CeProSARD ISO 9001:2008 ISO 14001:2004 ОБУКА ЗА ЕНЕРГЕТСКИ КОНТРОЛОРИ Скопје, Март - Мај 2014 Тема 3. Анализа на постоечката состојба на енергетската ефикасност на зградите, градежните единици, постројките и индустриските процеси Д-р Петар Николовски, дипл. инж. арх. 3 Анализа на постоечката состојба на енергетската ефикасност на зградите, градежните единици, постројките и индустриските процеси 3.2 Енергетски карактеристики на згради 3.2.1 Градежна физика 6 часа 1
Градежна физика Градежна физика е наука која ги изучува физичките појави во градежните конструкции: Пренесување на топлина Пренесување на влага Дифузија на водена пареа Пренесување на маса Пренесување на звук Акумулација на топлина, итн. Основни области кои ги изучува градежната физика се: Топлински изолации Хидроизолации Звучни изолации ПРЕНЕСУВАЊЕ НА ТОПЛИНА 2
Симболи, физички големини и единици A Површина, подрачје, зона m 2 d Дебелина m U Коефициент на пренесување на топлината W/(m 2 K) h Коефициент на површинско пренесување на топлината W/(m 2 K) l Коефициент на топлинска спроводливост W/(m K) R Топлински отпор (m 2 K)/W R g Топлински отпор на воздушен слој (m 2 K)W R si Топлински отпор на внатрешна површина (m 2 K)/W R se Топлински отпор на надворешна површина (m 2 K)/W H T Среден коефициент на топлински загуби со трансмисија (за целиот објект) W/(m 2 K) Q Количество енергија потребна за греење на корисна површина во текот на грејната сезона kwh/m 2 a q Температура C или K Пренесување на топлина Топлината се пренесува од средина со повисока температура кон средина со пониска температура. Оваа законитост применета на градежните објекти значи дека секогаш кога температурите внатре во објектот се повисоки од надворешните, имаме топлински проток кон надворешната средина. Тоа е редовна појава во зимскиот период. Кога надворешните температури се повисоки од внатрешните, топлинскиот проток е со спротивна насока. Интензитетот на овој топлински проток е во директна зависност од температурната разлика помеѓу двете средини. 3
Пренесување на топлина Извор: Intelligent Energy Building Energy Efficiency (Student handbook) Пренесување на топлина Основни принципи на пренесување на топлината 4
Пренесување на топлина Форми на пренесување на топлината Директно (кондукција) Кондукција е директно пренесување на енергија од честички на материја со повисоко енергетско ниво, на честички со пониско ниво, како последица на интеракција помеѓу честичките. Пренесување на топлина Форми на пренесување на топлината Индиректно (конвекција, струење) Конвекција е пренесување на енергија помеѓу површина на некој материјал и флуид (течност или гас) или во самиот флуид. Разликите на температурата предизвикуваат разлики во густината на флуидот, при што топлите делови со помала маса се искачуваат, додека студените делови се спуштаат. Овие движења доведуваат до температурен баланс. 5
Пренесување на топлина Форми на пренесување на топлината Зрачење (радијација) Радијација е енергија емитирана од материјално тело со одредена температура, којашто се пренесува со помош на електромагнетни бранови. Зрачењето непречено се одвива низ простор и низ вакуум, како што е, на пример, сончевото зрачење. Правец и насока на топлински протоци Вертикална конструкција 6
Правец и насока на топлински протоци Хоризонтална конструкција Топлински загуби низ објект Извор: Intelligent Energy Building Energy Efficiency (Student handbook) 7
Топлински загуби низ индивидуална куќа Топлински загуби низ индивидуална куќа 8
Коефициент на топлинска спроводливост l W/mK Топлински отпор При минување низ некој материјал, топлината наидува на отпор, кој зависи од коефициентот l на тој материјал. Колку вредноста l е помала, толку поголем е топлинскиот отпор на материјалот. Значи, овие две физички големини се обратно пропорционални. Симбол за топлински отпор е R, а негова единица е (m 2 K)/W Формула за пресметка на топлинскиот отпор е R d Со зголемување на дебелината на материјалот се зголемува и топлинскиот отпор. 9
Површински топлински отпор Соодветно на топлинскиот отпор при пренесувањето на топлината со кондукција, при пренесувањето со конвекција топлината наидува на отпор при самата површина на материјалот, којашто е во контакт со воздух или друг гас. Симбол за површински топлински отпор е R s а неговата единица е (m 2 K)/W. Формула за пресметка на површинскиот топлински отпор е R s 1 h кадешто h e коефициент на површинско пренесување на топлината. Површински топлински отпор Површински топлински отпори (m 2 K)/W Правец и насока на топлинскиот проток Нагорен Хоризонтален Надолен R si 0,10 0,13 0,17 R se 0,04 0,04 0,04 10
Вкупен топлински отпор Изолациска моќ на воздухот Добрите топлинско-изолациски материјали, со мала вредност l, имаат многу мала маса. Еден од најлесните изолациски материјали е стиропорот, со маса од 15 до 30 kg/m 3. Причина за ова е голем процент на заробен воздух во стиропорот (97% до 98,5%) за сметка на цврстата материја (1,5% do 3%). Од ова може да се заклучи дека за добрата изолациска моќ на изолациските материјали заслугата му припаѓа на воздухот. Констатацијата е точна, но под еден услов: шуплините во изолацискиот материјал исполнети со воздух, мора да бидат со многу мал волумен, со микронска големина. Топлинскиот отпор на воздушните шуплини не може да се пресмета со помош на веќе прикажаната формула, бидејќи со зголемувањето на дебелината на слојот воздух, не се зголемува пропорционално и топлинскиот отпор. 11
