( ) ( ) ( ) ( ) ( ) ( )

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "( ) ( ) ( ) ( ) ( ) ( )"

Transcript

1 Мерни мостови и компензатори V. Мерни мостови и компензатори V.. Мерни мостови. Колкава е вредноста на отпорот измерен со Томпсоновиот мост ако се: Ω,, Ω 6 и Ω. Колкава процентуална грешка ќе се направи ако се зголеми за % од, а притоа вредноста на мерениот отпор се пресметува според едноставниот израз a Ω? Сл... Томпсонов мост ( ) ( ) Ако се поделат горните две релации се добива ( ) ( ) ( ) ( ) [ ]

2 ако важи условот тогаш : 6, 6, mω 67, Ω 6, 9997 mω δ % 6, 6,9997,69 6,9997 %. Со Винов мост прикажан на сликата се мери капацитетот на реален кондензатор, прикажан со сериска комбинација на капацитетот и отпорот. Колкави се вредностите на, и тангенсот на аголот на загуби на кондензаторот, ако во рамнотежна состојба отпорите во другите гранки се: 6Ω, Ω,, Ω,, µ F и f H? Сл... Винов мост Условот за рамнотежа кај мостовите за наизменична струја е, каде што: ; ; ;, 6 6, Ω,,9 µ F 6 tgδ πf,. Мерни мостови и компензатори

3 . Шеринговиот мост е во рамнотежа кога е pf, Ω, pf, Ω, a фреквенцијата е f H. Колкави се и на кондензаторот и тангенсот на аголот на загуби? Сл... Шерингов мост ; ; ; Од условот { pf Ω { tg δ πf π,96. Максвелов мост за мерење на индуктивноста на калемот е во рамнотежна состојба кога е 9 Ω, Ω, F, Ω, a f H. Колкави се индуктивноста L, и факторот на доброта Q на калемот. Мерни мостови и компензатори

4 Сл... Максвелов мост L ; ; ; ( L ) { L Ω 9 { L mh L Q πfl π 6,8. За директно мерење на апсолутната грешка на отпорници користен е неурамнотежен Витстонов мост. При мерење на грешката на отпорник со вредност 7 Ω, напонот на мерната дијагонала изнесувал D mv. Мерењето е извршено во услови кога е Ω, 87, Ω, Ω. Напојувањето во напојната дијагонала е AB V. Колкава е апсолутната и релативната грешка на мерениот отпорник? Сл... Витстонов мост Мерни мостови и компензатори

5 δ - е услов за рамнотежа D AB X D ( )( ) ( ± ) ( ± )( ) ( 7 ± ) 87, ( 7 ± )( 87, ) AB ± 87,86,67 ±, 7Ω,7 % ± % ± % ±,76% 7 6. Фреквентно зависен мост е реализиран со -редна комбинација од и, - паралелна комбинација од и, и се омски отпорности односно и. a) Да се нацрта принципиелна шема и да се означат елементите за нагодување. b) Да се покаже кои услови треба да бидат исполнети за да важи f. π a) Сл...6. Робинсонов мост b) ; ; ; ( ) { { Мерни мостови и компензатори

6 6 Мерни мостови и компензатори ( ) / Бараните услови за f π се добиваат од горните релации Ако се исполнети условите f π. 7. Да се изведе изразот за непознатата отпорност и индуктивитет кај Андеронов мост. Сл...7. Андерсонов мост Со трансформација во ѕвезда импедансите,, добиени со трансформацијата се: ; Кога е D. Импедансата не влијае во тој случај. ( ) L

7 ( L ) [ ( ( )) ] L ( ) ( ) / : L L 8. Витстонов мерен мост е употребен за мерење механичка сила. За таа цел во едната гранка од мостот е употребен тензометар, чија отпорност кога не е оптоварен е еднаква на отпорноста на другите гранки во мостот и изнесува. При оптоварување тензометарот ја менува отпорноста за фактор (α ). Мостот се напојува со напон V. Едниот крај од мерната дијагонала на мостот е приклучен на маса, а другиот крај на инвертирачкиот влез на операцискиот засилувач. Повратната врска на засилувачот е отпорник со вредност n, приклучен на излезот на засилувачот на неговиот инвертирачки влез. Неинвертирачкиот влез е на маса. a) Да се нацрта шемата на мерното коло. b) Колку изнесува напонот на излезот од засилувачот ако α % од вредноста на, а n? a) Сл...8. Витстонов мост b) n A A i, n n i, i D - Мерни мостови и компензатори 7

8 D ( α ) α [ ( α )] ( ) ( α) A D i i α α α n i n ( α) α, n, 98V ( α) (,) V. Компензатори 9. Колку изнесува напонот измерен со компензаторот на сликата, ако нулиндикаторот останал без отклон при 8, 6Ω и Ω? Струјата во помошното коло е константна p cont. Сл... Компензатор за еднонасочна струја Отпорот помеѓу точките A и е еднаков на : p Точноста на мерењето на напонот зависи од точноста со која може да се одреди отпорот и помошната струја p. Поголема точност при мерењето се постигнува ако струјата во помошниот круг ја нагодиме со помош на прецизен еталонски елемент чијшто напон е точно одреден. За таа цел најпрвин преклопката ја поставуваме во положба, каде што се споредува 8 Мерни мостови и компензатори

9 напонот, на еталонскиот елемент со падот на напонот на потенциометарот. Со отпорот p се менува струјата во помошното коло додека нулиндикаторот не остане без отклон. Тогаш е падот на еталонскиот елемент еднаков на падот на напонот на отпорот, помеѓу точките на потенциометарот A и : p p Jа префрламе преклопката во положба, не менувајќи го притоа отпорот p, бараме положба на лизгачот при која нулиндикаторот ќе остане без отклон. Ако притоа отпорот помеѓу точките A и на потенциометарот изнесува следува p Помошната струја не смее да се менува за време на мерењето на напонот. Тоа во голема мерка може да се постигне со точна батерија, температурно независни отпори, добри контакти на лизгачите и преклопката на отпорите. Помошната струја треба често да се проверува, а тоа во горниот пример не е добро, бидејќи треба лизгачот постојано да се враќа во положба која одговара на вредност. Затоа се применува друго решение дадено на сликата: Сл... Компензатор P, се нагодува помошната струја со помош на отпорот p, се додека нулиндикаторот не остане без отклон. p. P се компензира мерениот напон, со поместување на лизгачот се додека не се постигне нулти отклон на нулиндикаторот: Мерни мостови и компензатори 9

10 За За P P p p cont p, V. На која класа на точност припаѓа амперметарот со мерно подрачје од A, ако при референтни услови тој покажува струја од,a;,a;,6a;,8a; A, а компензаторот на еталонскиот отпор, Ω, покажува падови на напони 9,8 mv ; 9,mV ; 9,9 mv ; 8,6 mv ;,mv. Сл... Компензатор за мерење струја е точната вредност на струјата A [ A] [ mv ] [ A] A, 9,8,98,, 9,,9,6,6 9,9,99,,8 8,6,86 -,6,, -, Мерни мостови и компензатори

11 g% ma mp %,6 g% %,6% k. t. Колкав е отпорот на непознатиот отпор, ако компензаторот при константна струја покажува напон 9, 8V и V, а еталонскиот отпорник е Ω? Сл... Компензатор за мерење отпор 9,8 98Ω. Наизменичен компензатор со термопреобразувач се користи за мерење на наизменичен напон. Колкав е наизменичниот напон, мерен со компензатор со термопреобразувач, ако нулиндикаторот при баждарење со еднонасочна струја на сл.а е во рамнотежа при, 86V,, 86Ω,, 9Ω и Ω, а по замената на местата на отпорот d и термопреобразувачот TP i 99Ω и непроменета струја p и отпор d TP (сл.б) нулиндикаторот останал без отклон при. Мерни мостови и компензатори

12 Сл....а Компензатор за наизменична струја Сл....б Компензатор за наизменична струја Својството на термоелементите, при протекување на струја да се создава термоелектричен напон на нивните краеви е искористено кај наизменичните компензатори со термопреобразувачи. Напонот што се развива на термоелементот е ист при протекување на еднонасочна и наизменична струја чија ефективна вредност е иста со еднонасочната. EFF За сл.а :,86 p ma,86 Мерни мостови и компензатори

13 За сл.б d и константна па важи: T TP си ги менуваат местата, затоа што е d TP p ( ) TP i Со i се нагодува да остане во рамнотежа, каде што, струјата p останува p, па оттука, V Мерни мостови и компензатори

