1. TRACE'ONE'SECTOR'from'each'of'these'circles'and'then'cut'it'out.''' 2. Label'the'central'angle'(90,'60,'or'30 )'to'distinguish'the'sectors.

Σχετικά έγγραφα
Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

) = ( 2 ) = ( -2 ) = ( -3 ) = ( 0. Solutions Key Spatial Reasoning. 225 Holt McDougal Geometry ARE YOU READY? PAGE 651

Candidate Number. General Certificate of Secondary Education Higher Tier November 2013

43603H. (NOV H01) WMP/Nov12/43603H. General Certificate of Secondary Education Higher Tier November Unit H

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

Homework 8 Model Solution Section

1 Adda247 No. 1 APP for Banking & SSC Preparation Website:store.adda247.com

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation

Rectangular Polar Parametric

Chapter 5. Exercise 5A. Chapter minor arc AB = θ = 90 π = major arc AB = minor arc AB =

Areas and Lengths in Polar Coordinates

Tsunami Runup and Inundation Simulation in Malaysia Including the Role of Mangroves

Aerovox Corp. Type H High Voltage AC & DC Capacitors. Film Capacitors for Power Electronics Applications. RoHS Compliant. Highlights.

Date Morning/Afternoon Time allowed: 1 hour 30 minutes

Areas and Lengths in Polar Coordinates

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

3D GEOMETRY 3D GEOMETRY

Fractional Colorings and Zykov Products of graphs

ΚΑΡΠΟΥΖΙ / WATERMELON a b

Εισαγωγή εικόνων. ετικέτα <img>

Chapter 7 Transformations of Stress and Strain

Εντολές σχεδίασης. Line. Xline

24. [Surface Area] cm 2. Area: base & top = = 120. Area of 1 face = Area: front & back = = 180 TSA = =

General Certificate of Secondary Education Higher Tier

TUBO LED T8 LLUMOR PROLED 18W 120CM

(x) (s) BEST BEFORE ή SELL BY. 1/6

Καλές επιτυχίες παιδιά στα υπόλοιπα μαθήματά σας και καλές γιορτές!!!!

the total number of electrons passing through the lamp.

α β

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

A, B. Before installation of the foam parts (A,B,C,D) into the chambers we put silicone around. We insert the foam parts in depth shown on diagram.

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

26. [Surface Area] sq. units. sq. units. Area of 1 face = Area: base & top = = 120. Area: front & back = = 180 S.A.

Project: Brimsmore, Ye... Job no: C08127 Designed By kristian Checked By Network W Network Design Table for OUTFALL B.SWS

ΟΡΓΑΝΩΣΗ ΜΑΘΗΜΑΤΟΣ. Εκπαιδευτικό υλικό ΕΙΣΑΓΩΓΗ. Τρόπος βαθµολόγησης. Βαθµολογία Φυσικά

Table. GT2 by Zeiss. Gray Glasss. Gray/Brown GT Gray/Brown. Version 01/ /14

Magnet Wire General Engineering Data Bare and Film Insulated Copper and Aluminum

Aντικειμενοστραφής. Προγραμματισμός. Κληρονομικότητα

Sheet H d-2 3D Pythagoras - Answers

Core Mathematics C12

Εισαγωγικά μαθήματα Autocad. Κατασκευή Σήραγγας. Κατασκευή Υπόγειου Χώρου

ΚΑΝΑΛΙ CHANNEL MTL. Κατάλογος - Catalogue. Eνδοδαπέδια Κανάλια & Κουτιά Παροχών - Διακλαδώσεων Underfloor Channels & Boxes and Juction Boxes

Μηχανουργική Τεχνολογία & Εργαστήριο Ι

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ & ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΚΑΙ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΤΟΜΕΑΣ ΓΕΝΙΚΗΣ ΓΕΩΔΑΙΣΙΑΣ

is like multiplying by the conversion factor of. Dividing by 2π gives you the

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

pyramid_volume=length_of_base * Width_of_base * Height * 1/3;

SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1

Swirl diffusers, Variable swirl diffusers Swirl diffusers

Cross sectional area, square inches or square millimeters

On a four-dimensional hyperbolic manifold with finite volume

Q1. The length of a rectangle is 10.8 cm. The perimeter of the rectangle is 28.8 cm. Calculate the width of the rectangle

Ανάλυση Σκίασης για Επένδυση Αυτοπαραγωγής. Δρ. Αντώνης Χατζηαντώνης (Ειδικός δ ό σε αναλύσεις βιωσιμότητας)

Spherical Coordinates

PRODUCT FICHE. A Supplier name Morris MKV 64325

TUBO LED T8 LLUMOR PROLED 25W 150CM

Εισαγωγή στον Αντικειμενοστρεφή Προγραμματισμό Διάλεξη #3

3-dimensional motion simulation of a ship in waves using composite grid method

Τρισδιάστατη απεικόνιση του κέντρου της πόλης του Ηρακλείου Οδός 25ης Αυγούστου

2. Με το εικονίδιο συντόμευσης στην επιφάνεια εργασίας των Windows.

