A NEW SUZUKI TYPE COMMON COUPLED FIXED POINT RESULT FOR FOUR MAPS IN S b -METRIC SPACES

Σχετικά έγγραφα
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

2 Composition. Invertible Mappings

Homomorphism in Intuitionistic Fuzzy Automata

SOME PROPERTIES OF FUZZY REAL NUMBERS

Every set of first-order formulas is equivalent to an independent set

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

Example Sheet 3 Solutions

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

A General Note on δ-quasi Monotone and Increasing Sequence

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.

Commutative Monoids in Intuitionistic Fuzzy Sets

Matrices and Determinants

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

ON RANDOM COINCIDENCE POINT AND RANDOM COUPLED FIXED POINT THEOREMS

ST5224: Advanced Statistical Theory II

Congruence Classes of Invertible Matrices of Order 3 over F 2

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Statistical Inference I Locally most powerful tests

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp

1. Introduction and Preliminaries.

Chapter 3: Ordinal Numbers

A Note on Intuitionistic Fuzzy. Equivalence Relation

F A S C I C U L I M A T H E M A T I C I

EE512: Error Control Coding

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Reminders: linear functions

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

Other Test Constructions: Likelihood Ratio & Bayes Tests

C.S. 430 Assignment 6, Sample Solutions

Research Article Existence of Positive Solutions for m-point Boundary Value Problems on Time Scales

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

Fractional Colorings and Zykov Products of graphs

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Uniform Convergence of Fourier Series Michael Taylor

4.6 Autoregressive Moving Average Model ARMA(1,1)

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras

Inverse trigonometric functions & General Solution of Trigonometric Equations

12. Radon-Nikodym Theorem

On a four-dimensional hyperbolic manifold with finite volume

A summation formula ramified with hypergeometric function and involving recurrence relation

Fixed point theorems of φ convex ψ concave mixed monotone operators and applications

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

5. Choice under Uncertainty

Operation Approaches on α-γ-open Sets in Topological Spaces

Section 8.3 Trigonometric Equations

Knaster-Reichbach Theorem for 2 κ

GAUGES OF BAIRE CLASS ONE FUNCTIONS

Quadratic Expressions

Generating Set of the Complete Semigroups of Binary Relations

Tridiagonal matrices. Gérard MEURANT. October, 2008

Homomorphism of Intuitionistic Fuzzy Groups

Intuitionistic Supra Gradation of Openness

Intuitionistic Fuzzy Ideals of Near Rings

Homework 3 Solutions

Solution Series 9. i=1 x i and i=1 x i.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Lecture 13 - Root Space Decomposition II

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Lecture 2. Soundness and completeness of propositional logic

POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM

Lecture 21: Properties and robustness of LSE

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Common Random Fixed Point Theorems under Contraction of rational Type in Multiplicative Metric Space

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

On a Subclass of k-uniformly Convex Functions with Negative Coefficients

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

F19MC2 Solutions 9 Complex Analysis

STRONG DIFFERENTIAL SUBORDINATIONS FOR HIGHER-ORDER DERIVATIVES OF MULTIVALENT ANALYTIC FUNCTIONS DEFINED BY LINEAR OPERATOR

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points

EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

( y) Partial Differential Equations

Fuzzifying Tritopological Spaces

Second Order Partial Differential Equations

Cyclic or elementary abelian Covers of K 4

A Note on Characterization of Intuitionistic Fuzzy Ideals in Γ- Near-Rings

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

The challenges of non-stable predicates

SOLVING CUBICS AND QUARTICS BY RADICALS

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Concrete Mathematics Exercises from 30 September 2016

Partial Differential Equations in Biology The boundary element method. March 26, 2013

n=2 In the present paper, we introduce and investigate the following two more generalized

Abstract Storage Devices

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

Lecture 15 - Root System Axiomatics

The Fekete Szegö Theorem for a Subclass of Quasi-Convex Functions

ON FUZZY BITOPOLOGICAL SPACES IN ŠOSTAK S SENSE (II)

On New Subclasses of Analytic Functions with Respect to Conjugate and Symmetric Conjugate Points

Iterated trilinear fourier integrals with arbitrary symbols

Transcript:

JOURNAL OF INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4866 ISSN (o) 2303-4947 wwwimviblorg /JOURNALS / JOURNAL Vol 8(208) 03-9 DOI: 0725/JIMVI8003R Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o) ISSN 986-52X (p) A NEW SUZUKI TYPE COMMON COUPLED FIXED POINT RESULT FOR FOUR MAPS IN S b -METRIC SPACES K P R Rao E Taraka Ramudu and G N V Kishore Abstract In this paper we prove a Suzuki type unique common coupled fixed point theorem for two pairs of w-compatible mappings in S b -metric spaces We also furnish an example to support our main result Introduction In the year 2008 Suzuki [] generalized the Banach contraction principle [2] Theorem ([]) Let (X d) be a complete metric space and let T be a mapping on X Define a non-increasing function θ : [0 ) ( 2 ] by θ(r) = ( r)r 2 ( + r) Assume that there exists r [0 ) such that if 0 r ( 5 ) 2 if ( 5 ) 2 r if 2 2 r < 2 2 θ(r)d(x T x) d(x y) d(t x T y) rd(x y) for all x y X Then there exists a unique fixed point z of T Moreover for all x X lim n T n x = z 200 Mathematics Subject Classification 54H25 47H0 54E50 Key words and phrases Suzuki type S b -metric space w-compatible pairs S b -completeness coupled fixed points 03

04 KPRRAO ETARAKA RAMUDU AND GNVKISHORE Bhaskar and Lakshmikantham [4] introduced the notion of coupled fixed point and proved some coupled fixed point results Recently Sedghi et al [8] defined S b -metric spaces using the concept of S- metric spaces [9] The aim of this paper is to prove Suzuki type unique common coupled fixed point theorem for four mappings satisfying generalized contractive condition in S b -metric spaces Throughout this paper R R + and N denote the set of all real numbers non-negative real numbers and positive integers respectively First we recall some definitions lemmas and examples Definition ([9]) Let X be a non-empty set A S-metric on X is a function S : X 3 R + that satisfies the following conditions for each x y z a X (S) : 0 < S(x y z) for all x y z X with x y z (S2) : S(x y z) = 0 x = y = z (S3) : S(x y z) S(x x a) + S(y y a) + S(z z a) for all x y z a X Then the pair (X S) is called a S-metric space Definition 2 ([8]) Let X be a non-empty set and b be given real number Suppose that a mapping S b : X 3 R + be a function satisfying the following properties : (S b ) 0 < S b (x y z) for all x y z X with x y z (S b 2) S b (x y z) = 0 x = y = z (S b 3) S b (x y z) b(s b (x x a) + S b (y y a) + S b (z z a)) for all x y z a X Then the function S b is called a S b -metric on X and the pair (X S b ) is called a S b -metric space Remark ([8]) It should be noted that the class of S b -metric spaces is effectively larger than that of S-metric spaces Indeed each S-metric space is a S b -metric space with b = Following example shows that a S b -metric on X need not be a S-metric on X Example ([8]) Let (X S) be a S-metric space and S (x y z) = S(x y z) p where p > is a real number Note that S is a S b -metric with b = 2 2(p ) Also (X S ) is not necessarily a S-metric space Definition 3 ([8]) Let (X S b ) be a S b -metric space Then for x X and r > 0 we define the open ball B Sb (x r) and closed ball B Sb [x r] with center x and radius r as follows respectively: B Sb (x r) B Sb [x r] = y X : S b (y y x) < r = y X : S b (y y x) r Lemma ([8]) In a S b -metric space we have S b (x x y) b S b (y y x)

A NEW SUZUKI TYPE UNIQUE COMMON COUPLED FIXED POINT THEOREM 05 and S b (y y x) b S b (x x y) Lemma 2 ([8]) In a S b -metric space we have S b (x x z) 2b S b (x x y) + b 2 S b (y y z) Definition 4 ([8]) If (X S b ) be a S b -metric space A sequence x n in X is said to be: () S b -Cauchy sequence if for each ϵ > 0 there exists n 0 N such that S b (x n x n x m ) < ϵ for each m n n 0 (2) S b -convergent to a point x X if for each ϵ > 0 there exists a positive integer n 0 such that S b (x n x n x) < ϵ or S b (x x x n ) < ϵ for all n n 0 and we denote by lim n x n = x Definition 5 ([8]) A S b -metric space (X S b ) is called complete if every S b -Cauchy sequence is S b -convergent in X Lemma 3 ([8]) If (X S b ) be a S b -metric space with b and suppose that x n is a S b -convergent to x then we have (i) 2b S b(y x x) lim infs b(y y x n ) lim sups b(y y x n ) 2b S b (y y x) n n and (ii) b 2 S b (x x y) for all y X lim infs b(x n x n y) n lim sups b(x n x n y) b 2 S b (x x y) n In particular if x = y then we have lim n S b(x n x n y) = 0 Definition 6 ([4]) Let X be a non-empty set An element (x y) X X is called a coupled fixed point of a mapping F : X X X if x = F (x y) and y = F (y x) Definition 7 ([5]) Let X be a non-empty set An element (x y) X X is called (i) a coupled coincident point of mappings F : X X X and f : X X if fx = F (x y) and fy = F (y x) (ii) a common coupled fixed point of mappings F : X X X and f : X X if x = fx = F (x y) and y = fy = F (y x) Now we give our main result 2 Main Result Let Φ denote the class of all functions ϕ : R + R + such that ϕ is nondecreasing continuous ϕ(t) < t 4b for all t > 0 and ϕ(0) = 0 4 Theorem 2 Let (X S b ) be a S b -metric space Suppose that A B : X X X and P Q : X X be satisfying (2) A(X X) Q(X) B(X X) P (X)

