Non-Hermitian Type Uncertainty Relation and its Application

Σχετικά έγγραφα
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Divergence for log concave functions

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

Homomorphism of Intuitionistic Fuzzy Groups

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Congruence Classes of Invertible Matrices of Order 3 over F 2

ST5224: Advanced Statistical Theory II

Buried Markov Model Pairwise

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Homomorphism in Intuitionistic Fuzzy Automata

CERTAIN PROPERTIES FOR ANALYTIC FUNCTIONS DEFINED BY A GENERALISED DERIVATIVE OPERATOR

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Partial Trace and Partial Transpose

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

Prey-Taxis Holling-Tanner

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

Simplex Crossover for Real-coded Genetic Algolithms

Discriminantal arrangement

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

A General Note on δ-quasi Monotone and Increasing Sequence

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.

A summation formula ramified with hypergeometric function and involving recurrence relation

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

Dr. D. Dinev, Department of Structural Mechanics, UACEG

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

A study on generalized absolute summability factors for a triangular matrix

Riemannian metrics on positive definite matrices related to means (joint work with Dénes Petz)

Derivation of Optical-Bloch Equations

c Key words: cultivation of blood, two-sets blood culture, detection rate of germ Vol. 18 No

( ) 2 and compare to M.

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

ΕΤΑΙΡΙΚΗ ΚΟΙΝΩΝΙΚΗ ΕΥΘΥΝΗ ΣΤΗΝ ΝΑΥΤΙΛΙΑΚΗ ΒΙΟΜΗΧΑΜΙΑ

ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΕΞΟΥΑΛΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΩΝ ΓΥΝΑΙΚΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ ΕΓΚΥΜΟΣΥΝΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

Other Test Constructions: Likelihood Ratio & Bayes Tests

Strain gauge and rosettes

Development of a Tiltmeter with a XY Magnetic Detector (Part +)

Commutative Monoids in Intuitionistic Fuzzy Sets

Spherical Coordinates

GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)

, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H

SPECIAL FUNCTIONS and POLYNOMIALS

Tridiagonal matrices. Gérard MEURANT. October, 2008

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ. Πτυχιακή Εργασία

Matrices and Determinants

On Inclusion Relation of Absolute Summability

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio


Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

ΜΕΛΕΤΗ ΤΗΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΣΥΝΤΑΓΟΓΡΑΦΗΣΗΣ ΚΑΙ Η ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΕΦΑΡΜΟΓΗΣ ΤΗΣ ΣΤΗΝ ΕΛΛΑΔΑ: Ο.Α.Ε.Ε. ΠΕΡΙΦΕΡΕΙΑ ΠΕΛΟΠΟΝΝΗΣΟΥ ΚΑΣΚΑΦΕΤΟΥ ΣΩΤΗΡΙΑ

4.6 Autoregressive Moving Average Model ARMA(1,1)

Statistical Inference I Locally most powerful tests

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

ΚΕΙΜΕΝΟΚΕΝΤΡΙΚΗ ΘΕΩΡΙΑ: ΘΕΩΡΗΤΙΚΟ ΠΛΑΙΣΙΟ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΕΦΑΡΜΟΓΗ ΣΕ ΣΠΠΕ ΜΕ ΣΤΟΧΟ ΤΟΝ ΠΕΡΙΒΑΛΛΟΝΤΙΚΟ ΓΡΑΜΜΑΤΙΣΜΟ ΤΩΝ ΜΑΘΗΤΩΝ

Shenzhen Lys Technology Co., Ltd

Η συμβολή του Δ. Κάππου στην Kβαντική Πιθανότητα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

Σχέση στεφανιαίας νόσου και άγχους - κατάθλιψης

ADVANCED STRUCTURAL MECHANICS

w o = R 1 p. (1) R = p =. = 1

Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker

Homework 3 Solutions

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

2 Composition. Invertible Mappings

þÿ¼ ½ ±Â : ÁÌ» Â Ä Å ÃÄ ²µ þÿä Å ÃÇ»¹º Í Á³ Å

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

(1) A lecturer at the University College of Applied Sciences in Gaza. Gaza, Palestine, P.O. Box (1514).

