Quantum ElectroDynamics II

Σχετικά έγγραφα
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

8.323 Relativistic Quantum Field Theory I

Journal of Theoretics Vol.4-5

α & β spatial orbitals in

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

Multi-dimensional Central Limit Theorem

8.324 Relativistic Quantum Field Theory II

Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Multi-dimensional Central Limit Theorem

What is SUSY? Supersymmetry is a boson-fermion symmetry that is aimed to unify all forces in Nature including gravity within a singe framework

Space-Time Symmetries

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

derivation of the Laplacian from rectangular to spherical coordinates

2 Lagrangian and Green functions in d dimensions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

Phasor Diagram of an RC Circuit V R

1 Complete Set of Grassmann States

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

EE512: Error Control Coding

Section 8.3 Trigonometric Equations

Finite Field Problems: Solutions

( ) 2 and compare to M.

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Higher Derivative Gravity Theories

Higher spin gauge field cubic interactions.

8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ. ICA: συναρτήσεις κόστους & εφαρμογές

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Matrices and Determinants

Example Sheet 3 Solutions

[1] P Q. Fig. 3.1

Congruence Classes of Invertible Matrices of Order 3 over F 2

Section 7.6 Double and Half Angle Formulas

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Three coupled amplitudes for the πη, K K and πη channels without data

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

The challenges of non-stable predicates

LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV. 18 February 2014

Fractional Colorings and Zykov Products of graphs

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

The Simply Typed Lambda Calculus

Theoretical Competition: 12 July 2011 Question 2 Page 1 of 2

On a four-dimensional hyperbolic manifold with finite volume

Symmetric Stress-Energy Tensor

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Abstract Storage Devices

TMA4115 Matematikk 3

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

C.S. 430 Assignment 6, Sample Solutions

( y) Partial Differential Equations

2 Composition. Invertible Mappings

A Class of Orthohomological Triangles

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

14 Lesson 2: The Omega Verb - Present Tense

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Newborn Upfront Payment & Newborn Supplement

8.324 Relativistic Quantum Field Theory II

Section 1: Listening and responding. Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016

Approximation of distance between locations on earth given by latitude and longitude

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Numerical Analysis FMN011

the total number of electrons passing through the lamp.

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Πώς μπορεί κανείς να έχει έναν διερμηνέα κατά την επίσκεψή του στον Οικογενειακό του Γιατρό στο Ίσλινγκτον Getting an interpreter when you visit your

CAPM. VaR Value at Risk. VaR. RAROC Risk-Adjusted Return on Capital

Derivation of Optical-Bloch Equations

Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin.

Writing for A class. Describe yourself Topic 1: Write your name, your nationality, your hobby, your pet. Write where you live.

Homework 3 Solutions

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία

Lecture 2. Soundness and completeness of propositional logic

Classical Theory (3): Thermostatics of Continuous Systems with External Forces

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

The Pohozaev identity for the fractional Laplacian

Paper Reference. Paper Reference(s) 1776/04 Edexcel GCSE Modern Greek Paper 4 Writing. Thursday 21 May 2009 Afternoon Time: 1 hour 15 minutes

STARTING STEPS IN GRAMMAR, FINAL TEST C TERM 2012 UNITS 1-18

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Nuclear Physics 5. Name: Date: 8 (1)

Solutions to Exercise Sheet 5

Bayesian modeling of inseparable space-time variation in disease risk

Solution Set #2

Statistical Inference I Locally most powerful tests

Transcript:

Quantum ElectroDynamcs II Dr.arda Tahr Physcs department CIIT, Islamabad

Photon Coned by Glbert Lews n 1926. In Greek Language Phos meanng lght

The Photons A What do you know about Photon?

Photon Dscrete bundle or quantum of electromagnetc or lght energy. Massless spn 1 partcle & behaves lke both wave and partcle

Relatvstc Mechancs very fast Photon A Quantum eld Theory E 2 2 p c 2 0 Quantum Mechancs zero mass p rame work E p h h t h h x A P h P, E p x

Results due to slght Modfcaton Relatvstc Energy-momentum relaton for massless partcle 2 2 2 E p c In four vector notaton P P 0 Soluton s A 0 2 h A 0 A 0 p. x h ae ε p h x Polarzaton vector 4-comp., but not all ndependent

Electromagnetc Waves Maxwell

Quck Revew Maxwell s equaton Unfed descrpton of electrcty and magnetsm 1864 B E t. E 4π 4π J ρ homogeneous nhomogeneous. B 0 E + B t 0

Quck Revew Charge conservaton comes from the contnuty equaton ρ +. J 0 t J. J ρ t ρ, J ; 0,1, 2, 3 Prove by usng S.E 4-vector notaton Lorentz nvarant form Local charge conservaton J 0 0 J + 0 J 0

