elements Near or on Innite Conductor Image Theory E = jηki le jkr 4πr +sinθ H = j ki le jkr 4πr [ ( cosθ ( 1 + 1 jkr 1 k r jkr 1 k r ] )^a θ [ sinθ 1 + 1 ] ^a φ jkr ) ^a r

Linear Elements Near or on Innite Conductor Image Theory

Vertical Innitesimal Dipole Above Ground Plane A(r,θ,φ) µ 4π e jkr r ˆ C I e e j k r dl H ^a r E η, E jω [ ] A θ^a θ + A φ^a φ {jη ki le kr E = 4πr sinθ [cos(kh cosθ)]^a θ z z < η U = I l λ sin θ cos (kh cosθ) < θ π/ π/ < θ π ˆ ˆ P rad = UdΩ = πη I l π/ λ sin 3 θ cos (kh cosθ)dθ ˆ = πη I l 1 ( ) λ 1 x cos (khx)dx

Vertical Innitesimal Dipole Above Ground Plane U max = η I l λ P rad = πη I l λ [ 1 3 cos(kh) (kh) = D = 4πU max P rad = ] + sin(kh) (kh) 3 ( ) [ ] l 1 R r = πη λ 3 cos(kh) + sin(kh) (kh) (kh) 3 [ ] 1 cos(kh) + sin(kh) 3 (kh) (kh) 3 kh, R r = 8π (l/λ), R r is identical to isolated Innitesimal dipole. kh, D = 3, R r = 16π (l/λ), D and R r are twice the isolated Innitesimal dipole. Tamer Abuelfadl (EEC, Cairo University) Topic 4 ELC45A, ELCN45 6 / 35

λ/4 Monopole on Innite Electric Conductor The radiation elds are identical in the upper half plane (z > ). However the total radiated for the monopole is half its value for the dipole. P rad (m) = 1 P rad (d) D m = D d, R r (m) = 1 R r (d)

Outline 1 Innitesimal Dipole Small Dipole 3 Finite Length Dipole 4 Conductor Losses and Loss Resistance 5 Linear Elements Near or on Innite Conductor 6 Loop Antennas Tamer Abuelfadl (EEC, Cairo University) Topic 4 ELC45A, ELCN45 8 / 35

Angle Between Two Directions in Space The unit vector describing the the direction (θ, φ), ^a r = sinθ cosφ^a x + sinθ sinφ^a y + cosθ^a z The unit vector describing the the direction (θ, φ ), ^a r = sinθ cosφ ^a x + sinθ sinφ ^a y + cosθ ^a z The angle ψ between the two directions, cosψ = ^a r ^a r cosψ = sinθ sinθ cos ( φ φ ) + cosθ cosθ Tamer Abuelfadl (EEC, Cairo University) Topic 4 ELC45A, ELCN45 9 / 35

Small Circular Loop Circumference C < λ 1 A(r,θ,φ) = µ ˆ e jkr I e 4π R dl C The source current is along â φ : coordinates, I e = I ^a φ. Transforming to Cartesian I x = I sinφ, I y = I cosφ Transforming to the spherical coordinates at the observation point, I r = I x cosφ sinθ + I y sinφ sinθ I θ = I x cosφ cosθ + I y sinφ cosθ I φ = I x sinφ + I y cosφ

Small Circular Loop I x = I sinφ, I y = I cosφ Transforming to the spherical coordinates at the observation point, I r = I x cosφ sinθ + I y sinφ sinθ I θ = I x cosφ cosθ + I y sinφ cosθ I φ = I x sinφ + I y cosφ I r = I sinθ sin ( φ φ ) I θ = I cosθ sin ( φ φ ) I φ = I cos ( φ φ ) I e = ^a r I sinθ sin ( φ φ ) +^a θ I cosθ sin ( φ φ ) +^a φ I cos ( φ φ )

Small Circular Loop A r = µi a 4π sinθ A θ = µi a 4π cosθ R = r + a ar cosψ, cosψ = sinθ cos ( φ φ ) A φ = µi a 4π ˆ π ˆ π sin ( φ φ ) e jk r +a ar sinθ cos(φ φ ) r + a ar sinθ cos(φ φ ) dφ = sin ( φ φ ) e jk r +a ar sinθ cos(φ φ ) r + a ar sinθ cos(φ φ ) dφ = ˆ π cos ( φ φ ) e jk r +a ar sinθ cos(φ φ ) dφ

Small Circular Loop A = A φ^a φ, A φ = µi a 4π ˆ π cos ( φ φ ) e jk r +a ar sinθ cos(φ φ ) r + a ar sinθ cos(φ φ ) dφ f () = e jkr r A φ = µi a e jkr 4π r f = e jk r +a ar sinθ cos(φ φ ) r + a ar sinθ cos(φ φ ) f (a) f () + f ()a, f () = e jkr (jkr + 1)sinθ cos ( φ φ ) r [ ( f = e jkr 1 1 + a )sinθ r r + jk cos ( φ φ )] ˆ π cos ( φ φ )[ ( 1 1 + a r + jk A φ = a jkµi e jkr ( ) 1 4 r jkr + 1 sinθ ) sinθ cos ( φ φ )] dφ

Small Circular Loop A = A φ^a φ, A φ = a jkµi e jkr ( ) 1 4 r jkr + 1 sinθ H = 1 µ A, E = 1 jωε H = η jk H H = (ka) I e jkr 4r [ ( jkr ) ( ] cosθ^a (kr) r + )sinθ^a 1 (kr) + 1 jkr + 1 θ E = η (ka) I e jkr 4r ( ) 1 jkr + 1 sinθ^a φ Tamer Abuelfadl (EEC, Cairo University) Topic 4 ELC45A, ELCN45 34 / 35

Small Circular Loop Far Fields, H = (ka) I e jkr 4r sinθ^a θ, E = η (ka) I e jkr 4r sinθ^a φ Radiated Power and Radiation Resistance U = η (ka)4 I ˆ sin θ, P rad = UdΩ = η π (ka)4 I 3 1 ( π ) R r = η (ka) 4 6 For N-turns loop, Loss resistance R L, ( π ) R r = R r = η (ka) 4 N 6 R L = N a b R s, where b is the wire radius, and R s is the conductor surface impedance. Increasing the number of turns, increases the antenna radiation eciency.