Pathway plasticity. SW2: Pathway Analysis in Transcriptomics, Proteomics and Metabolomics. Saturday, March 17, :00 am 4:30 pm.

Σχετικά έγγραφα
Μελέτη της έκφρασης του ογκοκατασταλτικού γονιδίου Cyld στον καρκίνο του μαστού

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

Contents Part I Psychoneuroimmunology and Systems Biology Mechanisms 1 From Psychoneuroimmunology to Personalized, Systems, and Dynamical Medicine

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΙΣ «ΚΛΙΝΙΚΕΣ ΚΑΙ ΚΛΙΝΙΚΟΕΡΓΑΣΤΗΡΙΑΚΕΣ ΙΑΤΡΙΚΕΣ ΕΙΔΙΚΟΤΗΤΕΣ»

A strategy for the identification of combinatorial bioactive compounds. contributing to the holistic effect of herbal medicines

Κυτταρική Επικοινωνία Cell Communication

CPT. Tsuchiya. beta. quantitative RT PCR QIAGEN IGFBP. Fect Transfection Reagent sirna. RT PCR RNA Affymetrix GeneChip Expression Array

Supplemental Table S1. Tumor specific networks are enriched with somatically mutated genes (taken from the database COSMIC)

ΕΚΤΙΜΗΣΗ ΤΟΥ ΚΟΣΤΟΥΣ ΤΩΝ ΟΔΙΚΩΝ ΑΤΥΧΗΜΑΤΩΝ ΚΑΙ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΕΠΙΡΡΟΗΣ ΤΟΥ

Code Breaker. TEACHER s NOTES

Η ΦΛΕΓΜΟΝΩ ΗΣ ΑΝΤΙ ΡΑΣΗ ΤΟΥ ΓΑΣΤΡΙΚΟΥ ΒΛΕΝΝΟΓΟΝΟΥ ΣΤΗ ΛΟΙΜΩΞΗ ΜΕ ΕΛΙΚΟΒΑΚΤΗΡΙ ΙΟ ΤΟΥ ΠΥΛΩΡΟΥ ΠΡΙΝ ΚΑΙ ΜΕΤΑ ΤΗ ΘΕΡΑΠΕΙΑ

< (0.999) Graft (0.698) (0.483) <0.001 (0.698) (<0.001) (<0.001) 3 months (0.999) (0.483) (<0.001) 6 months (<0.

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

Κυτταρική Επικοινωνία Cell Communication

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

BD Cytometric Bead Array Flex Set System

ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS SCHOOL OF SCIENCE FACULTY OF INFORMATICS AND TELECOMMUNICATIONS

ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΕΥΝΗΤΙΚΗ ΔΙΑΤΡΙΒΗ

SABiosciences PCR Array Catalog #: PAHS-021 SA+ SCF 4h stimulaton AVG(Ct) Position Unigene Refseq Symbol Description shcontr shcontr-4h shgskβ A01

ΑΓΓΛΙΚΑ Ι. Ενότητα 7α: Impact of the Internet on Economic Education. Ζωή Κανταρίδου Τμήμα Εφαρμοσμένης Πληροφορικής

Τα ηπατικά επίπεδα του FOXP3 mrna στη χρόνια ηπατίτιδα Β εξαρτώνται από την έκφραση των οδών Fas/FasL και PD-1/PD-L1

Inferring regulatory subnetworks through the analysis of genome-wide expression profiles

Bizagi Modeler: Συνοπτικός Οδηγός

Προσομοίωση BP με το Bizagi Modeler

EE512: Error Control Coding

Statistical Inference I Locally most powerful tests

Synthesis and Biological Evaluation of Novel Acyclic and Cyclic Glyoxamide derivatives as Bacterial Quorum Sensing and Biofilm Inhibitors

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας

Group 2 Methotrexate 7.5 mg/week, increased to 15 mg/week after 4 weeks. Methotrexate 7.5 mg/week, increased to 15 mg/week after 4 weeks

Electronic Supplementary Information (ESI)

Assalamu `alaikum wr. wb.

