Mathematical model for HIV spreads control program with ART treatment

Σχετικά έγγραφα
Congruence Classes of Invertible Matrices of Order 3 over F 2

Example Sheet 3 Solutions

encouraged to use the Version of Record that, when published, will replace this version. The most /BCJ BIOCHEMICAL JOURNAL

2 Composition. Invertible Mappings

Approximation of distance between locations on earth given by latitude and longitude

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

MathCity.org Merging man and maths

An Inventory of Continuous Distributions

Section 8.3 Trigonometric Equations

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Statistical Inference I Locally most powerful tests

The ε-pseudospectrum of a Matrix

5. Choice under Uncertainty

Generating Set of the Complete Semigroups of Binary Relations

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

4.6 Autoregressive Moving Average Model ARMA(1,1)

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Second Order Partial Differential Equations

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

derivation of the Laplacian from rectangular to spherical coordinates

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Matrices and Determinants

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Commutative Monoids in Intuitionistic Fuzzy Sets

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Capacitors - Capacitance, Charge and Potential Difference

Math 6 SL Probability Distributions Practice Test Mark Scheme

ST5224: Advanced Statistical Theory II

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Solution Series 9. i=1 x i and i=1 x i.

EE512: Error Control Coding

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Math221: HW# 1 solutions

Μηχανική Μάθηση Hypothesis Testing

The Simply Typed Lambda Calculus

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Numerical Analysis FMN011

A summation formula ramified with hypergeometric function and involving recurrence relation

Ψηφιακή ανάπτυξη. Course Unit #1 : Κατανοώντας τις βασικές σύγχρονες ψηφιακές αρχές Thematic Unit #1 : Τεχνολογίες Web και CMS

5.4 The Poisson Distribution.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Other Test Constructions: Likelihood Ratio & Bayes Tests

SPECIAL FUNCTIONS and POLYNOMIALS

Inverse trigonometric functions & General Solution of Trigonometric Equations

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL

Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns

ΦΩΤΟΓΡΑΜΜΕΤΡΙΚΕΣ ΚΑΙ ΤΗΛΕΠΙΣΚΟΠΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΜΕΛΕΤΗ ΘΕΜΑΤΩΝ ΔΑΣΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

w o = R 1 p. (1) R = p =. = 1

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

ΕΦΑΡΜΟΓΗ ΕΥΤΕΡΟΒΑΘΜΙΑ ΕΠΕΞΕΡΓΑΣΜΕΝΩΝ ΥΓΡΩΝ ΑΠΟΒΛΗΤΩΝ ΣΕ ΦΥΣΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΛΙΝΗΣ ΚΑΛΑΜΙΩΝ

Longitudinal Changes in Component Processes of Working Memory

Homework 3 Solutions

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Démographie spatiale/spatial Demography

EE101: Resonance in RLC circuits

6.3 Forecasting ARMA processes

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

encouraged to use the Version of Record that, when published, will replace this version. The most /BCJ

Fractional Colorings and Zykov Products of graphs

High order interpolation function for surface contact problem

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Liner Shipping Hub Network Design in a Competitive Environment

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 9η: Basics of Game Theory Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Instruction Execution Times

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

IIT JEE (2013) (Trigonomtery 1) Solutions

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Additional Results for the Pareto/NBD Model

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

D Alembert s Solution to the Wave Equation

On a four-dimensional hyperbolic manifold with finite volume

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Προσωπική Aνάπτυξη. Ενότητα 2: Διαπραγμάτευση. Juan Carlos Martínez Director of Projects Development Department

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα

Supplementary Materials: A Preliminary Link between Hydroxylated Metabolites of Polychlorinated Biphenyls and Free Thyroxin in Humans

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

C.S. 430 Assignment 6, Sample Solutions

Homomorphism in Intuitionistic Fuzzy Automata

Finite difference method for 2-D heat equation

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

( ) 2 and compare to M.

Περισσότερα+για+τις+στροφές+

This is a repository copy of Persistent poverty and children's cognitive development: Evidence from the UK Millennium Cohort Study.

