5.1 logistic regresssion Chris Parrish July 3, 2016
|
|
- Ἄμμων Αλεβιζόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 5.1 logistic regresssion Chris Parrish July 3, 2016 Contents logistic regression model vote 1 data model fit with stan fitted model figures figure 5.1a figure 5.1b fit with glm fit with stan_glm logistic regresssion reference: - ARM chapter 05, github library(rstan) rstan_options(auto_write = TRUE) options(mc.cores = parallel::detectcores()) library(ggplot2) logistic regression model y i Bernoulli(p i ) logit(p i ) = X i β logit <- function(x){ log(x / (1 - x)) logistic <- function(x){ 1 / (1 + exp(-x)) # logistic = invlogit 1992 vote data # Data source("nes1992_vote.data.r", echo = TRUE) 1
2 > N < > vote <- c(1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, + 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, + 1, 1, 0, 1, 0, 1, 0, 0, 1... [TRUNCATED] > income <- c(4, 2, 1, 2, 3, 4, 2, 4, 1, 4, 4, 1, 3, + 2, 3, 3, 2, 3, 4, 3, 3, 2, 4, 3, 4, 4, 2, 3, 2, 3, 3, 3, + 2, 5, 3, 3, 3, 4, 1, 4, 3,... [TRUNCATED] model nes_logit.stan data { int<lower=0> N; vector[n] income; int<lower=0,upper=1> vote[n]; parameters { vector[2] beta; model { vote ~ bernoulli_logit(beta[1] + beta[2] * income); fit with stan # Logistic model: vote ~ income data.list <- c("n", "vote", "income") nes_logit.sf <- stan(file='nes_logit.stan', data=data.list, iter=1000, chains=4) plot(nes_logit.sf) ci_level: 0.8 (80% intervals) outer_level: 0.95 (95% intervals) beta[1] beta[2] pairs(nes_logit.sf)
3 beta[1] beta[2] lp print(nes_logit.sf, pars = c("beta", "lp ")) Inference for Stan model: nes_logit. 4 chains, each with iter=1000; warmup=500; thin=1; post-warmup draws per chain=500, total post-warmup draws=2000. mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff beta[1] beta[2] lp Rhat beta[1] 1.01 beta[2] 1.00 lp 1.00 Samples were drawn using NUTS(diag_e) at Tue Jul 5 02:10: For each parameter, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat=1). The estimated Bayesian Fraction of Missing Information is a measure of the efficiency of the sampler with values close to 1 being ideal. For each chain, these estimates are summary(nes_logit.sf) $summary mean se_mean sd 2.5% 25% beta[1] beta[2] lp
4 50% 75% 97.5% n_eff Rhat beta[1] beta[2] lp $c_summary,, chains = chain:1 stats parameter mean sd 2.5% 25% 50% beta[1] beta[2] lp stats parameter 75% 97.5% beta[1] beta[2] lp ,, chains = chain:2 stats parameter mean sd 2.5% 25% 50% beta[1] beta[2] lp stats parameter 75% 97.5% beta[1] beta[2] lp ,, chains = chain:3 stats parameter mean sd 2.5% 25% 50% beta[1] beta[2] lp stats parameter 75% 97.5% beta[1] beta[2] lp ,, chains = chain:4 stats parameter mean sd 2.5% 25% 50% beta[1] beta[2] lp stats parameter 75% 97.5% 4
5 beta[1] beta[2] lp fitted model P (y i = 1) = logit 1 ( income) figures # Figures beta.post <- extract(nes_logit.sf, "beta")$beta beta.mean <- colmeans(beta.post) figure 5.1a # Figure 5.1 (a) len <- 20 x <- seq(1, 5, length.out = len) y <- 1 / (1 + exp(- beta.mean[1] - beta.mean[2] * x)) nes_vote.ggdf.1 <- data.frame(x, y) p1 <- ggplot(data.frame(income, vote), aes(x = income, y = vote)) + geom_jitter(position = position_jitter(height = 0.04, width = 0.4), shape = 20, color = "darkred") + geom_line(aes(x, y), data = nes_vote.ggdf.1, size = 2) + stat_function(fun = function(x) 1 / (1 + exp(- beta.mean[1] - beta.mean[2] * x))) + scale_x_continuous("income", limits = c(-2, 8), breaks = seq(1, 5), labels = c("1\n(poor)", "2", "3", "4", "5\n(rich)")) + scale_y_continuous("pr(republican Vote)", limits = c(-0.05, 1.05), breaks = seq(0, 1, 0.2)) print(p1) 5