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

CE 530 Molecular Simulation

Η ΕΠΙΔΡΑΣΗ ΤΗΣ ΑΙΘΑΝΟΛΗΣ,ΤΗΣ ΜΕΘΑΝΟΛΗΣ ΚΑΙ ΤΟΥ ΑΙΘΥΛΟΤΡΙΤΟΤΑΓΗ ΒΟΥΤΥΛΑΙΘΕΡΑ ΣΤΙΣ ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΒΕΝΖΙΝΗΣ

Πνευματική ιδιοκτησία και ιατρικά επιστημονικά έργα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΠΗΡΕΑΖΕΙ ΤΗΝ ΠΡΟΛΗΨΗ ΚΑΡΚΙΝΟΥ ΤΟΥ ΜΑΣΤΟΥ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Μηχανική Μάθηση Hypothesis Testing

Abstract... I. Zusammenfassung... II. 1 Aim of the work Introduction Short overview of Chinese hamster ovary cell lines...

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΩΝ ΠΟΤΓΩΝ «ΤΣΖΜΑΣΑ ΔΠΔΞΔΡΓΑΗΑ ΖΜΑΣΩΝ ΚΑΗ ΔΠΗΚΟΗΝΩΝΗΩΝ» ΣΜΖΜΑ ΜΖΥΑΝΗΚΩΝ Ζ/Τ ΚΑΗ ΠΛΖΡΟΦΟΡΗΚΖ

Repeated measures Επαναληπτικές μετρήσεις

Study of urban housing development projects: The general planning of Alexandria City

ΕΦΑΡΜΟΓΗ ΕΥΤΕΡΟΒΑΘΜΙΑ ΕΠΕΞΕΡΓΑΣΜΕΝΩΝ ΥΓΡΩΝ ΑΠΟΒΛΗΤΩΝ ΣΕ ΦΥΣΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΛΙΝΗΣ ΚΑΛΑΜΙΩΝ

Modbus basic setup notes for IO-Link AL1xxx Master Block

ΑΜΦΙΚΟΙΛΙΑΚΗ ΒΗΜΑΤΟΔΟΤΗΣΗ

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Other Test Constructions: Likelihood Ratio & Bayes Tests

Does anemia contribute to end-organ dysfunction in ICU patients Statistical Analysis

Comparison of carbon-sulfur and carbon-amine bond in therapeutic drug: -S-aromatic heterocyclic podophyllum derivatives display antitumor activity

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Lifting Entry (continued)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Ειδική διάλεξη 2: Εισαγωγή στον κώδικα της εργασίας

Ο ΡΟΛΟΣ ΤΩΝ ΚΑΝΝΑΒΙΝΟΕΙ ΩΝ ΚΑΤΑ ΤΗΝ ΕΜΒΡΥΪΚΗ ΑΝΑΠΤΥΞΗ

Reminders: linear functions

Consolidated Drained

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Το Βιολογικό Ρολόι: Θεµελιώδης Ρυθµιστής της Φυσιολογίας των Οργανισµών

Σχέση στεφανιαίας νόσου και άγχους - κατάθλιψης

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΝΑΥΤΙΛΙΑ

PHOS π 0 analysis, for production, R AA, and Flow analysis, LHC11h

Παρουσίαση περιστατικού: Φαρμακευτική πολυπεκτομή με μακροχρόνια λήψη μοντελουκάστης.

Math 6 SL Probability Distributions Practice Test Mark Scheme

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

High mobility group 1 HMG1

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS SCHOOL OF SCIENCE DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

Numerical Analysis FMN011

Inverse trigonometric functions & General Solution of Trigonometric Equations

þÿ ³¹µ¹½ º±¹ ±ÃÆ»µ¹± ÃÄ ÇÎÁ

5.1 logistic regresssion Chris Parrish July 3, 2016

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

MATHACHij = γ00 + u0j + rij

Section 9.2 Polar Equations and Graphs

Η ΨΥΧΙΑΤΡΙΚΗ - ΨΥΧΟΛΟΓΙΚΗ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΗ ΣΤΗΝ ΠΟΙΝΙΚΗ ΔΙΚΗ

Solar Neutrinos: Fluxes

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. του Γεράσιμου Τουλιάτου ΑΜ: 697