Homework for 1/27 Due 2/5

UMI Number: All rights reserved

Transcript:

Journal of Physics: Conference Series PAPER OPEN ACCESS Mathematical model for HIV spreads control program with ART treatment To cite this article: Maimunah and Dipo Aldila 208 J. Phys.: Conf. Ser. 974 02035 View the article online for updates and enhancements. Related content - A Mathematical Model Of Dengue- Chikungunya Co-Infection In A Closed Population Dipo Aldila and Maya Ria Agustin - Application of optimal control strategies to HIV-malaria co-infection dynamics Fatmawati, Windarto and Lathifah Hanif - Mathematical modeling of zika virus disease with nonlinear incidence and optimal control Naba Kumar Goswami, Akhil Kumar Srivastav, Mini Ghosh et al. This content was downloaded from IP address 48.25.232.83 on 25/08/208 at 02:09

IOP Conf. Series: Journal of Physics: Conf. Series 234567890 974 (208) 02035 doi :0.088/742-6596/974//02035 Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by Ltd

IOP Conf. Series: Journal of Physics: Conf. Series 234567890 974 (208) 02035 doi :0.088/742-6596/974//02035 2

IOP Conf. Series: Journal of Physics: Conf. Series 234567890 974 (208) 02035 doi :0.088/742-6596/974//02035 (x (t)) (x 2 (t)) (x 3 (t)) (x 4 (t)) (x 5 (t)) (x 6 (t)) (x 7 (t)) x A (µ) (x 7 ) δ δ > µ β a x 2 β c x 3, x 4, x 5 x 6 β s (x 7 ) β a > β c > β s x 2 x 3 u (x 4 ) (x 4 ) (x 5 ) ξ 4 (x 4 ) (x 5 ) (x 6 ) ρ c (x 6 ) r c r c (x 3 ) x 7 3

IOP Conf. Series: Journal of Physics: Conf. Series 234567890 974 (208) 02035 doi :0.088/742-6596/974//02035 dx dx 2 dx 3 dx 4 dx 5 dx 6 dx 7 = A β ax x 2 β cx (θ h x 4 θ l x 5 x 3 x 6 ) β sx x 7 µx = β ax x 2 β cx (θ h x 4 θ l x 5 x 3 x 6 ) β sx x 7 γ a x 2 µx 2 = γ a x 2 ( r c ) γ b x 6 ux 3 γ c x 3 µx 3 = µx 4 ux 3 x 4 ξ 4 x 5 ξ 5 = µx 5 ρ c x 5 x 4 ξ 4 x 5 ξ 5 = ρ c x 5 ( r c ) γ b x 6 r c γ b x 6 µx 6 = r c γ b x 6 δx 7 µ x 7 γ c x 3, x i (t = 0) = x i0 i =, 2,..., 7 4

IOP Conf. Series: Journal of Physics: Conf. Series 234567890 974 (208) 02035 doi :0.088/742-6596/974//02035 human A β a β c β s θ h β a x 4 θ l β a x 5 γ a x 2 x 3 γ b x 4 x 5 γ c r c ρ c x 5 u ξ 4 ξ 5 µ δ time u = 0 (x 4, x 5, x 6 ) dx dx 2 dx 3 dx 7 = A β ax x 2 β cx x 3 β sx x 7 µx = β ax x 2 β cx x 3 β sx x 7 γ a x 2 µx 2 = µ x 3 γ a x 2 γ c x 3 = µ x 7 δ x 7 γ c x 3, x 0, x 20, x 30 x 70 { DF E = x = A } µ, x 2 = 0, x 3 = 0, x 7 = 0. 5

IOP Conf. Series: Journal of Physics: Conf. Series 234567890 974 (208) 02035 doi :0.088/742-6596/974//02035 EE = {x = x, x 2 = x 2, x 3 = x 3, x 7 = x 7 }. x = A R 0 µ x 2 = µ Nx(µγc)(µδ)(R 0 ) k x 3 = γa,µ Nx(µδ)(R 0 ) k 2 x 7 = γaγcµ Nx(R 0 ) k 3 k = δ µ β a δ β a γ c δ β c γ a µ 2 β a µ β a γ c µ β c γ a β s γ a γ c k 2 = δ µ β a δ β a γ c δ β c γ a µ 2 β a µ β a γ c µ β c γ a β s γ a γ c k 3 = δ µ β a δ β a γ c δ β c γ a µ 2 β a µ β a γ c µ β c γ a β s γ a γ c R 0 = A(δ µ βaδ βaγcδ βcγaµ2 β aµ β aγ cµ β cγ aβ sγ aγ c) µ (µγ a)(µγ c)(δµ) EE (x i > 0) R 0 = A ( δ µ β a δ β a γ c δ β c γ a µ 2 β a µ β a γ c µ β c γ a β s γ a γ c ) µ (µ γ a ) (µ γ c ) (δ µ) >. DF E J = µ βaa µ βca µ βsa µ 0 β aa µ γ a µ β ca µ β sa µ 0 γ a µ γ c 0 0 0 γ c δ µ J. λ 4 h 0 λ 3 h λ 2 h 2 λ h 3 h 4 = 0. h 0 = h = δµ 4µ 2 µ γ a µ γ c Aβ a µ 6