8. МЕРНИ МОСТОВИ И КОМПЕНЗАТОРИ

8. МЕРНИ МОСТОВИ И КОМПЕНЗАТОРИ 8. МЕРНИ МОСТОВИ И КОМПЕНЗАТОРИ Мерните мостови и компензаторите спаѓаат во посредните мерни постапки. Мерењата со мерните мостови и компензаторите се остваруваат со затворени мерни процеси засновани врз

Διαβάστε περισσότερα

I. Теорија на грешки

I. Теорија на грешки I. Теорија на грешки I.. Вовед. Еден отпорник со назначена вредност од 000 Ω, измерен е со многу точна постапка и добиена е вредност од 000,9Ω. Да се одреди номиналната вредност на, конвенционално точната

Διαβάστε περισσότερα

46. РЕГИОНАЛЕН НАТПРЕВАР ПО ФИЗИКА април II година (решенија на задачите)

46. РЕГИОНАЛЕН НАТПРЕВАР ПО ФИЗИКА април II година (решенија на задачите) 46 РЕГИОНАЛЕН НАТПРЕВАР ПО ФИЗИКА 03 0 април 03 година (решенија на задачите Задача Tочкаст полнеж е поставен во темето на правиот агол на правоаголен триаголник како што е прикажано на слика Јачината

Διαβάστε περισσότερα

ПОДОБРУВАЊЕ НА КАРАКТЕРИСТИКИТЕ НА ИСПИТНА СТАНИЦА ЗА ТЕСТИРАЊЕ НА ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ

ПОДОБРУВАЊЕ НА КАРАКТЕРИСТИКИТЕ НА ИСПИТНА СТАНИЦА ЗА ТЕСТИРАЊЕ НА ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ 8. СОВЕТУВАЊЕ Охрид, 22 24 септември Љубомир Николоски Крсте Најденкоски Михаил Дигаловски Факултет за електротехника и информациски технологии, Скопје Зоран Трипуноски Раде Кончар - Скопје ПОДОБРУВАЊЕ

Διαβάστε περισσότερα

М-р Јасмина Буневска ОСНОВИ НА ПАТНОТО ИНЖЕНЕРСТВО

М-р Јасмина Буневска ОСНОВИ НА ПАТНОТО ИНЖЕНЕРСТВО УНИВЕРЗИТЕТ СВ. КЛИМЕНТ ОХРИДСКИ - БИТОЛА ТЕХНИЧКИ ФАКУЛТЕТ - БИТОЛА - Отсек за сообраќај и транспорт - ДОДИПЛОМСКИ СТУДИИ - ECTS М-р Јасмина Буневска ОСНОВИ НА ПАТНОТО ИНЖЕНЕРСТВО ПРИЛОГ ЗАДАЧИ ОД ОПРЕДЕЛУВАЊЕ

Διαβάστε περισσότερα

σ d γ σ M γ L = ЈАКОСТ 1 x A 4М21ОМ02 АКСИЈАЛНИ НАПРЕГАЊА (дел 2) 2.6. СОПСТВЕНА ТЕЖИНА КАКО АКСИЈАЛНА СИЛА Напонска состојаба

σ d γ σ M γ L = ЈАКОСТ 1 x A 4М21ОМ02 АКСИЈАЛНИ НАПРЕГАЊА (дел 2) 2.6. СОПСТВЕНА ТЕЖИНА КАКО АКСИЈАЛНА СИЛА Напонска состојаба 4МОМ0 ЈАКОСТ АКСИЈАЛНИ НАПРЕГАЊА (дел ) наставник:.6. СОПСТВЕНА ТЕЖИНА КАКО АКСИЈАЛНА СИЛА Напонска состојаба γ 0 ( специфична тежина) 0 ak() G γ G ΣX0 ak() G γ ak ( ) γ Аксијалната сила и напонот, по

Διαβάστε περισσότερα

ЈАКОСТ НА МАТЕРИЈАЛИТЕ

ЈАКОСТ НА МАТЕРИЈАЛИТЕ диј е ИКА ски ч. 7 ч. Универзитет Св. Кирил и Методиј Универзитет Машински Св. факултет Кирил и Скопје Методиј во Скопје Машински факултет МОМ ТЕХНИЧКА МЕХАНИКА професор: доц. др Виктор Гаврилоски. ТОРЗИЈА

Διαβάστε περισσότερα

ИСПИТ ПО ПРЕДМЕТОТ ВИСОКОНАПОНСКИ МРЕЖИ И СИСТЕМИ (III година)

ИСПИТ ПО ПРЕДМЕТОТ ВИСОКОНАПОНСКИ МРЕЖИ И СИСТЕМИ (III година) Septemvri 7 g ИСПИТ ПО ПРЕДМЕТОТ ВИСОКОНАПОНСКИ МРЕЖИ И СИСТЕМИ (III година) Задача 1. На сликата е прикажан 4 kv преносен вод со должина L = 18 km кој поврзува ЕЕС со бесконечна моќност и една електрична

Διαβάστε περισσότερα

НАПРЕГАЊЕ ПРИ ЧИСТО СМОЛКНУВАЊЕ

НАПРЕГАЊЕ ПРИ ЧИСТО СМОЛКНУВАЊЕ Факултет: Градежен Предмет: ЈАКОСТ НА МАТЕРИЈАЛИТЕ НАПРЕГАЊЕ ПРИ ЧИСТО СМОЛКНУВАЊЕ Напрегање на смолкнување е интензитет на сила на единица површина, што дејствува тангенцијално на d. Со други зборови,

Διαβάστε περισσότερα

37. РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА 2013 основни училишта 18 мај VII одделение (решенија на задачите)

37. РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА 2013 основни училишта 18 мај VII одделение (решенија на задачите) 37. РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА 03 основни училишта 8 мај 03 VII одделение (решенија на задачите) Задача. Во еден пакет хартија која вообичаено се користи за печатење, фотокопирање и сл. има N = 500

Διαβάστε περισσότερα

45 РЕГИОНАЛЕН НАТПРЕВАР ПО ФИЗИКА 2012 II година (решенија на задачите)

45 РЕГИОНАЛЕН НАТПРЕВАР ПО ФИЗИКА 2012 II година (решенија на задачите) 45 РЕГИОНАЛЕН НАТПРЕВАР ПО ФИЗИКА 1 II година (решенија на задачите) 1 Координатите на два точкасти полнежи q 1 = + 3 µ C и q = 4µ C, поставени во xy рамнината се: x 1 = 3, 5cm; y 1 =, 5cm и x = cm; y

Διαβάστε περισσότερα

КОМПЕНЗАЦИЈА НА РЕАКТИВНА МОЌНОСТ

КОМПЕНЗАЦИЈА НА РЕАКТИВНА МОЌНОСТ Сите потрошувачи за својата работа ангажираат активна моќност, а некои од нив и реактивна моќност во ЕЕС извори на активната моќност се генераторите, синхроните компензатори, синхроните мотори, кондензаторските

Διαβάστε περισσότερα

Регулација на фреквенција и активни моќности во ЕЕС

Регулација на фреквенција и активни моќности во ЕЕС 8 Регулација на фреквенција и активни моќности во ЕЕС 8.1. Паралелна работа на синхроните генератори Современите електроенергетски системи го напојуваат голем број на синхрони генератори кои работат паралелно.

Διαβάστε περισσότερα

2. КАРАКТЕРИСТИКИ НА МЕРНИТЕ УРЕДИ

2. КАРАКТЕРИСТИКИ НА МЕРНИТЕ УРЕДИ . КАРАКТЕРИСТИКИ НА МЕРНИТЕ УРЕДИ Современата мерна техника располага со големо количество разнородни мерни уреди. Одделните видови мерни уреди имаат различни специфични својства, но и некои заеднички

Διαβάστε περισσότερα

4. МЕРНИ ПРЕОБРАЗУВАЧИ НА ЕЛЕКТРИЧНИ ВО ЕЛЕКТРИЧНИ ГОЛЕМИНИ

4. МЕРНИ ПРЕОБРАЗУВАЧИ НА ЕЛЕКТРИЧНИ ВО ЕЛЕКТРИЧНИ ГОЛЕМИНИ 4. МЕРНИ ПРЕОБРАЗУВАЧИ НА ЕЛЕКТРИЧНИ ВО ЕЛЕКТРИЧНИ ГОЛЕМИНИ Под поимот мерен преобразувач на електрична во електрична големина воопштено се подразбира елемент или склоп со чија помош се остварува одредена

Διαβάστε περισσότερα

4.3 Мерен претворувач и мерен сигнал.

