ОСНОВИ НА ДРВЕНИ КОНСТРУКЦИИ 3. СТАБИЛНОСТ НА КОНСТРУКТИВНИТЕ ЕЛЕМЕНТИ
|
|
- Χρύσης Παπανικολάου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ОСНОВИ НА ДРВЕНИ КОНСТРУКЦИИ 3. СТАБИЛНОСТ НА КОНСТРУКТИВНИТЕ ЕЛЕМЕНТИ
2 Општо Елементите на дрвените конструкции мора да се пресметаат така да се докаже дека конструкцијата во целина со доволна сигурност може да ги прими и најнеповолните товари. Една дрвена конструкција е неупотреблива ако се јави еден од следните случаи: губиток на статичката рамнотежа на конструкцијата (превртување); лом во критичен пресек на конструкцијата заради пречекорување на јакоста на материјалот и деформациите; губење на стабилноста заради извиткување на одделни елементи на конструкцијата; неконтролирано поместување на конструкцијата како целина или на некој елемент.
3 Товари кај дрвени конструкции I. Група основни товари постојан товар подвижен товар (вклучувајќи снег) хоризонтални товари товар од ветер (кога делува како самостоен товар) II. Група дополнителни товари ветер ( кој не делува како самостоен товар) товар од скели и оплати (за бетон) товари од привремени конструкции триење на лежиштата сили на кочење температурни промени собирање и бубрење на дрвото други можни хоризонтални товари кои не се опфатени со групата I III. Група особени товари потреси поместување на потпорите притисок од лед пожарен товар во траење од 30 мин
4 Дозволени напрегања Вид на напрегање Ознака Четинари (смрека, елка, бор) класа на дрвото Листари (даб и бука) I II III II III Свиткување σ md Затегнување σ t d Притисок II на влакната Притисок на влакната σ c d σ c d Смолкнување τ d Смолкнување од попр. сили Смолкнување на влакната τ m d τ d
5 Дозволени напрегања Основните дозволени напрегања се дозволени напрегања само за товарите од група I При заедничко дејство на основниот и дополнителниот товар(група I и II), основните дозволени напрегања се зголемуваат за 15%. При заедничко дејство на основниот, дополнителниот и особениот товар, основните дозволени напрегања се зголемуваат за 50%. Пример: G + S дозволени напрегања G + S + W 1.15 x (дозволените напрегања) G + W дозволени напрегања
6 Димензионирање на центрично затегнати елементи Ао нето површина на пресек Потребна нето површина на пресекот: Дозволена сила на затегнување во стапот:
7 Димензионирање на центрично затегнати елементи ПРИМЕР бр.1 ПРИМЕР бр.2
8 Димензионирање на центрично притиснати елементи Ако / 10 Ак-бруто површина на попречен пресек ω постапка за димензионирање
9 Димензионирање на центрично притиснати елементи За 75. За 75 Кај притиснати стапови кај кои 120 λ 175, стабилноста на стапот треба да се провери преку образецот: коефициент на сигурност - критична сила (Ојлерова сила) N дадена сила на притисок
10 Слободна должина на извиткување и виткост на стапот Четири основни Ојлерови случаи за притиснати стапови:
11 Слободна должина на извиткување и виткост на стапот Радиус на инерција imin а) квадратен пресек
12 Слободна должина на извиткување и виткост на стапот Радиус на инерција imin б) кружен пресек
13 Слободна должина на извиткување и виткост на стапот Радиус на инерција imin в) правоаголен пресек
14 Слободна должина на извиткување и виткост на стапот Виткоста кај дрвените конструкции е ограничена со следните вредности: λ 150 за главни носиви елементи кај кои со доволна сигурност може да се определи должината на извиткување. λ 120 за главни носиви елементи кај кои со доволна сигурност не може да се определи виткоста λ 175 за секундарни елементи чија стабилност е од секундарно значење за стабилноста на конструкцијата ПРИМЕР бр.4 ПРИМЕР бр.5
15 Слободна должина на извиткување и виткост на стапот а) Решеткасти носачи li = системска должина на стаповите или li = 0.80*lo ако стаповите се поврзуваат со клинци б) Лачни носачи - симетрично товарење и двострано вклештен лак si=0.50s - симетрично товарен лак на два зглоба si=0.625s - симетрично товарен лак на три зглоба si=0.70s - несиметрично товарен лак si=0.50s
16 Слободна должина на извиткување и виткост на стапот б) Лачни носачи ( во случај на поголеми распони) За лак на два зглоба За лак на три зглоба или според изразот каде е коефициент кој зависи од (Табела на стр.69) Вид на лакот лак на два зглоба лак на три зглоба Однос f/l