Photometric Data of Lamp

ΑΤΕΙ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Αλγοριθμική και Προγραμματισμός. Παναγιώτης Σφέτσος

Εισαγωγή στον Προγραµµατισµό, Αντώνιος Συµβώνης, ΣΕΜΦΕ, ΕΜΠ,, Slide 6

Copyright SYSTEM- All rights reserved 2/155

Minimum Spanning Tree: Prim's Algorithm

20/01/ of 8 TOW SSD v3. C 2.78AC Σ Cumul. A*C. Tc 1 =A14+1 =B14+1 =C14+1 =D14+1 =E14+1 =F14+1 =G14+1 =H14+1 =I14+1 =J14+1 =K14+1

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

ΒΗΜΑ 3. Από το πτυσσόμενο μενού (drop-down) που εμφανίζεται στην αριστερή μεριά, επιλέξτε Prism.

VENERE. GR. Οδηγός Χρήσης EN. User Guide

Math 6 SL Probability Distributions Practice Test Mark Scheme

TUBO LED T8 LLUMOR PROLED ULTRA 25W 150CM

Consolidated Drained

ΕΞΑΡΤΗΜΑΤΑ /ACCESSORIES

ηµιουργία νέου τύπου δεδοµένων από το χρήστη

a reason to return home

Rectangular Polar Parametric

ΣΥΝΟΠΤΙΚΟΣ /SUMMARY... 3 ΠΡΟΦΙΛΜΕΡΟΣΑ/PROFILPARTA ΠΡΟΦΙΛΜΕΡΟΣ B/PROFILPARTB Κράμααλουμινίου:AlMgSi0.5F22, σύμφωνα

Trigonometric Formula Sheet

Εισαγωγή στην Υπολογιστική Ανάλυση Φαινοµένων Μεταφοράς µε το FEMLAB 3.1

Ολοκληρωμζνοσ Σχεδιαςμόσ για Ζξυπνεσ Πόλεισ Δράςεισ του ζργου ΙnSMART

Σπουδές CAD, Πληροφορικής, Οικονομίας, Διοίκησης και D.T.P. με Σύστημα διδασκαλίας και εκπαιδευτικό λογισμικό face to face

DULUX L LUMILUX IMPROVED LIFETIME & SYSTEM GUARANTEE. DULUX L LUMILUX & QUICKTRONIC TECHNICAL INFORMATION

Η λέξη κλειδί this. Γαβαλάς Δαμιανός

Network Algorithms and Complexity Παραλληλοποίηση του αλγορίθμου του Prim. Αικατερίνη Κούκιου

( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution

; +302 ; +313; +320,.

ΣΥΣΤΗΜΑ ΗΛΕΚΤΡΟΠΑΡΑΓΩΓΗΣ (10kw) ΜΕ ΑΕΡΙΟΠΟΙΗΣΗ ΒΙΟΜΑΖΑΣ

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in

[1] P Q. Fig. 3.1

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:


FLAME-X 950 (N)HXCH FE180/E90 0,6/1kV DIN VDE 0266, DIN

ΣΧΕΔΙΑΣΜΟΣ ΠΑΡΑΓΩΓΗΣ ΕΠΙΠΛΟΥ ΜΕ ΧΡΗΣΗ Η/Υ-II CAD II. Λαμπούδης Δημήτρης

SPECIALTIES of CSC POWDER CORE - Material, Shape & Size -

AT Surface Mount Package SOT-363 (SC-70) I I Y. Pin Connections B 1 C 1 E 1 E 2 C 2 B , 7:56 PM

CHAPTER 70 DOUBLE AND TRIPLE INTEGRALS. 2 is integrated with respect to x between x = 2 and x = 4, with y regarded as a constant

Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές

5.4 The Poisson Distribution.

Transcript:

Module3Lesson5Activity Name: Date: Hour: DEVELOPINGAREAFORMULAS:AREAOFACIRCLE Aninformalmethodcanbeusedtodeterminetheareaofacircle.Todothiswearegoingtouseadissection technique. 1. TRACEONESECTORfromeachofthesecirclesandthencutitout. 2. Labelthecentralangle(90,60,or30 )todistinguishthesectors. Circle#1(4Sectorsof90 each) Circle#2(6Sectorsof60 each) Circle#3(12Sectorsof30 ) Module3Lesson5Page28

1)CIRCLE#1 Continuetotracetheothertwosectorsinthesamepatternaswasbegunhere. Whatshapedoesthisfigureseemtoresemble? 2)CIRCLE#2 Continuetotracetheotherfoursectorsinthesamepatternaswasbegunhere. Whatshapedoesthisfigureseemtoresemble? Howdoesthisfiguredifferfromtheonecreatedfromcircle#1above? Whatistherelationshipoftheareabetweenthefigurein#1andthisfigurein#2? Whatvaluewouldapproximatethe base ofthisfigure? Whatvaluewouldapproximatethe height ofthisfigure? Module3Lesson5Page29

3)CIRCLE#3 Continuetotracetheothertensectorsinthesamepatternaswasbegunhere. Whatshapedoesthisfigureseemtoresemble? Howdoesthisfiguredifferfromtheonescreatedfromcircle#1&#2above? Whatistherelationshipoftheareabetweenthesethreefigures? Whatvaluewouldapproximatethe base ofthisfigure? Whatvaluewouldapproximatethe height ofthisfigure? Findaformulatoapproximatetheareaofthisfigureusingtheapproximatebaseandheightyouhavefound above. Iftheangleofthesectorwas1,insteadof30,howwouldthisaffecttheshapeofthefigure? 4)InformalLimitArgument Ifwesplitthecircleintoinfinitelymanypiecesandalternatedthemlikewe vedoneabove,whatshapewould italmostexactlyresemble? Howdoesthisactivityhelpusunderstandthattheareaofacircleisπr 2? Thisiscalledan.Whenthecircleissplitintomore andmorepieces,itwilleventuallyresembleaparallelogramwhenwealternateandputthepiecestogether.if thenumberofsides,n,getsclosertoinfinity,theshapewillbecloserandclosertoaparallelogram.thus,we canusethemeasurementsoftheparallelogramwe vecreatedtofindtheareaofthecircle. Module3Lesson5Page30

Module3Lesson5InYClassNotes Name: Date: Hour: 1.Recallourpreviousactivitywherewediscoveredtheformulafortheareaofacircle.Describehowwe useaninformallimitargumenttoexplainwheretheformulafortheareaofacirclecomesfrom.drawa diagramtohelpyourexplanation. 2.Determinethemissingmeasureofthecircle.Rememberthatwefoundtheareaofacircletobe =. (E)meansleaveanexactanswer. a)r=3cm A= (E) b)d=12cm A= (E) c)a= " cm2 r= d)a=16cm 2 d= 3.Determinetheareaofthecircle. a) b) c) 4"cm 16#cm 32#cm Area= (E) Area= (E) Area= (E) Module3Lesson5Page31

4.Determinetheareaofthecirclesector. a) b) c) 30 4%cm 270 3&cm 83 8$cm Area= (E) Area= (E) Area= (2dec.) 5.Determinetheareaofthefollowingfigures.(Linesthatappeartobeperpendicularareperpendicularand linesthatappeartobeparallelare.)(e)meanstoleaveanexactanswer. a) b) Area= (E) Area= (E) c) Area= (E) Module3Lesson5Page32

6.DeterminetheareaoftheSHADEDregion. (Linesthatappeartobeperpendicularareperpendicular.Linesthatappeartobeparallelareparallel.) a)asquarewithasideof6cm.theinscribedcircle alsohasadiameterof6cm. b)arectanglewithdimensionsof6cmand10cm. Areaofshadedregion= (E) Areaofshadedregion= (E) c)twoconcentriccircleswithradiiof2cmand3cm. Areaofshadedregion= (E) Module3Lesson5Page33

Module3Lesson5Homework Name: Date: Hour: AREAOFCIRCLES 1.Findthemissingpartsofthecircle.Rememberthatwefoundtheareaofacircletobe =. (E)meanstoleaveanexactanswer. a)r=4cm Area= (E) b)d=9cm Area= (E) c)area=9cm 2 r= d)area=2cm 2 r= (E) 2.Determinetheareaofthecirclesector. 120 9&cm Area= (E) 3.Determinetheareaofthefollowingfigures. a) b) Area= (E) Area= (E) Module3Lesson5Page34