4.3 Мерен претворувач и мерен сигнал. 4.3 Мерен претворувач и мерен сигнал. 1 2 Претворањето на процесната величина во мерен сигнал се изведува со помош на мерен претворувач. Може да се каже дека улогата на претворувачот е претворање на енергијата

Διαβάστε περισσότερα

ЗБИРКА ЗАДАЧИ ПО ТЕОРИЈА НА ДВИЖЕЊЕТО НА МОТОРНИТЕ ВОЗИЛА

ЗБИРКА ЗАДАЧИ ПО ТЕОРИЈА НА ДВИЖЕЊЕТО НА МОТОРНИТЕ ВОЗИЛА УНИВЕРЗИТЕТ СВ. КИРИЛ И МЕТОДИЈ ВО СКОПЈЕ МАШИНСКИ ФАКУЛТЕТ СКОПЈЕ МИЛАН ЌОСЕВСКИ ЗБИРКА ЗАДАЧИ ПО ТЕОРИЈА НА ДВИЖЕЊЕТО НА МОТОРНИТЕ ВОЗИЛА Z v t T Gt Tt 0 Rt Rat Rvt rd Tvt Tat Xt e Zt X Скопје, 2016

Διαβάστε περισσότερα

а) Определување кружна фреквенција на слободни пригушени осцилации ωd ωn = ω б) Определување периода на слободни пригушени осцилации

а) Определување кружна фреквенција на слободни пригушени осцилации ωd ωn = ω б) Определување периода на слободни пригушени осцилации Динамика и стабилност на конструкции Задача 5.7 За дадената армирано бетонска конструкција од задачата 5. и пресметаните динамички карактеристики: кружна фреквенција и периода на слободните непригушени

Διαβάστε περισσότερα

Од точката С повлечени се тангенти кон кружницата. Одреди ја големината на AOB=?

Од точката С повлечени се тангенти кон кружницата. Одреди ја големината на AOB=? Задачи за вежби тест плоштина на многуаголник 8 одд На што е еднаков збирот на внатрешните агли кај n-аголник? 1. Одреди ја плоштината на паралелограмот, според податоците дадени на цртежот 2. 3. 4. P=?

Διαβάστε περισσότερα

7. ОСЦИЛОСКОП 7.1. ПРИНЦИП НА РАБОТА

7. ОСЦИЛОСКОП 7.1. ПРИНЦИП НА РАБОТА 7. ОСЦИЛОСКОП Осцилоскопот е мерен инструмент со кој може визуелно да се набљудуваат бранови облици на разни електрични големини. Со него може да се мерат нивните карактеристични параметри, па дури привремено

Διαβάστε περισσότερα

Извори на електрична енергија

Извори на електрична енергија 6 Извори на електрична енергија 6.1. Синхрон генератор За трансформација на механичка во електрична енергија денес се употребуваат, скоро исклучиво, трифазни синхрони генератори со фреквенција од 50 Hz,

Διαβάστε περισσότερα

ПРЕОДНИ ПРОЦЕСИ ПРИ ВКЛУЧУВАЊЕ НА КОНДЕНЗАТОРСКИТЕ БАТЕРИИ КАЈ ЕЛЕКТРОЛАЧНАТА ПЕЧКА

ПРЕОДНИ ПРОЦЕСИ ПРИ ВКЛУЧУВАЊЕ НА КОНДЕНЗАТОРСКИТЕ БАТЕРИИ КАЈ ЕЛЕКТРОЛАЧНАТА ПЕЧКА 8. СОВЕТУВАЊЕ Охрид, 4 септември Бранко Наџински Илија Хаџидаовски Макстил АД ПРЕОДНИ ПРОЦЕСИ ПРИ ВКЛУЧУВАЊЕ НА КОНДЕНЗАТОРСКИТЕ БАТЕРИИ КАЈ ЕЛЕКТРОЛАЧНАТА ПЕЧКА КУСА СОДРЖИНА Во овој труд е разгледан

Διαβάστε περισσότερα

Решенија на задачите за I година LII РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА ЗА УЧЕНИЦИТЕ ОД СРЕДНИТЕ УЧИЛИШТА ВО РЕПУБЛИКА МАКЕДОНИЈА 16 мај 2009.

Решенија на задачите за I година LII РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА ЗА УЧЕНИЦИТЕ ОД СРЕДНИТЕ УЧИЛИШТА ВО РЕПУБЛИКА МАКЕДОНИЈА 16 мај 2009. LII РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА ЗА УЧЕНИЦИТЕ ОД СРЕДНИТЕ УЧИЛИШТА ВО РЕПУБЛИКА МАКЕДОНИЈА 16 мај 009 I година Задача 1. Топче се пушта да паѓа без почетна брзина од некоја висина над површината на земјата.

Διαβάστε περισσότερα

3. ПРЕСМЕТКА НА КРОВ НА КУЌА СО ТРИГОНОМЕТРИЈА

3. ПРЕСМЕТКА НА КРОВ НА КУЌА СО ТРИГОНОМЕТРИЈА 3. ПРЕСМЕТКА НА КРОВ НА КУЌА СО ТРИГОНОМЕТРИЈА Цел: Учениците/студентите да се запознаат со равенки за пресметка на: агли, периметар, плоштина, волумен на триаголна призма, како од теоретски аспект, така

Διαβάστε περισσότερα

ЗАДАЧИ ЗА УВЕЖБУВАЊЕ НА ТЕМАТА ГЕОМЕТРИСКИ ТЕЛА 8 ОДД.

ЗАДАЧИ ЗА УВЕЖБУВАЊЕ НА ТЕМАТА ГЕОМЕТРИСКИ ТЕЛА 8 ОДД. ЗАДАЧИ ЗА УВЕЖБУВАЊЕ НА ТЕМАТА ГЕОМЕТРИСКИ ТЕЛА 8 ОДД. ВО ПРЕЗЕНТАЦИЈАТА ЌЕ ПРОСЛЕДИТЕ ЗАДАЧИ ЗА ПРЕСМЕТУВАЊЕ ПЛОШТИНА И ВОЛУМЕН НА ГЕОМЕТРИСКИТЕ ТЕЛА КОИ ГИ ИЗУЧУВАМЕ ВО ОСНОВНОТО ОБРАЗОВАНИЕ. СИТЕ ЗАДАЧИ

Διαβάστε περισσότερα

МЕТОДИ ЗА ДИГИТАЛНО ДИРЕКТНО ФАЗНО УПРАВУВАЊЕ НА СЕРИСКИ РЕЗОНАНТНИ ЕНЕРГЕТСКИ КОНВЕРТОРИ

МЕТОДИ ЗА ДИГИТАЛНО ДИРЕКТНО ФАЗНО УПРАВУВАЊЕ НА СЕРИСКИ РЕЗОНАНТНИ ЕНЕРГЕТСКИ КОНВЕРТОРИ 8. СОВЕТУВАЊЕ Охрид, 22 24 септември Љупчо Караџинов Факултет за електротехника и информациски технологии, Универзитет Светите Кирил и Методиј Скопје Гоце Стефанов Факултет за електротехника Радовиш,Универзитет

Διαβάστε περισσότερα

ИСПИТУВАЊЕ НА СТРУЈНО-НАПОНСКИТЕ КАРАКТЕРИСТИКИ НА ФОТОВОЛТАИЧЕН ГЕНЕРАТОР ПРИ ФУНКЦИОНИРАЊЕ ВО РЕАЛНИ УСЛОВИ

ИСПИТУВАЊЕ НА СТРУЈНО-НАПОНСКИТЕ КАРАКТЕРИСТИКИ НА ФОТОВОЛТАИЧЕН ГЕНЕРАТОР ПРИ ФУНКЦИОНИРАЊЕ ВО РЕАЛНИ УСЛОВИ . СОВЕТУВАЊЕ Охрид, - октомври 29 Димитар Димитров Факултет за електротехника и информациски технологии, Универзитет Св. Кирил и Методиј Скопје ИСПИТУВАЊЕ НА СТРУЈНО-НАПОНСКИТЕ КАРАКТЕРИСТИКИ НА ФОТОВОЛТАИЧЕН

Διαβάστε περισσότερα

Проф. д-р Ѓорѓи Тромбев ГРАДЕЖНА ФИЗИКА. Влажен воздух 3/22/2014

Проф. д-р Ѓорѓи Тромбев ГРАДЕЖНА ФИЗИКА. Влажен воздух 3/22/2014 Проф. д-р Ѓорѓи Тромбев ГРАДЕЖНА ФИЗИКА Влажен воздух 1 1 Влажен воздух Влажен воздух смеша од сув воздух и водена пареа Водената пареа во влажниот воздух е претежно во прегреана состојба идеален гас.