International Conference on Mathematics: Pure, Applied and Computation IOP Conf. Series: Journal of Physics: Conf. Series 974 (208) doi:0.088/742-6596/974//02035 234567890 02035 ( 3δµ2 Nx δµnx γa δµnx γc 6µ3 Nx 3µ2 Nx γa 3µ2 Nx γc µnx µnx γa γc Aδβa 3Aµβa Aβa γc Aβc γa ) ( 4 h3 = 4µ Nx 3Nx (δ γa γc ) µ3 (((2δ 2γc ) γa 2δγc ) Nx 3Aβa ) µ2 µnx (δnx γa γc 2A (βc γa βa (δ γc ))) µ A ((δβc βs γc ) γa δβa γc )) ( 4 h4 = µ Nx Nx (δ γa γc ) µ3 (((δ γc ) γa δγc ) Nx Aβa ) µ2 Nx (δnx γa γc A (βc γa βa (δ γc ))) µ ((δβc βs γc ) γa δβa γc ) A). h2 = Using the Routh-Hurwitz criterion [2], all eigenvalues of J will be negative if and only if : { h > 0, h3 > 0, h4 > 0 (8) h h2 h3 > h4 Next, the basic reproduction number of system 2 will be analyzed. Basic reproduction number is define as the expected number of secondary cases caused by one primary case in a closed population during one infection period [0]. The illustration of basic reproduction number R0 when it is larger than one, smaller than one, or equal to one is given in Figure 2. There are some Figure 2. Interpretation of disease spread using R0. method to calculate the basic reproduction number, such as using next-generation matrix [0], graph theory [], etc. In this article, next-generation matrix approach will be implemented to calculate the basic reproduction number of system 2. Using the next-generation matrix approach implemented to system 2, the basic reproduction number as the spectral radius of the respected next-generation matrix is given by : ( ) A δ µ βa δ βa γc δ βc γa µ2 βa µ βa γc µ βc γa βs γa γc R0 =. (9) µ Nx (µ γa ) (µ γc ) (δ µ) 000 Let us define the parameters value for system 2 as follows : A = 65 365, µ = 65 365, Nx = 0.0025 000, βa = 000, βc = 0.75βa, βs = 0.5βa, γa = 5 365, γc = 3 365. With this parameters value, 7

IOP Conf. Series: Journal of Physics: Conf. Series 234567890 974 (208) 02035 doi :0.088/742-6596/974//02035 R 0 x = 64.64532, x 2 = 59.6704757, x 3 = 34.22273950, x 7 = 0.44629387. β a, β c, β s, γ a, γ c δ x 2, x 3 x 7 J = 4592.268 26337.649 343.39553 88056.5074 5667.0652 6.28373 3280.08045 88.222623 24.5282524 4552.6545 3690.50458 0.4377402 88.222608 078.936498 4.06767408 3242.8700 37937.25243 0.250568. 24.5282523 4.06767406 0.834208552 42.28353 6.044070 6.373893674 J γ a x x γ a, γ c, β a, β c, β s δ J γ a { DF E = x = A } µ, x 2 = 0, x 3 = 0, x 4 = 0, x 5 = 0, x 6 = 0, x 7 = 0. λ 7 a 0 λ 6 a λ 5 a 2 λ 4 a 3 λ 3 a 4 λ 2 a 5 λ a 6 a 7 = 0, a 0 =, a = Q µ, a 2 = Q 2 µ, a 3 = Q 3 µ, a 4 = Q 4 µ, a 5 = Q 5 µ, a 6 = Q 6 µ, a 7 = Q 7 Q = µ (γ a γ b γ c u 7 µ δ ξ 4 ξ 5 ρ c) Aβ a Q 2 = 2µ 3 6 (γ a γ b γ c u δ ξ 4 ξ 5 ρ c) µ 2 (( γ b γ c u δ ξ 4 ξ 5 ρ c) γ a ( γ c u δ ξ 4 ξ 5 ρ c) γ b ( γ c u ξ 4 ξ 5 ρ c) δ ( ξ 4 ξ 5 ρ c) γ µ c ( u ξ 4 ) ρ c u (ξ 4 ξ 5 )) 6Aβ a A (β cγ a β a (γ b γ c u δ ξ 4 ξ 5 ρ c)) Q 3 = 35µ 5 20 (γ a γ b γ c u δ ξ 4 ξ 5 ρ c) µ 4 (( 0γ a 0γ c 0u 0δ 0ξ 4 0ξ 5 0ρ c) γ b ( 0γ c 0u 0δ 0ξ 4 0ξ 5 0ρ c) γ a ( 0γ c 0u 0ξ 4 0ξ 5 0ρ c) δ µ3 ( 0γ c 0u 0ξ 4 ) ρ c 0 (ξ 4 ξ 5 ) (γ c u)) 20Aβ a 8