17 Слободна должина на извиткување и виткост на стапот в) Двозглобни и трозглобни рамки Во рамнина на рамката Столб ( 15 ) каде J момнет на инерција на столб(cm 4 ) Jo момент на инерција на ригла(cm 4 ) Ригла каде N1 сила на притисок на столб(kn) N2 сила на притисок на ригла(kn)
18 Притиснати стапови со сложен пресек x-x материјална оска на пресекот (М.0) y-y слободна оска на пресекот (C.0) 1-1 локална оска на сложениот пресек на елементот За извиткување на стаповите околу материјалната оска на пресекот, за извивање во рамнината x-x, пресметувањето е исто како за прости стапови: ω=... 16
19 Притиснати стапови со сложен пресек Извиткувањето на стаповите околу слободната оска на пресекот односно кога е рамнината на извиткување (рамнината на еластична линија) во рамнината на материјалната оска, наместо моментот на инерција на крут - монолитен пресек, во пресметката се воведува моментот на инерција J f, според следниот израз: - сума на сопствените моменти на инерција во одделните елементи на сложениот пресек (околу сопствената оска) Ai - површини на одделните елементи на сложениот пресек ai - растојанија на тежиштето на одделните елементи од тежиштето на сложениот пресек - коефициент кој го карактеризира попуштањето на врзивните средства (МКС У.C9.200, табела 17)
20 Притиснати стапови со сложен пресек ПРИМЕР бр.6
21 Притиснати стапови со сложен пресек Пресметување на притиснати стапови чии елементи на пресекот одат континуирано по должината на стапот Контролата на усвоеното растојание на врзните средства треба да се провери за најголема сила на смолкнување tf според изразот: за 60 за за 30
22 Притиснати стапови со сложен пресек Стапови со сложен пресек со местимично распоредени подметачи
23 Притиснати стапови со сложен пресек Стапови со сложен пресек со местимично распоредени подметки Извивање околу слободната оска: - пресметана виткост на стапот λ y виткост на стапот со сложен пресек како да е круто врзан (во однос на y-y оска); ѕ коефициент кој зависи од видот на врзното средство и се движи од 1 до 4.5 (МКС У.9.200, табела 18., страна 33); m број на елементи кои одат по целата должина на стапот (обично m=2); λ 1 локална виткост на еден елемент од пресекот
24 Притиснати стапови со сложен пресек Стапови со сложен пресек со местимично распоредени подметки Контрола на врзните средства и контрола на напрегањата во подметката: maxq попречна сила и се определува според претходно дадените изрази: l 1 локална должина на извиткување а 1 растојание на оската на подолжните елементи од тежиштето на сложениот пресек ПРИМЕР бр.7
25 Ексцентричен притисок
26 Ексцентрично затегнување
27 Носачи натоварени на свиткување Кога на елементот дејствува сила нормално на неговата подолжна оска, велиме дека истиот е натоварен на свиткување. Елементите натоварени на свиткување се димензионираат според: - дозволени напрегања на свиткување - дозволени напрегања на смолкнување - дозволени угиби Дрвените конструктивни елементи можат да бидат товарени на: - право и - наклонето (косо) свиткување
28 Носачи натоварени на свиткување
29 Носачи натоварени на свиткување 1/ Право свиткување. 0.70
30 Носачи натоварени на свиткување 1/ Наклонето (косо) свиткување односно М
31 Димензионирање според дозволен угиб Многу често димензиите на пресекот добиени преку дозволените напрегања на свиткување, не го задоволуваат условот за дозволен угиб. Во тој случај димензионирањето се врши според дозволен угиб Косо свиткување
32 Димензионирање според дозволени напрегања на смолкнување
НАПРЕГАЊЕ ПРИ ЧИСТО СМОЛКНУВАЊЕ
Факултет: Градежен Предмет: ЈАКОСТ НА МАТЕРИЈАЛИТЕ НАПРЕГАЊЕ ПРИ ЧИСТО СМОЛКНУВАЊЕ Напрегање на смолкнување е интензитет на сила на единица површина, што дејствува тангенцијално на d. Со други зборови,
Διαβάστε περισσότερασ d γ σ M γ L = ЈАКОСТ 1 x A 4М21ОМ02 АКСИЈАЛНИ НАПРЕГАЊА (дел 2) 2.6. СОПСТВЕНА ТЕЖИНА КАКО АКСИЈАЛНА СИЛА Напонска состојаба
4МОМ0 ЈАКОСТ АКСИЈАЛНИ НАПРЕГАЊА (дел ) наставник:.6. СОПСТВЕНА ТЕЖИНА КАКО АКСИЈАЛНА СИЛА Напонска состојаба γ 0 ( специфична тежина) 0 ak() G γ G ΣX0 ak() G γ ak ( ) γ Аксијалната сила и напонот, по
Διαβάστε περισσότεραЈАКОСТ НА МАТЕРИЈАЛИТЕ
диј е ИКА ски ч. 7 ч. Универзитет Св. Кирил и Методиј Универзитет Машински Св. факултет Кирил и Скопје Методиј во Скопје Машински факултет МОМ ТЕХНИЧКА МЕХАНИКА професор: доц. др Виктор Гаврилоски. ТОРЗИЈА
Διαβάστε περισσότεραа) Определување кружна фреквенција на слободни пригушени осцилации ωd ωn = ω б) Определување периода на слободни пригушени осцилации