Топлински отпор на воздушни слоеви R g во (m 2 K)/W Дебелина на воздушен слој d (mm) 0 5 7 10 15 25 50 100 300 Топлински отпор на вертикален воздушен слој R g (m 2 K)/W 0,00 0,11 0,13 0,15 0,17 0,18 0,18 0,18 0,18 Топлински отпор на воздушни слоеви R g (m 2 K)/W Невентилиран воздушен слој Дебелина на воздушниот слој mm 0 5 7 10 15 25 50 100 300 Правец и насока на топлинскиот проток Нагорен Хоризонтален Надолен 0,00 0,11 0,13 0,15 0,16 0,16 0,16 0,16 0,16 0,00 0,11 0,13 0,15 0,17 0,18 0,18 0,18 0,18 Забелешка - Меѓувредности можат да се добијат со интерполација. 0,00 0,11 0,13 0,15 0,17 0,19 0,21 0,22 0,23 12
Топлински отпор на воздушни слоеви R g (m 2 K)/W Малку вентилиран воздушен слој Дебелина на воздушниот слој mm 1 2 3 4 5 6 7 8 9 10 15 20 25 50 100 300 Правец и насока на топлинскиот проток Нагорен Хоризонтален Надолен 0,017 0,030 0,040 0,048 0,055 0,060 0,065 0,069 0,072 0,075 0,082 0,082 0,082 0,082 0,082 0,082 0,017 0,030 0,040 0,048 0,055 0,060 0,065 0,069 0,072 0,075 0,086 0,092 0,092 0,092 0,092 0,092 0,017 0,030 0,040 0,048 0,055 0,060 0,065 0,069 0,072 0,075 0,086 0,092 0,097 0,107 0,109 0,116 Топлински отпор на воздушни слоеви R g (m 2 K)/W Вертикален воздушен слој Невентилиран ако SA < 500 mm 2 /m 1 Малку вентилиран ако 500 mm 2 /m 1 < SA < 1 500 mm 2 /m 1 13
Топлински отпор на воздушни слоеви R g (m 2 K)/W Хоризонтален воздушен слој Невентилиран ако SA < 500 mm 2 /m 2 Малку вентилиран ако 500 mm 2 /m 1 < SA < 1 500 mm 2 /m 2 Малку вентилиран воздушен слој Хоризонтален воздушен слој 14
Вкупен топлински отпор на еднослојна конструкција R Т (m 2 K)/W R T = R si + R + R se R si - топлински отпор на внатрешна површина R - топлински отпор на слој материјал R d R se - топлински отпор на надворешна површина Вкупен топлински отпор на повеќеслојна конструкција R Т (m 2 K)/W R T = R si + R 1 + R 2 + R 3 + R 4 + R 5 + R se R1 d1 1 d 2 R2 2 d 3 R3 3 d 4 R4 4 d 5 R5 5 15
Коефициент на пренесување на топлината U (m 2 K)/W R T = R si + SR + R se U 1 R T Корекции на коефициентот U Коефициентот U добиен со претходно објаснетите постапки треба да се корегира доколку врз него има битни влијанија причинети од: воздушни фуги во топлинската изолација; механички средства за прицврстување што минуваат низ изолацискиот слој; врнежи при свртени покриви. Корегираниот коефициент U c се добива со додавање на корекцискиот фактор, ΔU: U c = U + ΔU ΔU се добива од kадешто: ΔU = ΔU g + ΔU f + ΔU r ΔU g е корекција за воздушни фуги; ΔU f ΔU r е корекција за механички средства за прицврстување; е корекција за свртени покриви. 16
Корекции на коефициентот U Воздушни фуги се простори во изолацискиот материјал или помеѓу изолацијата и конструкцијата со која е во контакт. Овие фуги реално постојат во конструкцијата но не постојат во проектот. Поделени се во две главни категории: Корекција за воздушни фуги пукнатини (празнини) помеѓу изолациските плочи и елементите од конструкцијата, во правецот на топлинскиот проток; шуплини во изолацијата или помеѓу изолацијата и конструкцијата, перпендикуларно на топлинскиот проток. Влијанието на воздушните фуги се манифестира со зголемување на вредноста на коефициентот U со вредноста ΔU. Корекција се прави само доколку фугите одат низ целата дебелина на изолацискиот материјал. Поставување на изолацијата во повеќе од еден слој, со поместување на спојниците во слоевите (како во ѕидарска врска во редовите тула, ја отфрла потребата за корекција. Степен 0 1 2 Корекции на коефициентот U Корекција за воздушни фуги Опис Не постојат воздушни фуги во изолацијата или се присутни само фуги кои не причинуваат значителни ефекти Континуирани воздушни фуги помеѓу топлата и студената страна на изолацијата, но без можност воздухот да циркулира помеѓу топлата и студената страна на изолацијата. Континуирани воздушни фуги помеѓу топлата и студената страна на изолацијата, комбинирано со шуплини, поради кои доаѓа до слободна циркулација на воздухот топлата и студената страна на изолацијата. ΔU W/(m 2 K) 0,00 0,01 0,04 17
Корекции на коефициентот U Степен на корекција 0 Повеќеслојна континуирана изолација со фуги што не се преклопуваат Корекции на коефициентот U Степен на корекција 0 Повеќеслојна континуирана изолација со фуги што не се преклопуваат 18
Корекции на коефициентот U Степен на корекција 0 Еднослојна континуирана изолација со скалести преклопи Корекции на коефициентот U Степен на корекција 0 Еднослојна континуирана изолација со фуги на прост допир, така што толеранциите по долдолжина, ширина и ортогоналност на рабовите, како и димензионалната стабилност на изолацијата се такви, што која било шуплина не надминува 5 mm. Ова барање е со цел да се обезбеди збирот на толеранциите по должина или по ширина и димензионалните промени да бидат помали од 5 mm, а исто така и отстапувањето од ортогоналноста на рабовите да биде помало од 5 mm. 19