Διαβάστε περισσότερα

Техника на висок напон 2 ПРОСТИРАЊЕ НА БРАНОВИ ПО ВОДОВИ

Техника на висок напон 2 ПРОСТИРАЊЕ НА БРАНОВИ ПО ВОДОВИ Техника на висок напон 2 ПРОСТИРАЊЕ НА БРАНОВИ ПО ВОДОВИ М Тодоровски Институт за преносни електроенергетски системи Факултет за електротехника и информациски технологии Универзитет Св Кирил и Методиј

Διαβάστε περισσότερα

Предизвици во моделирање

Предизвици во моделирање Предизвици во моделирање МОРА да постои компатибилност на јазлите од мрежата на КЕ на спојот на две површини Предизвици во моделирање Предизвици во моделирање Предизвици во моделирање Предизвици во моделирање

Διαβάστε περισσότερα

ВЕРОЈАТНОСТ И СТАТИСТИКА ВО СООБРАЌАЈОТ 3. СЛУЧАЈНИ ПРОМЕНЛИВИ

ВЕРОЈАТНОСТ И СТАТИСТИКА ВО СООБРАЌАЈОТ 3. СЛУЧАЈНИ ПРОМЕНЛИВИ Предавање. СЛУЧАЈНИ ПРОМЕНЛИВИ. Еднодимензионална случајна променлива При изведување на експеримент, случајниот настан може да има многу различни реализации. Ако ги знаеме можните реализации и ако ја знаеме

Διαβάστε περισσότερα

Анализа на преодниот период на прекинувачите кај Н топологија на сериски резонантен конвертор при работа со уред за индукционо загревање

Анализа на преодниот период на прекинувачите кај Н топологија на сериски резонантен конвертор при работа со уред за индукционо загревање 7. СОВЕТУВАЊЕ Охрид, 2 4 октомври 2011 Гоце Стефанов Василија Шарац Дејан Милчевски Електротехнички факултет - Радовиш Љупчо Караџинов ФЕИТ - Скопје Анализа на преодниот период на прекинувачите кај Н топологија

Διαβάστε περισσότερα

46. РЕГИОНАЛЕН НАТПРЕВАР ПО ФИЗИКА април III година. (решенија на задачите)

46. РЕГИОНАЛЕН НАТПРЕВАР ПО ФИЗИКА април III година. (решенија на задачите) 46. РЕГИОНАЛЕН НАТПРЕВАР ПО ФИЗИКА 3 април 3 III година (решенија на задачите) Задача. Хеликоптер спасува планинар во опасност, спуштајќи јаже со должина 5, и маса 8, kg до планинарот. Планинарот испраќа

Διαβάστε περισσότερα

56. РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА 2013 Скопје, 11 мај I година (решенија на задачите)

56. РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА 2013 Скопје, 11 мај I година (решенија на задачите) 56. РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА 03 Скопје, мај 03 I година (решенија на задачите) Задача. Експресен воз го поминал растојанието помеѓу две соседни станици, кое изнесува, 5 km, за време од 5 min. Во

Διαβάστε περισσότερα

45 РЕГИОНАЛЕН НАТПРЕВАР ПО ФИЗИКА 2012 III година (решенија на задачите)

45 РЕГИОНАЛЕН НАТПРЕВАР ПО ФИЗИКА 2012 III година (решенија на задачите) 45 РЕГИОНАЛЕН НАТПРЕВАР ПО ФИЗИКА III година (решенија на задачите Рамнострана стаклена призма чиј агол при врвот е = 6 поставена е во положба на минимална девијација за жолтата светлина Светлината паѓа

Διαβάστε περισσότερα

МОДЕЛИРАЊЕ НА DC/DC КОНВЕРТОРИ ЗА УПРАВУВАЊЕ НА ЕДНОНАСОЧНИ МОТОРИ СО КОМПЈУТЕРСКА СИМУЛАЦИЈА COMPUTER SIMULATION AND MODELING OF DC/DC CONVERTERS

МОДЕЛИРАЊЕ НА DC/DC КОНВЕРТОРИ ЗА УПРАВУВАЊЕ НА ЕДНОНАСОЧНИ МОТОРИ СО КОМПЈУТЕРСКА СИМУЛАЦИЈА COMPUTER SIMULATION AND MODELING OF DC/DC CONVERTERS МОДЕЛИРАЊЕ НА DC/DC КОНВЕРТОРИ ЗА УПРАВУВАЊЕ НА ЕДНОНАСОЧНИ МОТОРИ СО КОМПЈУТЕРСКА СИМУЛАЦИЈА Гоце СТЕФАНОВ 1, Влатко ЧИНГОСКИ 2, Елена СТЕФАНОВА 3 1 Електротехнички факултет Радовиш, УГД Штип, gce.stefnv@ugd.edu.mk

Διαβάστε περισσότερα

СТАНДАРДНИ НИСКОНАПОНСКИ СИСТЕМИ

СТАНДАРДНИ НИСКОНАПОНСКИ СИСТЕМИ НН трифазни мрежи се изведуваат со три или четири спроводника мрежите со четири спроводника можат да преминат во мрежи со пет спроводника, но со оглед што тоа во пракса се прави во објектите (кај потрошувачите),

Διαβάστε περισσότερα

TEHNIKA NA VISOK NAPON 1 predavawa 2012 g.

TEHNIKA NA VISOK NAPON 1 predavawa 2012 g. FAKULTET ZA ELEKTROTEHNIKA I INFORMACISKI TEHNOLOGII SKOPJE PROF. D-R QUBOMIR NIKOLOSKI TEHNIKA NA VISOK NAPON 1 predavawa 2012 g. ФЕИТ: Техника на висок напон 1, предавања 2012г. 1 1. ОПШТО ЗА ТЕХНИКАТА

Διαβάστε περισσότερα

10. МЕРНИ СИСТЕМИ И ПРЕНОС НА МЕРНИ ПОДАТОЦИ

10. МЕРНИ СИСТЕМИ И ПРЕНОС НА МЕРНИ ПОДАТОЦИ 10. МЕРНИ СИСТЕМИ И ПРЕНОС НА МЕРНИ ПОДАТОЦИ При следење на разни технолошки процеси и управување со истите, неопходно е да се вршат мерења на повеќе мерни места истовремено. Најчесто е потребно мерните

Διαβάστε περισσότερα

ЗБИРКА НА ОДБРАНИ РЕШЕНИ ЗАДАЧИ ОД ОБЛАСТА НА СИНТЕЗАТА НА СИСТЕМИ НА АВТОMАТСКО УПРАВУВАЊЕ

ЗБИРКА НА ОДБРАНИ РЕШЕНИ ЗАДАЧИ ОД ОБЛАСТА НА СИНТЕЗАТА НА СИСТЕМИ НА АВТОMАТСКО УПРАВУВАЊЕ Универзитет Св. Кирил и Методиј - Скопје Факултет за електротехника и информациски технологии - Скопје ЕЛИЗАБЕТА ЛАЗАРЕВСКА ЗБИРКА НА ОДБРАНИ РЕШЕНИ ЗАДАЧИ ОД ОБЛАСТА НА СИНТЕЗАТА НА СИСТЕМИ НА АВТОMАТСКО

Διαβάστε περισσότερα

Анализа на триаголници: Упатство за наставникот

Анализа на триаголници: Упатство за наставникот Анализа на триаголници: Упатство за наставникот Цел:. Што мислиш? Колку многу триаголници со основа a=4см и висина h=3см можеш да нацрташ? Линк да Видиш и Направиш Mathcast за Што мислиш? Нацртај точка

Διαβάστε περισσότερα

Методина гранични елементи за инженери

Методина гранични елементи за инженери Методина гранични елементи за инженери доц. д-р Тодорка Самарџиоска Градежен факултет УКИМ -Скопје Типовина формулации со гранични елементи директна формулација: Интегралната равенка е формулирана во врска

Διαβάστε περισσότερα

ТАРИФЕН СИСТЕМ ЗА ДИСТРИБУЦИЈА

ТАРИФЕН СИСТЕМ ЗА ДИСТРИБУЦИЈА ТАРИФЕН СИСТЕМ ЗА ДИСТРИБУЦИЈА Тарифен систем за ДС на ЕВН Македонија 2014 година (rke.org.mk) Надоместок за користење на дистрибутивниот систем плаќаат сите потрошувачи, корисници на дистрибутивниот сите

Διαβάστε περισσότερα

L кплп (Калем у кплу прпстпперипдичне струје)

L кплп (Калем у кплу прпстпперипдичне струје) L кплп (Калем у кплу прпстпперипдичне струје) i L u=? За коло са слике кроз калем ппзнате позната простопериодична струја: индуктивности L претпоставићемо да протиче i=i m sin(ωt + ψ). Услед променљиве

Διαβάστε περισσότερα

Секундарните еталони се споредуваат (еталонираат) со примарните, а потоа служат за проверка (споредба или калибрирање) на работните еталони.