Динамика и стабилност на конструкции Задача 5.7 За дадената армирано бетонска конструкција од задачата 5. и пресметаните динамички карактеристики: кружна фреквенција и периода на слободните непригушени
Διαβάστε περισσότεραАКСИЈАЛНО НАПРЕГАЊЕ Катедра за техничка механика и јакост на материјалите
УНИВЕРЗИТЕТ Св. КИРИЛ иметодиј ГРАДЕЖЕН ФАКУЛТЕТ СКОПЈЕ Катедра за техничка механика и јакост на материјалите http://ktmjm.gf.ukim.edu.mk АКСИЈАЛНО НАПРЕГАЊЕ 17.02.2015 АКСИЈАЛНО НАПРЕГАЊЕ КОГА??? АКСИЈАЛНО
Διαβάστε περισσότεραDRAFT ЗАДАЧИ ЗА ВЕЖБАЊЕ АКСИЈАЛНО НАПРЕГАЊЕ
Градежен факултет Скопје Катедра за Техничка механика и јакост на материјалите Предмет: Јакост на материјалите http://ktmjm.gf.ukim.edu.mk 27.11.2008 ЗАДАЧИ ЗА ВЕЖБАЊЕ АКСИЈАЛНО НАПРЕГАЊЕ 1. Апсолутно
Διαβάστε περισσότεραМ-р Јасмина Буневска ОСНОВИ НА ПАТНОТО ИНЖЕНЕРСТВО
УНИВЕРЗИТЕТ СВ. КЛИМЕНТ ОХРИДСКИ - БИТОЛА ТЕХНИЧКИ ФАКУЛТЕТ - БИТОЛА - Отсек за сообраќај и транспорт - ДОДИПЛОМСКИ СТУДИИ - ECTS М-р Јасмина Буневска ОСНОВИ НА ПАТНОТО ИНЖЕНЕРСТВО ПРИЛОГ ЗАДАЧИ ОД ОПРЕДЕЛУВАЊЕ
Διαβάστε περισσότεραПИСМЕН ИСПИТ АРМИРАНОБЕТОНСКИ КОНСТРУКЦИИ 1 БЕТОНСКИ КОНСТРУКЦИИ АРМИРАН БЕТОН
ПИСМЕН ИСПИТ АРМИРАНОБЕТОНСКИ КОНСТРУКЦИИ 1 БЕТОНСКИ КОНСТРУКЦИИ АРМИРАН БЕТОН На скицата е прикажана конструкција на една настрешница покриена со челичен пластифициран лим со дебелина 0,8 mm. Рожниците
Διαβάστε περισσότεραДРВОТО КАКО МАТЕРИЈАЛ ЗА
ГРАДЕЖЕН ФАКУЛТЕТ-СКОПЈЕ Катедра за бетонски и дрвени конструкции ДРВОТО КАКО МАТЕРИЈАЛ ЗА ГРАДЕЖНИ КОНСТРУКЦИИ Доцент д-р Тони Аранѓеловски ОСНОВИ НА ДРВЕНИ КОНСТРУКЦИИ СТРУКТУРА НА ДРВОТО Дрвото е биолошки,
Διαβάστε περισσότεραЛУШПИ МЕМБРАНСКА ТЕОРИЈА
Вежби ЛУШПИ МЕМБРАНСКА ТЕОРИЈА РОТАЦИОНИ ЛУШПИ ТОВАРЕНИ СО РОТАЦИОНО СИМЕТРИЧЕН ТОВАР ОСНОВНИ ВИДОВИ РОТАЦИОНИ ЛУШПИ ЗАТВОРЕНИ ЛУШПИ ОТВОРЕНИ ЛУШПИ КОМБИНИРАНИ - СФЕРНИ - КОНУСНИ -ЦИЛИНДРИЧНИ - СФЕРНИ
Διαβάστε περισσότεραПредизвици во моделирање
Предизвици во моделирање МОРА да постои компатибилност на јазлите од мрежата на КЕ на спојот на две површини Предизвици во моделирање Предизвици во моделирање Предизвици во моделирање Предизвици во моделирање
Διαβάστε περισσότεραДеформабилни каркатеристики на бетонот
УКИМ Градежен Факултет, Скопје Деформабилни каркатеристики на бетонот проф. д-р Тони Аранѓеловски Деформабилни карактеристики на бетонот Содржина: Деформации на бетонот под влијание на краткотрајни натоварувања
Διαβάστε περισσότερα37. РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА 2013 основни училишта 18 мај VII одделение (решенија на задачите)
37. РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА 03 основни училишта 8 мај 03 VII одделение (решенија на задачите) Задача. Во еден пакет хартија која вообичаено се користи за печатење, фотокопирање и сл. има N = 500
Διαβάστε περισσότεραТЕХНИЧКА МЕХАНИКА 1. код: 312 ВОВЕД ВО ПРЕДМЕТОТ ОРГАНИЗАЦИЈА НА ПРЕДМЕТОТ ЦЕЛИ НА ПРЕДМЕТОТ ОСНОВНА ЛИТЕРАТУРА
Универзитет Св. Кирил и Методиј Машински факултет - Скопје код: 1 ВОВЕД ВО ПРЕДМЕТОТ наставник: Кабинет: 07 Приемни термини: понеделник и вторник - 16 часот ЦЕЛИ НА ПРЕДМЕТОТ 1. изучување на услови за
Διαβάστε περισσότεραТЕХНИЧКА МЕХАНИКА 1 3М21ОМ01 ВОВЕД ВО ПРЕДМЕТОТ ЦЕЛИ НА ПРЕДМЕТОТ ОСНОВНА ЛИТЕРАТУРА ОРГАНИЗАЦИЈА НА ПРЕДМЕТОТ
Универзитет Св. Кирил и Методиј Машински факултет - Скопје М1ОМ01 ВОВЕД ВО ПРЕДМЕТОТ наставник: Кабинет: 10 Приемни термини: ЦЕЛИ НА ПРЕДМЕТОТ 1. изучувањенаусловизарамнотежанаточкаи крути тела, определување
Διαβάστε περισσότεραЗАДАЧИ ЗА УВЕЖБУВАЊЕ НА ТЕМАТА ГЕОМЕТРИСКИ ТЕЛА 8 ОДД.
ЗАДАЧИ ЗА УВЕЖБУВАЊЕ НА ТЕМАТА ГЕОМЕТРИСКИ ТЕЛА 8 ОДД. ВО ПРЕЗЕНТАЦИЈАТА ЌЕ ПРОСЛЕДИТЕ ЗАДАЧИ ЗА ПРЕСМЕТУВАЊЕ ПЛОШТИНА И ВОЛУМЕН НА ГЕОМЕТРИСКИТЕ ТЕЛА КОИ ГИ ИЗУЧУВАМЕ ВО ОСНОВНОТО ОБРАЗОВАНИЕ. СИТЕ ЗАДАЧИ
Διαβάστε περισσότερα46. РЕГИОНАЛЕН НАТПРЕВАР ПО ФИЗИКА април III година. (решенија на задачите)
46. РЕГИОНАЛЕН НАТПРЕВАР ПО ФИЗИКА 3 април 3 III година (решенија на задачите) Задача. Хеликоптер спасува планинар во опасност, спуштајќи јаже со должина 5, и маса 8, kg до планинарот. Планинарот испраќа
Διαβάστε περισσότεραОд точката С повлечени се тангенти кон кружницата. Одреди ја големината на AOB=?
Задачи за вежби тест плоштина на многуаголник 8 одд На што е еднаков збирот на внатрешните агли кај n-аголник? 1. Одреди ја плоштината на паралелограмот, според податоците дадени на цртежот 2. 3. 4. P=?
Διαβάστε περισσότερα7.1 Деформациони карактеристики на материјалите
7. Механички особини Механичките особини на материјалите ја карактеризираат нивната способност да се спротистават на деформациите и разрушувањата предизвикани од дејството на надворешните сили, односно
Διαβάστε περισσότεραЗБИРКА ЗАДАЧИ ПО ТЕОРИЈА НА ДВИЖЕЊЕТО НА МОТОРНИТЕ ВОЗИЛА
УНИВЕРЗИТЕТ СВ. КИРИЛ И МЕТОДИЈ ВО СКОПЈЕ МАШИНСКИ ФАКУЛТЕТ СКОПЈЕ МИЛАН ЌОСЕВСКИ ЗБИРКА ЗАДАЧИ ПО ТЕОРИЈА НА ДВИЖЕЊЕТО НА МОТОРНИТЕ ВОЗИЛА Z v t T Gt Tt 0 Rt Rat Rvt rd Tvt Tat Xt e Zt X Скопје, 2016
Διαβάστε περισσότερα45 РЕГИОНАЛЕН НАТПРЕВАР ПО ФИЗИКА 2012 II година (решенија на задачите)
45 РЕГИОНАЛЕН НАТПРЕВАР ПО ФИЗИКА 1 II година (решенија на задачите) 1 Координатите на два точкасти полнежи q 1 = + 3 µ C и q = 4µ C, поставени во xy рамнината се: x 1 = 3, 5cm; y 1 =, 5cm и x = cm; y
Διαβάστε περισσότερα45 РЕГИОНАЛЕН НАТПРЕВАР ПО ФИЗИКА 2012 III година (решенија на задачите)
45 РЕГИОНАЛЕН НАТПРЕВАР ПО ФИЗИКА III година (решенија на задачите Рамнострана стаклена призма чиј агол при врвот е = 6 поставена е во положба на минимална девијација за жолтата светлина Светлината паѓа
Διαβάστε περισσότεραMEHANIKA NA FLUIDI. IV semestar, 6 ECTS Вонр. проф. d-r Zoran Markov. 4-Mar-15 1
MEHANIKA NA FLUIDI IV semestar, 6 ECTS Вонр. проф. d-r Zoran Markov 1 СОДРЖИНА 1. Вовед во механиката на флуидите 2. Статика на флуидите 3. Кинематика на струењата 4. Динамика на идеален флуид 5. Некои
Διαβάστε περισσότεραВЕРОЈАТНОСТ И СТАТИСТИКА ВО СООБРАЌАЈОТ 3. СЛУЧАЈНИ ПРОМЕНЛИВИ
Предавање. СЛУЧАЈНИ ПРОМЕНЛИВИ. Еднодимензионална случајна променлива При изведување на експеримент, случајниот настан може да има многу различни реализации. Ако ги знаеме можните реализации и ако ја знаеме
Διαβάστε περισσότεραПоложај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ.
VI Савијање кружних плоча Положај сваке тачке кружне плоче је одређен са поларним координатама и ϕ слика 61 Диференцијална једначина савијања кружне плоче је: ( ϕ) 1 1 w 1 w 1 w Z, + + + + ϕ ϕ K Пресечне
Διαβάστε περισσότεραРешенија на задачите за I година LII РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА ЗА УЧЕНИЦИТЕ ОД СРЕДНИТЕ УЧИЛИШТА ВО РЕПУБЛИКА МАКЕДОНИЈА 16 мај 2009.
LII РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА ЗА УЧЕНИЦИТЕ ОД СРЕДНИТЕ УЧИЛИШТА ВО РЕПУБЛИКА МАКЕДОНИЈА 16 мај 009 I година Задача 1. Топче се пушта да паѓа без почетна брзина од некоја висина над површината на земјата.
Διαβάστε περισσότεραДоц. д-р Наташа Ристовска
Доц. д-р Наташа Ристовска Класификација според структура на скелет Алифатични Циклични Ароматични Бензеноидни Хетероциклични (Повторете ги хетероцикличните соединенија на азот, петчлени и шестчлени прстени,
Διαβάστε περισσότερα46. РЕГИОНАЛЕН НАТПРЕВАР ПО ФИЗИКА април II година (решенија на задачите)
46 РЕГИОНАЛЕН НАТПРЕВАР ПО ФИЗИКА 03 0 април 03 година (решенија на задачите Задача Tочкаст полнеж е поставен во темето на правиот агол на правоаголен триаголник како што е прикажано на слика Јачината
Διαβάστε περισσότεραЗаземјувачи. Заземјувачи
Заземјувачи Заземјување претставува збир на мерки и средства кои се превземаат со цел да се обезбедат нормални услови за работа на системот и безбедно движење на луѓе и животни во близина на објектот.
Διαβάστε περισσότεραЗБИРКА ОДБРАНИ РЕШЕНИ ЗАДАЧИ ПО ФИЗИКА
УНИВЕРЗИТЕТ "СВ КИРИЛ И МЕТОДИЈ" СКОПЈЕ ФАКУЛТЕТ ЗА ЕЛЕКТРОТЕХНИКА И ИНФОРМАЦИСКИ ТЕХНОЛОГИИ Верка Георгиева Христина Спасевска Маргарита Гиновска Ласко Баснарков Лихнида Стојановска-Георгиевска ЗБИРКА
Διαβάστε περισσότεραУ Н И В Е Р З И Т Е Т С В. К И Р И Л И М Е Т О Д И Ј В О С К О П Ј Е
У Н И В Е Р З И Т Е Т С В. К И Р И Л И М Е Т О Д И Ј В О С К О П Ј Е А Р Х И Т Е К Т О Н С К И Ф А К У Л Т Е Т П Р И Н Ц И П И Н А С Т А Т И К А Т А Вонр. проф. д-р Ана Тромбева-Гаврилоска Вонр. проф.
Διαβάστε περισσότεραПроф. д-р Ѓорѓи Тромбев ГРАДЕЖНА ФИЗИКА. Влажен воздух 3/22/2014
Проф. д-р Ѓорѓи Тромбев ГРАДЕЖНА ФИЗИКА Влажен воздух 1 1 Влажен воздух Влажен воздух смеша од сув воздух и водена пареа Водената пареа во влажниот воздух е претежно во прегреана состојба идеален гас.