Корекции на коефициентот U Степен на корекција 0 Изолација во два слоја од кои едниот се наоѓа помеѓу дрвени гредички или слични конструктивни елементи, додека другиот, како континуиран слој, го прекрива првиот Корекции на коефициентот U Степен на корекција 0 Еднослојна изолација во конструкција кадешто топлинскиот отпор на конструкцијата, не сметајќи го топлинскиот отпор на изолацијата, изнесува најмалку 50% од вкупниот топлински отпор (R i 0,5 R T ) 20
Корекции на коефициентот U Степен на корекција 1 Комплетна изолација помеѓу дрвени гредички или слични конструктивни елемени. Корекции на коефициентот U Степен на корекција 1 Континуирана еднослојна изолација со фуги на прост допир кадешто толеранците по должина, ширина и ортогоналноста на рабовите заедно со димензионалнта стабилност на изолацијата е таква што фугите ја надминуваат ширината од 5 mm. 21
Корекции на коефициентот U Степен на корекција 2 Градежна конструкција кадешто постои можност за циркулација на воздухот од топлата страна на изолацијата заради недоволно затнување во долниот или горниот дел на конструкцијата. Корекции на коефициентот U Корекција за механички средства за прицврстување Детална пресметка на ефектот од механички средства за прицврстување (анкери) се прави во согласност со стандардот МКС EN ISO 10211, за да се добие коефициентот на точкасто пренесување на топлината,, на еден анкер. Во тој случај, корекцијата на вредноста U се добива од Δu f = n f кадешто n f е број на анкери на квадратен метар. Процена на ефектот од механичките средства за прицврстување може да се примени и со приближна постапка. Ако изолацискиот слој е пробиен со механички средства за прицврстување, како на пример, ѕидни спојници помеѓу ѕидарски фуги за поврзување на два ѕида со изолација меѓу нив ( сендвич ѕид ), анкери во покривна конструкција или во композитни панелни системи, корекцијата на коефициентот на пренесување на топлината, Δu f се добива од 2 f Af nf R1 Uf d0 RT,h 22
кадешто коефициентот α = 0,8 d1 0,8 d 0 Корекции на коефициентот U Корекција за механички средства за прицврстување U f f A d доколку анкерот целосно ја пробива изолацијата, или доколку анкерот делумно е вовлечен во изолацијата Во овие изрази: l f е коефициент на топлинската спроводливост на анкерот, W/(m K) A f е површина на напречниот пресек на еден анкер, m 2 n f е број на анкери на квадратен метар d 0 е дебелина на изолацискиот слој што содржи анкери, m d 1 е должина на анкерот што го пробива изолацискиот слој, m R 1 е топлински отпор на изолацискиот слој којшто е пробиен со анкери, (m 2 K)/W R T, h е вкупниот топлински отпор на конструкцијата, игнорирајќи ги сите топлински мостови, (m 2 K)/W f 0 n f R R 1 T,h 2 За случаи кадешто топлинската изолација е од екструдиран полистирен (XPS), при свртени покриви е дадена процедура за корекција, како последица од дождовница која тече меѓу топлинската изолација и хидроизолациската мембрана. Вредноста U на покривната конструкција се корегира за вредноста ΔU r, во W/(m 2 K), пресметана според формулата 2 R1 Ur p f x RT кадешто: p f x Корекции на коефициентот U Корекција при свртени покриви е просечно количество врнежи за време на грејната сезона, mm/ден е дождовен фактор кој одредува количество на вода (фракција) од p, дојдена до хидроизолациската мембрана е фактор на зголемени топлински загуби причинети од дождовна вода што тече врз хидроизолациската мембрана 23
Корекции на коефициентот U Корекција при свртени покриви R 1 е топлински отпор на изолацискиот слој над хидроизолациската мембрана, (m 2 K)/W R T е вкупен топлиснки отпор на конструкцијата, пред примена на корекцијата, (m 2 K)/W За еднослојна топлинска изолација над хидроизолациската мембрана, со врски на прост судир и без покривка со чакал, изразот (f x) = 0,04 Вкопан анкер во изолација на покривна конструкција ФАКТОР НА ФОРМА 24
Фактор на форма на зградата f 0 = A/V m -1 Практична примена на минимален фактор на формата Пресметка на фактор на форма (компактност) на зградата f 0 = A/V m -1 25
Пресметка на фактор на форма (компактност) на зградата f 0 = A/V m -1 Пресметка на фактор на форма (компактност) на зградата f 0 = A/V m -1 26
Пресметка на фактор на форма (компактност) на зградата f 0 = A/V m -1 Модел 1 Модел 2 Модел 3 A = 220 m 2 V = 300 m 3 f 0 = 0,733 A = 250 m 2 V = 300 m 3 f 0 = 0,833 A = 290 m 2 V = 300 m 3 f 0 = 0,983 Пресметка на фактор на форма (компактност) на зградата f 0 = A/V m -1 Модел 1 A = 1 300 m 2 V = 3 000 m 3 f 0 = 0,433 Модел 2 A = 1 600 m 2 V = 3 000 m 3 f 0 = 0,533 Модел 3 A = 2 050 m 2 V = 3 000 m 3 f 0 = 0,683 27
Пресметка на фактор на форма (компактност) на зградата f 0 = A/V m -1 Градежен модул Основа на модул 5,0 5,0 = 25 m 2 Хоризонтална проекција 5,0 3,0 = 15 m 2 Волумен на модул 5,0 5,0 3,0 = 75 m 3 Во анализата се употребени вкупно 45 модули Извор: Инж. Бойко Пенев - YTONG Пресметка на фактор на форма (компактност) на зградата f 0 = A/V m -1 Основа на композицијата - 9 модули 3 3 25,0 m 2 = 225 m 2 Обвивка - 78 модули (3 4 5 15,0) + (9 2 25,0) = 1 350 m 2 Волумен на композицијата - 45 модули 3 3 5 75,0 = 3 375 m 3 f 0 = 0,40 f 0 = 0,44 f 0 = 0,49 f 0 = 0,52 f 0 = 0,57 Извор: Инж. Бойко Пенев - YTONG 28