6 Pr(Republican Vote) (poor) (rich) Income figure 5.1b # Figure 5.1 (b) # dev.new() n <- 20 ndx <- sample(nrow(beta.post), n) min.x <- 0.5 max.x <- 5.5 x <- seq(min.x, max.x, length.out = len) nes_vote.ggdf.2 <- data.frame(c(), c(), c()) # empty data frame for (i in ndx) { y <- 1 / (1 + exp(- beta.post[i, 1] - beta.post[i, 2] * x)) nes_vote.ggdf.2 <- rbind(nes_vote.ggdf.2, data.frame(id = rep(i, len), x, y)) p2 <- ggplot(data.frame(income, vote), aes(x = income, y = vote)) + geom_jitter(position = position_jitter(height =.04, width =.4), shape = 20, color = "darkred") + geom_line(aes(x, y, group = id), data = nes_vote.ggdf.2, alpha = 0.1) + geom_line(aes(x, y = 1 / (1 + exp(- beta.mean[1] - beta.mean[2] * x))), data = nes_vote.ggdf.2) + scale_x_continuous("income", limits = c(min.x, max.x), breaks = seq(1, 5), labels = c("1\n(poor)", "2", "3", "4", "5\n(rich)")) + scale_y_continuous("pr(republican Vote)", limits = c(-0.05, 1.05), 6
7 print(p2) breaks = seq(0, 1, 0.2)) Pr(Republican Vote) (poor) (rich) Income fit with glm Gelman and Hill, p.79 library(arm) glm.fit1 <- glm(vote ~ income, family = binomial(link = "logit")) display(glm.fit1) glm(formula = vote ~ income, family = binomial(link = "logit")) coef.est coef.se (Intercept) income n = 1179, k = 2 residual deviance = , null deviance = (difference = 34.3) options(show.signif.stars = FALSE) summary(glm.fit1) Call: glm(formula = vote ~ income, family = binomial(link = "logit")) Deviance Residuals: 7
8 Min 1Q Median 3Q Max Coefficients: Estimate Std. Error z value Pr(> z ) (Intercept) e-13 income e-09 (Dispersion parameter for binomial family taken to be 1) Null deviance: on 1178 degrees of freedom Residual deviance: on 1177 degrees of freedom AIC: Number of Fisher Scoring iterations: 4 fit with stan_glm library(rstanarm) data <- data.frame(income, vote) stan_glm.fit1 <- stan_glm(vote ~ income, data = data, family = binomial(link = "logit"), chains = 4) plot(stan_glm.fit1) ci_level: 0.8 (80% intervals) outer_level: 0.95 (95% intervals) (Intercept) income pairs(stan_glm.fit1)
9 (Intercept) income mean_ppd summary(stan_glm.fit1) log posterior stan_glm(formula = vote ~ income, family = binomial(link = "logit"), data = data, chains = 4) Family: binomial (logit) Algorithm: sampling Posterior sample size: 4000 Observations: 1179 Estimates: mean sd 2.5% 25% 50% 75% 97.5% (Intercept) income mean_ppd log-posterior Diagnostics: mcse Rhat n_eff (Intercept) income mean_ppd log-posterior For each parameter, mcse is Monte Carlo standard error, n_eff is a crude measure of effective sample 9
5.6 evaluating, checking, comparing Chris Parrish July 3, 2016
5.6 evaluating, checking, comparing Chris Parrish July 3, 2016 Contents residuals 1 evaluating, checking, comparing 1 data..................................................... 1 model....................................................
Λογιστική Παλινδρόµηση
Κεφάλαιο 10 Λογιστική Παλινδρόµηση Στο κεφάλαιο αυτό ϑα δούµε την µέθοδο της λογιστικής παλινδρόµησης η οποία χρησιµεύει στο να αναπτύξουµε σχέση µίας δίτιµης ανεξάρτητης τυχαίας µετα- ϐλητής και συνεχών
Wan Nor Arifin under the Creative Commons Attribution-ShareAlike 4.0 International License. 1 Introduction 1
Poisson Regression A Short Course on Data Analysis Using R Software (2017) Wan Nor Arifin (wnarifin@usm.my), Universiti Sains Malaysia Website: sites.google.com/site/wnarifin Wan Nor Arifin under the Creative
m4.3 Chris Parrish June 16, 2016
m4.3 Chris Parrish June 16, 2016 Contents!Kung model 1 data..................................................... 1 scatterplot with ggplot2....................................... 2 model....................................................