06 KPRRAO ETARAKA RAMUDU AND GNVKISHORE (22) A P and B Q are w-compatible pairs (23) One of P (X) or Q(X) is S b -complete subspace of X S b (A(x y) A(x y) P x) S b (B(u v) B(u v) Qu) (24) 3 implies that S b (A(y x) A(y x) P y) S b (B(v u) B(v u) Qv) 2b 5 S b (A(x y) A(x y) B(u v)) Sb (P x P x Qu) S b (P y P y Qv) S b (P x P x Qu) S b (P y P y Qv) S b (A(x y) A(x y) P x) S b (A(y x) A(y x) P y) S b (B(u v) B(u v) Qu) S b (B(v u) B(v u) Qv) S b (A(xy)A(xy)Qu) S b (B(uv)B(uv)P x) +S b (P xp xqu) S b (A(yx)A(yx)Qv) S b (B(vu)B(vu)P y) +S b (P yp yqv) for all x y u v X ϕ Φ Then A B P and Q have a unique common coupled fixed point in X X Proof Let x 0 y 0 X From (2) we can construct the sequences x n y n z n and w n such that A(x 2n y 2n ) = Qx 2n+ = z 2n A(y 2n x 2n ) = Qy 2n+ = w 2n B(x 2n+ y 2n+ ) = P x 2n+2 = z 2n+ B(y 2n+ x 2n+ ) = P y 2n+2 = w 2n+ n = 0 2 Case (i) Suppose z 2m = z 2m+ and w 2m = w 2m+ for some m Assume that z 2m+ z 2m+2 or w 2m+ w 2m+2 Since 3 S b (A(x 2m+2 y 2m+2 ) A(x 2m+2 y 2m+2 ) P x 2m+2 ) ]S b (B(x 2m+ y 2m+ ) B(x 2m+ y 2m+ ) Qx 2m+ ) S b (A(y 2m+2 x 2m+2 ) A(y 2m+2 x 2m+2 ) P y 2m+2 ) S b (B(y 2m+ x 2m+ ) B(y 2m+ x 2m+ ) Qy 2m+ ) S b (P x 2m+2 P x 2m+2 Qx 2m+ ) S b (P y 2m+2 P y 2m+2 Qy 2m+ ) From (24) we have

A NEW SUZUKI TYPE UNIQUE COMMON COUPLED FIXED POINT THEOREM 07 S b (z 2m+2 z 2m+2 z 2m+ ) 2b 5 S b (A(x 2m+2 y 2m+2 ) A(x 2m+2 y 2m+2 ) B(x 2m+ y 2m+ )) S b (z 2m+ z 2m+ z 2m ) S b (w 2m+ w 2m+ w 2m ) S b (z 2m+2 z 2m+2 z 2m+ ) S b (w 2m+2 w 2m+2 w 2m+ ) S b (z 2m+ z 2m+ z 2m ) S b (w 2m+ w 2m+ w 2m ) S b (z 2m+2 z 2m+2 z 2m+ ) S b (z 2m+ z 2m+ z 2m ) +S b (z 2m+ z 2m+ z 2m ) S b (w 2m+2 w 2m+2 w 2m+ ) S b (w 2m+ w 2m+ w 2m ) +S b (w 2m+ w 2m+ w 2m ) = ϕ ( S b (z 2m+2 z 2m+2 z 2m+ ) S b (w 2m+2 w 2m+2 w 2m+ ) ) Similarly we can prove S b (w 2m+2 w 2m+2 w 2m+ ) ( Sb (z 2m+2 z 2m+2 z 2m+ ) S b (w 2m+2 w 2m+2 w 2m+ ) ) Thus Sb (z 2m+2 z 2m+2 z 2m+ ) S b (w 2m+2 w 2m+2 w 2m+ ) ( Sb (z 2m+2 z 2m+2 z 2m+ ) S b (w 2m+2 w 2m+2 w 2m+ ) ) It follows that z 2m+2 = z 2m+ and w 2m+2 = w 2m+ Continuing in this process we can conclude that z 2m+k = z 2m and w 2m+k = w 2m for all k 0 It follows that z n and w n are Cauchy sequences Case (ii) Assume that z 2n z 2n+ and w 2n w 2n+ for all n Put S n = S b (z n+ z n+ z n ) S b (w n+ w n+ w n ) Since 3 S b (A(x 2n+2 y 2n+2 ) A(x 2n+2 y 2n+2 ) P x 2n+2 ) S b (B(x 2n+ y 2n+ ) B(x 2n+ y 2n+ ) Qx 2n+ ) S b (A(y 2n+2 x 2n+2 ) A(y 2n+2 x 2n+2 ) P y 2n+2 ) S b (B(y 2n+ x 2n+ ) B(y 2n+ x 2n+ ) Qy 2n+ ) S b (P x 2n+2 P x 2n+2 Qx 2n+ ) S b (P y 2n+2 P y 2n+2 Qy 2n+ ) From (24) we have S b (z 2n+2 z 2n+2 z 2n+ )

