Strain and stress tensors in spherical coordinates

Σχετικά έγγραφα
Laplace s Equation in Spherical Polar Coördinates

r = x 2 + y 2 and h = z y = r sin sin ϕ

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

Schwarzschild spacetime

Fundamental Equations of Fluid Mechanics

4.2 Differential Equations in Polar Coordinates

Example 1: THE ELECTRIC DIPOLE

Tutorial Note - Week 09 - Solution

The Laplacian in Spherical Polar Coordinates

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Curvilinear Systems of Coordinates

Solutions Ph 236a Week 2

Matrix Hartree-Fock Equations for a Closed Shell System

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

Analytical Expression for Hessian

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

General Relativity (225A) Fall 2013 Assignment 5 Solutions

Section 8.3 Trigonometric Equations

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor

Approximation of distance between locations on earth given by latitude and longitude

Partial Trace and Partial Transpose

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Reminders: linear functions

2 Composition. Invertible Mappings

Numerical Analysis FMN011

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Slide 1 of 18 Tensors in Mathematica 9: Built-In Capabilities. George E. Hrabovsky MAST

derivation of the Laplacian from rectangular to spherical coordinates

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Lecture VI: Tensor calculus

ANTENNAS and WAVE PROPAGATION. Solution Manual

Section 7.6 Double and Half Angle Formulas

1 Full derivation of the Schwarzschild solution

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Areas and Lengths in Polar Coordinates

On a four-dimensional hyperbolic manifold with finite volume

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

Math221: HW# 1 solutions

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Homework 3 Solutions

Finite Field Problems: Solutions

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Example Sheet 3 Solutions

Other Test Constructions: Likelihood Ratio & Bayes Tests

Section 8.2 Graphs of Polar Equations

PARTIAL NOTES for 6.1 Trigonometric Identities

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Matrices and Determinants

EE512: Error Control Coding

Chapter 7a. Elements of Elasticity, Thermal Stresses

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Srednicki Chapter 55

Answer sheet: Third Midterm for Math 2339

Every set of first-order formulas is equivalent to an independent set

ST5224: Advanced Statistical Theory II

The Simply Typed Lambda Calculus

Οδηγίες Αγοράς Ηλεκτρονικού Βιβλίου Instructions for Buying an ebook

CYTA Cloud Server Set Up Instructions

Areas and Lengths in Polar Coordinates

CRASH COURSE IN PRECALCULUS

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

( y) Partial Differential Equations

Tridiagonal matrices. Gérard MEURANT. October, 2008

Lecture 13 - Root Space Decomposition II

C.S. 430 Assignment 6, Sample Solutions

1 String with massive end-points

Congruence Classes of Invertible Matrices of Order 3 over F 2

Section 9.2 Polar Equations and Graphs

A Note on Intuitionistic Fuzzy. Equivalence Relation

6.3 Forecasting ARMA processes

Fractional Colorings and Zykov Products of graphs

VBA ΣΤΟ WORD. 1. Συχνά, όταν ήθελα να δώσω ένα φυλλάδιο εργασίας με ασκήσεις στους μαθητές έκανα το εξής: Version ΗΜΙΤΕΛΗΣ!!!!

MathCity.org Merging man and maths

Uniform Convergence of Fourier Series Michael Taylor

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

From the finite to the transfinite: Λµ-terms and streams

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης

Inverse trigonometric functions & General Solution of Trigonometric Equations

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

Statistical Inference I Locally most powerful tests

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Spherical Coordinates

4.6 Autoregressive Moving Average Model ARMA(1,1)

How to register an account with the Hellenic Community of Sheffield.