Διαβάστε περισσότεραИСПИТ ПО ПРЕДМЕТОТ ВИСОКОНАПОНСКИ МРЕЖИ И СИСТЕМИ (III година)
Septemvri 7 g ИСПИТ ПО ПРЕДМЕТОТ ВИСОКОНАПОНСКИ МРЕЖИ И СИСТЕМИ (III година) Задача 1. На сликата е прикажан 4 kv преносен вод со должина L = 18 km кој поврзува ЕЕС со бесконечна моќност и една електрична
Διαβάστε περισσότερα5. Динамика на конструкции
Динамика на конструкции. Динамика на конструкции Задача. За дадната армирано бтонска конструкција да с опрдли кружната фрквнција ω приодата на слободнит нпригушни осцилации Т n на основниот тон. Модулот
Διαβάστε περισσότεραПроф. д-р Ѓорѓи Тромбев ГРАДЕЖНА ФИЗИКА
Проф. д-р Ѓорѓи Тромбев ГРАДЕЖНА ФИЗИКА Преглед - MKС ЕN ISO 6946 Компоненти и елементи од згради Топлински отпори и коефициенти на премин на топлина Метод на пресметка - ( Building components and building
Διαβάστε περισσότεραИНТЕРПРЕТАЦИЈА на NMR спектри. Асс. д-р Јасмина Петреска Станоева
ИНТЕРПРЕТАЦИЈА на NMR спектри Асс. д-р Јасмина Петреска Станоева Нуклеарно магнетна резонанца Нуклеарно магнетна резонанца техника на молекулска спектроскопија дава информација за бројот и видот на атомите
Διαβάστε περισσότεραШЕМИ ЗА РАСПОРЕДУВАЊЕ НА ПРОСТИТЕ БРОЕВИ
МАТЕМАТИЧКИ ОМНИБУС, (07), 9 9 ШЕМИ ЗА РАСПОРЕДУВАЊЕ НА ПРОСТИТЕ БРОЕВИ Весна Целакоска-Јорданова Секој природен број поголем од што е делив самo со и сам со себе се вика прост број. Запишани во низа,
Διαβάστε περισσότεραТеорија електричних кола
др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола i i i Милка Потребић др Милка Потребић, ванредни професор,
Διαβάστε περισσότερα3. ПРЕСМЕТКА НА КРОВ НА КУЌА СО ТРИГОНОМЕТРИЈА
3. ПРЕСМЕТКА НА КРОВ НА КУЌА СО ТРИГОНОМЕТРИЈА Цел: Учениците/студентите да се запознаат со равенки за пресметка на: агли, периметар, плоштина, волумен на триаголна призма, како од теоретски аспект, така
Διαβάστε περισσότεραПроф. д-р Ѓорѓи Тромбев ГРАДЕЖНА ФИЗИКА
Проф. д-р Ѓорѓи Тромбев ГРАДЕЖНА ФИЗИКА Преглед - МКС EN ISO 14683:2007 Топлински мостови во градежништво Линеарни коефициенти на премин на топлина Упростен метод и утврдени вредности Thermal bridges in
Διαβάστε περισσότεραАнализа на триаголници: Упатство за наставникот
Анализа на триаголници: Упатство за наставникот Цел:. Што мислиш? Колку многу триаголници со основа a=4см и висина h=3см можеш да нацрташ? Линк да Видиш и Направиш Mathcast за Што мислиш? Нацртај точка
Διαβάστε περισσότεραРегулација на фреквенција и активни моќности во ЕЕС
8 Регулација на фреквенција и активни моќности во ЕЕС 8.1. Паралелна работа на синхроните генератори Современите електроенергетски системи го напојуваат голем број на синхрони генератори кои работат паралелно.
Διαβάστε περισσότερα4.3 Мерен претворувач и мерен сигнал.
4.3 Мерен претворувач и мерен сигнал. 1 2 Претворањето на процесната величина во мерен сигнал се изведува со помош на мерен претворувач. Може да се каже дека улогата на претворувачот е претворање на енергијата
Διαβάστε περισσότεραПредмет: Задатак 4: Слика 1.0
Лист/листова: 1/1 Задатак 4: Задатак 4.1.1. Слика 1.0 x 1 = x 0 + x x = v x t v x = v cos θ y 1 = y 0 + y y = v y t v y = v sin θ θ 1 = θ 0 + θ θ = ω t θ 1 = θ 0 + ω t x 1 = x 0 + v cos θ t y 1 = y 0 +
Διαβάστε περισσότεραИзвори на електрична енергија
6 Извори на електрична енергија 6.1. Синхрон генератор За трансформација на механичка во електрична енергија денес се употребуваат, скоро исклучиво, трифазни синхрони генератори со фреквенција од 50 Hz,
Διαβάστε περισσότεραСТАНДАРДНИ НИСКОНАПОНСКИ СИСТЕМИ
НН трифазни мрежи се изведуваат со три или четири спроводника мрежите со четири спроводника можат да преминат во мрежи со пет спроводника, но со оглед што тоа во пракса се прави во објектите (кај потрошувачите),
Διαβάστε περισσότεραАНАЛИТИЧКИ МЕТОД ЗА ПРЕСМЕТКА НА ДОВЕРЛИВОСТA НА ДИСТРИБУТИВНИTE СИСТЕМИ
ЧЕТВРТО СОВЕТУВАЊЕ Охрид, 6 9 септември 004 д-р Ристо Ачковски, дипл ел инж Електротехнички факултет, Скопје Сашо Салтировски, дипл ел инж АД Електростопанство на Македонија, Скопје АНАЛИТИЧКИ МЕТОД ЗА
Διαβάστε περισσότερα56. РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА 2013 Скопје, 11 мај IV година (решенија на задачите)
56. РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА 03 Скопје, мај 03 IV година (решенија на задачите) Задача. Птица со маса 500 лета во хоризонтален правец и не внимавајќи удира во вертикално поставена прачка на растојание
Διαβάστε περισσότεραИЗБОР НА ЕНЕРГЕТСКИ ТРАНСФОРМАТОР ЗА МЕТАЛНА КОМПАКТНА ТРАФОСТАНИЦА