Пресметка на фактор на форма (компактност) на зградата f 0 = A/V m -1 f 0 = 0,40 f 0 = 0,50 f 0 = 0,54 f 0 = 0,59 f 0 = 0,75 Извор: Инж. Бойко Пенев - YTONG Фактор на форма на зградата f 0 = A/V m -1 29
ТОПЛИНСКИ МОСТОВИ Топлински мостови Анатомија на еден топлински мост Врска на ѕид од гасбетон и армирано-бетонски столб Ѕид од гасбетон (d = 0,25 m) l = 0,17 W/(mK) Армирано-бетонски столб (0,25 х 0,25 m) l = 2,60 W/(mK) Внатрешна температура q i = +20 C Надворешна температура q e = -10 C Внатрешен површински топлински отпор R si = 0,13 (m 2 K)/W Надворешен површински топлински отпор R se = 0,04 (m 2 K)/W 30
Топлински мостови Анатомија на еден топлински мост Пресметка на 1D модел U = (R si + d/l + R se ) -1 Анатомија на еден топлински мост Топлински мостови Пресметка на 1D модел 31
Топлински мостови Анатомија на еден топлински мост Пресметка на 2D модел L 2D = SUl + y Изотермални линии Топлински протоци Топлински мост Стандард ISO 6946-1:1986 32
Топлински мост Стандард ISO 6946-1:1986 Топлински мост Стандард ISO 6946-1:1986 Sloj Gustina (kg/m 3 ) Koeficient na toplinska sprovodlivost (W/m 2 K) Armiran beton (a,b) 2.500 2,33 Polna tula (b, c, d) 1.800 0,76 Beton (d) 1.800 0,93 Дебелина на слоевите: d 1 = 0,08 m d 2 = 0,12 m d 3 = 0,05 m Sd = 0,25 m Парцијални површини на секциите за широчина 1 m: f a = 0,80 m 2 (0,27 %) f b = 0,20 m 2 (0,07 %) f c = 1,50 m 2 (0,50 %) f d = 0,50 m 2 (0,16 %) SA = 3,00 m 2 (100%) Коефициенти на топлинска спроводливост на секциите и на слоевите: a1 = a2 = a3 = 2,33 b1 = 2,33 b2 = b3 = 0,76 c1 = c2 = c3 = 0,76 d1 = d2 = 0,76 d3 = 0,93 33
Топлински мост Стандард ISO 6946-1:1986 R T = вкупен топински отпор R T = горна граница на топлинскиот отпор R T = долна граница на топлинскиот отпор Пресметка на горна граница на топлинскиот отпор Вкупни топлински отпори за секоја секција: R T = R si + R 1 + R 2 + R 3 + R se R Ta = 0,13 + 0,08/2,33 + 0,12/2,33 + 0,05/2,33 + 0,04 = 0,28 R Tb = 0,13 + 0,08/2,33 + 0,12/0,76 + 0,05/0,76 + 0,04 = 0,43 R Tc = 0,13 + 0,08/0,76 + 0,12/0,76 + 0,05/0,76 + 0,04 = 0,50 R Td = 0,13 + 0,08/0,76 + 0,12/0,76 + 0,05/0,93 + 0,04 = 0,49 Горна граница на вкупниот топлински отпор: 1/R T = f a /R Ta + f b /R Tb + f c /R Tc + f d /R Td 1/R T = 0,27/0,28 + 0,07/0,43 + 0,50/0,50 + 0,16/0,49 = 2,46 R T = 0,41 (m 2 K)/W Топлински мост Стандард ISO 6946-1:1986 Еквивалентен топлински отпор за нехомогени слоеви: Слој 1: R a1 = 0,08/2,33 = 0,03 R b1 = 0,08/2,33 = 0,03 R c1 = 0,08/0,76 = 0,11 R d1 = 0,08/0,76 = 0,11 Слој 2: R a2 = 0,12/2,33 = 0,05 R b2 = 0,12/0,76 = 0,16 R c2 = 0,12/0,76 = 0,16 R d2 = 0,12/0,76 = 0,16 Долна граница на вкупниот топлински отпор: Слој 3: R a3 = 0,05/2,33 = 0,02 R b3 = 0,05/0,76 = 0,07 R c3 = 0,05/0,76 = 0,07 R d3 = 0,05/0,93 = 0,05 1/R = f a /R a + f b /R b + f c /R c + f d /R d 1/R 1 = 0,27/0,03 + 0,07/0,03 + 0,50/0,11 + 0,16/0,11 = 16,17; R 1 = 0,06 1/R 2 = 0,27/0,05 + 0,07/0,16 + 0,50/0,16 + 0,16/0,16 = 9,77; R 2 = 0,10 1/R 3 = 0,27/0,02 + 0,07/0,07 + 0,50/0,07 + 0,16/0,05 = 24,38; R 3 = 0,04 R T = R si + R 1 + R 2 + R 3 + R se R T = 0,13 + 0,06 + 0,10 + 0,04 + 0,04 = 0,38 R T = (R T + R T )/2 = (0,41 + 0,38)/2 = 0,39 R T = 0,38 (m 2 K)/W R T = 0,39 (m 2 K)/W Процена на грешка: e = (R T - R T )/2R T x 100 = 3,96 % U = 2,56 W/(m 2 K) 34
Топлински мостови Поедноставена дефиниција Топлински мостови се делови од обвивката на зграда, каде како резултат на дводимензионални (2D) или тродимензионални (3D) начини на пренос на топлина, или внатрешната површинска температура е пониска, што е причина за појава на кондензација на влага, или топлинските загуби се поголеми. Пренесување на топлината низ хомогени и нехомогени градежни конструкции Хомогена конструкција Нехомогена конструкција Градежен детал - ѕид Градежен детал ѕид со прозорец Изотермални линии Изотермални линии Топлински протоци Топлински протоци 35
Топлински мостови Дефиниција според МКС EN ISO 10211 Топлински мост претставува дел од надворешната конструкција на објектот, чијшто топлински отпор значително се разликува од останатиот еднообразен дел, поради: а) делумно или целосно навлегување на материјали со различен коефициент на пренесување на топлината во надворешната конструкција и / или б) различна дебелина на материјал и / или в) разлика помеѓу внатрешната и надворешната површина, како што се местата на врските ѕид под таван. Топлински мостови Дефиниција според МКС EN ISO 10211 Делумно навлегување (а) Продор низ целата дебелина (а) 36
Топлински мостови Дефиниција според МКС EN ISO 10211 Различна дебелина (б) Разлика внатре / надвор (в) Класификација на топлинските мостови Конструкциски топлински мостови (а) Продор на метал низ материјал со висока вредност λ (бетон) Продор на метал низ материјал со ниска вредност λ (стиропор) Продор на метал со различни површини од внатрешната и од надворешната страна на елементот 37