1 3D Helmholtz Equation

Homework 8 Model Solution Section

Transcript:

Saeanifolds.0 Stain and stess tensos in spheical coodinates This woksheet demonstates a few capabilities of Saeanifolds (vesion.0, as included in Saeath 7.5) in computations eadin elasticity theoy in Catesian coodinates. Click hee to download the woksheet file (ipynb fomat). To un it, you must stat Saeath with the Jupyte notebook, via the command sae -n jupyte NB: a vesion of Saeath at least equal to 7.5 is equied to un this woksheet: In []: Out[]: vesion() 'Saeath vesion 7.5., Release Date: 07-0-5' Fist we set up the notebook to display mathematical objects usin LaTeX endein: In []: %display latex Euclidean -space and spheical coodinates We intoduce the Euclidean space as a -dimensional diffeentiable manifold: In []: anifold(, '', stat_index) pint() -dimensional diffeentiable manifold (, θ, ϕ) We shall make use of spheical coodinates : In [4]: sphe.<,th,ph>.chat(':(0,oo) th:(0,pi):\theta ph:(0,*pi):\phi ') pint(sphe) sphe Chat (, (, th, ph)) Out[4]: (, (, θ, ϕ)) Spheical coodinates do not fom a eula coodinate system of the Euclidean space. So declain that they span means that, stictly speakin, the manifold is not the whole Euclidean space, but the Euclidean space minus some half plane (the azimuthal oiin). Howeve, in this woksheet, this diffeence will not matte. The natual vecto fame of spheical coodinates is In [5]: Out[5]: sphe.fame() (, (,, ))

Saeanifolds.0 We shall expand vecto and tenso fields on the othonomal fame spheical coodinates, which is elated to the natual fame means of the followin field of automophisms: ( e, e, e ) (/, /, /) associated with displayed above by In [6]: Out[6]: to_othonomal.automophism_field() to_othonomal[,] to_othonomal[,] / to_othonomal[,] /(*sin(th)) to_othonomal.display() d dθ dϕ In othe wods, the chane-of-basis matix is In [7]: Out[7]: to_othonomal[:] 0 0 0 0 0 0 We constuct the othonomal fame fom the natual fame of spheical coodinates by this chane of basis: In [8]: e sphe.fame().new_fame(to_othonomal, 'e') e Out[8]: (, ( e, e, e )) In [9]: Out[9]: In [0]: Out[0]: In []: Out[]: e[].display() e e[].display() e e[].display() e At this stae, the default vecto fame on spheical coodinates: is the fist one intoduced, namely the natual fame of In []: Out[]:.default_fame() (, (,, )) Since we pefe the othonomal fame, we declae In []:.set_default_fame(e)

Saeanifolds.0 Then, by default, all vecto and tenso fields ae displayed with espect to that fame: In [4]: Out[4]: e e e[].display() To et the same output as in Out[0], one should specify the fame fo display, since this is no lone the default one: In [5]: Out[5]: e[].display(sphe.fame()) e Displacement vecto and stain tenso Let us define the displacement vecto in tems of its components w..t. the othonomal spheical fame: In [6]:.vecto_field(name'') [:] [function('_')(,th,ph), function('_')(,th,ph), function('_')(,th,ph)].display() Out[6]: (, θ, ϕ) e (, θ, ϕ) e (, θ, ϕ) e The followin computations will involve the metic of the Euclidean space. At the cuent stae of Saeanifolds, we need to intoduce it explicitly, as a Riemannian metic on the manifold futue vesion of Saeanifolds, one shall to declae manifold, so that it will come equipped with ): (in a as an Euclidean space, and not meely as a In [7]:.iemannian_metic('') pint() Riemannian metic on the -dimensional diffeentiable manifold e dia(,, ) Since is supposed to be an othonomal fame, we declae that the components of with espect to it ae : In [8]: [,], [,], [,],,.display() Out[8]: e e e e e e The expession of with espect to the natual fame of spheical coodinates is then In [9]:.display(sphe.fame()) Out[9]: d d dθ dθ sin (θ) dϕ dϕ The covaiant deivative opeato is intoduced as the (Levi-Civita) connection associated with :

Saeanifolds.0 In [0]: nabla.connection() pint(nabla) nabla Levi-Civita connection nabla_ associated with the Riemannian metic on the -dimensional diffeentiable manifold Out[0]: The connection coefficients with espect to the spheical othonomal fame e ae In []: nabla.display() Out[]: Γ Γ Γ Γ Γ Γ cos(θ) cos(θ) while those with espect to the natual fame of spheical coodinates (Chistoffel symbols) ae: In []: Out[]: nabla.display(sphe.fame()) Γ θ θ Γ ϕ ϕ Γ θ θ Γ θ θ Γ θ ϕ ϕ Γ ϕ ϕ Γ ϕ θ ϕ Γ ϕ ϕ Γ ϕ ϕ θ sin (θ) cos(θ) sin(θ) cos(θ) sin(θ) cos(θ) sin(θ) The covaiant deivative of the displacement vecto is In []: nab nabla() pint(nab) Tenso field nabla_() of type (,) on the -dimensional diffeentiab le manifold 4