8. СОВЕТУВАЊЕ Охрид, 22 24 септември Михаил Дигаловски Крсте Најденкоски Факултет за електротехника и информациски технологии, Скопје Тане Петров Бучим ДООЕЛ - Радовиш ИЗБОР НА ЕНЕРГЕТСКИ ТРАНСФОРМАТОР
Διαβάστε περισσότεραМетодина гранични елементи за инженери
Методина гранични елементи за инженери доц. д-р Тодорка Самарџиоска Градежен факултет УКИМ -Скопје Типовина формулации со гранични елементи директна формулација: Интегралната равенка е формулирана во врска
Διαβάστε περισσότεραНАСОКИ ЗА МОДЕЛИРАЊЕ НА КОНСТРУКЦИИТЕ И ИЗВРШУВАЊЕ НА СТАТИЧКА И СЕИЗМИЧКА АНАЛИЗА ВО РАМКИТЕ НА ГРАДЕЖНО-КОНСТРУКТИВНАТА ПРОЕКТНА ДОКУМЕНТАЦИЈА
НАСОКИ ЗА МОДЕЛИРАЊЕ НА КОНСТРУКЦИИТЕ И ИЗВРШУВАЊЕ НА СТАТИЧКА И СЕИЗМИЧКА АНАЛИЗА ВО РАМКИТЕ НА ГРАДЕЖНО-КОНСТРУКТИВНАТА ПРОЕКТНА ДОКУМЕНТАЦИЈА 1. МОТИВАЦИЈА (1) Досегашната пракса во рамките на изготвувањето
Διαβάστε περισσότεραПредавање 3. ПРОИЗВОДНИ ТЕХНОЛОГИИ Обработка со симнување материјал (режење) Машински факултет-скопје 2.4. ПРОЦЕСИ ВО ПРОИЗВОДНОТО ОПКРУЖУВАЊЕ
Предавање 3 ПРОИЗВОДНИ ТЕХНОЛОГИИ Обработка со симнување материјал (режење) Машински факултет-скопје 2.4. ПРОЦЕСИ ВО ПРОИЗВОДНОТО ОПКРУЖУВАЊЕ Во структурата на индустриските системи на различни нивоа се
Διαβάστε περισσότερα1.2. Сличност троуглова
математик за VIII разред основне школе.2. Сличност троуглова Учили смо и дефиницију подударности два троугла, као и четири правила (теореме) о подударности троуглова. На сличан начин наводимо (без доказа)
Διαβάστε περισσότεραМАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА
Београд, 21.06.2014. За штап приказан на слици одредити најмању вредност критичног оптерећења P cr користећи приближан поступак линеаризоване теорије другог реда и: а) и један елемент, слика 1, б) два
Διαβάστε περισσότερα5. ТЕХНИЧКИ И ТЕХНОЛОШКИ КАРАКТЕРИСТИКИ НА ОБРАБОТКАТА СО РЕЖЕЊЕ -1
5. ТЕХНИЧКИ И ТЕХНОЛОШКИ КАРАКТЕРИСТИКИ НА ОБРАБОТКАТА СО РЕЖЕЊЕ -1 5.1. ОБРАБОТУВАЧКИ СИСТЕМ И ПРОЦЕС ЗА ОБРАБОТКА СО РЕЖЕЊЕ 5.1.1. ОБРАБОТУВАЧКИ СИСТЕМ ЗА РЕЖЕЊЕ Обработувачкиот систем или системот за
Διαβάστε περισσότεραКОМПЕНЗАЦИЈА НА РЕАКТИВНА МОЌНОСТ
Сите потрошувачи за својата работа ангажираат активна моќност, а некои од нив и реактивна моќност во ЕЕС извори на активната моќност се генераторите, синхроните компензатори, синхроните мотори, кондензаторските
Διαβάστε περισσότεραDEMOLITION OF BUILDINGS AND OTHER OBJECTS WITH EXPLOSIVES AND OTHER NONEXPLOSIVES MATERIALS
Ристо Дамбов * РУШЕЊЕ НА ЗГРАДИ И ДРУГИ ГРАДЕЖНИ ОБЈЕКТИ СО ПОМОШ НА ЕКСПЛОЗИВНИ И НЕЕКСПЛОЗИВНИ МАТЕРИИ РЕЗИМЕ Во трудот се преставени основните параметри и начини за рушење на стари згради. Ќе се прикажат
Διαβάστε περισσότεραМАТЕМАТИКА - НАПРЕДНО НИВО МАТЕМАТИКА НАПРЕДНО НИВО. Време за решавање: 180 минути. јуни 2012 година
ШИФРА НА КАНДИДАТОТ ЗАЛЕПИ ТУКА ДРЖАВНА МАТУРА МАТЕМАТИКА - НАПРЕДНО НИВО МАТЕМАТИКА НАПРЕДНО НИВО Време за решавање: 180 минути јуни 2012 година Шифра на ПРВИОТ оценувач Запиши тука: Шифра на ВТОРИОТ
Διαβάστε περισσότεραБИОФИЗИКА Биомеханика. Доцент Др. Томислав Станковски
БИОФИЗИКА Биомеханика Доцент Др. Томислав Станковски За интерна употреба за потребите на предметот Биофизика Катедра за Медицинска Физика Медицински Факултет Универзитет Св. Кирил и Методиj, Скопjе Септември
Διαβάστε περισσότεραЕтички став спрема болно дете од анемија Г.Панова,Г.Шуманов,С.Јовевска,С.Газепов,Б.Панова Факултет за Медицински науки,,универзитет Гоце Делчев Штип
Етички став спрема болно дете од анемија Г.Панова,Г.Шуманов,С.Јовевска,С.Газепов,Б.Панова Факултет за Медицински науки,,универзитет Гоце Делчев Штип Апстракт Вовед:Болести на крвта можат да настанат кога
Διαβάστε περισσότεραВетерна енергија 3.1 Вовед
3 Ветерна енергија 3.1 Вовед Енергијата на ветерот е една од првите форми на енергија која ја користел човекот. Уште старите Египќани ја користеле за задвижување на своите бродови и ветерни мелници. Ваквиот
Διαβάστε περισσότεραПримена на Matlab за оптимизација на режимите на работа на ЕЕС
6. СОВЕТУВАЊЕ Охрид, 4-6 октомври 2009 Мирко Тодоровски Ристо Ачковски Јовица Вулетиќ Факултет за електротехника и информациски технологии, Скопје Примена на Matlab за оптимизација на режимите на работа
Διαβάστε περισσότεραb) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је:
Пример 1. III Савијање правоугаоних плоча За правоугаону плочу, приказану на слици, одредити: a) израз за угиб, b) вредност угиба и пресечних сила у тачки 1 ако се користи само први члан реда усвојеног
Διαβάστε περισσότεραКои од наведениве процеси се физички, а кои се хемиски?