Εκπαιδευτικές πολιτιστικές πρακτικές των γονέων και κοινωνική προέλευση

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Solution Series 9. i=1 x i and i=1 x i.

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Ζητήματα Τυποποίησης στην Ορολογία - ο ρόλος και οι δράσεις της Επιτροπής Ορολογίας ΤΕ21 του ΕΛΟΤ

* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Exercises to Statistics of Material Fatigue No. 5

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία ΟΛΙΣΘΗΡΟΤΗΤΑ ΚΑΙ ΜΑΚΡΟΥΦΗ ΤΩΝ ΟΔΟΔΤΡΩΜΑΤΩΝ ΚΥΚΛΟΦΟΡΙΑΣ

New bounds for spherical two-distance sets and equiangular lines

A research on the influence of dummy activity on float in an AOA network and its amendments

ΕΦΑΡΜΟΓΗ ΕΥΤΕΡΟΒΑΘΜΙΑ ΕΠΕΞΕΡΓΑΣΜΕΝΩΝ ΥΓΡΩΝ ΑΠΟΒΛΗΤΩΝ ΣΕ ΦΥΣΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΛΙΝΗΣ ΚΑΛΑΜΙΩΝ

CRASH COURSE IN PRECALCULUS

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Development of a basic motion analysis system using a sensor KINECT

þÿ¹º±½ À Ã Â Ä Å ½ ûµÅĹº þÿàá ÃÉÀ¹º Í Ä Å µ½¹º Í þÿ à º ¼µ Å Æ Å

C.S. 430 Assignment 6, Sample Solutions

On a four-dimensional hyperbolic manifold with finite volume

Όλνκα πνπδάζηξηαο: Γξεγνξία αββίδνπ Α.Δ.Μ:7859. Δπηβιέπνλ Καζεγεηήο: Παζραιίδεο Αζαλάζηνο ΑΝΩΣΑΣΟ ΣΔΥΝΟΛΟΓΗΚΟ ΔΚΠΑΗΓΔΤΣΗΚΟ ΗΓΡΤΜΑ ΚΑΒΑΛΑ

ΑΓΓΛΙΚΑ IV. Ενότητα 6: Analysis of Greece: Your Strategic Partner in Southeast Europe. Ιφιγένεια Μαχίλη Τμήμα Οικονομικών Επιστημών

Η ΕΡΕΥΝΑ ΤΗΣ ΓΛΩΣΣΙΚΗΣ ΑΛΛΑΓΗΣ ΣΤΑ ΚΕΙΜΕΝΑ ΤΗΣ ΜΕΣΑΙΩΝΙΚΗΣ ΕΛΛΗΝΙΚΗΣ: ΜΕΘΟΔΟΛΟΓΙΚΗ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Transcript:

9.. The 37th Syposiu on Inoration Theory and its Applications SITA) Unazuki, Toyaa, Japan, Dec. 9, Non-Heritian Type Uncertainty Relation and its Application Kenjiro Yanai Abstract In quantu echanics it is well known that Heisenber/Schrödiner uncertainty relations hold or two non-coutative observables and density operator. These are soe kinds o trace inequalities. Recently Dou and Du [5, 6] obtained several uncertainty relations or two noncoutative non-heritian observables and density operator. In this paper we show that their results can be iven as corollaries o our non-heritian type uncertainty relations or eneralized etric adjusted skew inorations or eneralized etric adjusted correlation easures. Keywords Trace inequality, etric adjusted skew inoration, etric adjusted correlation easure Introduction M n C) n n coplex atrices, M n,sa C) n n sel-adjoint atrices, M n,+ C) M n C) strictly positive eleents, M n,+, C) strictly positive density atrices, M n,+, C) { M n C) T r[], >. aithul states > M n C) Hilbert-Schidt A, B T r[a B] Winer-Yanase skew inoration) [] I H) [ [ ]) ] T r i /, H T r[h ] T r[ / H / H]. M n,+, C) H M n,sa C) coutator [X, Y ] XY Y X Dyson Winer-Yanase-Dyson skew inoration I,α H) T r[i[α, H])i[ α, H])] T r[h ] T r[ α H α H], α [, ] I,α H) E.H.Lieb [7] Winer-Yanase, 755-86 -6-, Graduate School o Science and Enineerin, Yaauchi University, -6-, Tokiwadai, Ube 755-86, Japan, E-ail:yanai@yaauchi-u.ac.jp skew inoration uncertainty relation [9]. Winer-Yanase-Dyson skew inoration uncertainty relation [5, 3] [3, ], uncertainty relation [5] two paraeter uncertainty relation [7] Dou-Du Uncertainty Relations Dou-Du [5, 6] Heisenber/Schrödiner uncertainty relations. A, B M n C), M n,+, C) ) [A, B] [A, B] + [A, B ]), [A, B] AB BA. ) {A, B {A, B + {A, B ), {A, B AB + BA. 3) V ar A) T r[a A ], A A T r[a]i. ) V ar A) V ar A) + V ar A )).. A, B M n C), M n,+, C) uncertainty relations ) V ar A) V ar B) T r[[a, B]]. ) V ar A) V ar B) T r[{a, B ]. 3) V ar A) V ar B) T r[[a, B] ] + T r[{a, B ]. ) U A) U B) T r[[a, B] ], U A) V ar A)) V ar A) I A)), I A) T r[i[/, A ])i[ /, A])]. 67

3 :, + ) R n N A B A, B M n,+ C) A) B) operator onotone) operator onotone unction x) xx ) syetric ) norarized 3. F op :, + ), + ). ),. tt ) t), 3. operator onotone. 3. F op RLD x) x x +, W Y x) ) x +, BKM x) x lo x, SLDx) x +, x ) W Y D x) α α) x α )x α, α, ). ) Reark 3. F op onotone etricsquantu Fisher inorations ) A, B, T ra L, R ) B)), L A) A, R A) A. A, B M n,+, C) tanent vectors [], [] ).. []), Fop r k > x ) x) k x) x ) x) x) k F op.) x). A, B M n C), M n,+, C) Corr s,) A, B) k i[, A], i[, B],, x x + x) x +, x >. F op ) li x x) reular non-reular F r op { F op ), F n op { F op ) F op F r op F n op. 3. Fop r x) [ x + ) x ) ) ], x >. x) 3. [8], [], [6]) F r op F n op Generalized Quasi-Metric Adjusted Skew Inoration and Generalized Quasi- Metric Adjusted correlation Measure ean) operator onotone unction) A, B M n,sa C) I,) U,) A) I,) A) Corr s,) A, A), C A, B) T r[a L, R )B], C A) C A, A), C A) + C A))CA) C A)), A), Corr s,) A, B) eneralized quasietric adjusted skew inoration, eneralized quasietric adjusted correlation easure. A, B M n C), M n,+, C) A A T r[a]i, B B T r[b]i.. I,). J,) 3. U,) A) A) I,) A ) CA ) C A ), A) CA ) + C A ), A) J,) A). I,,). Corr s,) A, B) Corr s,) A, B ).. F r op I,) A) I,) B) Corr s,) A, B), A, B) A / A / BA / )A /. A, B M n C), M n,+, C). 675