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»


Biostatistics for Health Sciences Review Sheet

ΤΟ ΣΤΑΥΡΟΔΡΟΜΙ ΤΟΥ ΝΟΤΟΥ ΤΟ ΛΙΜΑΝΙ ΤΗΣ ΚΑΛΑΜΑΤΑΣ

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ

IL - 13 /IL - 18 ELISA PCR RT - PCR. IL - 13 IL - 18 mrna. 13 IL - 18 mrna IL - 13 /IL Th1 /Th2

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Α. Διαβάστε τις ειδήσεις και εν συνεχεία σημειώστε. Οπτική γωνία είδησης 1:.

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

1. Εισαγωγή. Περιγραφή Μαθήματος. Ιστορική Αναδρομή. Ορισμοί Ηλεκτρονικού Εμπορίου

SMD Transient Voltage Suppressors

Supplementary Figure 1

Supplemental Table 1. Oligonucleotides used to identify H-RAS, K-RAS and N-RAS mutations and PTEN gene expression.

Transcript:

Pathway plasticity SW2: Pathway Analysis in Transcriptomics, Proteomics and Metabolomics Saturday, March 17, 2012 8:00 am 4:30 pm Alexander Kel Wolfenbüttel Biosoft.ru, Skolkovo Moscow alexander.kel@genexplain.com Novosibirsk

Size of zip file = complexity 1400 1200 1000 800 600 400 200 0 Time

AP-1 Consensus: Human collagenase (-2013) Mouse IL-2 (-143) Mouse TNF-alpha (-82) TGAgTCA ******* TGAGTCA ** ** * TGTGTAA * ** TTTCTCC

Mouse c-fos promoter (Matrix search for TF binding sites) 1 <------------V$IK1_01(0.86) -----...V$CREBP1CJUN_01(0.85) 2 <-----------V$IK2_01(0.90) -----...V$CREB_01(0.96) 3 ----------->V$AP2_Q6(0.87) <-------------V$GKLF_01(0.87) 4-->V$ATF_01(0.89) <-------V$MZF1_01(0.99) ----...V$ELK1_01(0.87) 5 <-----------V$AP2_Q6(0.92) <------------V$SP1_Q6(0.88) 6>V$AP1FJ_Q2(0.89) <-------------V$GKLF_01(0.85) 7>V$AP1_Q2(0.87) <-------------V$GKLF_01(0.86) 8->V$CREB_Q2(0.86) <---------V$CETS1P54_01(0.90) 9->V$CREB_Q4(0.90) <---------V$NRF2_01(0.90) 10 <-------------V$GC_01(0.88) 11 ----------->V$CAAT_01(0.87) 12 <------------V$TCF11_01(0.87) 13 ----------->V$AP2_Q6(0.87) 14 <---------V$USF_Q6(0.93) 16 --------...V$ATF_01(0.94) 17 -------...V$AP1FJ_Q2(0.95) 20 -------...V$CREBP1_Q2(0.93) 21 -------...V$CREB_Q2(0.95) 23 ---...V$IK2_01(0.85) MMCFOS_1 GAGCGCCCGCAGAGGGCCTTGGGGCGCGCTTCCCCCCCCTTCCAGTTCCGCCCAGTGACG 420 1-->V$CREBP1CJUN_01(0.85) -------------->V$BARBIE_01(0.86) 2-->V$CREB_01(0.96) -------------->V$TATA_01(0.95) 3 ----------->V$CAAT_01(0.91) --------->V$AP4_Q5(0.95) 4----------->V$ELK1_01(0.87) --------------------->V$HEN1_01(0.87) 5 --------->V$AP4_Q5(0.88) <---...V$CMYB_01(0.93) 6 <---------V$CDPCR3HD_01(0.93) --...V$VMYB_02(0.89) 7 <--------------V$TATA_01(0.88) 8 --------------------->V$HEN1_02(0.87) 9 <---------------------V$HEN1_02(0.86) 10 <-----------------V$AP4_01(0.88) 11 ----------->V$LMO2COM_01(0.93) 12 <-----------V$LMO2COM_01(0.93) 13 <-----------V$MYOD_01(0.88) 17--->V$AP1FJ_Q2(0.95) <---------V$AP4_Q6(0.99) 20---->V$CREBP1_Q2(0.93) <---------V$MYOD_Q6(0.96) 21---->V$CREB_Q2(0.95) Transcription start 23-------->V$IK2_01(0.85) 24 <=========== E2F (0.80) MMCFOS_1 TAGGAAGTCCATCCATTCACAGCGCTTCTATAAAGGCGCCAGCTGAGGCGCCTACTACTC 480 1 <-----------------V$CMYB_01(0.91) -------...V$ER_Q6(0.86) 2 <-----------V$LMO2COM_01(0.90) <----...V$TCF11_01(0.87) 3 --------->V$MYOD_Q6(0.90) -------->V$STAT_01(0.93) 4 --------->V$VMYB_01(0.89) <--------V$STAT_01(0.89) 5--------------V$CMYB_01(0.93) -------->V$LMO2COM_02(0.93) 6------>V$VMYB_02(0.89) <-----------V$CAAT_01(0.85) 7 -------->V$VMYB_02(0.88) 8 -------------->V$EVI1_04(0.86) 9 ------------->V$GATA1_02(0.93) 12 <------------V$ZID_01(0.85) 13 <----------V$CP2_01(0.97) 14 ---------->V$GATA_C(0.92) 15 ----------------->V$CMYB_01(0.86) 16 --------->V$CREL_01(0.91) 24 <=========== E2F (0.82) MMCFOS_1 CAACCGCGACTGCAGCGAGCAACTGAGAAGACTGGATAGAGCCGGCGGTTCCGCGAACGA 540