Wan Nor Arifin under the Creative Commons Attribution-ShareAlike 4.0 International License. 1 Introduction 1
Linear Regression A Short Course on Data Analysis Using R Software (2017) Wan Nor Arifin (wnarifin@usm.my), Universiti Sains Malaysia Website: sites.google.com/site/wnarifin Wan Nor Arifin under the Creative
η π 2 /3 χ 2 χ 2 t k Y 0/0, 0/1,..., 3/3 π 1, π 2,..., π k k k 1 β ij Y I i = 1,..., I p (X i = x i1,..., x ip ) Y i J (j = 1,..., J) x i Y i = j π j (x i ) x i π j (x i ) x (n 1 (x),..., n J (x))
Generalized additive models in R
www.nr.no Generalized additive models in R Magne Aldrin, Norwegian Computing Center and the University of Oslo Sharp workshop, Copenhagen, October 2012 Generalized Linear Models - GLM y Distributed with
Queensland University of Technology Transport Data Analysis and Modeling Methodologies
Queensland University of Technology Transport Data Analysis and Modeling Methodologies Lab Session #7 Example 5.2 (with 3SLS Extensions) Seemingly Unrelated Regression Estimation and 3SLS A survey of 206
Γενικευµένα Γραµµικά Μοντέλα
Σηµειώσεις για το εργαστήριο υπολογιστών για το µάθηµα Γενικευµένα Γραµµικά Μοντέλα. Μέρος δεύτερο: Γενικευµένα Γραµµικά Μοντέλα στην SPLUS Οι σηµειώσεις γράφτηκαν από το Γιώργο Τζουγά, υποψήφιο διδάκτορα
DirichletReg: Dirichlet Regression for Compositional Data in R
DirichletReg: Dirichlet Regression for Compositional Data in R Marco J. Maier Wirtschaftsuniversität Wien Abstract Full R Code for Maier, M. J. (2014). DirichletReg: Dirichlet Regression for Compositional
Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS
Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS Ο παρακάτω πίνακας παρουσιάζει θανάτους από καρδιακή ανεπάρκεια ανάμεσα σε άνδρες γιατρούς οι οποίοι έχουν κατηγοριοποιηθεί κατά ηλικία
Supplementary figures
A Supplementary figures a) DMT.BG2 0.87 0.87 0.72 20 40 60 80 100 DMT.EG2 0.93 0.85 20 40 60 80 EMT.MG3 0.85 0 20 40 60 80 20 40 60 80 100 20 40 60 80 100 20 40 60 80 EMT.G6 DMT/EMT b) EG2 0.92 0.85 5
waffle Chris Parrish June 18, 2016
waffle Chris Parrish June 18, 2016 Contents Waffle House 1 data..................................................... 2 exploratory data analysis......................................... 2 Waffle Houses.............................................
Εργασία. στα. Γενικευμένα Γραμμικά Μοντέλα
Εργασία στα Γενικευμένα Γραμμικά Μοντέλα Μ. Παρζακώνης ΜΕΣ/ 06015 Ο παρακάτω πίνακας δίνει τα αποτελέσματα 800 αιτήσεων για δάνειο σε μία τράπεζα. Ο πίνακας παρουσιάζει τον αριθμό των δανείων που εγκρίθηκαν,
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
3 Regressionsmodelle für Zähldaten
Übung zur Vorlesung Kategoriale Daten Blatt 6 Gerhard Tutz, Moritz Berger WiSe 15/16 3 Regressionsmodelle für Zähldaten Aufgabe 21 Analyse des Datensatz bike bike
Supplementary Material for The Cusp Catastrophe Model as Cross-Sectional and Longitudinal Mixture Structural Equation Models
Supplementary Material for The Cusp Catastrophe Model as Cross-Sectional and Longitudinal Mixture Structural Equation Models Sy-Miin Chow Pennsylvania State University Katie Witkiewitz University of New
Biostatistics for Health Sciences Review Sheet
Biostatistics for Health Sciences Review Sheet http://mathvault.ca June 1, 2017 Contents 1 Descriptive Statistics 2 1.1 Variables.............................................. 2 1.1.1 Qualitative........................................
Modern Regression HW #8 Solutions
36-40 Modern Regression HW #8 Solutions Problem [25 points] (a) DUE: /0/207 at 3PM This is still a linear regression model the simplest possible one. That being the case, the solution we derived before
Άσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F
Άσκηση 0, σελ. 9 από το βιβλίο «Μοντέλα Αξιοπιστίας και Επιβίωσης» της Χ. Καρώνη (i) Αρχικά, εισάγουμε τα δεδομένα στο minitab δημιουργώντας δύο μεταβλητές: τη x για τον άτυπο όγκο και την y για τον τυπικό
22 .5 Real consumption.5 Real residential investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.5 Real house prices.5 Real fixed investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.3 Inflation
Statistics 104: Quantitative Methods for Economics Formula and Theorem Review
Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample
Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data
Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data Rahim Alhamzawi, Haithem Taha Mohammad Ali Department of Statistics, College of Administration and Economics,
519.22(07.07) 78 : ( ) /.. ; c (07.07) , , 2008
.. ( ) 2008 519.22(07.07) 78 : ( ) /.. ;. : -, 2008. 38 c. ( ) STATISTICA.,. STATISTICA.,. 519.22(07.07),.., 2008.., 2008., 2008 2 ... 4 1...5...5 2...14...14 3...27...27 3 ,, -. " ", :,,,... STATISTICA.,,,.