08 KPRRAO ETARAKA RAMUDU AND GNVKISHORE 2b 5 S b (A(x 2n+2 y 2n+2 ) A(x 2n+2 y 2n+2 ) B(x 2n+ y 2n+ )) S b (z 2n+ z 2n+ z 2n ) S b (w 2n+ w 2n+ w 2n ) S b (z 2n+2 z 2n+2 z 2n+ ) S b (w 2n+2 w 2n+2 w 2n+ ) S b (z 2n+ z 2n+ z 2n ) S b (w 2n+ w 2n+ w 2n ) S b (z 2n+2 z 2n+2 z 2n ) S b (z 2n+ z 2n+ z 2n+ ) +S b (z 2n+ z 2n+ z 2n ) S b (w 2n+2 w 2n+2 w 2n ) S b (w 2n+ w 2n+ w 2n+ ) +S b (w 2n+ w 2n+ w 2n ) ( ) Sb (z 2n+ z 2n+ z 2n ) S b (z 2n+2 z 2n+2 z 2n+ ) = ϕ S b (w 2n+ w 2n+ w 2n ) S b (w 2n+2 w 2n+2 w 2n+ ) = ϕ ( ) S 2n+ S 2n Similarly we can prove that S b (w 2n+2 w 2n+2 w 2n+ ) ( S 2n+ S 2n ) Thus S 2n+ (S 2n S 2n+ ) If S 2n+ is imum then we get contradiction so that S 2n is imum Thus (2) S 2n+ (S 2n ) < S 2n Similarly we can conclude that S 2n < S 2n It is clear that S n is a non-increasing sequence of non-negative real numbers and must converge to a real number say r 0 Suppose r > 0 Letting n in (2) we have r (r) < r It is contradiction Hence r = 0 Thus (22) lim n S(z n+ z n+ z n ) = 0 and (23) lim n S(w n+ w n+ w n ) = 0 Now we prove that z 2n and w 2n are Cauchy sequences in (X S b ) On contrary we suppose that z 2n or w 2n is not Cauchy Then there exist ϵ > 0 and monotonically increasing sequence of natural numbers 2m k and 2n k such that n k > m k (24) S b (z 2mk z 2mk z 2nk ) S b (w 2mk w 2mk w 2nk ) ϵ and (25) S b (z 2mk z 2mk z 2nk 2 ) S b (w 2mk w 2mk w 2nk 2 ) < ϵ

A NEW SUZUKI TYPE UNIQUE COMMON COUPLED FIXED POINT THEOREM 09 From (24) and (25) we have (26) ϵ S b (z 2mk z 2mk z 2nk ) S b (w 2mk w 2mk w 2nk ) 2b S b (z 2mk z 2mk z 2mk +2) S b (w 2mk w 2mk w 2mk +2) +b S b (z 2nk z 2nk z 2mk +2) S b (w 2nk w 2nk w 2mk +2) 2b (2b S b (z 2mk z 2mk z 2mk +) S b (w 2mk w 2mk w 2mk +)) +2b (b S b (z 2mk +2 z 2mk +2 z 2mk +) S b (w 2mk +2 w 2mk +2 w 2mk +)) +b (2b S b (z 2nk z 2nk z 2nk +) S b (w 2nk w 2nk w 2nk +)) +b (b S b (z 2mk +2 z 2mk +2 z 2nk +) S b (w 2mk +2 w 2mk +2 w 2nk +)) 4b 3 S b (z 2mk + z 2mk + z 2mk ) S b (w 2mk + w 2mk + w 2mk ) +2b 2 S b (z 2mk +2 z 2mk +2 z 2mk +) S b (w 2mk +2 w 2mk +2 w 2mk +) +2b 3 S b (z 2nk + z 2nk z 2nk ) S b (w 2nk + w 2nk w 2nk ) +b 2 S b (z 2mk +2 z 2mk +2 z 2nk +) S b (w 2mk +2 w 2mk +2 w 2nk +) Now first we claim that (27) 3 S b (A(x 2mk +2 y 2mk +2) A(x 2mk +2 y 2mk +2) P x 2mk +2) S b (B(x 2nk + y 2nk +) B(x 2nk + y 2nk +) Qx 2nk +) S b (A(y 2mk +2 x 2mk +2) A(y 2mk +2 x 2mk +2) P y 2mk +2) S b (B(y 2nk + x 2nk +) B(y 2nk + x 2nk +) Qy 2nk +) Sb (P x 2mk +2 P x 2mk +2 Qx 2nk +) S b (P y 2mk +2 P y 2mk +2 Qy 2nk +) On contrary suppose that 3 S b (A(x 2mk +2 y 2mk +2) A(x 2mk +2 y 2mk +2) P x 2mk +2) S b (B(x 2nk + y 2nk +) B(x 2nk + y 2nk +) Qx 2nk +) S b (A(y 2mk +2 x 2mk +2) A(y 2mk +2 x 2mk +2) P y 2mk +2) S b (B(y 2nk + x 2nk +) B(y 2nk + x 2nk +) Qy 2nk +) > Sb (P x 2mk +2 P x 2mk +2 Qx 2nk +) S b (P y 2mk +2 P y 2mk +2 Qy 2nk +)