Секундарните еталони се споредуваат (еталонираат) со примарните, а потоа служат за проверка (споредба или калибрирање) на работните еталони. ЕТАЛОНИ општ дел Тоа се мерни средства (уреди) наменети за верифицирање на мерните единици. За да се измери некоја големина потребно е да се направи нејзина споредба со усвоена мерна единица за таа големина.

Διαβάστε περισσότερα

ПРИМЕНА НА FACTS УРЕДИ ЗА РЕДНА И НАПРЕЧНА КОМПЕНЗАЦИЈА НА РЕАКТИВНА МОЌНОСТ ВО ЕЛЕКТРОЕНЕРГЕТСКИ МРЕЖИ

ПРИМЕНА НА FACTS УРЕДИ ЗА РЕДНА И НАПРЕЧНА КОМПЕНЗАЦИЈА НА РЕАКТИВНА МОЌНОСТ ВО ЕЛЕКТРОЕНЕРГЕТСКИ МРЕЖИ 8. СОВЕТУВАЊЕ Охрид, 22 24 септември Јовица Вулетиќ Јорданчо Ангелов Мирко Тодоровски Факултет за електротехника и информациски технологии Скопје ПРИМЕНА НА FACTS УРЕДИ ЗА РЕДНА И НАПРЕЧНА КОМПЕНЗАЦИЈА

Διαβάστε περισσότερα

БИОФИЗИКА Електромагнетизам. Доцент Др. Томислав Станковски

БИОФИЗИКА Електромагнетизам. Доцент Др. Томислав Станковски БИОФИЗИКА Електромагнетизам Доцент Др. Томислав Станковски За интерна употреба за потребите на предметот Биофизика Катедра за Медицинска Физика Медицински Факултет Универзитет Св. Кирил и Методиj, Скопjе

Διαβάστε περισσότερα

Теорија електричних кола

Теорија електричних кола др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола i i i Милка Потребић др Милка Потребић, ванредни професор,

Διαβάστε περισσότερα

ЕВН ЕЛЕКТРОСТОПАНСТВО НА МАКЕДОНИЈА

ЕВН ЕЛЕКТРОСТОПАНСТВО НА МАКЕДОНИЈА 20140300978 ЕВН ЕЛЕКТРОСТОПАНСТВО НА МАКЕДОНИЈА ИЗМЕНИ И ДОПОЛНУВАЊЕ НА МРЕЖНИ ПРАВИЛА ЗА ДИСТРИБУЦИЈА НА ЕЛЕКТРИЧНА ЕНЕРГИЈА ( СЛУЖБЕН ВЕСНИК НА РЕПУБЛИКА МАКЕДОНИЈА БР. 87/12) Член 1 Во мрежните правила

Διαβάστε περισσότερα

РЕШЕНИЈА Државен натпревар 2017 ТЕОРИСКИ ПРОБЛЕМИ. K c. K c,2

РЕШЕНИЈА Државен натпревар 2017 ТЕОРИСКИ ПРОБЛЕМИ. K c. K c,2 РЕШЕНИЈА Државен натпревар 07 ЗА КОМИСИЈАТА Вкупно поени:_50 од теор: 5 од експ: 5_ Прегледал: М. Буклески, В. Ивановски ТЕОРИСКИ ПРОБЛЕМИ (Запишете го начинот на решавање и одговорот на предвиденото место

Διαβάστε περισσότερα

ЗБИРКА ЗАДАЧИ ПО ПРЕДМЕТОТ ТЕХНИКА НА ВИСОК НАПОН II

ЗБИРКА ЗАДАЧИ ПО ПРЕДМЕТОТ ТЕХНИКА НА ВИСОК НАПОН II УНИВЕРЗИТЕТ "Св. КИРИЛ И МЕТОДИЈ" - СКОПЈЕ ФАКУЛТЕТ ЗА ЕЛЕКТРОТЕХНИКА И ИНФОРМАЦИСКИ ТЕХНОЛОГИИ ИНСТИТУТ ЗА ПРЕНОСНИ ЕЛЕКТРОЕНЕРГЕТСКИ СИСТЕМИ Ристо Ачковски, Александра Крколева ЗБИРКА ЗАДАЧИ ПО ПРЕДМЕТОТ

Διαβάστε περισσότερα

Примена на Matlab за оптимизација на режимите на работа на ЕЕС

Примена на Matlab за оптимизација на режимите на работа на ЕЕС 6. СОВЕТУВАЊЕ Охрид, 4-6 октомври 2009 Мирко Тодоровски Ристо Ачковски Јовица Вулетиќ Факултет за електротехника и информациски технологии, Скопје Примена на Matlab за оптимизација на режимите на работа

Διαβάστε περισσότερα

56. РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА 2013 Скопје, 11 мај IV година (решенија на задачите)

56. РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА 2013 Скопје, 11 мај IV година (решенија на задачите) 56. РЕПУБЛИЧКИ НАТПРЕВАР ПО ФИЗИКА 03 Скопје, мај 03 IV година (решенија на задачите) Задача. Птица со маса 500 лета во хоризонтален правец и не внимавајќи удира во вертикално поставена прачка на растојание

Διαβάστε περισσότερα

SFRA ТЕСТ ЗА МЕХАНИЧКА ПРОЦЕНКА НА АКТИВНИОТ ДЕЛ КАЈ ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ

SFRA ТЕСТ ЗА МЕХАНИЧКА ПРОЦЕНКА НА АКТИВНИОТ ДЕЛ КАЈ ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ 6. СОВЕТУВАЊЕ Охрид, 4-6 октомври 2009 Жан Кипаризоски Howard Industries, Laurel, MS, USA SFRA ТЕСТ ЗА МЕХАНИЧКА ПРОЦЕНКА НА АКТИВНИОТ ДЕЛ КАЈ ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ КУСА СОДРЖИНА SFRA (sweep frequency

Διαβάστε περισσότερα

КОМПЕНЗАЦИЈА НА РЕАКТИВНАТА ЕНЕРГИЈА КАЈ ИНДУСТРИСКИ ПОТРОШУВАЧИ И ТЕХНИЧКИ-ЕКОНОМСКИТЕ ПРИДОБИВКИ ОД НЕА

КОМПЕНЗАЦИЈА НА РЕАКТИВНАТА ЕНЕРГИЈА КАЈ ИНДУСТРИСКИ ПОТРОШУВАЧИ И ТЕХНИЧКИ-ЕКОНОМСКИТЕ ПРИДОБИВКИ ОД НЕА 7. СОВЕТУВАЊЕ Охрид, 2 4 октомври 2011 Слободан Биљарски,,Елма инг,, Берово Ванчо Сивевски,,Бомекс Рефрактори,, Пехчево Александар Ласков,,Факултет за електротехника и информациски технологии,, Скопје

Διαβάστε περισσότερα

Кои од наведениве процеси се физички, а кои се хемиски?