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται
SECTION II: PROBABILITY MODELS
SECTION II: PROBABILITY MODELS 1 SECTION II: Aggregate Data. Fraction of births with low birth weight per province. Model A: OLS, using observations 1 260 Heteroskedasticity-robust standard errors, variant
FORMULAS FOR STATISTICS 1
FORMULAS FOR STATISTICS 1 X = 1 n Sample statistics X i or x = 1 n x i (sample mean) S 2 = 1 n 1 s 2 = 1 n 1 (X i X) 2 = 1 n 1 (x i x) 2 = 1 n 1 Xi 2 n n 1 X 2 x 2 i n n 1 x 2 or (sample variance) E(X)
Supplementary Appendix
Supplementary Appendix Measuring crisis risk using conditional copulas: An empirical analysis of the 2008 shipping crisis Sebastian Opitz, Henry Seidel and Alexander Szimayer Model specification Table
Εργαστήριο στατιστικής Στατιστικό πακέτο S.P.S.S.
Σημειώσεις για το μάθημα Εργαστήριο στατιστικής Στατιστικό πακέτο S.P.S.S. Παπάνα Αγγελική E mail: papanagel@yahoo.gr, agpapana@gen.auth.gr Α.Τ.Ε.Ι. Θεσσαλονίκης ΠΑΡΑΡΤΗΜΑ ΚΑΤΕΡΙΝΗΣ Τμήμα Τυποποίησης και
.5 Real consumption.5 Real residential investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.5 Real house prices.5 Real fixed investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.3 Inflation rate.3
Table 1: Military Service: Models. Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed
Tables: Military Service Table 1: Military Service: Models Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed mili 0.489-0.014-0.044-0.044-1.469-2.026-2.026
( ) ( ) STAT 5031 Statistical Methods for Quality Improvement. Homework n = 8; x = 127 psi; σ = 2 psi (a) µ 0 = 125; α = 0.
STAT 531 Statistical Methods for Quality Improvement Homework 3 4.8 n = 8; x = 17 psi; σ = psi (a) µ = 15; α =.5 Test H : µ = 15 vs. H 1 : µ > 15. Reject H if Z > Z α. x µ 17 15 Z = = =.88 σ n 8 Z α =
TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics
TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics Exploring Data: Distributions Look for overall pattern (shape, center, spread) and deviations (outliers). Mean (use a calculator): x = x 1 + x
διαγνωστικούς ελέγχους MCMC diagnostics CODA
MCMC DIAGNOSTICS Πόσο πρέπει να περιμένουμε για να επιτευχθεί η στασιμότητα; Πόσο μεγάλο πρέπει να είναι το m (μετά την στασιμότητα για πόσο πρέπει να τρέξεις την αλυσίδα σου); Από που να ξεκινήσεις; Για
APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679
APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 1 Table I Summary of Common Probability Distributions 2 Table II Cumulative Standard Normal Distribution Table III Percentage Points, 2 of the Chi-Squared
Bayesian Data Analysis, Midterm I
Bayesian Data Analysis, Midterm I Bugra Gedik bgedik@cc.gatech.edu October 3, 4 Q1) I have used Gibs sampler to solve this problem. 5, iterations with burn-in value of 1, is used. The resulting histograms
Description of the PX-HC algorithm
A Description of the PX-HC algorithm Let N = C c= N c and write C Nc K c= i= k= as, the Gibbs sampling algorithm at iteration m for continuous outcomes: Step A: For =,, J, draw θ m in the following steps:
Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology
2012 34 2 382-387 http / /xuebao. jxau. edu. cn Acta Agriculturae Universitatis Jiangxiensis E - mail ndxb7775@ sina. com 212018 105 W 42 2 min 0. 631 TS202. 3 A 1000-2286 2012 02-0382 - 06 Optimizing
1 1 1 2 1 2 2 1 43 123 5 122 3 1 312 1 1 122 1 1 1 1 6 1 7 1 6 1 7 1 3 4 2 312 43 4 3 3 1 1 4 1 1 52 122 54 124 8 1 3 1 1 1 1 1 152 1 1 1 1 1 1 152 1 5 1 152 152 1 1 3 9 1 159 9 13 4 5 1 122 1 4 122 5
[2] T.S.G. Peiris and R.O. Thattil, An Alternative Model to Estimate Solar Radiation
References [1] B.V.R. Punyawardena and Don Kulasiri, Stochastic Simulation of Solar Radiation from Sunshine Duration in Srilanka [2] T.S.G. Peiris and R.O. Thattil, An Alternative Model to Estimate Solar
ΕΚΤΙΜΗΣΗ ΤΟΥ ΚΟΣΤΟΥΣ ΤΩΝ ΟΔΙΚΩΝ ΑΤΥΧΗΜΑΤΩΝ ΚΑΙ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΕΠΙΡΡΟΗΣ ΤΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΚΤΙΜΗΣΗ ΤΟΥ ΚΟΣΤΟΥΣ ΤΩΝ ΟΔΙΚΩΝ ΑΤΥΧΗΜΑΤΩΝ ΚΑΙ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΕΠΙΡΡΟΗΣ ΤΟΥ ΔΙΑΤΡΙΒΗ ΔΙΠΛΩΜΑΤΟΣ ΕΙΔΙΚΕΥΣΗΣ ΔΗΜΗΤΡΙΟΥ Ν. ΠΙΤΕΡΟΥ
PENGARUHKEPEMIMPINANINSTRUKSIONAL KEPALASEKOLAHDAN MOTIVASI BERPRESTASI GURU TERHADAP KINERJA MENGAJAR GURU SD NEGERI DI KOTA SUKABUMI
155 Lampiran 6 Yayan Sumaryana, 2014 PENGARUHKEPEMIMPINANINSTRUKSIONAL KEPALASEKOLAHDAN MOTIVASI BERPRESTASI GURU TERHADAP KINERJA MENGAJAR GURU SD NEGERI DI KOTA SUKABUMI Universitas Pendidikan Indonesia
Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές. Εργαστήριο Γεωργίας. Viola adorata
One-way ANOVA µε το SPSS Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata To call in a statistician after the experiment is
Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ.