IOP Conf. Series: Journal of Physics: Conf. Series 234567890 974 (208) 02035 doi :0.088/742-6596/974//02035 ((( 4γ c 4u 4δ 4ξ 4 4ξ 5 4ρ c) γ a ( 4γ c 4u 4ξ 4 4ξ 5 4ρ c) δ ( 4γ c 4u 4ξ 4 ) ρ c 4 (ξ 4 ξ 5 ) (γ c u)) γ b (( 4γ c 4u 4ξ 4 4ξ 5 4ρ c) δ ( 4γ c 4u 4ξ 4 ) ρ c 4 (ξ 4 ξ 5 ) (γ c u)) γ a (( 4γ c 4u 4ξ 4 ) ρ c 4 (ξ 4 ξ 5 ) (γ c u)) δ 4ξ 4 ρ c (γ c u)) N µ2 x 0 (β aγ b β cγ a β a (γ c u δ ξ 4 ξ 5 ρ c)) A (((( γ c u ξ 4 ξ 5 ρ c) δ ( γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) γ a (( γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) δ ξ 4 ρ c (ur c γ c)) γ b ((( γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) δ ξ 4 ρ c (γ c u)) γ a δξ 4 ρ c (γ c u)) 4 ((β cγ a β a (γ c u δ ξ 4 ξ 5 ρ c)) γ b (uβ cθ h δβ c β cρ c β cξ 4 β cξ 5 β sγ c) γ µ a ((γ c u ξ 4 ξ 5 ρ c) δ (γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) β a) A ((uβ cθ h δβ c β cρ c β cξ 4 β cξ 5 β sγ c) γ a ((γ c u ξ 4 ξ 5 ρ c) δ (γ c u ξ 4 ) ρ c A (ξ 4 ξ 5 ) (γ c u)) β a) γ b (β c (uθ h ρ c ξ 4 ξ 5 ) δ (uβ cθ h β cξ 4 β sγ c) ρ c (uβ cθ l β sγ c) ξ 4 ξ 5 (uβ cθ h β sγ c)) γ a β a (((γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) δ ξ 4 ρ c (γ c u)) Q 4 = 35 µ 5 20 (γ a γ b γ c u δ ξ 4 ξ 5 ρ c) µ 4 ( 0 δ u 0 δ γ a 0 δ γ b 0 δ γ c 0 δ ρ c 0 δ ξ 4 0 δ ξ 5 0 un xγ a 0 uγ b 0 uρ c 0 uξ 4 µ 3 0 uξ 5 0 γ aγ b 0 γ aγ c 0 γ aρ c 0 γ aξ 4 0 γ aξ 5 0 γ b γ c 0 γ b ρ c 0 γ b ξ 4 0 γ b ξ 5 0 N xγ cρ c 0 γ cξ 4 0 γ cξ 5 0 ρ cξ 4 20 Aβ a) ( 4 δ uγ a 4 δ uγ b 4 δ uρ c 4 δ uξ 4 4 δ uξ 5 4 δ γ aγ b 4 δ γ aγ c 4 δ γ aρ c 4 δ γ aξ 4 4 δ γ aξ 5 4 δ γ b γ c 4 δ γ b ρ c 4 δ γ b ξ 4 4 δ γ b ξ 5 4 δ γ cρ c 4 δ γ cξ 4 4 δ γ cξ 5 4 δ N xρ cξ 4 4 uγ aγ b 4 uγ aρ c 4 uγ aξ 4 4 uγ aξ 5 4 uγ b ρ c µ 2 4 uγ b ξ 4 4 uγ b ξ 5 4 uρ cξ 4 4 γ aγ b γ c 4 γ aγ b ρ c 4 γ aγ b ξ 4 4 γ aγ b ξ 5 4 γ aγ cρ c 4 γ aγ cξ 4 4 γ aγ cξ 5 4 γ aρ cξ 4 4 γ b γ cρ c 4 γ b γ cξ 4 4 γ b γ cξ 5 4 γ b ρ cξ 4 4 γ cρ cξ 4 0 Aδ β a 0 Auβ a 0 Aβ aγ b 0 Aβ aγ c 0 Aβ aρ c 0 Aβ aξ 4 0 Aβ aξ 5 0 Aβ cγ a) ( uγ b r cρ cξ 4 4 Auβ cγ aθ h δ uγ aγ b δ uγ aρ c δ uγ aξ 4 δ un xγ aξ 5 δ uγ b ρ c δ uγ b ξ 4 δ uγ b ξ 5 δ uρ cξ 4 δ γ aγ b γ c δ γ aγ b ρ c δ γ aγ b ξ 4 δ γ aγ b ξ 5 δ γ aγ cρ c δ γ aγ cξ 4 δ γ aγ cξ 5 δ γ aρ cξ 4 δ γ b γ cρ c δ γ b γ cξ 4 δ γ b γ cξ 5 δ γ b ρ cξ 4 δ γ cρ cξ 4 uγ aγ b ρ c uγ aγ b ξ 4 uγ aγ b ξ 5 uγ aρ cξ 4 γ aγ b γ cρ c γ aγ b γ cξ 4 γ aγ b γ cξ 5 γ aγ b ρ cξ 4 µ γ aγ cρ cξ 4 γ b γ cρ cξ 4 4 Aδ uβ a 4 Aδ β aγ b 4 Aδ β aγ c 4 Aδ β aρ c 4 Aδ β aξ 4 4 Aδ β aξ 5 4 Aδ β cγ a 4 Auβ aγ b 4 Auβ aρ c 4 Auβ aξ 4 4 Auβ aξ 5 4 Aβ aγ b γ c 4 Aβ aγ b ρ c 4 Aβ aγ b ξ 4 4 Aβ aγ b ξ 5 4 Aβ aγ cρ c 4 Aβ aγ cξ 4 4 Aβ aγ cξ 5 4 Aβ aρ cξ 4 4 Aβ cγ aγ b 4 Aβ cγ aρ c 4 Aβ cγ aξ 4 4 Aβ cγ aξ 5 4 Aβ sγ aγ c) (δ uβ cγ aθ h uβ cγ aγ b θ h uβ cγ aρ cθ h uβ cγ aθ h ξ 5 uβ cγ aθ l ξ 4 δ uβ aγ b δ uβ aρ c δ uβ aξ 4 δ uβ aξ 5 δ β aγ b γ c δ β aγ b ρ c δ β aγ b ξ 4 δ β aγ b ξ 5 δ β aγ cρ c δ β aγ cξ 4 δ β aγ cξ 5 δ β aρ cξ 4 δ β cγ aγ b A δ β cγ aρ c δ β cγ aξ 4 δ β cγ aξ 5 uβ aγ b ρ c uβ aγ b ξ 4 uβ aγ b ξ 5 uβ aρ cξ 4 β aγ b γ cρ c β aγ b γ cξ 4 β aγ b γ cξ 5 β aγ b ρ cξ 4 β aγ cρ cξ 4 β cγ aγ b ρ c β cγ aγ b ξ 4 β cγ aγ b ξ 5 β cγ aρ cξ 4 β sγ aγ b γ c β sγ aγ cρ c β sγ aγ cξ 4 β sγ aγ cξ 5 ) Q 5 = 2µ 6 5 (γ a γ b γ c u δ ξ 4 ξ 5 ρ c) µ 5 (( 0γ a 0γ c 0u 0δ 0ξ 4 0ξ 5 0ρ c) γ b ( 0γ c 0u 0δ 0ξ 4 0ξ 5 0ρ c) γ a ( 0γ c 0u 0ξ 4 0ξ 5 0ρ c) δ µ4 ( 0γ c 0u 0ξ 4 ) ρ c 0 (ξ 4 ξ 5 ) (γ c u)) 5Aβ a ((( 6γ c 6u 6δ 6ξ 4 6ξ 5 6ρ c) γ a ( 6γ c 6u 6ξ 4 6ξ 5 6ρ c) δ ( 6γ c 6u 6ξ 4 ) ρ c 6 (ξ 4 ξ 5 ) (γ c u)) γ b (( 6γ c 6u 6ξ 4 6ξ 5 6ρ c) δ ( 6γ c 6u 6ξ 4 ) ρ c µ 3 6 (ξ 4 ξ 5 ) (γ c u)) γ a (( 6γ c 6u 6ξ 4 ) ρ c 6 (ξ 4 ξ 5 ) (γ c u)) δ 6ξ 4 ρ c (γ c u)) N x 0 (β aγ b β cγ a β a (γ c u δ ξ 4 ξ 5 ρ c)) A (((( 3γ c 3u 3ξ 4 3ξ 5 3ρ c) δ ( 3γ c 3u 3ξ 4 ) ρ c 3 (ξ 4 ξ 5 ) (γ c u)) γ a (( 3γ c 3u 3ξ 4 ) ρ c 3 (ξ 4 ξ 5 ) (γ c u)) δ 3ξ 4 ρ c (ur c γ c)) γ b ((( 3γ c 3u 3ξ 4 ) ρ c 3 (ξ 4 ξ 5 ) (γ c u)) δ 3ξ 4 ρ c (γ c u)) γ a 3δξ 4 ρ c (γ c u)) 6 ((β cγ a β a (γ c u δ ξ 4 ξ 5 ρ c)) γ b (uβ cθ h δβ c β cρ c β cξ 4 β cξ 5 β sγ c) γ µ2 a ((γ c u ξ 4 ξ 5 ρ c) δ (γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) β a) A ((((( γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) δ ξ 4 ρ c (ur c γ c)) γ a δξ 4 ρ c (ur c γ c)) γ b γ aδξ 4 ρ c (γ c u)) 3 (((uβ cθ h δβ c β cρ c β cξ 4 β cξ 5 β sγ c) γ a ((γ c u ξ 4 ξ 5 ρ c) δ (γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) β a) γ b (β c (uθ h ρ c ξ 4 ξ 5 ) δ (uβ cθ h β cξ 4 β sγ c) ρ c (uβ cθ l β sγ c) ξ µ 4 ξ 5 (uβ cθ h β sγ c)) γ a β a (((γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) δ ξ 4 ρ c (γ c u))) A (((β c (uθ h ρ c ξ 4 ξ 5 ) δ (uβ cθ h β cξ 4 β sγ c) ρ c (uβ cθ l β sγ c) ξ 4 A ξ 5 (uβ cθ h β sγ c)) γ a β a (((γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) δ ξ 4 ρ c (ur c γ c))) γ b (((uθ h ξ 4 ) ρ c u (θ h ξ 5 θ l ξ 4 )) β cδ ξ 4 ρ c (uβ c β sγ c)) γ a β aδξ 4 ρ c (γ c u)) Q 6 = 7µ 7 6 (γ a γ b γ c u δ ξ 4 ξ 5 ρ c) µ 6 (( 5γ a 5γ c 5u 5δ 5ξ 4 5ξ 5 5ρ c) γ b ( 5γ c 5u 5δ 5ξ 4 5ξ 5 5ρ c) γ a ( 5γ c 5u 5ξ 4 5ξ 5 5ρ c) δ µ5 ( 5γ c 5u 5ξ 4 ) ρ c 5 (ξ 4 ξ 5 ) (γ c u)) 6Aβ a 9