0 KPRRAO ETARAKA RAMUDU AND GNVKISHORE Now from (24) we have ϵ S b (z 2mk z 2mk z 2nk ) S b (w 2mk w 2mk w 2nk ) 2b S b (z 2mk z 2mk z 2mk +) S b (w 2mk w 2mk w 2mk +) +b S b (z 2nk z 2nk z 2mk +) S b (w 2nk w 2nk w 2mk +) 2b 2 S b (z 2mk + z 2mk + z 2mk ) S b (w 2mk + w 2mk + w 2mk ) +b 2 S b (z 2mk + z 2mk + z 2nk ) S b (w 2mk + w 2mk + w 2nk ) < 2b 2 S b (z 2mk + z 2mk + z 2mk ) S b (w 2mk + w 2mk + w 2mk ) S b (z 2mk +2 z 2mk +2 z 2mk +) +b 2 3 S b (w 2mk +2 w 2mk +2 w 2mk +) S b (z 2nk + z 2nk + z 2nk ) S b (w 2nk + w 2nk + w 2nk ) Letting k we have ϵ 0 It is a contradiction Hence (27) holds Now from (24) we have 2b 5 S b (z 2mk +2 z 2mk +2 z 2mk +) S b (z 2mk + z 2mk + z 2nk ) S b (w 2mk + w 2mk + w 2nk ) S b (z 2mk +2 z 2mk +2 z 2mk +) S b (w 2mk +2 w 2mk +2 w 2mk +) S b (z 2nk + z 2nk + z 2nk ) S b (w 2nk + w 2nk + w 2nk ) Similarly S b (z 2mk +2z 2mk +2z 2nk ) S b (z 2nk +z 2nk +z 2mk +) +S b (z 2mk +z 2mk +z 2nk ) S b (w 2mk +2w 2mk +2w 2nk ) S b (w 2nk +w 2nk +w 2mk +) +S b (w 2mk +w 2mk +w 2nk ) 2b 5 S b (w 2mk +2 w 2mk +2 w 2mk +) S b (z 2mk + z 2mk + z 2nk ) S b (w 2mk + w 2mk + w 2nk ) S b (z 2mk +2 z 2mk +2 z 2mk +) S b (w 2mk +2 w 2mk +2 w 2mk +) S b (z 2nk + z 2nk + z 2nk ) S b (w 2nk + w 2nk + w 2nk ) Thus S b (z 2mk +2z 2mk +2z 2nk ) S b (z 2nk +z 2nk +z 2mk +) +S b (z 2mk +z 2mk +z 2nk ) S b (w 2mk +2w 2mk +2w 2nk ) S b (w 2nk +w 2nk +w 2mk +) +S b (w 2mk +w 2mk +w 2nk ) (28) 2b 5 S b (z 2mk +2 z 2mk +2 z 2mk +) S b (w 2mk +2 w 2mk +2 w 2mk +) S b (z 2mk + z 2mk + z 2nk ) S b (w 2mk + w 2mk + w 2nk ) S b (z 2mk +2 z 2mk +2 z 2mk +) S b (w 2mk +2 w 2mk +2 w 2mk +) S b (z 2nk + z 2nk + z 2nk ) S b (w 2nk + w 2nk + w 2nk ) S b (z 2mk +2z 2mk +2z 2nk ) S b (z 2nk +z 2nk +z 2mk +) +S b (z 2mk +z 2mk +z 2nk ) S b (w 2mk +2w 2mk +2w 2nk ) S b (w 2nk +w 2nk +w 2mk +) +S b (w 2mk +w 2mk +w 2nk )