ΣΤ. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (ANALYSIS OF VARIANCE - ANOVA) ΣΤ 1. Ανάλυση ιασποράς κατά µία κατεύθυνση. Όπως έχουµε δει στη παράγραφο Β 2, όταν θέλουµε να ελέγξουµε, αν η µέση τιµή µιας ποσοτικής µεταβλητής διαφέρει
6. CONSTRUCTION OF THE BODY MASS INDEX-FOR-AGE STANDARDS
6. CONSTRUCTION OF THE BODY MASS INDEX-FOR-AGE STANDARDS 6.1 Indicator-specific methodology Body mass index (BMI) is the ratio weight (in kg)/recumbent length or standing height (in m 2 ). To address the
Introduction to Bayesian Statistics
Introduction to Bayesian Statistics Lecture 9: Hierarchical Models Rung-Ching Tsai Department of Mathematics National Taiwan Normal University May 6, 2015 Example Data: Weekly weights of 30 young rats
Γραµµική Παλινδρόµηση
Κεφάλαιο 8 Γραµµική Παλινδρόµηση Η γραµµική παλινδρόµηση είναι ένα από τα πιο σηµαντικά ϑέµατα της Στατιστική ϑεωρείας. Στη συνέχεια αυτή η πολύ γνωστή µεθοδολογία ϑα αναπτυχθεί στην R µέσω των τύπων για
Lampiran 2 Hasil Kuesioner No. BA1 BA2 BA3 BA4 PQ1 PQ2 PQ3 PQ4 PQ
Lampiran 2 Hasil Kuesioner No. BA1 BA2 BA3 BA4 PQ1 PQ2 PQ3 PQ4 PQ5 1 4 3 3 4 4 5 4 5 4 2 5 5 4 5 4 4 3 5 4 3 2 1 3 2 3 3 4 3 3 4 2 3 3 2 4 4 4 3 4 5 2 3 2 2 3 3 3 3 3 6 3 3 3 3 4 4 4 5 4 7 4 3 3 4 3 3
A Finite Precision of Private Information Precision of Private Information Approaching Infinity 0 θ1 * θ Session Cost of Action A First 20 Last 20 Rounds Rounds Information in Stage 2 First 20 Last
ΕΚΛΟΓΙΚΗ ΠΕΡΙΦΕΡΕΙΑ ΕΒΡΟΥ
ΕΚΛΟΓΙΚΗ ΠΕΡΙΦΕΡΕΙΑ ΕΒΡΟΥ ΑΣΗΜΑΚΟΠΟΥΛΟΣ ΣΠΥΡΙΔΩΝ του ΔΗΜΗΤΡΙΟΥ ΚΑΛΑΪΤΖΙΔΟΥ ΑΙΚΑΤΕΡΙΝΗ του ΜΙΧΑΗΛ ΚΟΖΑΡΗΣ ΚΥΡΙΑΚΟΣ του ΧΡΗΣΤΟΥ ΜΑΛΚΟΥΚΗΣ ΒΑΣΙΛΕΙΟΣ του ΔΗΜΗΤΡΙΟΥ ΜΟΡΑΛΗΣ ΖΗΣΗΣ του ΙΩΑΝΝΗ ΕΚΛΟΓΙΚΗ ΠΕΡΙΦΕΡΕΙΑ
2. ΕΠΙΛΟΓΗ ΤΟΥ ΜΕΓΕΘΟΥΣ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ
1. ΕΙΣΑΓΩΓΗ ΣΤΟ SPSS Το SPSS είναι ένα στατιστικό πρόγραμμα γενικής στατιστικής ανάλυσης αρκετά εύκολο στη λειτουργία του. Για να πραγματοποιηθεί ανάλυση χρονοσειρών με τη βοήθεια του SPSS θα πρέπει απαραίτητα
Γενικευμένα Γραμμικά Μοντέλα (GLM) Επισκόπηση
Γενικευμένα Γραμμικά Μοντέλα (GLM) Επισκόπηση Γενική μορφή g( E[ Y X ]) Xb Κατανομή της Υ στην εκθετική οικογένεια Ανεξάρτητες παρατηρήσεις Ενας όρος για το σφάλμα g(.) Συνδετική συνάρτηση (link function)
DirichletReg: Dirichlet Regression for Compositional Data in R
DirichletReg: Dirichlet Regression for Compositional Data in R Marco J. Maier Wirtschaftsuniversität Wien Abstract... Keywords: Dirichlet regression, Dirichlet distribution, multivariate generalized linear
Bayesian., 2016, 31(2): : (heterogeneity) Bayesian. . Gibbs : O212.8 : A : (2016)
2016, 31(2): 127-135 Bayesian 1, 2 (1., 010021; 2., 201306) : (heterogeney).,. Gibbs Bayesian.,.. : ; Bayesian ; ; Gibbs ; Metropolis-Hastings : O212.8 : A : 1000-4424(2016)02-0127-09 1 Aigner (1977) [1]
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Lampiran 1 Output SPSS MODEL I