Module3Lesson6In.ClassNotes Name: Date: Hour: LAUNCH: WatchtheVolumeSongvideoandanswerthequestionsbelow. a)howmanydimensionsdoesvolumehave? b)ifoneedgeofacubeis3cm,whatisthevolumeofthecube? CalculatingtheVolumeofaPrism Thevolumeofaprismisfoundbymultiplyingtheareaofthebaseshapetimesthemeasureoftheheight. wherebistheareaofthebaseandhistheheightoftheprism. INTRODUCTIONTOVOLUME Solid AthreeDdimensionalclosedspatialfigure. Polyhedron Ageometricsolidwithpolygonsasfaces. FaceofaPolyhedron Oneofthepolygonsthatformthe polyhedron.sometimesthesegetcalledsidesbutthebetter termisface. LateralFaceofaPolyhedron Afaceinaprismorpyramid thatisnotabase. Edge Theintersectionoftwofacesofapolyhedron. Vertex Theintersectionoftwoormoreedges. Prisms A isapolyhedronwithlateralfacesthatareparallelograms,andendfaces(bases)thatare parallelandequalinshapeandsize.prismsarenamedbytheshapesoftheirbases.forexample,a rectangular*prismisaprismwithrectangularbases.atriangular*prismisaprismwithtriangularbases.ifthe baseandthelateraledgesarenotperpendicularthentheprismiscalledan PRISM. Module3Lesson6Page35

1.Matchthefollowingtermstothediagram. GiventherectangularprismwithfaceBCFEasoneofitsbases.Useeach valueonlyonce. 1.Edge 2.LateralFace 3.Base 4.Vertex 5.Height A.RectangleADHG B. HF C. AD D.PointB E.RectangleHDCF 2.Afterlookingattherectangularprismtotheright,astudentintheclassraises herhandandsays, CouldIuserectangleADCBasmybaseinsteadofrectangle BHGC? Howshouldtheteacherrespond? 3.Properlynamethefollowingprisms.HINT:Considerthebaseofeachprism. a) b) c) Name: Name: Name: e) f) g) Name: Name: Name: Module3Lesson6Page36

4.Mikedoesn tunderstandhowvolumeworksforaprismandhenryistryingtoexplainittohim. It s whatisinsidetheshape forexample,ifyoucalculatedtheareaofonepieceofpaperandthenstacked 100piecesofpaperontopofeachotheritwouldcreateaprismandthevolumewouldbetheareaofthe onepieceofpapermultipliedbytheheightofthestack. Mikeisstillconfused,canyougiveanother exampletoexplainthisconcept. Cross.Sections InordertohaveabetterunderstandingofthreeDdimensionalshapes,let stalkaboutcrossdsections.firstlet s distinguishbetweenasliceandacrossdsection. Slice Theshapemadewhenasolidiscutbyaplane. Cross.Section Theshapemadewhenasolidiscutbyaplanethatisparalleltothebase. CrossDsectionofasquarepyramid CrossDsectionofalog CrossDsectionofabaseball 5.Identifythecross.section: a)cone b)hexagonalpyramid CrossDsection: CrossDsection: c)obliquetriangularprism CrossDSection: 6.Sketchthefigurefromwhichthecross.sectionwastaken. a)triangle b)trapezoid Module3Lesson6Page37

RotationsaboutanAxis SolidscanalsobeformedfromrotatingatwoDdimensionalshapeaboutanaxis,asdemonstratedbelow. 7.Thesolidbelowwasformedbyrotatingatwo.dimensionalshapeabouttheverticalaxis. Sketchthetwo.dimensionalshapethatitcamefromontheaxisbelow. Cavalieri sprinciple BonaventuraFransescoCavalieri(1598D1647)wasadiscipleofGalileoandheinvestigatedthestacking principle.hecametodefinewhatisnowknownasthecavalieriprinciple: Iftheareasofthecrosssectionsoftwosolidsbyanyplaneparalleltoagiven planearealwaysequal,thenthetwosolidshavethesame. Inotherwords,iftwoprismshavethesameheightandthesamebasethenobliqueandrightprismswillhave thesamevolumes.thisisalittleliketheshearingtechniquebutinthethirddimension. Volumesareequal. Volumesareequal. Module3Lesson6Page38