Кои од наведениве процеси се физички, а кои се хемиски? Кои од наведениве процеси се физички, а кои се хемиски? I. фотосинтеза II. вриење на алкохол III. топење на восок IV. горење на бензин V. скиселување на виното а) физички:ниту едно хемиски: сите б) физички:

Διαβάστε περισσότερα

10. Математика. Прашање. Обратен размер на размерот е: Геометриска средина x на отсечките m и n е:

10. Математика. Прашање. Обратен размер на размерот е: Геометриска средина x на отсечките m и n е: Обратен размер на размерот е: Геометриска средина x на отсечките m и n е: За две геометриски фигури што имаат сосема иста форма, а различни или исти големини велиме дека се: Вредноста на размерот е: Односот

Διαβάστε περισσότερα

ПЕТТО СОВЕТУВАЊЕ. Охрид, 7 9 октомври 2007 СОВРЕМЕН СТАТИЧКИ ВОЗБУДЕН СИСТЕМ ЗА СИНХРОН ГЕНЕРАТОР СО ДИГИТАЛЕН РЕГУЛАТОР НА НАПОН

ПЕТТО СОВЕТУВАЊЕ. Охрид, 7 9 октомври 2007 СОВРЕМЕН СТАТИЧКИ ВОЗБУДЕН СИСТЕМ ЗА СИНХРОН ГЕНЕРАТОР СО ДИГИТАЛЕН РЕГУЛАТОР НА НАПОН ПЕТТО СОВЕТУВАЊЕ Охрид, 7 9 октомври 007 Борчо Костов АД Електрани на Македонија - Скопје СОВРЕМЕН СТАТИЧКИ ВОЗБУДЕН СИСТЕМ ЗА СИНХРОН ГЕНЕРАТОР СО ДИГИТАЛЕН РЕГУЛАТОР НА НАПОН КУСА СОДРЖИНА Паралелно

Διαβάστε περισσότερα

УНИВЕРЗИТЕТ ГОЦЕ ДЕЛЧЕВ - ШТИП

УНИВЕРЗИТЕТ ГОЦЕ ДЕЛЧЕВ - ШТИП УНИВЕРЗИТЕТ ГОЦЕ ДЕЛЧЕВ - ШТИП ФАКУЛТЕТ ЗА ПРИРОДНИ И ТЕХНИЧКИ НАУКИ КАТЕДРА ЗА ГЕОЛОГИЈА И ГЕОФИЗИКА МАГИСТЕРСКИ ТРУД КОРЕЛАЦИЈА ПОМЕЃУ РЕАЛНАТА ГЕОЛОШКА СРЕДИНА И ГЕОЕЛЕКТРИЧНИОТ МОДЕЛ Ментор: Проф.

Διαβάστε περισσότερα

МЕХАНИКА 1 МЕХАНИКА 1

МЕХАНИКА 1 МЕХАНИКА 1 диј е ИКА Универзитет Св. Кирил и Методиј Универзитет Машински Св. факултет Кирил -и Скопје Методиј во Скопје Машински факултет 3М21ОМ01 ТЕХНИЧКА МЕХАНИКА професор: доц. д-р Виктор Гаврилоски 1. ВОВЕДНИ

Διαβάστε περισσότερα

Во трудот се истражува зависноста на загубите во хрватскиот електроенергетски систем од

Во трудот се истражува зависноста на загубите во хрватскиот електроенергетски систем од 8. СОВЕТУВАЊЕ Охрид, 22 24 септември Стипе Ќурлин Антун Андриќ ХОПС ОПТИМИЗАЦИЈА НА ЗАГУБИТЕ НА ПРЕНОСНАТА МРЕЖА ОД АСПЕКТ НА КРИТЕРИУМОТ НА МИНИМАЛНИ ЗАГУБИ НА АКТИВНА МОЌНОСТ СО ПРОМЕНА НА АГОЛОТ НА

Διαβάστε περισσότερα

ЗБИРКА ОДБРАНИ РЕШЕНИ ЗАДАЧИ ПО ФИЗИКА

ЗБИРКА ОДБРАНИ РЕШЕНИ ЗАДАЧИ ПО ФИЗИКА УНИВЕРЗИТЕТ "СВ КИРИЛ И МЕТОДИЈ" СКОПЈЕ ФАКУЛТЕТ ЗА ЕЛЕКТРОТЕХНИКА И ИНФОРМАЦИСКИ ТЕХНОЛОГИИ Верка Георгиева Христина Спасевска Маргарита Гиновска Ласко Баснарков Лихнида Стојановска-Георгиевска ЗБИРКА

Διαβάστε περισσότερα

Избор на димензии и конфигурација на мрежестиот заземјувач во ТС 220/6 Антеа Албанија

Избор на димензии и конфигурација на мрежестиот заземјувач во ТС 220/6 Антеа Албанија 6. СОВЕТУВАЊЕ Охрид, 4-6 октомври 2009 Ристо Ачковски, Мирко Тодоровски, Факултет за електротехника и информациски технологии Скопје Живко Богдановски ТИМЕЛПРОЕКТ Скопје Избор на димензии и конфигурација

Διαβάστε περισσότερα

ВЛИЈАНИЕ НА ВИСОКОНАПОНСКИ ВОДОВИ ВРЗ ЗАЗЕМЈУВАЧКИОТ СИСТЕМ НА КАТОДНАТА ЗАШТИТА НА ЦЕВКОВОДИТЕ

ВЛИЈАНИЕ НА ВИСОКОНАПОНСКИ ВОДОВИ ВРЗ ЗАЗЕМЈУВАЧКИОТ СИСТЕМ НА КАТОДНАТА ЗАШТИТА НА ЦЕВКОВОДИТЕ ПЕТТО СОВЕТУВАЊЕ Охрид, 7 9 октомври 007 Владимир Талевски, дипл. ел. инж. ГА-МА А.Д. Систем оператор за пренос на природен гас Скопје Проф. д-р Мито Златаноски, дипл. ел. инж. Софија Николова, дипл. ел.

Διαβάστε περισσότερα

шифра: Филигран Истражувачки труд на тема: Анализа на мала хидроцентрала Брајчино 2

шифра: Филигран Истражувачки труд на тема: Анализа на мала хидроцентрала Брајчино 2 шифра: Филигран Истражувачки труд на тема: Анализа на мала хидроцентрала Брајчино 2 Битола, 2016 Содржина 1. Вовед... 2 2. Поделба на хидроцентрали... 3 2.1. Поделба на хидроцентрали според инсталирана

Διαβάστε περισσότερα

Практикум по Општа и неорганска хемија

Практикум по Општа и неорганска хемија Универзитет Св. Кирил и Методиј - Скопје Фармацевтски факултет, Скопје Институт за применета хемија и фармацевтски анализи Практикум по Општа и неорганска хемија студиска програма Лабораториски биоинжинер

Διαβάστε περισσότερα

27. Согласно барањата на Протоколот за тешки метали кон Конвенцијата за далекусежно прекугранично загадување (ратификуван од Република Македонија во

27. Согласно барањата на Протоколот за тешки метали кон Конвенцијата за далекусежно прекугранично загадување (ратификуван од Република Македонија во Прашања за вежбање: 1. Со кој закон е дефинирана и што претставува заштита и унапредување на животната средина? 2. Што преттставуваат емисија и имисија на супстанци? 3. Што претставува гранична вредност

Διαβάστε περισσότερα

СТУДИЈА НА РЕАЛЕН СЛУЧАЈ НА ВЛИЈАНИЕТО НА ДИСПЕРЗИРАНОТО ПРОИЗВОДСТВО ВРЗ СН ДИСТРИБУТИВНА МРЕЖА

СТУДИЈА НА РЕАЛЕН СЛУЧАЈ НА ВЛИЈАНИЕТО НА ДИСПЕРЗИРАНОТО ПРОИЗВОДСТВО ВРЗ СН ДИСТРИБУТИВНА МРЕЖА 6. СОВЕТУВАЊЕ Охрид, 4-6 октомври 2009 Методија Атанасовски Љупчо Трпезановски Технички Факултет, Битола СТУДИЈА НА РЕАЛЕН СЛУЧАЈ НА ВЛИЈАНИЕТО НА ДИСПЕРЗИРАНОТО ПРОИЗВОДСТВО ВРЗ СН ДИСТРИБУТИВНА МРЕЖА

Διαβάστε περισσότερα

БРЗ ДИЗАЈН НА ПРОТОТИП НА УПРАВУВАЧ И ИЗРАБОТКА НА ДИНАМИЧКИ МОДЕЛ ЗА ТЕСТИРАЊЕ НА ХАРДВЕР ВО ЈАМКА НА БРЗИНСКИ СЕРВОМЕХАНИЗАМ

БРЗ ДИЗАЈН НА ПРОТОТИП НА УПРАВУВАЧ И ИЗРАБОТКА НА ДИНАМИЧКИ МОДЕЛ ЗА ТЕСТИРАЊЕ НА ХАРДВЕР ВО ЈАМКА НА БРЗИНСКИ СЕРВОМЕХАНИЗАМ УНИВЕРЗИТЕТ СВ. КЛИМЕНТ ОХРИДСКИ ТЕХНИЧКИ ФАКУЛТЕТ БИТОЛА Електротехнички отсек Александар Јуруковски БРЗ ДИЗАЈН НА ПРОТОТИП НА УПРАВУВАЧ И ИЗРАБОТКА НА ДИНАМИЧКИ МОДЕЛ ЗА ТЕСТИРАЊЕ НА ХАРДВЕР ВО ЈАМКА

Διαβάστε περισσότερα

БРЗ ДИЗАЈН НА ПРОТОТИП НА УПРАВУВАЧ И ИЗРАБОТКА НА ДИНАМИЧКИ МОДЕЛ ЗА ТЕСТИРАЊЕ НА ХАРДВЕР ВО ЈАМКА НА БРЗИНСКИ СЕРВОМЕХАНИЗАМ

БРЗ ДИЗАЈН НА ПРОТОТИП НА УПРАВУВАЧ И ИЗРАБОТКА НА ДИНАМИЧКИ МОДЕЛ ЗА ТЕСТИРАЊЕ НА ХАРДВЕР ВО ЈАМКА НА БРЗИНСКИ СЕРВОМЕХАНИЗАМ УНИВЕРЗИТЕТ СВ. КЛИМЕНТ ОХРИДСКИ БИТОЛА ТЕХНИЧКИ ФАКУЛТЕТ ЕЛЕКТРОТЕХНИЧКИ ОТСЕК МАГИСТЕРСКИ ТРУД БРЗ ДИЗАЈН НА ПРОТОТИП НА УПРАВУВАЧ И ИЗРАБОТКА НА ДИНАМИЧКИ МОДЕЛ ЗА ТЕСТИРАЊЕ НА ХАРДВЕР ВО ЈАМКА НА БРЗИНСКИ

Διαβάστε περισσότερα

XXV РЕГИОНАЛЕН НАТПРЕВАР ПО МАТЕМАТИКА

XXV РЕГИОНАЛЕН НАТПРЕВАР ПО МАТЕМАТИКА XXV РЕГИОНАЛЕН НАТПРЕВАР ПО МАТЕМАТИКА за учениците од основното образование 31.03.007 година IV одделение 1. Во полињата на дадената лента допиши природни броеви во празните полиња, така што производот

Διαβάστε περισσότερα

ИЗБОР НА ОПТИМАЛНА ЛОКАЦИЈА НА 400/110 kv РЕГУЛАЦИОНИ АВТО-ТРАНСФОРМАТОРИ ВО ЕЕС НА РМ

ИЗБОР НА ОПТИМАЛНА ЛОКАЦИЈА НА 400/110 kv РЕГУЛАЦИОНИ АВТО-ТРАНСФОРМАТОРИ ВО ЕЕС НА РМ 6. СОВЕТУВАЊЕ Охрид, 4-6 октомври 2009 Климент Наумоски Александар Пауноски Елизабета Силјановска Атанасова Елена Јовановска Александар Костевски АД МЕПСО Скопје ИЗБОР НА ОПТИМАЛНА ЛОКАЦИЈА НА 400/110

Διαβάστε περισσότερα

МАТЕМАТИКА - НАПРЕДНО НИВО МАТЕМАТИКА НАПРЕДНО НИВО. Време за решавање: 180 минути. јуни 2012 година

МАТЕМАТИКА - НАПРЕДНО НИВО МАТЕМАТИКА НАПРЕДНО НИВО. Време за решавање: 180 минути. јуни 2012 година ШИФРА НА КАНДИДАТОТ ЗАЛЕПИ ТУКА ДРЖАВНА МАТУРА МАТЕМАТИКА - НАПРЕДНО НИВО МАТЕМАТИКА НАПРЕДНО НИВО Време за решавање: 180 минути јуни 2012 година Шифра на ПРВИОТ оценувач Запиши тука: Шифра на ВТОРИОТ

Διαβάστε περισσότερα

ИНСТРУМЕНТАЛНИ МЕТОДИ ЗА АНАЛИЗА

ИНСТРУМЕНТАЛНИ МЕТОДИ ЗА АНАЛИЗА ИНСТРУМЕНТАЛНИ МЕТОДИ ЗА АНАЛИЗА интерна скрипта за студентите од УГД Штип Рубин Гулабоски Виолета Иванова Петропулос Универзитет Гоце Делчев-Штип, Штип, 2014 година 1 Вовед Инструменталните методи за

Διαβάστε περισσότερα

ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ РАЗРЕДА

ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ РАЗРЕДА МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ДВАДЕСЕТ ДРУГО РЕГИОНАЛНО ТАКМИЧЕЊЕ ОДГОВОРИ И РЕШЕЊА ИЗ ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ

Διαβάστε περισσότερα

Природни ресурси и технологии Natural resources and technology

Природни ресурси и технологии Natural resources and technology УНИВЕРЗИТЕТ ГОЦЕ ДЕЛЧЕВ ШТИП ФАКУЛТЕТ ЗА ПРИРОДНИ И ТЕНИЧКИ НАУКИ UDC 622:55:574:658 ISSN 185-6966 Природни ресурси и технологии Natural resources and technology ноември 2011 november 2011 ГОДИНА 5 БРОЈ

Διαβάστε περισσότερα

СОДРЖИНА 1. ОСНОВНИ ПОИМИ ОД ПОДАТОЧНОТО РУДАРЕЊЕ УЧЕЊЕ НА ПРЕДИКТИВНИ МОДЕЛИ...9

СОДРЖИНА 1. ОСНОВНИ ПОИМИ ОД ПОДАТОЧНОТО РУДАРЕЊЕ УЧЕЊЕ НА ПРЕДИКТИВНИ МОДЕЛИ...9 СОДРЖИНА ВОВЕД...3 1. ОСНОВНИ ПОИМИ ОД ПОДАТОЧНОТО РУДАРЕЊЕ...4 1.1 ВОВЕД...4 1.2 ОСНОВНИ ЗАДАЧИ ВО ПОДАТОЧНОТО РУДАРЕЊЕ...6 2. УЧЕЊЕ НА ПРЕДИКТИВНИ МОДЕЛИ...9 2.1 ВОВЕД...9 2.2 УЧЕЊЕ НА ВЕРОЈАТНОСНИ МОДЕЛИ...10

Διαβάστε περισσότερα

РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 2004

РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 2004 РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 004 ТРАНСФОРМАТОРИ Tрофазни енергетски трансформатор 100 VA има напон и реактансу кратког споја u 4% и x % респективно При номиналном оптерећењу

Διαβάστε περισσότερα

Современа постапка за оптимален избор на мрежест заземјувач кај постројките ВН/ВН и ВН/СН

Современа постапка за оптимален избор на мрежест заземјувач кај постројките ВН/ВН и ВН/СН 6. СОВЕТУВАЊЕ Охрид, 4-6 октомври 2009 Ристо Ачковски, Мирко Тодоровски, Факултет за електротехника и информациски технологии Скопје Николче Ацевски, Технички факултет Битола Благоја Блажев ТИМЕЛПРОЕКТ

Διαβάστε περισσότερα

МОДЕЛИРАЊЕ НА ПРЕОДНИ ПРОЦЕСИ ПРИ КОМУТАЦИИ СО MATLAB/Simulink

МОДЕЛИРАЊЕ НА ПРЕОДНИ ПРОЦЕСИ ПРИ КОМУТАЦИИ СО MATLAB/Simulink 6. СОВЕТУВАЊЕ Охрид, 4-6 октомври 2009 Александра Крколева Јовица Вулетиќ Јорданчо Ангелов Ристо Ачковски Факултет за електротехника и информациски технологии Скопје МОДЕЛИРАЊЕ НА ПРЕОДНИ ПРОЦЕСИ ПРИ КОМУТАЦИИ

Διαβάστε περισσότερα

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ.

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ. VI Савијање кружних плоча Положај сваке тачке кружне плоче је одређен са поларним координатама и ϕ слика 61 Диференцијална једначина савијања кружне плоче је: ( ϕ) 1 1 w 1 w 1 w Z, + + + + ϕ ϕ K Пресечне

Διαβάστε περισσότερα

Практикум по неорганска хемија, применета во фармација

Практикум по неорганска хемија, применета во фармација Универзитет Св. Кирил и Методиј - Скопје Фармацевтски факултет, Скопје Институт за применета хемија и фармацевтски анализи Практикум по неорганска хемија, применета во фармација студиска програма Магистер

Διαβάστε περισσότερα

Теорија електричних кола

Теорија електричних кола Др Милка Потребић, ванредни професор, Теорија електричних кола, предавања, Универзитет у Београду Електротехнички факултет, 07. Вишефазне електричне системе је патентирао српски истраживач Никола Тесла

Διαβάστε περισσότερα

Универзитет Св. Кирил и Методиј -Скопје Факултет за електротехника и информациски технологии

Универзитет Св. Кирил и Методиј -Скопје Факултет за електротехника и информациски технологии Универзитет Св. Кирил и Методиј -Скопје Факултет за електротехника и информациски технологии А. Крколева, Р. Ачковски Упатство за работа со Excel Скопје, октомври 2008 г. ВОВЕД ВО EXCEL 1. Стартување на