.. X, Y M n C) Corr s,) X, Y ) k i[, X], i[, Y ],. Corr s,) X, Y ) kt ri[, X]) L, R ) i[, Y ]) kt ril R )X) L, R ) il R )Y ) T rx L, R )Y ) T rx L, R )Y ), Corr s,) X, Y ) M n C) Schwarz inequality. Fop r, l > x) + x) lx).) U,) A) U,) B) kl T r[a, B]),.3) A, B M n C), M n,+, C)....).) x, y) x, y) klx y).. :.),.) x y) x, y) x, y) k x, y)..) x, y) + x, y) l x, y),.5) A, B M n C), M n,+, C) A A T r[a]i, B B T r[b]i I,) A) { λ j, λ k ) λ j, λ k ) a jk, J,) A) { λ j, λ k ) + λ j, λ k ) a jk,. :.3) T r[a, B]) T r[a, B]). λ j λ k )a jk b kj, kl T r[a, B]) kl λj λ k a jk b kj λ j λ k a jk b kj. λ j, λ k ) λ j, λ k ) ) / ajk b kj ) λ j, λ k ) λ j u, λ k ) a jk ) λ j, λ k ) + λ j, λ k ) b kj I,) A)J,) B). I,) B)J,) A) cd T r[a, B])..),.5) x, y) x, y) { { x, y) x, y) x, y) + x, y) )x y) x, y) l x, y) klx y)., I,). U,) A) A), J,) A),. { ϕ, ϕ,, ϕ n, {λ, λ,, λ n a jk ϕ j A ϕ k, b jk ϕ j B ϕ k,.3) 5 Dou-Du x), x), k, l x) x +, x ) x) α α) x α )x α, < α < ), ) k ), l. x ) x) x) k x) xα + x α ). 676

. x) + x) lx) x α )x α ) {x α )x α) ) α α)x ) α / I,) A) I,) A ) T r[a A ] + T r[a A ] T r[ / A / A ]. 5. Dou-Du )) A, B M n C) M n,+, C) U A) U B) T r[[a, B]] I T r[[a, B]] T r[[a, B]] T r[[a, B]] T r[[a, B]] + T r[[a, B ]] [ T r [A, B] + ] [A, B ] T r[[a, B] ]. 5. Dou-Du ),)) A, B M n C) M n,+, C) ) V A) V B) U A) U B) T r[[a, B]]. ) V A) V B) T r[{a, B ]. ) A, B M n C) x) x+, M n C) A, B T r[a L, R )B ]. Schwarz s inequality A, B A, B A, A B, B. ] [A T r L + R B T r[a B ] + T r[a B ] T r[b A ] + T r[a B ] T r[{a, B ]. A, A T r [ ] A L + R A T r[a A ] + T r[a A ] T r[a A ] + T r[a A ] V ar A) T r[{a, B ] V ar A) V ar B). A A T r[{a, B ] V ar A ) V ar B). V ar A) V ar A ) 6 Reark Dou-Du 3) V ar A) V ar B) 6.) T r[[a, B] ] + T r[{a, B ]. 5. V ar A) V ar B) 6.) U A) U B) T r[[a, B]]. ) ) ) 3 i, A, B. i 6.) < 6.). 3 ) ) ) i, A, B. i 6.) > 6.). Acknowledeent The author was partially supported by JSPS KAK- ENHI Grant Nuber 69. [] K.Audenaert, L.Cai and F.Hansen, Inequalities or quantu skew inoration, Lett.Math.Phys., vol.858), pp.35-6. [] J.C.Bourin, Soe inequalities or nors on atrices and operators, Linear Alebra and its Applications, vol.9999), pp.39-5. 677