Use computers to discover drugs

We should find a key pathway of a disease, select a good target and inhibit it. TRANSPATH

Pathway mapping Mapping on pathways Differentially expressed genes/proteins Cause of disease??

TNF-α 117 differentially expressed genes

Can we predict TNF pathway?? 117 differentially expressed genes

Canonical TNF pathway TRANSPATH

Lets do mapping the differentially expressed genes on canonical pathways. Pathway name Hits Pathway_id Hit names Pathway sizep-value M-CSF ---> c-ets-2 2 CH000000060 ETS2; CSF1 5 3.07E-03 IFNalpha, IFNbeta, IFNgamma ---> Rap1 3 CH000000595 IFNGR1; TYK2; IFNGR2 19 4.34E-03 Epo ---Lyn---> STAT5A 2 CH000000524 STAT5A; LYN 6 4.56E-03 activin A ---> Smad3 2 CH000000680 INHBA; SMAD3 10 1.31E-02 IFN pathway 3 CH000000740 IFNGR1; TYK2; IFNGR2 29 1.44E-02 Sonic Hedgehog pathway 2 CH000001022 MTSS1; PTCH 19 4.48E-02 hypoxia pathways 2 CH000000987 CDKN1B; NRIP1 21 5.38E-02 EDAR pathway 2 CH000000759 NFKBIA; CYLD 27 8.40E-02 Epo pathway 2 CH000000741 STAT5A; LYN 32 1.12E-01 TGFbeta pathway 3 CH000000711 BMP2; INHBA; SMAD3 72 1.39E-01 IL-22 pathway 1 CH000000762 TYK2 9 1.51E-01 IL-10 pathway 1 CH000000761 TYK2 9 1.51E-01 VEGF-A pathway 2 CH000000723 NOS3; VEGFA 42 1.75E-01 TLR3 pathway 2 CH000000820 TANK; IKBKE 44 1.88E-01 IL-8 pathway 2 CH000000786 CXCL1; IL8 46 2.01E-01 TNF-alpha pathway 2 CH000000772 NFKBIA; OSIL 53 2.48E-01 p38 pathway 2 CH000000849 MAP2K3; DUSP8 55 2.61E-01 Not significant TNF pathway can not be found by direct maping on canonical pathways...