8.Cavalieri sprinciplesaysthatthesetwoprismshaveequal volume.explainwhythatistrue? 9.IftheVolumeofthecubeis(4)(4)(4)=64 cm 3,whatisthevolumeoftheobliqueprism ifithasbeentiltedat60? 10.JennysaysthatthetwoprismsDONOThavethesamevolumebecausethecrosssectionsarenotthe same.reneedisagrees;shesaysthatitisn ttheshapethathastobethesame,itisthearea.reneethinks theyhavethesamevolume.whoisrightandwhy? Cylinders Acylinderisaclosedsolidthathastwoparallelcircularbasesconnectedbyacurvedsurface. 11.Randysays Cylindervolumeiseasy itisdonethesamewayasaprismexceptitsbaseisacircle. WhatdoesRandymeanbythis? Module3Lesson6Page39

12.Determinethevolumeoftheprisms.(Linesthatappearperpendicularareperpendicular.) a) b) Volume= c)regularhexagonalprism Volume= Volume= 13.Findthevolumeofthefollowingcylinders. a) b) Volume= (E) Volume= (E) 14.Determinethevolumeofthefollowingcompositefigures.(Linesthatappeartobeperpendicularare perpendicularandlinesthatappeartobeparallelare.) a) b) Volume= Volume= (E) Module3Lesson6Page40

Module3Lesson6Page41 Module3Lesson6Homework Name: Date: Hour: 1.Findthevolumeofthefollowingshapesandwritethecross.sectionalshapewhennecessary. (Linesthatappearperpendicularareperpendicular.)(E)meanstoleaveanexactanswer. a) b) c)regularhexagonalprism Volume= ShapeofcrossDsection: Volume= (E) ShapeofcrossDsection: Volume= (E) ShapeofcrossDsection: d) e) f) Volume= (E) ShapeofcrossDsection: Volume= ShapeofcrossDsection: Volume= (E) e) Volume= (E)

Module3Lesson7In.ClassNotes Name: Date: Hour: Part1 VolumeofPyramids WhatisaPyramid? Apyramidisapolyhedronwithapolygonal andtriangularlateral,whichmeetata pointatthetopcalledthe. 1.Matchthefollowingtermstothediagram.Fortheonesyoudon tknow,thinkaboutthemeaningofthe termstofigurethemout. Giventhesquarepyramid. 1.SlantHeight 2.Apex 3.Height 4.LateralEdge 5.Face 6.Vertex 2.JeffmissedclassandDillonisexplainingthenotes. Theslantheightandtheheight ofthepyramidbasicallymeanthesamething. Isthissummaryofheightcorrect? Explain. NamingPyramids Pyramidsarenamedbytheirbases.Forinstance,apyramidwithasquarebaseiscalledasquarepyramid.If thebaseshapeisahexagon,thepyramidiscalledahexagonalpyramid.apyramidwithatriangularbasehasa specialname:tetrahedron.a pyramidisonewheretheapexliesdirectlyabovethecenterofthe base.an pyramidisonewheretheapexisnotaligneddirectlyabovethecenterofthebase. 3.Properlynamethepyramid. a) b) c) d) Name: Name: Name: Name: Module3Lesson7Page42

4.Twopyramidswiththesamebasearesidebyside.Oneisarightpyramidandtheotherisanoblique pyramid.iftheobliquepyramidhasbeentiltedtoanangleof80,whatisthevolumerelationship betweenthetwopyramids? CalculatingVolumeofPyramids FromourLaunchactivity,wediscoverthatthevolumeofapyramidis. 5.Determinethevolumeofthepyramid.(E)meanstoleaveanexactanswer. a)rectangularpyramid b)equilateraltriangularpyramid c)regularhexagonalpyramid V= Volume= (E) Volume= (E) Volume= (E) 6.Determinethevolumeofthecompositefigure. Volume= Module3Lesson7Page43

Module3Lesson7 Part1Application Name: Date: Hour: Therearemanypyramidsoutsideoftheclassroom.TwoexamplesaretheGreatPyramidofGizaandthe LouvrePyramidinParis.Choosearealworldpyramidandresearchormeasureitsdimensionstocalculatethe volume.youmustshowyourwork. Whichpyramiddidyouchoose? Length: Width: Height: Namethetypeofpyramiditis: Websiteortoolyouusedtogetthedimensionsofthepyramid: VolumeofPyramid: Module3Lesson7Page44