Класификација на топлинските мостови Геометриски топлински мостови (в) Внатре Изотерми Протоци Надвор Изотерми Протоци Класификација на топлинските мостови Конструкциско - геометриски топлински мостови (а, в) 38
Класификација на топлинските мостови Периодични топлински мостови Конвекциски топлински мостови Топлински мостови генерирани од околината Дали постои градежен објект без топлински мостови? Одговорот е: Да, доколку некој хипотетички објект во форма на топка орбитира околу Земјата 39
Дали постои градежен објект без топлински мостови? Основа/пресек Изотерми Топлински протоци Преграден ѕид или таваница A Изотерми Топлински протоци Дали постои градежен објект без топлински мостови? Основа/пресек Изотерми Топлински протоци Преграден ѕид или таваница A Изотерми A Топлински протоци 40
Дали постои градежен објект без топлински мостови? Пресек Изотерми A Топлински протоци Дали постои градежен објект без топлински мостови? Пресек A Изотерми A Топлински протоци 41
Дали постои градежен објект без топлински мостови? Основа Изотерми Топлински протоци A Дали постои градежен објект без топлински мостови? Основа Изотерми Топлински протоци A A 42
Дали постои градежен објект без топлински мостови? Одговорот е: НЕ ПОСТОИ! Кои се последиците од присуството на топлинските мостови во згради? 1. Зголемени топлински загуби, зголемени трошоци за греење 2. Ниски внатрешни површински температури, можност за кондензација на влага и појава и растеж на мувла, здравствени проблеми на луѓето, како што се: алергии главоболка иритација на грлото и носот ринитис астма и др. КОНДЕНЗАЦИЈА И МУВЛА 43
Кондензација и појава на мувла Услови за развој на мувла: влага и храна Извор: Harriman L. Preventing Mold & Mildew in GSA Buildings. Mason-Grant Consulting Кондензација и појава на мувла Развој на габички Извор: Jawetz E, Melnick J, Adelberg E. Medical Microbiology. Middle East Edition. Lebanon, 1995 44
Кондензација и појава на мувла Aspergillus ruber, Penicillium cyclopium Микроскопски изглед Макроскопски изглед Кондензација и појава на мувла Микроскопски снимки на колонии габички 45
Кондензација и појава на мувла Кондензација и појава на мувла 46
Кондензација и појава на мувла Случаи од објекти во Скопје мувла во кујна Кондензација и појава на мувла Случаи од објекти во Скопје мувла во бања 47
Кондензација и појава на мувла Случаи од објекти во Скопје мувла во спална Кондензација и појава на мувла Случаи од објекти во Скопје мувла во дневна соба 48
Кондензација и појава на мувла Реална состојба и компјутерска симулација Внатрешна кондензација на стакла 49
Внатрешна кондензација на стакла Внатрешна кондензација на стакла 50
Внатрешна кондензација на стакла Транспарентни конструкции прозорци и балконски врати Пренесување на топлината 51
Топлински мост кај дистанцерот Детал Изотерми Протоци Разни типови дистанцери 52
Топлински прекини кај метални прозорски рамки Транспарентни конструкции прозорци и балконски врати U w A g U g A f U A g A f f g l U = Коефициент на пренесување на топлината [W/(m 2 K)] A = Површина y = Коефициент на линеарно пренесување на топлината на топлинскиот мост кај дистанцерот [W/(m K)] l = Должина на топлинскиот мост кај дистанцерот (m 1 ) Индекси: w = прозорец (window) g = стакло (glass) f = рамка (frame) 53
СТАНДАРД МКС EN ISO 14683 Означување на топлинските мостови Стандард МКС EN ISO 14683 B Balcony балкон и надворешен ѕид C Corner агол на два надворешни ѕида CL Cantilever еркер F Floor под и надворешен ѕид IW Internall Wall надворешен и внатрешен ѕид P Pillar столб R Roof покрив и надворешен ѕид W Window прозорец 54
Означување на топлинските мостови Вертикални топлински мостови Хоризонтални топлински мостови Методи за оцена на топлинските мостови 1. Нумерички методи - Метод на конечен елемент - Метод на конечна разлика - Метод на топлинска рамнотежа 2. Користење на каталози на топлински мостови 3. Основни физички големини на топлинските мостови се: Коефициент на линеарно пренесување на топлината y W/(m K) Топлински загуби низ топлинскиот мост Q = y l (W/K) Фактор на внатрешна површинска температура f Rsi 55
Стандард МКС EN ISO 14683 Стандард МКС EN ISO 14683 56
Стандард МКС EN ISO 14683 Стандард МКС EN ISO 14683 57
Стандард МКС EN ISO 14683 Стандард МКС EN ISO 14683 58
Стандард МКС EN ISO 14683 Стандард МКС EN ISO 14683 59
Стандард МКС EN ISO 14683 Стандард МКС EN ISO 14683 Покриви 60
Стандард МКС EN ISO 14683 Покриви Типови на топлински мостови y вредности од МКС EN ISO 14683 Реални y вредности за сеизмички детали 61
Типови на топлински мостови y вредности од МКС EN ISO 14683 Реални y вредности за сеизмички детали Каталог на линеарни топлински мостови Врски на два ѕида на агол 62
Каталог на линеарни топлински мостови Врски на два ѕида на агол Каталог на линеарни топлински мостови Врски на внатрешни преградни ѕидови со надворешни ѕидови 63
Каталог на линеарни топлински мостови Врски на внатрешни преградни ѕидови со надворешни ѕидови Каталог на линеарни топлински мостови Балконски конзоли 64
Каталог на линеарни топлински мостови Балконски конзоли Каталог на линеарни топлински мостови Врска на меѓукатна конструкција со надворешен ѕид 65