Saeanifolds.0 In [4]: Out[4]: nab.display() e (, θ, ϕ) e ( e ) e (, θ, ϕ) sin(θ) e e e e (, θ, ϕ) (, θ, ϕ) cos(θ) e e ( ) e e We convet it to a tenso field of type (0,) (i.e. a bilinea fom) by lowein the uppe index with : e e e e (, θ, ϕ) cos(θ) (, θ, ϕ) sin(θ) e e In [5]: nab_fom nab.down() pint(nab_fom) Tenso field of type (0,) on the -dimensional diffeentiable manifold In [6]: Out[6]: nab_fom.display() (, θ, ϕ) e e ( e ) e (, θ, ϕ) sin(θ) e e e e (, θ, ϕ) (, θ, ϕ) cos(θ) e e ( ) e e ε e e e e (, θ, ϕ) cos(θ) (, θ, ϕ) sin(θ) e e The stain tenso is defined as the symmetized pat of this tenso: In [7]: E nab_fom.symmetize() pint(e) Field of symmetic bilinea foms on the -dimensional diffeentiable m anifold 5

Saeanifolds.0 In [8]: E.set_name('E', latex_name'\vaepsilon') E.display() Out[8]: (, θ, ϕ) ε e e e e ( ) ( (, θ, ϕ)) sin(θ) e e (, θ, ϕ) (, θ, ϕ) e e e e ( ) ( ) (, θ, ϕ) cos(θ) sin(θ) e e ( (, θ, ϕ)) sin(θ) e e (, θ, ϕ) cos(θ) sin(θ) e e (, θ, ϕ) cos(θ) (, θ, ϕ) sin(θ) e e ε Let us display the components of, skippin those that can be deduced by symmety: In [9]: E.display_comp(only_nonedundantTue) Out[9]: ε ε ε ε ε ε (,θ,ϕ) ( (,θ,ϕ) ) sin(θ) (,θ,ϕ) (,θ,ϕ) cos(θ)sin(θ) (,θ,ϕ) cos(θ) (,θ,ϕ) sin(θ) Stess tenso and Hooke's law To fom the stess tenso accodin to Hooke's law, we intoduce fist the Lamé constants: In [0]: Out[0]: va('ll', latex_name'\lambda') λ 6

Saeanifolds.0 In []: Out[]: va('mu', latex_name'\mu') μ The tace (with espect to ) of the bilinea fom means of and (ii) by takin the tace of the esultin endomophism: ε is obtained by (i) aisin the fist index (pos0) by In []: te E.up(, pos0).tace() pint(te) Scala field on the -dimensional diffeentiable manifold In []: Out[]: te.display() (, θ, ϕ) R (,θ,ϕ) cos(θ) ( (,θ,ϕ) ) sin(θ) S The stess tenso is obtained via Hooke's law fo isotopic mateial: S λ tε μ ε In [4]: S ll*te* *mu*e pint(s) Field of symmetic bilinea foms on the -dimensional diffeentiable m anifold 7

Saeanifolds.0 In [5]: Out[5]: S.set_name('S') S.display() S λ (, θ, ϕ) cos(θ) ((λ μ) λ (, θ, ϕ) λ ) sin(θ) λ μ μ (, θ, ϕ) μ e e e ( ) (μ μ (, θ, ϕ)) sin(θ) μ e e μ μ (, θ, ϕ) μ e e ( ) λ (, θ, ϕ) cos(θ) (λ (λ μ) (, θ, ϕ) (λ μ) ) sin(θ) λ μ (, θ, ϕ) cos(θ) μ sin(θ) μ e e e (μ μ (, θ, ϕ)) sin(θ) μ e e μ (, θ, ϕ) cos(θ) μ sin(θ) μ e e (λ μ) (, θ, ϕ) cos(θ) (λ (λ μ) (, θ, ϕ) λ ) sin(θ) (λ μ) e e e e 8