[3] L.Cai and S.Luo, On convexity o eneralized Winer-Yanase-Dyson inoration, Lett.Math.Phys., vol.838), pp.53-6. [] P.Chen and S.Luo, Direct approach to quantu extensions o Fisher inoration, Front.Math.China, vol.7), pp.359-38. [5] Y.N.Dou and H.K.Du, Generalizations o the Heisenber and Schrödiner uncertainty relations, J.Math.Phys., vol.53), pp.358--7. [6] Y.N.Dou and H.K.Du, Note on the Winer-Yanase- Dyson skew inoration, Int.J.Theor.Phys., vol.53), pp.95-958. [7] S.Furuichi and K.Yanai, Schrödiner uncertainty relation, Winer-Yanase-Dyson skew inoratio and Metric adjusted correlation easure, J.Math.Anal.Appl., vol.388), pp7-56. [8] P.Gibilisco, D.Iparato and T.Isola, Uncertainty principle and quantu Fisher inoration, II, J.Math.Phys., vol.87), pp.79--5. [9] P.Gibilisco, D.Iparato and T.Isola, A Robertsontype uncertainty principle and quantu Fisher inoration, Linear Alebra and its Applications, vol.88), pp.76-7. [] Gibilisco, P., Hansen, F., Isola, T.: On a correspondence between reular and non-reular operator onotone unctions, Linear Alebra and its Applications, vol.39), pp.5-3. [] P.Gibilisco, F.Hiai and D.Petz, Quantu covariance, quantu Fisher inoration, and the uncertainty relations, IEEE Trans.Inoration Theory, vol.559), pp.39-3. [] P.Gibilisco and T.Isola, On a reineent o Heisenber uncertainty relation by eans o quantu Fisher inoration, J.Math.Anal.Appl., vol.375), pp.7-75. [3] F.Hansen, Metric adjusted skew inoration, Proc.Nat.Acad.Sci., vol.58), pp.999-996. [] W.Heisenber, Über den anschaulichen Inhat der quantuechanischen Kineatik und Mechanik, Zeitschrit ür Physik, vol.397), pp.7-98. [5] H.Kosaki, Matrix trace inequality related to uncertainty principle, Internatonal Journal o Matheatics, vol.65), pp.69-66. [6] Kubo, F., Ando, T.: Means o positive linear operators, Math.Ann., vol.698), pp.5-. [7] E.H.Lieb, Convex trace unctions and the Winer-Yanase-Dyson conjecture, Adv.Math., vol.973), pp.67-88. [8] S.Luo, Heisenber uncertainty relation or ixed states, Phys.Rev.A, vol.75), p.. [9] S.Luo and Q.Zhan, On skew inoration, IEEE Trans.Inoration Theory, vol.5), pp.778-78, and Correction to On skew inoration, IEEE Trans.Inoration Theory, vol.55), p.3. [] Petz, D.: Monotone etrics on atrix spaces, Linear Alebra and its Applications, vol.996), pp.8-96. [] E.Schrödiner, About Heisenber uncertainty relation, Proc.Prussian Acad.Sci., Phys.Math., vol.xix93), p.93, Section. [] E.P.Winer and M.M.Yanase, Inoration content o distribution, Proc.Nat.Acad.Sci. U,S,A., vol.9963), pp.9-98. [3] K.Yanai, S.Furuichi and K.Kuriyaa, A eneralized skew inoration and uncertainty relation, IEEE Trans.Inoration Theory, vol.55), pp.-. [] K.Yanai, Uncertainty relation on Winer-Yanase-Dyson skew inoration, J.Math.Anal.Appl., vol.365), pp.-8. [5] K.Yanai, Uncertainty relation on eneralized Winer-Yanase-Dyson skew inoration, Linear Alebra and its Applications, vol.33), pp.5-53. [6] K.Yanai, Metric adjusted skew inoration and uncertainty relation, J.Math.Anal.Appl., vol.38), pp.888-89. [7] K.Yanai, S.Furuichi and K.Kuriyaa, Uncertainty relations or eneralized etric adjusted skew inoration and eneralized etric adjusted correlation easure, J.Uncertainty Anal.Appl., vol.3), pp-. [8] K.Yanai, Generalized eric adjusted skew inoration and uncertainty relation, Proc. ISBFS, vol.iv), pp.35-. 678