A NEW SUZUKI TYPE UNIQUE COMMON COUPLED FIXED POINT THEOREM But S b (z 2mk + z 2mk + z 2nk ) S b (w 2mk + w 2mk + w 2nk ) 2b S b (z 2mk + z 2mk + z 2mk ) S b (w 2mk + w 2mk + w 2mk ) +b S b (z 2nk z 2nk z 2mk ) S b (w 2nk w 2nk w 2mk ) 2b S b (z 2mk + z 2mk + z 2mk ) S b (w 2mk + w 2mk + w 2mk ) +b 2 S b (z 2mk z 2mk z 2nk ) S b (w 2mk w 2mk w 2nk ) 2b S b (z 2mk + z 2mk + z 2mk ) S b (w 2mk + w 2mk + w 2mk ) +b 2 ( 2b S b (z 2mk z 2mk z 2nk 2 ) S b (w 2mk w 2mk w 2nk 2 ) ) +b 2 ( b S b (z 2nk z 2nk z 2nk 2 ) S b (w 2nk w 2nk w 2nk 2 ) ) < 2b S b (z 2mk + z 2mk + z 2mk ) S b (w 2mk + w 2mk + w 2mk ) +2b 3 ϵ + b 3 (2b S b (z 2nk z 2nk z 2nk ) S b (w 2nk w 2nk w 2nk )) +b 3 ( b S b (z 2nk 2 z 2nk 2 z 2nk ) S b (w 2nk 2 w 2nk 2 w 2nk ) ) 2b S b (z 2mk + z 2mk + z 2mk ) S b (w 2mk + w 2mk + w 2mk ) +2b 3 ϵ + 2b 4 S b (z 2nk z 2nk z 2nk ) S b (w 2nk w 2nk w 2nk ) +b 5 S b (z 2nk z 2nk z 2nk 2) S b (w 2nk w 2nk w 2nk 2) Letting k we have (29) lim k S b(z 2mk + z 2mk + z 2nk ) S b (w 2mk + w 2mk + w 2nk ) 2b 3 ϵ Also lim k S b (z 2mk +2 z 2mk +2 z 2nk ) S b (z 2nk + z 2nk + z 2mk +) + S b (z 2mk + z 2mk + z 2nk ) [ [2bSb (z 2mk +2 z 2mk +2 z 2mk +) + bs b (z 2nk z 2nk z 2mk +)] ] lim k [2bS b (z 2nk + z 2nk + z 2nk ) + bs b (z 2mk + z 2mk + z 2nk )] + S b (z 2mk + z 2mk + z 2nk ) b 3 S b (z 2mk + z 2mk + z 2nk ) S b (z 2mk + z 2mk + z 2nk ) lim k + S b (z 2mk + z 2mk + z 2nk ) lim k b3 S b (z 2mk + z 2mk + z 2nk ) 2b 6 ϵ from(29) Similarly S b (z 2mk +2 z 2mk +2 z 2nk ) S b (w 2nk + w 2nk + w 2mk +) lim 2b 6 ϵ k + S b (w 2mk + w 2mk + w 2nk )

2 KPRRAO ETARAKA RAMUDU AND GNVKISHORE Letting k in (28) we have (20) lim k S b(z 2mk +2 z 2mk +2 z 2nk +) S b (w 2mk +2 w 2mk +2 w 2nk +) 2b 5 ϕ ( 2b 3 ϵ 0 0 0 0 2b 6 ϵ 2b 6 ϵ ) = 2b 5 ϕ(2b6 ϵ) Now letting n in (26) from (22)(23) and (20) we have ϵ 0 + 0 + 0 + b 2 2b 5 ϕ(2b6 ϵ) < ϵ It is a contradiction Hence z 2n and w 2n are S b -Cauchy sequences in (X S b ) In addition S b (z 2n+ z 2n+ z 2m+ ) S b (w 2n+ w 2n+ w 2m+ ) 2b S b (z 2n+ z 2n+ z 2n ) S b (w 2n+ w 2n+ w 2n ) +b S b (z 2m+ z 2m+ z 2n ) S b (w 2m+ w 2m+ w 2n ) 2b S b (z 2n+ z 2n+ z 2n ) S b (w 2n+ w 2n+ w 2n ) +2b 2 S b (z 2m+ z 2m+ z 2m ) S b (w 2m+ w 2m+ w 2m ) +b 2 S b (z 2n z 2n z 2m ) S b (w 2n w 2n w 2m ) Since z 2n and w 2n are Cauchy and using (22) (23) we have z 2n+ and w 2n+ are also S b -Cauchy sequences in (X S b ) Thus z n and w n are S b - Cauchy sequences in (X S) Suppose assume that P (X) is a S b - complete subspace of (X S b ) Then the sequences z n and w n converge to α and β in P (X) Thus there exist a and b in P (X) such that (2) lim n z n = α = P a and lim w n = β = P b n Before going to prove common coupled fixed point for the mappings A B P and Q first we claim that for each n at least one of the following assertions holds Sb (z 2n+ z 2n+ z 2n ) S 3 S b (w 2n+ w 2n+ w 2n ) b (α α z 2n ) S b (β β w 2n ) Sb (z 2n z 2n z 2n ) 3 S b (w 2n w 2n w 2n ) On contrary suppose that Sb (z 2n+ z 2n+ z 2n ) 3 S b (w 2n+ w 2n+ w 2n ) Sb (z 2n z 2n z 2n ) 3 S b (w 2n w 2n w 2n ) or S b (α α z 2n 2 ) S b (β β w 2n 2 ) > S b (α α z 2n ) S b (β β w 2n ) and > S b (α α z 2n ) S b (β β w 2n )