Saeanifolds.0 In [6]: S.display_comp(only_nonedundantTue) Out[6]: S λ (,θ,ϕ) cos(θ) ( (λ μ) λ (,θ,ϕ)λ ) sin(θ)λ S μ μ (,θ,ϕ)μ S ( μ μ (,θ,ϕ) ) sin(θ)μ S λ (,θ,ϕ) cos(θ) ( λ (λμ) (,θ,ϕ)(λ μ) ) sin(θ)λ S μ (,θ,ϕ) cos(θ)μ sin(θ) μ S (λ μ) (,θ,ϕ) cos(θ) ( λ (λμ) (,θ,ϕ)λ ) sin(θ)(λ μ) Each component can be accessed individually: In [7]: S[,] Out[7]: μ μ (, θ, ϕ) μ Diveence of the stess tenso j S j i The diveence of the stess tenso (with espect to ) is the -fom: f i In a next vesion of Saeanifolds, thee will be a function diveence(). Fo the moment, to f S j i S evaluate, we fist fom the tenso by aisin the fist index (pos0) of with : In [8]: S S.up(, pos0) pint(s) Tenso field of type (,) on the -dimensional diffeentiable manifold The diveence is obtained by takin the tace on the fist index (0) and the thid one () of the tenso ( S) j ik k S j i : In [9]: divs nabla(s).tace(0,) pint(divs) -fom on the -dimensional diffeentiable manifold 9

Saeanifolds.0 In [40]: Out[40]: divs.set_name('f') divs.display() f ((λ μ) (λ μ) (λ μ) (λ μ) (, θ, ϕ) sin μ (λ μ) ) (θ) ( (λ μ) ((λ μ) (λ μ) (, θ, ϕ) μ ) cos(θ) sin (λ μ) ) (θ) μ sin (θ) ( μ (λ μ) μ (λ μ) (λ μ) ) sin (θ) (λ μ) cos(θ) (λ μ) (, θ, ϕ) ( (λ μ) cos(θ) (λ μ) ) sin(θ) μ sin (θ) ( μ μ μ ) sin (θ) (λ μ) cos(θ) μ (, θ, ϕ) ( (λ μ) μ cos(θ) (λ μ) (λ μ) ) sin(θ) (λ μ) sin (θ) e 0

Saeanifolds.0 In [4]: Out[4]: divs.display_comp() ( (λ μ) (λ μ) (λμ) (λ μ) (,θ,ϕ)μ (λ μ) ) sin (θ) f f f ( (λμ) ( (λμ) (λ μ) (,θ,ϕ)μ ) cos(θ)(λ μ) ) sin(θ)μ sin (θ) ( μ (λμ) μ (λ μ) (λ μ) sin (λ μ) cos(θ) ) (λ μ) (,θ,ϕ) ( (λ μ) cos(θ) (λμ) sin (θ) ) sin(θ)μ (θ) ( μ μ μ sin (λ μ) cos(θ) μ (,θ,ϕ) ) (θ) ( (λμ) μ cos(θ) (λ μ) (λμ) sin (θ) sin(θ)(λ μ) ) Note that f is quite badly displayed. We et a bette view by displayin the components one by one: In [4]: Out[4]: divs[] ((λ μ) (λ μ) (λ μ) (λ μ) (, θ, ϕ) sin μ (λ μ) ) (θ) ( (λ μ) ((λ μ) (λ μ) (, θ, ϕ) μ ) cos(θ) sin (λ μ) ) (θ) μ sin (θ) In [4]: Out[4]: In [44]: divs[] ( μ (λ μ) μ (λ μ) (λ μ) ) sin (θ) divs[] (λ μ) cos(θ) (λ μ) (, θ, ϕ) ( (λ μ) cos(θ) (λ μ) ) sin(θ) μ sin (θ) Out[44]: ( μ μ μ ) sin (θ) (λ μ) cos(θ) μ (, θ, ϕ) ( (λ μ) μ cos(θ) (λ μ) (λ μ) ) sin(θ) (λ μ) sin (θ)