IOP Conf. Series: Journal of Physics: Conf. Series 234567890 974 (208) 02035 doi :0.088/742-6596/974//02035 ((( 4γ c 4u 4δ 4ξ 4 4ξ 5 4ρ c) γ a ( 4γ c 4u 4ξ 4 4ξ 5 4ρ c) δ ( 4γ c 4u 4ξ 4 ) ρ c 4 (ξ 4 ξ 5 ) (γ c u)) γ b (( 4γ c 4u 4ξ 4 4ξ 5 4ρ c) δ (4γ c 4u 4ξ 4 ) ρ c 4 (ξ 4 ξ 5 ) (γ c u)) γ a (( 4γ c 4u 4ξ 4 ) ρ c 4 (ξ 4 ξ 5 ) (γ c u)) δ 4ξ 4 ρ c (γ c u)) 5 (β aγ b β µ4 cγ a β a (γ c u δ ξ 4 ξ 5 ρ c)) A (((( 3γ c 3u 3ξ 4 3ξ 5 3ρ c) δ ( 3γ c 3u 3ξ 4 ) ρ c 3 (ξ 4 ξ 5 ) (γ c u)) γ a (( 3γ c 3u 3ξ 4 ) ρ c 3 (ξ 4 ξ 5 ) (γ c u)) δ 3ξ 4 ρ c (ur c γ c)) γ b ((( 3γ c 3u 3ξ 4 ) ρ c 3 (ξ 4 ξ 5 ) (γ c u)) δ 3ξ 4 ρ c (γ c u)) γ a µ 3 3δξ 4 ρ c (γ c u)) 4 ((β cγ a β a (γ c u δ ξ 4 ξ 5 ρ c)) γ b (uβ cθ h δβ c β cρ c β cξ 4 β cξ 5 β sγ c) γ a ((γ c u ξ 4 ξ 5 ρ c) δ (γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) β a) A ((((( 2γ c 2u 2ξ 4 ) ρ c 2 (ξ 4 ξ 5 ) (γ c u)) δ 2ξ 4 ρ c (ur c γ c)) γ a 2δξ 4 ρ c (ur c γ c)) γ b 2γ aδξ 4 ρ c (γ c u)) 3 (((uβ cθ h δβ c β cρ c β cξ 4 β cξ 5 β sγ c) γ a ((γ c u ξ 4 ξ 5 ρ c) δ (γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) β a) γ b µ 2 (β c (uθ h ρ c ξ 4 ξ 5 ) δ (uβ cθ h β cξ 4 β sγ c) ρ c (uβ cθ l β sγ c) ξ 4 ξ 5 (uβ cθ h β sγ c)) γ a β a (((γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) δ ξ 4 ρ c (γ c u))) A γ aγ b δξ 4 ρ c (ur c γ c) 2A (((β c (uθ h ρ c ξ 4 ξ 5 ) δ (uβ cθ h β cξ 4 β sγ c) ρ c (uβ cθ l β sγ c) ξ 4 ξ 5 (uβ cθ h β sγ c)) γ a β a (((γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) δ ξ 4 ρ c (ur c γ c))) γ b µ (((uθ h ξ 4 ) ρ c u (θ h ξ 5 θ l ξ 4 )) β cδ ξ 4 ρ c (uβ c β sγ c)) γ a β aδξ 4 ρ c (γ c u)) ( ) ((((uθh ξ A 4 ) ρ c u (θ h ξ 5 θ l ξ 4 )) β cδ β sξ 4 ρ c (ur c γ c)) γ a β aδξ 4 ρ c (ur c γ c)) γ b β cγ auδξ 4 ρ c Q 7 = µ 7 (γ a γ b γ c u δ ξ 4 ξ 5 ρ c) µ 6 ( ) (( γ a γ c u δ ξ 4 ξ 5 ρ c) γ b ( γ c u δ ξ 4 ξ 5 ρ c) γ a µ 5 ( γ c u ξ 4 ξ 5 ρ c) δ ( γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) Aβ a ((( γ c u δ ξ 4 ξ 5 ρ c) γ a ( γ c u ξ 4 ξ 5 ρ c) δ ( γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) γ b (( γ c u ξ 4 ξ 5 ρ c) δ ( γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) γ a (( γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) δ ξ 4 ρ c (γ c u)) N µ4 x (β aγ b β cγ a β a (γ c u δ ξ 4 ξ 5 ρ c)) A (((( γ c u ξ 4 ξ 5 ρ c) δ ( γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) γ a (( γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) δ ξ 4 ρ c (ur c γ c)) γ b ((( γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) δ ξ 4 ρ c (γ c u)) γ a µ 3 δξ 4 ρ c (γ c u)) ((β cγ a β a (γ c u δ ξ 4 ξ 5 ρ c)) γ b (uβ cθ h δβ c β cρ c β cξ 4 β cξ 5 β sγ c) γ a ((γ c u ξ 4 ξ 5 ρ c) δ (γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) β a) A ((((( γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) δ ξ 4 ρ c (ur c γ c)) γ a δξ 4 ρ c (ur c γ c)) γ b γ aδξ 4 ρ c (γ c u)) (((uβ cθ h δβ c β cρ c β cξ 4 β cξ 5 β sγ c) γ a ((γ c u ξ 4 ξ 5 ρ c) δ (γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) β a) γ b (β c (uθ h ρ c ξ 4 ξ 5 ) δ (uβ cθ h β cξ 4 β sγ c) ρ c (uβ cθ l β sγ c) ξ µ2 4 ξ 5 (uβ cθ h β sγ c)) γ a β a (((γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) δ ξ 4 ρ c (γ c u))) A γ aγ b δξ 4 ρ c (ur c γ c) A (((β c (uθ h ρ c ξ 4 ξ 5 ) δ (uβ cθ h β cξ 4 β sγ c) ρ c (uβ cθ l β sγ c) ξ 4 ξ 5 (uβ cθ h β sγ c)) γ a β a (((γ c u ξ 4 ) ρ c (ξ 4 ξ 5 ) (γ c u)) δ ξ 4 ρ c (ur c γ c))) γ b µ (((uθ h ξ 4 ) ρ c u (θ h ξ 5 θ l ξ 4 )) β cδ ξ 4 ρ c (uβ c β sγ c)) γ a β aδξ 4 ρ c (γ c u)) ( ) ((((uθh ξ A 4 ) ρ c u (θ h ξ 5 θ l ξ 4 )) β cδ β sξ 4 ρ c (ur c γ c)) γ a. β aδξ 4 ρ c (ur c γ c)) γ b β cγ auδξ 4 ρ c a 0, a, a 2, a 3, a 4, a 5, a 6, a 7 > 0 b = a a 2 a 0 a 3 a > 0, b 2 = a a 4 a 0 a 5 a c = b a 3 a b 2 b > 0, c 2 = b a 5 a b 3 b d = c b 2 b c 2 c > 0, d 2 = a 6 > 0 e = d c 2 c d 2 d > 0 f = a 6 > 0 > 0, b 3 = a 6 > 0 0