A NEW SUZUKI TYPE UNIQUE COMMON COUPLED FIXED POINT THEOREM 3 Now consider Sb (z 2n z 2n z 2n ) S b (w 2n w 2n w 2n ) 2bSb (z 2n z 2n α) + b 2 S b (α α z 2n ) 2bS b (w 2n w 2n β) + b 2 S b (β β z 2n ) Sb 2b 2 (α α z 2n ) Sb + b 2 (α α z 2n ) S b (β β w 2n ) S b (β β z 2n ) Sb < 4b (z 2n+ z 2n+ z 2n ) Sb + S b (w 2n+ w 2n+ w 2n ) (z 2n z 2n z 2n ) S b (w 2n w 2n w 2n ) Sb 4b (z 2n z 2n z 2n ) Sb + S b (w 2n w 2n w 2n ) (z 2n z 2n z 2n ) S b (w 2n w 2n w 2n ) Sb = 3 (z 2n z 2n z 2n ) S b (w 2n w 2n w 2n ) Sb (z 2n z 2n z 2n ) < S b (w 2n w 2n w 2n ) It is a contradiction Hence our assertion holds Sub case(a) 3 Sb (z 2n+ z 2n+ z 2n ) S b (w 2n+ w 2n+ w 2n ) Sb (α α z 2n ) S b (β β w 2n ) holds Since 3 S b (A(a b) A(a b) α) S b (z 2n+ z 2n+ z 2n ) S b (A(b a) A(b a) β) S b (w 2n+ w 2n+ w 2n ) Sb (P a P a z 2n ) S b (P b P b w 2n ) That is 3 Sb (A(a b) A(a b) α) S b (z 2n+ z 2n+ z 2n ) S b (A(b a) A(b a) β) S b (w 2n+ w 2n+ w 2n ) Sb (α α z 2n ) S b (β β w 2n ) From (24) and Lemma () we have

4 KPRRAO ETARAKA RAMUDU AND GNVKISHORE S 2b b (A(a b) A(a b) α) lim inf S b(a(a b) A(a b) B(x 2n+ y 2n+ )) n lim inf 2 n b5 S b (A(a b) A(a b) B(x 2n+ y 2n+ )) S b (α α z 2n ) S b (β β w 2n ) S b (A(a b) A(a b) α) S b (A(b a) A(b a) β) S lim inf ϕ b (z 2n+ z 2n+ z 2n) S b (w 2n+ w 2n+ w 2n) n [ Sb (A(a b) A(a b) z 2n)S b (z 2n+ z 2n+ α) ] +S b (ααz 2n ) [ Sb (A(b a) A(b a) w 2n )S b (w 2n+ w 2n+ β) ] +S b (ββw 2n ) = ϕ ( 0 0 S b (A(a b) A(a b) α) S b (A(b a) A(b a) β) 0 0 0 0 ) = ϕ ( S b (A(a b) A(a b) α) S b (A(b a) A(b a) β) ) Similarly ( 2b S Sb (A(a b) A(a b) α) b(a(b a) A(b a) β) S b (A(b a) A(b a) β) ) Thus 2b Sb (A(a b) A(a b) α) S b (A(b a) A(b a) β) ( Sb (A(a b) A(a b) α) S b (A(b a) A(b a) β) ) By the definition of ϕ it follows that A(a b) = α = P a and A(b a) = β = P b Since (A P ) is w-compatible pair we have A(α β) = P α and A(β α) = P β From the definition of S b -metric it is clear that S b (A(α β) A(α β) P α) S b (A(β α) A(β α) P β) S 3 b (B(x 2n+ y 2n+ ) B(x 2n+ y 2n+ ) Qx 2n+ ) S b (B(y 2n+ x 2n+ ) B(y 2n+ x 2n+ ) Qy 2n+ ) = 0 S b (P α P α Qx 2n+ ) S b (P β P β Qy 2n+ )