Human epidermoid carcinoma A431 cells treated by epidermal growth factor (EGF) EGF 320 differntially expressed proteins

Mapping differentially expressed proteins to canonical signal transduction pathways Pathway name Caspase network CHIP ---/ Pael-R p53 pathway beta-catenin ---/ KAI1 Aurora-A cell cycle regulation JNK pathway parkin associated pathways beta-catenin:e-cadherin complex phosphorylation and dissociation stress-associated pathways hypoxia pathways TNF-alpha pathway EGF pathway #Hits in Group group Hit names size p-value K18; E1; Cytochrome C; Hsp10; 6 Ku70; Cdc42 104 0.00201348 2 E1; Hsc70 12 0.01177937 4 E1; L23; Cytochrome C; Ku70 79 0.02072214 1 Reptin52 5 0.06701759 2 Ubc5B; E1 34 0.07924485 3 E1; 14-3-3zeta; Trx1 75 0.0813304 2 E1; Hsc70 40 0.10447487 1 3 1 1 1 alpha-catenin E1; 14-3-3zeta; Trx1 Trx1 Trx1 E1 9 0.11739049 100 0.15476 24 0.2849595 36 0.39594524 103 0.57615756

Mapping on pathways does not work (even in such a simple cases) Why?

Pathways are far from being fully undersood.

BIG gap of knowledge on interactions between TF and their target sites in DNA TF2 TF1 TF3 TRANSPATH

Search for new TF binding sites with PWMs? A C G T 9 8 4 8 N 2 3 2 22 T 1 1 2 25 T 0 1 2 26 T 1 13 15 0 S 0 3 26 0 G 0 29 0 0 C 0 0 29 0 G l q= 0 22 7 0 C 1 8 17 3 S l I (i) f (b,i) I (i) f i i =1 l I (i) f 15 9 3 2 M 13 1 7 8 D 13 4 9 3 R 7 8 8 6 N min (i ) i =1 (1) max (i) i =1 I (i ) = f (b,i) ln(4 f (b,i)) b {A,T,G,C} (2)

N M k p=m/n n=k+s s

Overrepresented TFs in TNF-alpha regulated promoters

3/17/12 Master regulator

Can we predict TNF pathway?? 117 differntially expressed genes

3/17/12 GeneXplain platform drug target discovery pipeline

TNF-alpha

Human epidermoid carcinoma A431 cells treated by epidermal growth factor (EGF) EGF? 320 differntially expressed proteins Master regulator analysis EGF was still not in the list!

Pathways are far...far...far from being fully undersood!

Network plasticity

Epidermal Growth Factor induced Carcinogenicity Philip Stegmaier1, Alexander Kel1, Edgar Wingender1,2, and Jürgen Borlak3 Hepatocellular transcriptome data of IgEGF-overexpressing mice transgenic transgenic/normal small tumor Tumoregenic switch small tumor/normal?

Experimental validation by EMSA Gene Fold Fold change change Transge Tumor nic PPARgamma c-myb c-ets-2 - + - - - + - + + STAT5B Igf2 2.90 25.98 Il1rn 2.75 8.49 Igfbp6 0.83 7.84 Pparg 0.40 5.76 + - + Bmp7 0.92 4.64 + - - Zbtb7b 3.69 1.11 Foxc1 4.67 1.43 Xlr 2.90 0.90 Erbb3 6.99 2.35 Itga4 2.76 1.03 Th 4.08 1.59 Nr2f1 6.26 2.62 Defcr6 13.86 6.05 Nr3c1 3.27 1.44 Cav1 5.35 2.49 + GATA-1 Mef2a p53 HNF-4 gamma (alpha -antibody) GR C/EBP alpha - + - + + + - - + + + + - + - + + + + - + - - + - + +