Каталог на линеарни топлински мостови Врска на меѓукатна конструкција со надворешен ѕид Каталог на линеарни топлински мостови Детал Изотерми и топлински протоци Топлински мост TB C.5 1.5 TB Топлински мост (Thermal bridge) C. Група агли (Corner) 5 - Подгрупа - различен тип од истата група 1. Местоположба на топлинската изолација (1 = однафдвор) 5 Реден број на топлинскиот мост 66
Каталог на линеарни топлински мостови U 1 U 2 ψ e f Rsi q l q e q si W/(m 2 K) W/(m K) W/m C C 0,340 21,6 0 16,3 27,1-5 15,4-0,028 0,813 32,4-10 14,5 37,9-15 13,6 0,507 43,3-20 12,6 Oсновна конструкција: ѕидови 25 cm, столб 30 х 30 cm, топлинска изолација 6 cm. U 1 U 2 ψ e f Rsi q l q e q si W/(m 2 K) W/(m K) W/m C C 0,254 15,2 0 17,4 19,0-5 16,8-0,037 0,868 22,8-10 16,1 26,6-15 15,5 0,337 30,4-20 14,8 Варијанта 2: ѕидови 25 cm, столб 30 х 30 cm, топлинска изолација 10 cm. U 1 U 2 ψ e f Rsi q l q e q si W/(m 2 K) W/(m K) W/m C C 0,314 17,8 0 17,2 22,2-5 16,5-0,037 0,855 26,7-10 15,8 31,1-15 15,0 0,410 35,6-20 14,3 Варијанта 4: ѕидови 20 cm, столб 25 х 25 cm, топлинска изолација 8 cm. U 1 U 2 ψ e f Rsi q l q e q si W/(m 2 K) W/(m K) W/m C C 0,291 17,7 0 17,0 22,2-5 16,2-0,033 0,846 26,6-10 15,5 31,0-15 14,7 0,401 35,5-20 14,0 Варијанта 1: ѕидови 25 cm, столб 25 х 25 cm, топлинска изолација 8 cm. U 1 U 2 ψ e f Rsi q l q e q si W/(m 2 K) W/(m K) W/m C C 0,372 21,9 0 16,5 27,4-5 15,7-0,033 0,822 32,8-10 14,8 38,3-15 13,9 0,522 43,8-20 13,1 Варијанта 3: ѕидови 20 cm, столб 25 х 25 cm, топлинска изолација 6 cm. U 1 U 2 ψ e f Rsi q l q e q si W/(m 2 K) W/(m K) W/m C C 0,271 15,2 0 17,6 19,0-5 17,0-0,041 0,876 22,7-10 16,4 26,5-15 15,8 0,343 30,3-20 15,2 Варијанта 5: ѕидови 20 cm, столб 25 х 25 cm, топлинска изолација 10 cm. 3D Топлински мостови 67
3D Топлински мостови ПРИМЕРИ ОД ПРАКСА 68
Местоположба на топлинската изолација Детали Случај 1 Случај 2 Случај 3 Случај 4 Местоположба на топлинската изолација Изотермални линии Случај 1 Случај 2 Случај 3 Случај 4 69
Местоположба на топлинската изолација Топлински протоци Случај 1 Случај 2 Случај 3 Случај 4 Местоположба на топлинската изолација Споредба на резултатите од пресметките за 4 типа надворешни ѕидови Конструкција U W/(m 2 K) y W/(m K) U eq W/(m 2 K) θ si min C Конднезација за θ i = +20 C i f i = 60 % θ si < θ dp = +12,0 C q l W/m K Случај 1 0,46 0,12 0,49 +18,1 не постои 58,55 100 Случај 2 0,45 3,05 1,21 +10,5 постои 145,02 248 Случај 3 0,45 1,76 0,89 +11,3 постои 106,82 182 Случај 4 0,61 2,45 1,22 +9,3 постои 146,69 251 % 18,1 C 10,5 C 11,3 C 9,3 C 70
Местоположба на топлинската изолација Балконска конзола во ѕид со надворешна изолација y e = 0,75 W/(m K) q si min = 13,9 C Детал Изотермални линии Tоплински протоци 71
Балконска конзола во ѕид со изолација во средина - сендвич ѕид y e = 1,19 W/(m K) q si min = 10,1 C Детал Изотермални линии Tоплински протоци Балконска конзола во ѕид со внатрешна изолација y e = 0,71 W/(m K) q si min = 7,2 C Детал Изотермални линии Tоплински протоци 72
Изолирана балконска конзола во ѕид со надворешна изолација y e = 0,31 W/(m K) q si min = 16,3 C Детал Изотермални линии Tоплински протоци Систем HALFEN DEHA Дилатирање на балконска конзола 73
Систем Schöck Isokorb Дилатирање на балконска конзола Систем Schöck Isokorb Дилатирање на балконска конзола y e = 0,02 W/(m K) q si min = 17,9 C Детал Изотермални линии Tоплински протоци 74
Корекција на топлински мостови Корекција на топлински мостови 75
Корекција на топлински мостови Корекција на топлински мостови 76
Корекција на топлински мостови Корекција на топлински мостови 77
Корекција на топлински мостови Штети на фасади 78
Корекција на топлински мостови Детал Изотермални линии Tоплински протоци Корекција на топлински мостови 79
Корекција на топлински мостови вертикален пресек основа Административна зграда на Булевар Карл Маркс во Скопје 80
Административна зграда на Булевар Карл Маркс во Скопје Површина на прозорци > 50% од фасадата Административна зграда на Булевар Карл Маркс во Скопје 81
Административна зграда на Булевар Карл Маркс во Скопје Административна зграда на Булевар Карл Маркс во Скопје 36% армиран бетон 82
Административна зграда на Булевар Карл Маркс во Скопје Сендвич ѕидови 83
Калкански ѕид Постојна состојба Toplinski most TB IF2 Toplinski most P3 Градежен детал Изотерми Топлински протоци 84
Калкански ѕид Надворешна топлинска изолација КСиНТИ Toplinski most TB IF1 Градежен детал Изотерми Топлински протоци Калкански ѕид Споредба на резултатите за катна височина 3,0 m Тип на ѕидот U W/(m 2 K) y e W/(m K) U eq W/(m 2 K) f Rsi q simin C Кондензација при q i = 20 C, f i = 60% ако q si min < q dp = 12 C q W/m % сендвич 0,46 4,39 1,92 (+417%) 0,63 9,9 ДА 109 247 КСиНТИ 0,47 0,59 0,67 (+ 42%) 0,92 17,7 НЕ 44,2 100 85
Калкански ѕид Постојна состојба Толински мост IF2 Градежен детал Изотерми Топлински протоци Калкански ѕид Надворешна топлинска изолација КСиНТИ Толински мост IF1 Градежен детал Изотерми Топлински протоци 86