Кои од наведениве процеси се физички, а кои се хемиски? I. фотосинтеза II. вриење на алкохол III. топење на восок IV. горење на бензин V. скиселување на виното а) физички:ниту едно хемиски: сите б) физички:
Διαβάστε περισσότεραРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Тест Математика Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 00/0. година ТЕСТ МАТЕМАТИКА
Διαβάστε περισσότεραРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 01/01. година ТЕСТ
Διαβάστε περισσότεραналазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm
1 Два тачкаста наелектрисања 1 400 p и 100p налазе се у диелектрику релативне диелектричне константе ε на међусобном растојању ( 1cm ) као на слици 1 Одредити силу на наелектрисање 3 100p када се оно нађе:
Διαβάστε περισσότερα( ) ( ) ( ) ( ) ( ) ( )
Мерни мостови и компензатори V. Мерни мостови и компензатори V.. Мерни мостови. Колкава е вредноста на отпорот измерен со Томпсоновиот мост ако се: Ω,, Ω 6 и Ω. Колкава процентуална грешка ќе се направи
Διαβάστε περισσότεραII. Структура на атом, хемиски врски и енергетски ленти
II. Структура на атом, хемиски врски и енергетски ленти II. Структура на атом, хемиски врски и енергетски ленти 1. Структура на атом 2. Јони 3. Термодинамика 3.1 Темодинамичка стабилност 3.2 Влијание на
Διαβάστε περισσότεραРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 014/01. година ТЕСТ МАТЕМАТИКА
Διαβάστε περισσότεραПРЕОДНИ ПРОЦЕСИ ПРИ ВКЛУЧУВАЊЕ НА КОНДЕНЗАТОРСКИТЕ БАТЕРИИ КАЈ ЕЛЕКТРОЛАЧНАТА ПЕЧКА
8. СОВЕТУВАЊЕ Охрид, 4 септември Бранко Наџински Илија Хаџидаовски Макстил АД ПРЕОДНИ ПРОЦЕСИ ПРИ ВКЛУЧУВАЊЕ НА КОНДЕНЗАТОРСКИТЕ БАТЕРИИ КАЈ ЕЛЕКТРОЛАЧНАТА ПЕЧКА КУСА СОДРЖИНА Во овој труд е разгледан
Διαβάστε περισσότερα1. ОПШТИ ПОИМИ ЗА ТУРБОПУМПИТЕ ДЕФИНИЦИЈА 1.2 ПОДЕЛБА, ОСНОВНИ ШЕМИ И ПРИНЦИП НА РАБОТА ИСТОРИСКИ РАЗВОЈ НА ПУМПИТЕ 7
. ОПШТИ ПОИМИ ЗА ТУРБОПУМПИТЕ. ДЕФИНИЦИЈА. ПОДЕЛБА, ОСНОВНИ ШЕМИ И ПРИНЦИП НА РАБОТА.3 ИСТОРИСКИ РАЗВОЈ НА ПУМПИТЕ 7. ТЕОРЕТСКИ ОСНОВИ. КАРАКТЕРИСТИКИ НА СТРУЕЊЕТО НИЗ ТУРБОПУМПИТЕ. ЕНЕРГИЈА НА СТРУЕЊЕ
Διαβάστε περισσότεραРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки
Διαβάστε περισσότεραРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 011/01. година ТЕСТ МАТЕМАТИКА УПУТСТВО
Διαβάστε περισσότερα56. РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА 2013 Скопје, 11 мај I година (решенија на задачите)
56. РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА 03 Скопје, мај 03 I година (решенија на задачите) Задача. Експресен воз го поминал растојанието помеѓу две соседни станици, кое изнесува, 5 km, за време од 5 min. Во
Διαβάστε περισσότεραРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 013/014. година ТЕСТ
Διαβάστε περισσότερα2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА
. колоквијум. Наставни колоквијум Задаци за вежбање У свим задацима се приликом рачунања добија само по једна вредност. Одступање појединачне вредности од тачне вредности је апсолутна грешка. Вредност
Διαβάστε περισσότεραУпутство за избор домаћих задатака
Упутство за избор домаћих задатака Студент од изабраних задатака области Математике 2: Комбинаторика, Вероватноћа и статистика бира по 20 задатака. Студент може бирати задатке помоћу програмског пакета
Διαβάστε περισσότεραнумеричка анализа и симулација на преминување на возило преку вертикална препрека на пат
нумеричка анализа и симулација на преминување на возило преку вертикална препрека на пат Елениор Николов, Митко Богданоски Катедра за воена логистика Воена академија Скопје, Р. Македонија elenior.nikolov@ugd.edu.mk
Διαβάστε περισσότεραБИОФИЗИКА Биоакустика. Доцент Др. Томислав Станковски
БИОФИЗИКА Биоакустика Доцент Др. Томислав Станковски За интерна употреба за потребите на предметот Биофизика Катедра за Медицинска Физика Медицински Факултет Универзитет Св. Кирил и Методиj, Скопjе Ноември
Διαβάστε περισσότερα2. Просечната продажна цена на електрична енергија по која АД ЕЛЕМ - Скопје, подружница Енергетика, ги снабдува потрошувачите за 2018 година од:
Регулаторната комисија за енергетика на Република Македонија врз основа на член 22 став 1 точка 4 од Законот за енергетика ( Службен весник на Република Македонија бр.16/11, 136/11, 79/13, 164/13, 41/14,
Διαβάστε περισσότεραПОДОБРУВАЊЕ НА КАРАКТЕРИСТИКИТЕ НА ИСПИТНА СТАНИЦА ЗА ТЕСТИРАЊЕ НА ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ
8. СОВЕТУВАЊЕ Охрид, 22 24 септември Љубомир Николоски Крсте Најденкоски Михаил Дигаловски Факултет за електротехника и информациски технологии, Скопје Зоран Трипуноски Раде Кончар - Скопје ПОДОБРУВАЊЕ