67 Variables Entered/Removed(b) Lampiran 1 Output SPSS MODEL I Model Variables Entered Variables Removed Method 1 CFO, ACCOTHER, ACCPAID, ACCDEPAMOR,. Enter ACCREC, ACCINV(a) a All requested variables
Does anemia contribute to end-organ dysfunction in ICU patients Statistical Analysis
Does anemia contribute to end-organ dysfunction in ICU patients Statistical Analysis Xue Han, MPH and Matt Shotwell, PhD Department of Biostatistics Vanderbilt University School of Medicine March 14, 2014
Ανάλυση της ιακύµανσης
Κεφάλαιο 9 Ανάλυση της ιακύµανσης Η ανάλυση της διακύµανσης είναι µια από τις πλέον σηµαντικές µεθόδους για ανάλυση δεδοµένων. Η µέθοδος αυτή αναφέρετε στη διαµέριση του συνολικού αθροίσµατος τετραγώνων
Εκτίµηση Μη-Γραµµικών Μοντέλων
Κεφάλαιο 16 Εκτίµηση Μη-Γραµµικών Μοντέλων 16.1 Περιγραφή των εδοµένων Τα δεδοµένα που ϑα χρησιµοποιηθούν στο κεφάλαιο αυτό λήφθηκαν από µια δοκιµή µε δέκτη-ορµονών σχετικά µε τον όγκο στο στήθος στους
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Lampiran 1 Hasil Kuesioner NO CI1 CI2 CI3 CT1 CT2 CT3 CS1 CS2 CS3 CL1 CL2 CL
Lampiran 1 Hasil Kuesioner NO CI1 CI2 CI3 CT1 CT2 CT3 CS1 CS2 CS3 CL1 CL2 CL3 1 5 5 4 4 4 3 4 3 4 3 4 5 2 4 4 3 5 4 4 4 4 5 4 3 4 3 2 2 3 2 3 3 3 3 4 2 3 2 4 4 4 5 3 4 4 4 3 4 4 5 4 5 5 5 4 2 3 3 3 4 3
MATHACHij = γ00 + u0j + rij
Stata output for Hierarchical Linear Models. ***************************************. * Unconditional Random Intercept Model. *************************************** MATHACHij = γ00 + u0j + rij. mixed
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: Ανάλυση γραμμικού υποδείγματος Απλή παλινδρόμηση (3 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ
2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η χρησιμοποίηση των τεχνικών της παλινδρόμησης για την επίλυση πρακτικών προβλημάτων έχει διευκολύνει εξαιρετικά από την χρήση διαφόρων στατιστικών
R 28 February 2014
R (minato-nakazawa@umin.net) 28 February 2014 2011 http://minato.sip21c.org/swtips/factor-in-r.pdf 1 Timothy Bates *1 *2 2 *3 3 300 2:1 10:1 1.0 (1) *4 (2) *1 http://www.psy.ed.ac.uk/people/tbates/lectures/methodology/
Si + Al Mg Fe + Mn +Ni Ca rim Ca p.f.u
.6.5. y = -.4x +.8 R =.9574 y = - x +.14 R =.9788 y = -.4 x +.7 R =.9896 Si + Al Fe + Mn +Ni y =.55 x.36 R =.9988.149.148.147.146.145..88 core rim.144 4 =.6 ±.6 4 =.6 ±.18.84.88 p.f.u..86.76 y = -3.9 x
Fitting mixtures of linear regressions
Journal of Statistical Computation and Simulation Vol. 80, No. 2, February 2010, 201 225 Fitting mixtures of linear regressions Susana Faria a * and Gilda Soromenho b a Department of Mathematics for Science
HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:
HOMEWORK# 52258 李亞晟 Eercise 2. The lifetime of light bulbs follows an eponential distribution with a hazard rate of. failures per hour of use (a) Find the mean lifetime of a randomly selected light bulb.
Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University
Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of
ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ: ΑΣΚΗΣΕΙΣ
ΜΕΜ264: Εφαρμοσμένη Στατιστική 1 ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ: ΑΣΚΗΣΕΙΣ 1. Σε μελέτη της επίδρασης γεωργικών χημικών στην προσρόφηση ιζημάτων και εδάφους, δίνονται στον πιο κάτω πίνακα 13 δεδομένα για το δείκτη
!"!"!!#" $ "# % #" & #" '##' #!( #")*(+&#!', & - #% '##' #( &2(!%#(345#" 6##7
!"!"!!#" $ "# % #" & #" '##' #!( #")*(+&#!', '##' '# '## & - #% '##'.//0 #( 111111111111111111111111111111111111111111111111111 &2(!%#(345#" 6##7 11111111111111111111111111111111111111111111111111 11111111111111111111111111111111111111111111111111
τατιςτική ςτην Εκπαίδευςη II
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ τατιςτική ςτην Εκπαίδευςη II Αρχείο αποτελεςμάτων Διδάσκων: Μιχάλης Λιναρδάκης ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ Άδειες Χρήσης Το παρόν
1.1 t Rikon * --- Signif. codes: 0 *** ** 0.01 *
Copyright (c) 004,005 Hidetoshi Shimodaira 1.. 1 1.1 t- 004-10-1 11:4:14 shimo Rikon 0.108355 0.04978.51 0.016136 * --- Signif. codes: 0 *** 0.001 ** 0.01 * 0.05. 0.1 1 Residual standard error: 0.03808
HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)
HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the
Μηχανική Μάθηση Hypothesis Testing
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider
Interpretation of linear, logistic and Poisson regression models with transformed variables and its implementation in the R package tlm
Interpretation of linear, logistic and Poisson regression models with transformed variables and its implementation in the R package tlm Jose Barrera-Gómez a jbarrera@creal.cat a Centre for Research in
DOUGLAS FIR BEETLE TRAP-SUPPRESSION STUDY STATISTICAL REPORT
DOUGLAS FIR BEETLE TRAP-SUPPRESSION STUDY STATISTICAL REPORT Prepared for Dr. Robert Progar U.S. Forest Service Forest Sciences Laboratory Corvallis, Oregon January 2005 By Greg Brenner Pacific Analytics
ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 7. Παλινδρόµηση
ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 7. Παλινδρόµηση Γενικά Επέκταση της έννοιας της συσχέτισης: Πώς µπορούµε να προβλέπουµε τη µια µεταβλητή από την άλλη; Απλή παλινδρόµηση (simple regression): Κατασκευή µοντέλου πρόβλεψης
1. Ιστόγραμμα. Προκειμένου να αλλάξουμε το εύρος των bins κάνουμε διπλό κλικ οπουδήποτε στο ιστόγραμμα και μετά
1. Ιστόγραμμα Δεδομένα από το αρχείο Data_for_SPSS.xls Αλλαγή σε Variable View (Κάτω αριστερά) και μετονομασία της μεταβλητής σε NormData, Type: numeric και Measure: scale Αλλαγή πάλι σε Data View. Graphs
LAMPIRAN. Lampiran I Daftar sampel Perusahaan No. Kode Nama Perusahaan. 1. AGRO PT Bank Rakyat Indonesia AgroniagaTbk.