Калкански ѕид Споредба на резултатите за меѓукатна конструкција Топлински мост U W/(m 2 K) y e W/(m K) U eq W/(m 2 K) f Rsi q si min C Кондензација при q i = 20 C, f i = 60% ако q si min < q dp = 12 C q W/m % TB IF2 0,46 1,78 1,25 (+272%) 0,643 9,8 ДА 84,4 218 TB IF1 0,53 0,09 0,58 (+ 9%) 0,907 17,3 НЕ 38,8 100 Калкански ѕид Постојна состојба Толински мост P3 Градежен детал Изотерми Топлински протоци Топлински мост U W/(m 2 K) y e W/(m K) U eq W/(m 2 K) f Rsi q si min C Кондензација при q i = 20 C, f i = 60% ако q si min < q dp = 12 C TB P3 0,46 0,47 0,69 (+50%) 0,74 11,9 ДА 43,2 q W/m % 87
Калкански ѕид Постојна состојба Толински мост P1 Градежен детал Изотерми Топлински протоци Калкански ѕид Надворешна топлинска изолација КСиНТИ Толински мост P2 Градежен детал Изотерми Топлински мост Топлински протоци U W/(m 2 K) y e W/(m K) U eq W/(m 2 K) f Rsi q si min C Кондензација при q i = 20 C, f i = 60% ако q si min < q dp = 12 C P1 0,44 1,47 1,03 (+234%) 0,639 9,2 ДА 77,0 218 P2 0,44 0,07 0,47 (+ 6,8%) 0,916 17,5 НЕ 35,3 100 q W/m % 88
ИЗОЛАЦИСКИ МАТЕРИЈАЛИ И СИСТЕМИ При изборот, покрај важното својство, коефициентот на топлинска спроводливост (l), споредбата може да се прави и според нивните физички својства и други елементи: Материјали за топлинска изолација Структурата Формата Густината Механичката отпорност Стисливоста Еластичноста Способноста за впивање вода Отпорноста на дифузија на влага Температурниот опсег за примена Отпорноста на огин Чувствиленоста во контакт со агресивни материи и средини Димензионалната стабилност Стареењето Хемискиот состав Цената Манипулативноста при вградувањето Еколошкиот момент итн. 89
За стиропорот може да се чујат најконтрадикторни мислења, од оние дека тој е речиси идеален изолациски материјал, па сè до оние дека гори, се губи, испарува, опасен е за човековото здравје, го јадат глувци, инсекти итн. Вистината е следна: како и секој градежен материјал и стиропорот има свои добри, но и чувствителни својства. Материјали за топлинска изолација Експандиран полистирен (EPS) - Стиропор Некои хемиски материи и соединенија се агресивни за стиропорот, како што се органски разредувачи, бензини, бензоли, ацетони, толуени, нитро-разредувачи, бои на нитро база, нафта, лепила врз база на органски разредувачи и феноли. Во градежните конструкции мала е можноста стиропорот да дојде во контакт со нив. За разлика од овие агресивни материи, стиропорот е постојан во алкални средини, при дејство на киселини, соли, морска вода, сапуни, силикони, шпиритус и др. Материјали за топлинска изолација Експандиран полистирен (EPS) - Стиропор Стиропорот е чувствителен на високи температури. Долготрајната изложеност на температури до +80 C не може да му причини оштетувања, а тој добро ги поднесува и краткотрајните температури до +130 C (на пример, во котакт со врел битумен). Но, во контакт со повисоки температури, неговата употреба не е дозволена. Во обичните градежни конструкции не постојат вакви високи температури, односно ограничувања од аспект на неговата температурна постојаност. Од аспект на горливоста, постојат два типа стиропор: едниот спаѓа во групата запалливи материјали и при евентуален пожар тој бурно согорува, притоа трошејќи големи количества кислород. Вториот тип спаѓа во група самогасливи, кај кои процесот на горење запира откако ќе се отстрани изворот на пожарот, односно доаѓа до самогасење. Првиот тип, горливиот стиропор, речиси насекаде е исфрлен од производство. 90
Материјали за топлинска изолација Експандиран полистирен (EPS) - Стиропор Ултравиолетовите сончеви зраци имаат директно неповолно влијание врз стиропорот доколку тој биде изложен на нивно дејство во подолг временски период, неколку месеци или повеќе. Оштетувањата се манифестираат со пожолтување на изложените површини, промена на структурата и ронење на површинските слоеви. За неговата трајност, задолжително е тој да биде механички затворен од сите страни со други градежни материјали. Точно е дека стиропорот може да биде нападнат од глодари или птици. Но не како храна, зашто 97-99% од неговиот волумен е воздух, а 1-3% е полистирен, кој во никој случај не е хранлива материја. Птиците и глодарите го користат стиропорот за правење гнезда, а тоа говори за фактот дека и животните го ценат како добар изолациски материјал. Проблемот со заштитата едноставно се решава со затворање на стиропорот од сите страни, во секоја градежна конструкција. Материјали за топлинска изолација Експандиран полистирен (EPS) - Стиропор Природно својство на стиропорот се однесува на димензионалната стабилност, односно својството да ги намалува димензиите по експандирањето. Оваа контракција може да трае и повеќе од 3 години, но за практична употреба важни се вредностите на контракцијата во првите 3 месеци (првите 90 дена). Во зависност од масата (густината) на стиропорот, контракцијата за овој период изнесува околу 0,3%, што значи дека стиропорот е димензионално стабилизиран ( одлежан ). Дополнителната контракција од околу 0,1% што се случува до крајот на периодот на стабилизацијата, во најголем број случаи е занемарлива и не е штетна. Но, непознавањето и непочитувањето на ова негово својство може да предизвика несакани ефекти при вградувањето на неодлежан стиропор во некои специфични конструкции, како што се композитни системи за надворешна топлинска изолација на фасадни ѕидови (КСиНТИ).. 91