EGF Cell proliferation

EGF Egf Cell proliferation

EGF Egf Calveolin1 Cav1 Cell proliferation

EGF Egf Cav1 Calveolin1 Pparg IGF-2 Igfbp6 IGFBP6 Igf2

IGF-2 Pparg Cell proliferation Igfbp6 IGFBP6 Igf2

Cancer

Apoptosis versus survival of cancer cells? 3/17/12

Survival mechanisms of cancer cells upon RITA treatment and potential target proteins for a complementary compound 3/17/12

Survival mechanisms of cancer cells upon RITA treatment and potential target proteins for a complementary compound PI3-kinase 3/17/12

Death of Cancer cells treated with 0.1 µm RITA and PI3-kinase inhibitor LY294002 RITA LY 3/17/12

3/17/12

Identified 64 novel componds ChemNavigator Library 24 million compounds SAR/QSAR 3/17/12

Tested 16 compounds in a panel of several cancer cell lines. Found active: Compound N15 Hypoxia inducible factor 1 alpha inhibitor Phosphatidylinositol 3-kinase beta inhibitor Targets Showed growth suppression in 3 different breast cancer cell lines. The effect appears to be p53-independent (kills p53-null colon cancer cells) and it does not affect the growth of non-transformed mammary epithelial cells Found active: Cyclin-dependent kinase 2 inhibitor Compound N6 Myc inhibitor Targets Out of panel of 7 different cancer lines it killed only melanoma cells without any effects in other cell lines and on control nontransformed mammary epithelial cells. 3/17/12

Multiple data sources can be integrated with the goal to find master regulatory nodes Phosphoproteome Metabolome Proteome Transcriptome ChIP-chip ChIP-seq

Mouse c-fos promoter (Matrix search for TF binding sites) 1 <------------V$IK1_01(0.86) -----...V$CREBP1CJUN_01(0.85) 2 <-----------V$IK2_01(0.90) -----...V$CREB_01(0.96) 3 ----------->V$AP2_Q6(0.87) <-------------V$GKLF_01(0.87) 4-->V$ATF_01(0.89) <-------V$MZF1_01(0.99) ----...V$ELK1_01(0.87) 5 <-----------V$AP2_Q6(0.92) <------------V$SP1_Q6(0.88) 6>V$AP1FJ_Q2(0.89) <-------------V$GKLF_01(0.85) 7>V$AP1_Q2(0.87) <-------------V$GKLF_01(0.86) 8->V$CREB_Q2(0.86) <---------V$CETS1P54_01(0.90) 9->V$CREB_Q4(0.90) <---------V$NRF2_01(0.90) 10 <-------------V$GC_01(0.88) 11 ----------->V$CAAT_01(0.87) 12 <------------V$TCF11_01(0.87) 13 ----------->V$AP2_Q6(0.87) 14 <---------V$USF_Q6(0.93) 16 --------...V$ATF_01(0.94) 17 -------...V$AP1FJ_Q2(0.95) 20 -------...V$CREBP1_Q2(0.93) 21 -------...V$CREB_Q2(0.95) 23 ---...V$IK2_01(0.85) MMCFOS_1 GAGCGCCCGCAGAGGGCCTTGGGGCGCGCTTCCCCCCCCTTCCAGTTCCGCCCAGTGACG 420 1-->V$CREBP1CJUN_01(0.85) -------------->V$BARBIE_01(0.86) 2-->V$CREB_01(0.96) -------------->V$TATA_01(0.95) 3 ----------->V$CAAT_01(0.91) --------->V$AP4_Q5(0.95) 4----------->V$ELK1_01(0.87) --------------------->V$HEN1_01(0.87) 5 --------->V$AP4_Q5(0.88) <---...V$CMYB_01(0.93) 6 <---------V$CDPCR3HD_01(0.93) --...V$VMYB_02(0.89) 7 <--------------V$TATA_01(0.88) 8 --------------------->V$HEN1_02(0.87) 9 <---------------------V$HEN1_02(0.86) 10 <-----------------V$AP4_01(0.88) 11 ----------->V$LMO2COM_01(0.93) 12 <-----------V$LMO2COM_01(0.93) 13 <-----------V$MYOD_01(0.88) 17--->V$AP1FJ_Q2(0.95) <---------V$AP4_Q6(0.99) 20---->V$CREBP1_Q2(0.93) <---------V$MYOD_Q6(0.96) 21---->V$CREB_Q2(0.95) Transcription start 23-------->V$IK2_01(0.85) 24 <=========== E2F (0.80) MMCFOS_1 TAGGAAGTCCATCCATTCACAGCGCTTCTATAAAGGCGCCAGCTGAGGCGCCTACTACTC 480 1 <-----------------V$CMYB_01(0.91) -------...V$ER_Q6(0.86) 2 <-----------V$LMO2COM_01(0.90) <----...V$TCF11_01(0.87) 3 --------->V$MYOD_Q6(0.90) -------->V$STAT_01(0.93) 4 --------->V$VMYB_01(0.89) <--------V$STAT_01(0.89) 5--------------V$CMYB_01(0.93) -------->V$LMO2COM_02(0.93) 6------>V$VMYB_02(0.89) <-----------V$CAAT_01(0.85) 7 -------->V$VMYB_02(0.88) 8 -------------->V$EVI1_04(0.86) 9 ------------->V$GATA1_02(0.93) 12 <------------V$ZID_01(0.85) 13 <----------V$CP2_01(0.97) 14 ---------->V$GATA_C(0.92) 15 ----------------->V$CMYB_01(0.86) 16 --------->V$CREL_01(0.91) 24 <=========== E2F (0.82) MMCFOS_1 CAACCGCGACTGCAGCGAGCAACTGAGAAGACTGGATAGAGCCGGCGGTTCCGCGAACGA 540