LAMPIRAN Lampiran I Daftar sampel Perusahaan No. Kode Nama Perusahaan 1. AGRO PT Bank Rakyat Indonesia AgroniagaTbk. 2. BACA PT Bank Capital Indonesia Tbk. 3. BABP PT Bank MNC Internasional Tbk. 4. BBCA
R & R- Studio. Πασχάλης Θρήσκος PhD Λάρισα
R & R- Studio Πασχάλης Θρήσκος PhD Λάρισα 2016-2017 pthriskos@mnec.gr Εισαγωγή στο R Διαχείριση Δεδομένων R Project Περιγραφή του περιβάλλοντος του GNU προγράμματος R Project for Statistical Analysis Γραφήματα
An Introduction to Splines
An Introduction to Splines Trinity River Restoration Program Workshop on Outmigration: Population Estimation October 6 8, 2009 An Introduction to Splines 1 Linear Regression Simple Regression and the Least
Appendix A3. Table A3.1. General linear model results for RMSE under the unconditional model. Source DF SS Mean Square
Appendix A3 Table A3.1. General linear model results for RMSE under the unconditional model. Source DF SS F Value Pr > F Model 107 374.68 3.50 8573.07
Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 6 ο
Παράδειγμα 1 Ο παρακάτω πίνακας δίνει τις πωλήσεις (ζήτηση) ενός προϊόντος Υ (σε κιλά) από το delicatessen μιας περιοχής και τις αντίστοιχες τιμές Χ του προϊόντος (σε ευρώ ανά κιλό) για μια ορισμένη χρονική
: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM
2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 13. Συμπεράσματα για τη σύγκριση δύο πληθυσμών
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ
APPENDIX B NETWORK ADJUSTMENT REPORTS JEFFERSON COUNTY, KENTUCKY JEFFERSON COUNTY, KENTUCKY JUNE 2016
APPENDIX B NETWORK ADJUSTMENT REPORTS JEFFERSON COUNTY, KENTUCKY OF JEFFERSON COUNTY, KENTUCKY JUNE 2016 Jacobi, Toombs, and Lanz, Inc. 14 South 1 st Street Louisville, KY 40208 U.S.A. Phone: 15025835994
ΔPersediaan = Persediaan t+1 - Persediaan t
Lampiran 4 Data Perhitungan Perubahan Persediaan ΔPersediaan = Persediaan t+1 - Persediaan t No Kode Perusahaan 2011 Persediaan t+1 (2012) Persediaan t (2011) ΔPersediaan a b a-b 1 ADES 74.592.000.000
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
Απλή Ευθύγραµµη Συµµεταβολή
Απλή Ευθύγραµµη Συµµεταβολή Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata Εισαγωγή Ανάλυση Παλινδρόµησης και Συσχέτιση Απλή
Supplementary Information 1.
Supplementary Information 1. Fig. S1. Correlations between litter-derived-c and N (percent of initial input) and Al-/Fe- (hydr)oxides dissolved by ammonium oxalate (AO); a) 0 10 cm; b) 10 20 cm; c) 20
Artiste Picasso 9.1. Total Lumen Output: lm. Peak: cd 6862 K CRI: Lumen/Watt. Date: 4/27/2018
Color Temperature: 62 K Total Lumen Output: 21194 lm Light Quality: CRI:.7 Light Efficiency: 27 Lumen/Watt Peak: 1128539 cd Power: 793 W x: 0.308 y: 0.320 Test: Narrow Date: 4/27/2018 0 Beam Angle 165
Στοιχεία από την r-project για την επεξεργασία και χαρτογράφηση χωρική κατανομή σημειακών παρατηρήσεων
Στοιχεία από την r-project για την επεξεργασία και χαρτογράφηση χωρική κατανομή σημειακών παρατηρήσεων Ανάγνωση Δεδομένων # READ DATA # # εντοπισμός αρχείου filepath
Table A.1 Random numbers (section 1)
A Tables Table Contents Page A.1 Random numbers 696 A.2 Orthogonal polynomial trend contrast coefficients 702 A.3 Standard normal distribution 703 A.4 Student s t-distribution 704 A.5 Chi-squared distribution
Figure 3 Three observations (Vp, Vs and density isosurfaces) intersecting in the PLF space. Solutions exist at the two indicated points.
φ φ φ φ Figure 1 Resampling of a rock-physics model from velocity-porosity to lithology-porosity space. C i are model results for various clay contents. φ ρ ρ δ Figure 2 Bulk modulus constraint cube in
Ταξινόμηση. Εισαγωγή. Ορισμός. Ορισμός. Τεχνικές Ταξινόμησης. Εισαγωγή
0 0 0 Εισαγωγή Ταξινόμηση (classification) Το γενικό πρόβλημα της ανάθεσης ενός αντικειμένου σε μια ή περισσότερες προκαθορισμένες κατηγορίες (κλάσεις) Ταξινόμηση Οι διαφάνειες στηρίζονται στο P.-N. Tan,
Funktionsdauer von Batterien in Abhängigkeit des verwendeten Materials und der Umgebungstemperatur
Beispiel: Funktionsdauer von Batterien in Abhängigkeit des verwendeten aterials und der Umgebungstemperatur emp. = 15 emp. = 70 emp. = 125 130 155 34 40 20 70 aterial 1 74 180 80 75 82 58 150 188 136 122
Tutorial on Multinomial Logistic Regression
Tutorial on Multinomial Logistic Regression Javier R Movellan June 19, 2013 1 1 General Model The inputs are n-dimensional vectors the outputs are c-dimensional vectors The training sample consist of m
90 [, ] p Panel nested error structure) : Lagrange-multiple LM) Honda [3] LM ; King Wu, Baltagi, Chang Li [4] Moulton Randolph ANOVA) F p Panel,, p Z
00 Chinese Journal of Applied Probability and Statistics Vol6 No Feb 00 Panel, 3,, 0034;,, 38000) 3,, 000) p Panel,, p Panel : Panel,, p,, : O,,, nuisance parameter), Tsui Weerahandi [] Weerahandi [] p