Материјали за топлинска изолација Експандиран полистирен (EPS) - Стиропор Позитивни својства на стиропорот Многу добра изолациска моќ, што му овозможува со мали дебелини да постигне оптимална топлинска изолација Добра отпорност на притисок и можност за вградување во конструкции кадешто од изолацискиот материјал се бара носивост (на пример, во подните изолации). Мала густина (15 до максимум 30 kg/m 3 ) што го прави да биде најлесен изолоациски материјал Малку впива вода. По седумдневно потопување во вода впива 0,3-0,8 волуменски %, во зависност до густината, а многу бргу ја испушта по сушењето. Ова се должи на фактот што ќелиите во стиропорот се затворени. Од степенот на експандирањето и густината зависи и процентот на впиената вода Конкурентна цена во однос на другите изолациски материјали со иста изолациска моќ, лесна обработка при вградувањето, безбеден во еколошка смисла Материјали за топлинска изолација Експандиран полистирен (EPS) - Стиропор Полистиренски гранулат 92
Материјали за топлинска изолација Експандиран полистирен (EPS) - Стиропор Предекспандирани полистиренски гранули Материјали за топлинска изолација Експандиран полистирен (EPS) - Стиропор Кондиционирање 93
Материјали за топлинска изолација Експандиран полистирен (EPS) - Стиропор Калап за блок форма Материјали за топлинска изолација Експандиран полистирен (EPS) - Стиропор Блок форма 94
Материјали за топлинска изолација Експандиран полистирен (EPS) - Стиропор Сечење на блокови во плочи Материјали за топлинска изолација Еластифициран стиропор 95
Материјали за топлинска изолација Минерална волна (камена волна) Материјали за топлинска изолација Минерална волна (камена волна) 96
Материјали за топлинска изолација Минерална волна (камена волна) Материјали за топлинска изолација Минерална волна (камена волна) 97
Материјали за топлинска изолација Минерална волна (стаклена волна) Материјали за топлинска изолација Минерална волна (стаклена волна) 98
Материјали за топлинска изолација Минерална волна (стаклена волна) Материјали за топлинска изолација Минерална волна (стаклена волна) 99
Материјали за топлинска изолација Заеднички својства на камената и стаклената волна Имаат идентичен коефициент на топлинска спроводливост, l Можат да се конфекционираат во најразновидни форми, растресита волна во вреќи, фенолизирани филцеви во ролни, плочи со различна густина, дебелина и финална обработка, од најмеки (најлесни) до најтврди (најтешки), т.н. душеци прошиени со друга материјал (натрон хартија, тер хартија, алуминиумска фолија, метална мрежа), јажиња и кокили за изолација на цевки итн. Отпорни се на високи температури и пожар Имаат извонредни ефекти во т.н. пливачки подови во меѓукатните конструкции за апсорпција на ударен звук Поволна цена и едноставност при вградувањето Материјали за топлинска изолација Разлики помеѓу камената и стаклената волна Значително се разликуваат во тежината (масата) по единица волумен. Камената волна е потешка, одредени производи можат да достигнат и до 180 kg/m 3, додека вообичаена тежина на стаклената волна се движи од 30-50 kg/m 3 Во зависност од суровинскиот состав при производството на камената волна, суровината може да содржи одредени примеси кои во случај на присуство на влага во волната (градежна влага пред вградување, дифузна влага, атмосферска влага заради дефекти во системот за одводнување и сл.) можат негативно да се одразат врз структурата на влакната. Производителите на камена волна овој ризик го превенираат со соодветно импрегнирање на волната Основната суровина за производство на стаклената волна е стаклото - силициум диоксид (SO 2 ) којшто е резистентен на сите можни негативни влијанија од други материи (освен флуороводородна киселина) и вода. Во однос на цената, предноста е на страна на стаклената волна: за идентични или слични форми на производи и исти изолациски ефекти, стаклената волна е поефтина 100
Материјали за топлинска изолација Гасбетон (трговски имиња Итонг, Сипорекс ) Материјали за топлинска изолација Гасбетон - Мултипор 101
Материјали за топлинска изолација Гасбетон - Мултипор Материјали за топлинска изолација Гасбетон - Мултипор 102
Материјали за топлинска изолација Гасбетон - Мултипор Материјали за топлинска изолација Гасбетон - Мултипор 103
Материјали за топлинска изолација Дрвена волна (трговско име Хераклит, Новолит ) Материјали за топлинска изолација Комби плочи 104
Изолациски материјали и системи Вакуумирани изолациски плочи (VIP) VIP со пресечен агол Лепило во ленти за лепење на VIP врз надворешен ѕид Детал на VIP Изолациски материјали и системи Вакуумирани изолациски плочи (VIP) Пресек низ ѕид со залепен VIP 105
CeProSARD ISO 9001:2008 ISO 14001:2004 ОБУКА ЗА ЕНЕРГЕТСКИ КОНТРОЛОРИ Скопје, Март - Мај 2014 Тема 3. Анализа на постоечката состојба на енергетската ефикасност на зградите, градежните единици, постројките и индустриските процеси Д-р Петар Николовски, дипл. инж. арх. 106