Lesson7Part2 VolumeofCones LAUNCH Theconeandcylindertothelefthavethesamebaseandheight.Whatdo youthinkistherelationshipbetweenthevolumeoftheconeandthevolume ofthecylinder? Let sfindoutwatchthevideo,thenthinkaboutwhatthevolumeformulaforaconemightbe.writeithere: THECONE Theconeandthecylinderrelationshipfollowthesamepatternasthe and justdid. Youcanpourthesandorthewaterfrom theconetothecylinderandyouwillfind thattherelationshipisexactlyone_third thevolumeofthecylinder. = CONECALCULATION Determinethevolumeofthecone. a) b) c) Volume= (E) Volume= (E) Volume= (E) Module3Lesson7Page45

ApplyingVolumeFormulasforPyramidsandCones Name: Hour: 1.Findthevolumeofeachfigurebelow. a) b) c) Volume= (E) d) Volume= (E) e) Volume= (E) Volume= (E) Volume= (E) 2.Explainwhy = "workstosolveforthevolumeofapyramidorcone. Module3Lesson7Page46

Lesson7Part3 VolumeofSpheres LAUNCH Watchthevideoandfillintheblanksforwhythevolumeofasphereis =. Let sstartwithacylinderwitharadiusofrandaheightof. Weknowtheformulaforthevolumeofacylinderis = h.sowhenwepluginourheightof2r,our formulabecomes = 2 =. Ifwehaveaspherewiththesameradiusasthecylinder,howmanyhemispheresareneededtofillthe cylinder? Thusthevolumeofthehemisphereis thevolumeofthecylinder. Thismeansthatthevolumeofthehemisphereis = 2 =. Sincethehemisphereis½ofthesphere,weneedtomultiplythevolumeofthehemisphereby. Thismeansthatthevolumeofthesphereis = 2 =. VolumeofaSphere Thenicethingabouttheformulaforasphereisthatthereisonlyonevariable involved,theradius.theradiusrepresentsallthreedimensions. 3 VSPHERE = π r CalculatingtheVolumeofaSphere 1.Determinethevolumeofthespheresorhemispheresbelow. a) b) c)volumeofaquarium 4 3 Volume= (E) Volume= (E) Volume= (E) Module3Lesson7Page47

2.Determinethevolumeofthecompositeshapesbelow. a) Volume= (E) 3.Findtheradiusofthesphere. b)twotennisballsfitsexactlyinthe48cm tallcylindericalcan.whatisthevolumeof airinthecan? 48cm Volume= (E) a) = 36cm 3 b) = 972cm 3 = = Module3Lesson7Page48

Module3Lesson8-Density Name: Date: Hour: Launch Ashippingcontainerisintheshapeofarightrectangularprism.Ithasalengthof12feet,widthof6feet,and heightof7feet.thecontaineriscompletelyfilledwithcontentsthatweigh,onaverage,2.3poundspercubic foot.whatistheweight,inpounds,ofthecontentsinthecontainer? Inordertoanswerthequestion,let sbreakitdowninsteps. 1. a)whatarethedimensionsoftheshippingcontainer? Length Width Height b)howmanycubicfeetdoestheshippingcontainerhold?(inotherwords,whatisitsvolume?) 2. Onaverage,howmanypoundspercubicfootdothecontentsweigh? lbs 3. Whatistheweightofthecontentsinthecontainer? lbs Density Densityistheratioofsomethingperunitareaorvolume.Someexampleswouldbethenumberofcattleper squaremile,gramsoflemonademixperliterofwater,numberoftreespersquareacre,etc. PopulationDensityisatypeofdensitythatisameasurementofpeopleperunitvolumeorarea.Anexample wouldbethenumberofpeoplepersquaremileinacity. Module3Lesson8Page 49

PracticewithDensityCalculations 1.In2014,thepopulationdensityofFlagstaffwas1,028peoplepersquaremile.ThepopulationofFlagstaffin 2014was65,660.HowmanysquaremilesisFlagstaff? 2.Agallonofpaintwillcoverapproximately450squarefeet.Anartistwantstopaintalltheoutsidesurfaces ofacubemeasuring12feetoneachedge.whatistheleast&numberofgallonsofpainthemustbuytopaint thecube? 3.ThecapacityatPepsiAmphitheatreinFlagstaffis3000peopleforfestivalstyleseating.Theareaofthe seatingspaceisapproximately3021squaremeters.iftheamphitheatreisatcapacityforamusicfestival,how manysquaremeterswilleachpersonhave? m 2 perperson 4.GuatemalaandZambiahaveverysimilarpopulationsizes.However,theareaofZambiaisalmost7times thesizeoftheareaofguatemala.whichcountryhasthehigherpopulationdensity?circleyouranswer. Zambia Guatemala Module3Lesson8Page 50