IOP Conf. Series: Journal of Physics: Conf. Series 234567890 974 (208) 02035 doi :0.088/742-6596/974//02035 R 0 M = γ a µ M 2 = u γ c µ M 0 0 0 0 0 γ a M 2 0 0 ( r c ) γ b 0 0 u M H = 3 ξ 5 0 0 0 0 ξ 4 M 4 0 0 0 0 0 ρ c M 5 0 0 γ c 0 0 r c γ b M 6, M 3 = µ ξ 4 M 4 = µ ρ c ξ 5 M 5 = ( r c ) γ b r c γ b µ M 6 = δ µ V = β ax β cx β cx θ h β cx θ l β cx β sx 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0. = T R 0 = A (P P 2 P 3 P 4 ) µ M M 6 P 5, P = um 4 M 5 M 6 β c γ a θ h um 5 M 6 β c γ a θ l ξ 4 um 6 β a γ b r c ρ c ξ 4

IOP Conf. Series: Journal of Physics: Conf. Series 234567890 974 (208) 02035 doi :0.088/742-6596/974//02035 P 2 = uβ s γ a γ b r c ρ c ξ 4 um 6 β a γ b ρ c ξ 4 um 6 β c γ a ρ c ξ 4 P 3 = M 2 M 3 M 4 M 5 M 6 β a M 2 M 5 M 6 β a ξ 4 ξ 5 M 3 M 4 M 5 M 6 β c γ a P 4 = M 3 M 4 M 5 β s γ a γ c M 5 M 6 β c γ a ξ 4 ξ 5 M 5 β s γ a γ c ξ 4 ξ 5 P 5 = uγ b r c ρ c ξ 4 uγ b ρ c ξ 4 M 2 M 3 M 4 M 5 M 2 M 5 ξ 5 ξ 4 = [ 0 0 0 0 0 ] T R 0 u r c A = 000/(65 365) β a = 0.000025 β c = 0.008 0.000025 β s =.5 0.000025 γ a = /(5 365) γ c = /(3 365) δ = 0 µ = /(65 365) = 000 ξ 4 = 0.75/365 ξ 5 = 0.25/365 θ h = θ l = 2 ρ c = 0./365 γ b = 0.5/365, R 0 R 0 (f(u, r c )) u r c R 0 R 0 u r c R 0 5.5, 6 6.5 (u) R 0 (r c ) R 0 (u) A = 000/(65 365) β a = 0.000025 β c = 0.008 0.000025 β s =.5 0.000025 γ a = /(5 365) γ c = /(3 365) δ = 0 µ = /(65 365) = 000 ξ 4 = 0.75/365 ξ 5 = 0.25/365 θ h = θ l = 2 r c = 0 ρ c = 0./365 γ b = 0.5/365 u = 0.66450335 2

IOP Conf. Series: Journal of Physics: Conf. Series 234567890 974 (208) 02035 doi :0.088/742-6596/974//02035 u = 0 u 3

IOP Conf. Series: Journal of Physics: Conf. Series 234567890 974 (208) 02035 doi :0.088/742-6596/974//02035 4