Composite Modules (CM) Composite Module (CM) (Mark Ptashne, Alexander Gann Genes and Signals, 2002)

Composite Modules (CM) w s1(1) s1[1] [1] d max (k ) s1( 2 )... s1( k )... smk [1] d max s2[1] [1] d max (1) qcut off ( 2) qcut off...... φ (1) φ ( 2)... Start of transcription... [R] d max (k ) qcut off φ (k ) Parameters of the model to be estimated by GA We created a genetic algorithm to find site combinations

Fitness function of the Genetic-Regression Algorithm (GRA) F = α R + β (1 FN ) + (1 β ) (1 FP) + γ T + δ N µ k # promoters R linear regression N FN FP FN false negatives FPS FP false positives T T-test (difference between mean values) N normal likeness k number of free parameters

Composite module in promoters of cell cycle-related genes Weight: qcut off φ 1.000000 0.840072 V$E2F_19 0.954483 0.737637 V$TATA_01 0.888064 0.939687 V$CREB_01 0.816179 0.941583 V$SP1_Q6 0.039746 0.839702 V$TAL1BETAE47_01 40 Cell cycle-related promoters 30 No of sequences Background sequences TF matrix 20 10 0-0,5 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0

1 <------------V$IK1_01(0.86) -----...V$CREBP1CJUN_01(0.85) 2 <-----------V$IK2_01(0.90) -----...V$CREB_01(0.96) 3 ----------->V$AP2_Q6(0.87) <-------------V$GKLF_01(0.87) 4-->V$ATF_01(0.89) <-------V$MZF1_01(0.99) ----...V$ELK1_01(0.87) <------------V$SP1_Q6(0.88) 5 <-----------V$AP2_Q6(0.92) 6>V$AP1FJ_Q2(0.89) <-------------V$GKLF_01(0.85) 7>V$AP1_Q2(0.87) <-------------V$GKLF_01(0.86) 8->V$CREB_Q2(0.86) <---------V$CETS1P54_01(0.90) 9->V$CREB_Q4(0.90) <---------V$NRF2_01(0.90) 10 <-------------V$GC_01(0.88) 11 ----------->V$CAAT_01(0.87) 12 <------------V$TCF11_01(0.87) 13 ----------->V$AP2_Q6(0.87) 14 <---------V$USF_Q6(0.93) 16 --------...V$ATF_01(0.94) 17 -------...V$AP1FJ_Q2(0.95) -------...V$CREBP1_Q2(0.93) 20 -------...V$CREB_Q2(0.95) 21 23 ---...V$IK2_01(0.85) MMCFOS_1 GAGCGCCCGCAGAGGGCCTTGGGGCGCGCTTCCCCCCCCTTCCAGTTCCGCCCAGTGACG 420 Mouse c-fos promoter 1-->V$CREBP1CJUN_01(0.85) -------------->V$BARBIE_01(0.86) -------------->V$TATA_01(0.95) 2-->V$CREB_01(0.96) 3 ----------->V$CAAT_01(0.91) --------->V$AP4_Q5(0.95) 4----------->V$ELK1_01(0.87) --------------------->V$HEN1_01(0.87) 