Διαβάστε περισσότερα

ИНТЕРПРЕТАЦИЈА на NMR спектри. Асс. д-р Јасмина Петреска Станоева

ИНТЕРПРЕТАЦИЈА на NMR спектри. Асс. д-р Јасмина Петреска Станоева ИНТЕРПРЕТАЦИЈА на NMR спектри Асс. д-р Јасмина Петреска Станоева Нуклеарно магнетна резонанца Нуклеарно магнетна резонанца техника на молекулска спектроскопија дава информација за бројот и видот на атомите

Διαβάστε περισσότερα

Технички факултет Битола/Обука за енергетски контролори

Технички факултет Битола/Обука за енергетски контролори Во кинетичката теорија на гасови апсолутната температура е дефинирана како големина на состојбата пропорционална со средната кинетичка енергија на голем број молекули. Температурата неможе да се мери на

Διαβάστε περισσότερα

ДИНАМИЧКИ РЕЖИМ НА РАБОТА НА ВЕТЕРНА ФАРМА

ДИНАМИЧКИ РЕЖИМ НА РАБОТА НА ВЕТЕРНА ФАРМА 8. СОВЕТУВАЊЕ Охрид, 22 24 септември Миле Јончевски Миле Спировски Благоја Стеваноски Технички факултет Битола ДИНАМИЧКИ РЕЖИМ НА РАБОТА НА ВЕТЕРНА ФАРМА КУСА СОДРЖИНА Во трудот се анализирaни динамичките

Διαβάστε περισσότερα

ЕЛЕКТРОМАГНЕТНА АНАЛИЗА И ПРЕСМЕТКА НА ЕЛЕКТРОМАГНЕТНА СИЛА КАЈ МОДЕЛ НА СИНХРОН ЛИНЕАРЕН МОТОР ПО МЕТОД НА КОНЕЧНИ ЕЛЕМЕНТИ

ЕЛЕКТРОМАГНЕТНА АНАЛИЗА И ПРЕСМЕТКА НА ЕЛЕКТРОМАГНЕТНА СИЛА КАЈ МОДЕЛ НА СИНХРОН ЛИНЕАРЕН МОТОР ПО МЕТОД НА КОНЕЧНИ ЕЛЕМЕНТИ 6. СОВЕТУВАЊЕ Охрид, 4-6 октомври 2009 Мирка Попниколова Радевска Благоја Арапиноски Технички Факултет, Битола Драган Видановски ЕЛЕМ, Подружница РЕК Битола ЕЛЕКТРОМАГНЕТНА АНАЛИЗА И ПРЕСМЕТКА НА ЕЛЕКТРОМАГНЕТНА

Διαβάστε περισσότερα

Мерна опрема за мерење на бучава и вибрации пренесени на човечко тело

Мерна опрема за мерење на бучава и вибрации пренесени на човечко тело Мерна опрема за мерење на бучава и вибрации пренесени на човечко тело Златко Николовски дипл.ел.инж Логинг Електроникс Агенда 1. Кои сме и што работиме 2. Опрема за мерење на бучава 2.1 Мерни преносни

Διαβάστε περισσότερα

Заземјувачи. Заземјувачи

Заземјувачи. Заземјувачи Заземјувачи Заземјување претставува збир на мерки и средства кои се превземаат со цел да се обезбедат нормални услови за работа на системот и безбедно движење на луѓе и животни во близина на објектот.

Διαβάστε περισσότερα

Развоj на систем за следење на точка на максимална мо`кност

Развоj на систем за следење на точка на максимална мо`кност Универзитет Св. Климент Охридски Технички факултет-битола Магистерски труд Развоj на систем за следење на точка на максимална мо`кност Изработил: Благоj Гегов Октомври 2014 УНИВЕРЗИТЕТ СВ. КЛИМЕНТ ОХРИДСКИ

Διαβάστε περισσότερα

ДРВОТО КАКО МАТЕРИЈАЛ ЗА

ДРВОТО КАКО МАТЕРИЈАЛ ЗА ГРАДЕЖЕН ФАКУЛТЕТ-СКОПЈЕ Катедра за бетонски и дрвени конструкции ДРВОТО КАКО МАТЕРИЈАЛ ЗА ГРАДЕЖНИ КОНСТРУКЦИИ Доцент д-р Тони Аранѓеловски ОСНОВИ НА ДРВЕНИ КОНСТРУКЦИИ СТРУКТУРА НА ДРВОТО Дрвото е биолошки,

Διαβάστε περισσότερα

Деформабилни каркатеристики на бетонот

Деформабилни каркатеристики на бетонот УКИМ Градежен Факултет, Скопје Деформабилни каркатеристики на бетонот проф. д-р Тони Аранѓеловски Деформабилни карактеристики на бетонот Содржина: Деформации на бетонот под влијание на краткотрајни натоварувања

Διαβάστε περισσότερα

Ветерна енергија 3.1 Вовед

Ветерна енергија 3.1 Вовед 3 Ветерна енергија 3.1 Вовед Енергијата на ветерот е една од првите форми на енергија која ја користел човекот. Уште старите Египќани ја користеле за задвижување на своите бродови и ветерни мелници. Ваквиот

Διαβάστε περισσότερα

1. ОПШТИ ПОИМИ ЗА ТУРБОПУМПИТЕ ДЕФИНИЦИЈА 1.2 ПОДЕЛБА, ОСНОВНИ ШЕМИ И ПРИНЦИП НА РАБОТА ИСТОРИСКИ РАЗВОЈ НА ПУМПИТЕ 7

1. ОПШТИ ПОИМИ ЗА ТУРБОПУМПИТЕ ДЕФИНИЦИЈА 1.2 ПОДЕЛБА, ОСНОВНИ ШЕМИ И ПРИНЦИП НА РАБОТА ИСТОРИСКИ РАЗВОЈ НА ПУМПИТЕ 7 . ОПШТИ ПОИМИ ЗА ТУРБОПУМПИТЕ. ДЕФИНИЦИЈА. ПОДЕЛБА, ОСНОВНИ ШЕМИ И ПРИНЦИП НА РАБОТА.3 ИСТОРИСКИ РАЗВОЈ НА ПУМПИТЕ 7. ТЕОРЕТСКИ ОСНОВИ. КАРАКТЕРИСТИКИ НА СТРУЕЊЕТО НИЗ ТУРБОПУМПИТЕ. ЕНЕРГИЈА НА СТРУЕЊЕ

Διαβάστε περισσότερα

b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је:

b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је: Пример 1. III Савијање правоугаоних плоча За правоугаону плочу, приказану на слици, одредити: a) израз за угиб, b) вредност угиба и пресечних сила у тачки 1 ако се користи само први члан реда усвојеног

Διαβάστε περισσότερα

Смер: Друмски саобраћај. Висока техничка школа струковних студија у Нишу ЕЛЕКТРОТЕХНИКА СА ЕЛЕКТРОНИКОМ

Смер: Друмски саобраћај. Висока техничка школа струковних студија у Нишу ЕЛЕКТРОТЕХНИКА СА ЕЛЕКТРОНИКОМ Испит из предмета Електротехника са електроником 1. Шест тачкастих наелектрисања Q 1, Q, Q, Q, Q 5 и Q налазе се у теменима правилног шестоугла, као на слици. Познато је: Q1 = Q = Q = Q = Q5 = Q ; Q 1,

Διαβάστε περισσότερα

г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве

г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве в) дијагонала dd и страница aa квадрата dd = aa aa dd = aa aa = није рац. бр. нису самерљиве г) страница aa и пречник RR описаног круга правилног шестоугла RR = aa aa RR = aa aa = 1 јесте рац. бр. јесу

Διαβάστε περισσότερα

7.1 Деформациони карактеристики на материјалите

7.1 Деформациони карактеристики на материјалите 7. Механички особини Механичките особини на материјалите ја карактеризираат нивната способност да се спротистават на деформациите и разрушувањата предизвикани од дејството на надворешните сили, односно

Διαβάστε περισσότερα

ПЕТТО СОВЕТУВАЊЕ. Охрид, 7 9 октомври 2007

ПЕТТО СОВЕТУВАЊЕ. Охрид, 7 9 октомври 2007 ПЕТТО СОВЕТУВАЊЕ Охрид, 7 9 октомври 2007 Проф. д-р Мито Златаноски, дипл. ел. инж. Доц. д-р Атанас Илиев, дипл. ел. инж. Софија Николова, дипл. ел. инж. Факултет за електротехника и информациски технологии

Διαβάστε περισσότερα