Διαβάστε περισσότεραРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2010/2011. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО
Διαβάστε περισσότεραМИНИСТЕРСТВО ЗА ЕКОНОМИЈА
2010020381 МИНИСТЕРСТВО ЗА ЕКОНОМИЈА Врз основа на член 11 став (1), од Законот за возила ( Службен весник на Република Македонија бр. 140/2008), министерот за економија донесе ПРАВИЛНИК ЗА ТЕХНИЧКИТЕ
Διαβάστε περισσότεραЕВН ЕЛЕКТРОСТОПАНСТВО НА МАКЕДОНИЈА
20140300978 ЕВН ЕЛЕКТРОСТОПАНСТВО НА МАКЕДОНИЈА ИЗМЕНИ И ДОПОЛНУВАЊЕ НА МРЕЖНИ ПРАВИЛА ЗА ДИСТРИБУЦИЈА НА ЕЛЕКТРИЧНА ЕНЕРГИЈА ( СЛУЖБЕН ВЕСНИК НА РЕПУБЛИКА МАКЕДОНИЈА БР. 87/12) Член 1 Во мрежните правила
Διαβάστε περισσότεραТАРИФЕН СИСТЕМ ЗА ДИСТРИБУЦИЈА
ТАРИФЕН СИСТЕМ ЗА ДИСТРИБУЦИЈА Тарифен систем за ДС на ЕВН Македонија 2014 година (rke.org.mk) Надоместок за користење на дистрибутивниот систем плаќаат сите потрошувачи, корисници на дистрибутивниот сите
Διαβάστε περισσότεραПрактикум по Општа и неорганска хемија
Универзитет Св. Кирил и Методиј - Скопје Фармацевтски факултет, Скопје Институт за применета хемија и фармацевтски анализи Практикум по Општа и неорганска хемија студиска програма Лабораториски биоинжинер
Διαβάστε περισσότεραПроф. д-р Ѓорѓи Тромбев ГРАДЕЖНА ФИЗИКА
Проф. д-р Ѓорѓи Тромбев ГРАДЕЖНА ФИЗИКА Преглед - МКС EN ISO 3788:2006 - Хигротермални карактеристики на градежни компоненти и елемнти Внатрешна површинска температура за избегнување на критична површинска
Διαβάστε περισσότεραГРАДЕЖЕН ФАКУЛТЕТ. Проф. д-р Светлана Петковска - Ончевска Асист. м-р Коце Тодоров
УНИВЕРЗИТЕТ СВ.КИРИЛ И МЕТОДИЈ ГРАДЕЖЕН ФАКУЛТЕТ Проф. д-р Светлана Петковска - Ончевска Асист. м-р Коце Тодоров СКОПJЕ, 202. ПРЕДГОВОР Предавањата по ГРАДЕЖНИ МАТЕРИЈАЛИ се наменети за студентите на Градежниот
Διαβάστε περισσότερα7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде
математик за VIII разред основне школе 4. Прво наћи дужину апотеме. Како је = 17 cm то је тражена површина P = 18+ 4^cm = ^4+ cm. 14. Основа четворостране пирамиде је ромб чије су дијагонале d 1 = 16 cm,
Διαβάστε περισσότερα1:25 гасоводна цевка Попречни профили 1:100
СОДРЖИНА 1. ВОВЕД... 1 1.1 КОРИСТЕНИ ПОДЛОГИ... 1 1.2 МЕТОДОЛОШКИ ПРИСТАП... 2 2. OПИС НА ПОСТОЈНА СОСТОЈБА НА КОРИТОТО НА РЕКА ЛИПКОВСКА... 2 3. ХИДРОЛОШКИ ПОДЛОГИ... 5 4. ХИДРАУЛИЧКА АНАЛИЗА НА ПОСТОЈНА
Διαβάστε περισσότεραI. Теорија на грешки
I. Теорија на грешки I.. Вовед. Еден отпорник со назначена вредност од 000 Ω, измерен е со многу точна постапка и добиена е вредност од 000,9Ω. Да се одреди номиналната вредност на, конвенционално точната
Διαβάστε περισσότεραМЕХАНИКА 1 МЕХАНИКА 1
диј е ИКА Универзитет Св. Кирил и Методиј Универзитет Машински Св. факултет Кирил -и Скопје Методиј во Скопје Машински факултет 3М21ОМ01 ТЕХНИЧКА МЕХАНИКА професор: доц. д-р Виктор Гаврилоски 1. ВОВЕДНИ
Διαβάστε περισσότεραг) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве
в) дијагонала dd и страница aa квадрата dd = aa aa dd = aa aa = није рац. бр. нису самерљиве г) страница aa и пречник RR описаног круга правилног шестоугла RR = aa aa RR = aa aa = 1 јесте рац. бр. јесу
Διαβάστε περισσότεραОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда
ОБЛАСТИ: ) Тачка ) Права Jov@soft - Март 0. ) Тачка Тачка је дефинисана (одређена) у Декартовом координатном систему са своје две коодринате. Примери: М(5, ) или М(-, 7) или М(,; -5) Jov@soft - Март 0.
Διαβάστε περισσότεραСОДРЖИНА 1. ОСНОВНИ ПОИМИ ОД ПОДАТОЧНОТО РУДАРЕЊЕ УЧЕЊЕ НА ПРЕДИКТИВНИ МОДЕЛИ...9
СОДРЖИНА ВОВЕД...3 1. ОСНОВНИ ПОИМИ ОД ПОДАТОЧНОТО РУДАРЕЊЕ...4 1.1 ВОВЕД...4 1.2 ОСНОВНИ ЗАДАЧИ ВО ПОДАТОЧНОТО РУДАРЕЊЕ...6 2. УЧЕЊЕ НА ПРЕДИКТИВНИ МОДЕЛИ...9 2.1 ВОВЕД...9 2.2 УЧЕЊЕ НА ВЕРОЈАТНОСНИ МОДЕЛИ...10
Διαβάστε περισσότεραПЕТТО СОВЕТУВАЊЕ. Охрид, 7 9 октомври 2007 СОВРЕМЕН СТАТИЧКИ ВОЗБУДЕН СИСТЕМ ЗА СИНХРОН ГЕНЕРАТОР СО ДИГИТАЛЕН РЕГУЛАТОР НА НАПОН
ПЕТТО СОВЕТУВАЊЕ Охрид, 7 9 октомври 007 Борчо Костов АД Електрани на Македонија - Скопје СОВРЕМЕН СТАТИЧКИ ВОЗБУДЕН СИСТЕМ ЗА СИНХРОН ГЕНЕРАТОР СО ДИГИТАЛЕН РЕГУЛАТОР НА НАПОН КУСА СОДРЖИНА Паралелно
Διαβάστε περισσότεραРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО
Διαβάστε περισσότεραГРОМОБРАНСКА ЗАШТИТА
M ANA G E MEN T SYS T EM Скопје, Коле Неделковски 22 тел./факс: 3 118 333 E-mail: iskra.atg@mt.net.mk ГРОМОБРАНСКА ЗАШТИТА СО РАНОСТАРТУВАЧКИ ГРОМОБРАН ERICO SI C E R T I F I E D ISO 9001:2000 ВОВЕД Заштитата
Διαβάστε περισσότεραВодич за аудиториски вежби по предметот Биофизика
Универзитет Св. Кирил и Методиј Скопје Медицински Факултет Доцент Др. Томислав Станковски Асист. Мр. Душко Лукарски, спец.мед.нук.физ Водич за аудиториски вежби по предметот Биофизика Магистри по фармација
Διαβάστε περισσότερα