5 --------->V$AP4_Q5(0.88) <---...V$CMYB_01(0.93) 6 <---------V$CDPCR3HD_01(0.93) --...V$VMYB_02(0.89) <-------------V$TATA_01(0.88) 7 8 --------------------->V$HEN1_02(0.87) 9 <---------------------V$HEN1_02(0.86) 10 <-----------------V$AP4_01(0.88) 11 ----------->V$LMO2COM_01(0.93) 12 <-----------V$LMO2COM_01(0.93) 13 <-----------V$MYOD_01(0.88) 17--->V$AP1FJ_Q2(0.95) <---------V$AP4_Q6(0.99) 20---->V$CREBP1_Q2(0.93) <---------V$MYOD_Q6(0.96) 21---->V$CREB_Q2(0.95) Transcription start 23-------->V$IK2_01(0.85) <----------- E2F (0.80) 24 MMCFOS_1 TAGGAAGTCCATCCATTCACAGCGCTTCTATAAAGGCGCCAGCTGAGGCGCCTACTACTC 480 1 <-----------------V$CMYB_01(0.91) -------...V$ER_Q6(0.86) 2 <-----------V$LMO2COM_01(0.90) <----...V$TCF11_01(0.87) 3 --------->V$MYOD_Q6(0.90) -------->V$STAT_01(0.93) 4 --------->V$VMYB_01(0.89) <--------V$STAT_01(0.89) 5--------------V$CMYB_01(0.93) -------->V$LMO2COM_02(0.93) 6------>V$VMYB_02(0.89) <-----------V$CAAT_01(0.85) 7 -------->V$VMYB_02(0.88) 8 -------------->V$EVI1_04(0.86) 9 ------------->V$GATA1_02(0.93) 12 <------------V$ZID_01(0.85) 13 <----------V$CP2_01(0.97) 14 ---------->V$GATA_C(0.92) 15 ----------------->V$CMYB_01(0.86) 16 --------->V$CREL_01(0.91) <----------- E2F (0.82) 24 MMCFOS_1 CAACCGCGACTGCAGCGAGCAACTGAGAAGACTGGATAGAGCCGGCGGTTCCGCGAACGA 540 MMCFOS_1 1----------->V$ER_Q6(0.86) 2--------V$TCF11_01(0.87) 3 --------->V$AP4_Q5(0.91) 4 --------->V$AP4_Q6(0.87) 5 ---------->V$AP1FJ_Q2(0.93) 6 ---------->V$AP1_Q2(0.90) 7 ---------->V$AP1_Q4(0.87) 8 <-----------V$IK2_01(0.94) GCAGTGACCGCGCTCCCACCCAGCTCTGCTCTGCAGCTCC 580

Size of zip file = complexity 1400 1200 1000 800 600 400 200 0 Time

Fuzzy puzzle - multipurpose structure of the eukaryotic promoters Mechanism of network plasticity A B BC C 1 2 D E BC F 1 2

Gene regulatory code? gherllojunomd-bype Alexander fasltoiwany 1) gherllojunomd-bype Alexander fasltoiw 2) gherllojunomd-bype Alexander fasltoiw 3) gherllojunomd-bype Alexander fasltoiw

Even some messages which were not written gherllojunomd-bype Alexander fasltoiwany gherllojunomd-bype Alexander fasltoiwany gherllojunomd-zype Alexander fasstoiwany l