Quck Revew rom homogeneous Maxwell equaton one can get scalar and vector potental φ,a or A B A and E A φ t Maxwell equaton remans satsfed e.g. 0 B. A E Nothng new A φ t B A E φ t E 0 t A

Why To Introduce scalarφ and vector A potental

Just for the sake of convenent mathematcal nventons. or Due to some concrete reason f yes! Then what that reason s?

defect arbtrarness χ φ φ φ + t A A A χ Peruse the defnton of these potentals χ χ t, x Maxwell equatons stll satsfed Change of potentals has no effect on the feld Gauge transformaton

Verfcaton consder B A A. B..B. A χ A A A χ χ. B. A.. B. B. B 0 0 Magnetc feld remans nvarant under the local gauge transformaton

Assgnment B E E t. E 4π B + t 4π J ρ 0 Remans nvarant under local gauge transformaton? gauge freedom

Enjoy gauge freedom Exploted t and beneft from t how

Covarant form of Maxwell s Eq Relatvstcally E and B can be represented by antsymmetrc 2 nd rank tensor, the feld strength ν tensor, ν 0,1,2,3 00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33 0 E E E x y z 0 B E z B x y E 0 B B x y z E B 0 y B z x In the form of Potentals ν A ν φ A A, ν A Explot gauge freedom to mpose constrant on potental A 0 Lorentz condton

Elegant form Covarant form of Maxwell eqs. ν + ν +,, ν 0,1, 2,3 ν J ρ, J J ν ν ν A J ν ν A 0 In terms of 4-vector potental. ν A J 0 ν, t Homogeneous In Homogeneous Verfy. E ρ f ν 0 0 0 J 0,1,2,3

or free photon empty space J 0 KG eqs. for massless partcle ν A 0 A 0 0,. A 0 Coulomb gauge A p. x h ae ε p P P 0 Polarzaton vector 4-comp.,but not all ndependent Lorentz condton requres that P ε 0

Informaton from Coulomb gauge In coulomb gauge ε 0 0, ε. p 0 ree photon s Transversely polarzed Polarzaton three vector ɛ s perpendcular to the drecton of propagaton. Coulomb gauge s Transverse gauge

The eynman rules for QED Photon A ae h. P ε s ree ε P ε ε 0 * 1 2 * ε ε 1 0 Lorentz condton Orthogonal Normalzed s 1,2 ε s ε s δj pˆ pˆ j j Completeness

Lagrangan densty Lagrangan densty for photon feld 1 L 4 ν ν J A K.E term for photonc feld Externally specfed current J s coupled to photon feld

Covarant Gauge Transformaton Gauge transform Lagrangan densty usng 1 ν L ν J A 4 ν A ν ν A usng 1 ν ν A A 4 A A J A ν ν A A A χ Gauge T n covarant notaton usng ν χ ν χ Order of dff. s unmport. for scalar

Smplfcaton after substtutons 1 ν ν J 4 L ν ν A A A A J A χ 1 4 ν ν J A J χ why? Invarant Physcs remans Invarant

Drac Equaton n electromagnetc feld

Drac Equaton descrbng a spn ½ fermons of mass m n free space m 0 The correspondng Lagrangan densty L ψ mcψ What happened to Drac equaton under U1 gauge transformaton.e. α x x e x

U1 n n UU + U + U 1 Matrx U s untary f Product of two untary Matrx U s untary. n n untary Matrces form a group under Matrx multplcaton, denoted by Un. Un has n 2 generators. + detu det I 1 + + det UU detu detu detu or n1 detu e detu nα e α

If α s just a number L L 1 m m U e m e α α m L L Invarant Global gauge transformaton

Local gauge transformaton If α α L L 1 m m U e m e α α [ ] m e e e α α α { } + m e e e e α α α α

x x + α L L + m α Not Invarant L L Local gauge transformaton

Requrement of local gauge transformaton enforces the ntroducton of electromagnetc feld descrbe by the 4-vector potental A P α A P A qa [ ] qa m 0 qχ e q χ χ

bmn [ ] [ ] m qa m qa U 1 { } [ ] 0 + q m e A q χ χ 0 + e m q A q e q q χ χ χ 0 + + e m q A q e e q q q q χ χ χ χ χ

After ntroducng the gauge transformaton extra term wll exactly cancel out [ ] 0 + m e q A q q qχ χ χ [ ] 0 m e A q qχ [ ] 0 m qa

Complete Lagrangan for f & Lagrangan densty descrbng the fermonc feld n the presence of an electromagnetc feld s L [ ] ν qa m ν J A 1 4 L 1 4 [ ] ν m ν J + q A Current produce by Drac partcle

Couplng to photon feld consst of two parts 1. Wth external current densty J.e J A 2. Wth fermon feld J q When ths current coupled to A, descrbe the nteracton vertex