A NEW SUZUKI TYPE UNIQUE COMMON COUPLED FIXED POINT THEOREM 5 From (24) and Lemma () we have S 2b b (A(α β) A(α β) α) lim sup S b(a(α β) A(α β) B(x 2n+ y 2n+ )) n lim sup 2 n b5 S b (A(α β) A(α β) B(x 2n+ y 2n+)) S b (A(α β) A(α β) z 2n) S b (A(β α) A(β α) w 2n) lim sup ϕ 0 0 S b (z 2n+ z 2n+ z 2n ) S b (w 2n+ w 2n+ w 2n ) n S b (A(αβ)A(αβ)z 2n ) S b (z 2n+ z 2n+ A(αβ)) +S b (A(αβ)A(αβ)z 2n ) S b (A(βα)A(βα)w 2n ) S b (w 2n+ w 2n+ A(βα)) +S b (A(βα)A(βα)w 2n ) S lim sup ϕ b (A(α β) A(α β) z 2n ) S b (A(β α) A(β α) w 2n ) n S b (z 2n+ z 2n+ z 2n ) S b (w 2n+ w 2n+ w 2n ) S b (z 2n+ z 2n+ A(α β)) S b (w 2n+ w 2n+ A(β α)) ( ) 2bSb (A(α β) A(α β) α) 2bS b (A(β α) A(β α) β) 0 0 b 2 S b (α α A(α β)) b 2 S b (β β A(β α)) ( 2b 2 S b (A(α β) A(α β) α) S b (A(β α) A(β α) β) ) Similarly ( 2b S b(a(β α) A(β α) β) 2b 2 S( A(α β) A(α β) α) S b (A(β α) A(β α) β) ) Thus 2b Sb (A(α β) A(α β) α) ( S b (A(β α) A(β α) β) ) 2b 2 Sb (A(α β) A(α β) α) S b (A(β α) A(β α) β) By the definition of ϕ it follows that A(α β) = α = P α and A(β α) = β = P β Therefore (α β) is a common coupled fixed point of A and P Since A(X X) Q(X) there exist x and y in X such that A(α β) = α = Qx and A(β α) = β = Qy Since we have that 3 From (24) we have Sb (A(α β) A(α β) P α) S b (A(β α) A(β α) P β) S b (B(x y) B(x y) Qx) S b (B(y x) B(y x) Qy) Sb (P α P α Qx) = 0 S b (P β P β Qy) 2 b 5 S b (A(α β) A(α β) B(x y))

6 KPRRAO ETARAKA RAMUDU AND GNVKISHORE S b (P α P α Qx) S b (P β P β Qy) S b (A(α β) A(α β) P α) S b (A(β α) A(β α) P β) S b (B(x y) B(x y) Qx) S(B(y x) B(y x) Qy) S b (A(αβ)A(αβ)Qx) S b (B(xy)B(xy)P α) +S b (P αp αqx) S b (A(βα)A(βα)Qy)S b (B(yx)B(yx)P β) +S b (P βp βqy) = ϕ ( 0 0 0 0 S b (B(x y) B(x y) α) S b (B(y x) B(y x) β) 0 0 ) ( b S b (α α B(x y)) S b (β β B(y x)) ) Similarly Thus 2 b 5 S b (β β B(y x)) ( b S b (α α B(x y)) S b (β β B(y x)) ) 2 b 5 Sb (α α B(x y)) S b (β β B(y x)) ( Sb (α α B(x y)) b S b (β β B(y x)) ) It follows that B(x y) = α = Qx and B(y x) = β = Qy Since (B Q) is w-compatible pair we have B(α β) = Qα and B(β α ) = Qβ Since we have that Sb (A(α β) A(α β) P α) S b (A(β α) A(β α) P β) 3 From (24) we have S b (B(α β) B(α β) Qα) S b (B(β α) B(β α) Qβ) Sb (P α P α Qα) = 0 S b (P β P β Qβ) 2 b 5 S b (A(α β) A(α β) B(α β)) S b (P α P α Qα) S b (P β P β Qβ) S b (A(α β) A(α β) P α) S b (A(β α) A(β α) P β) S b (B(α β) B(α β) Qα) S b (B(β α) B(β α) Qβ) Similarly Thus S b (A(αβ)A(αβ)Qα)S b (B(αβ)B(αβ)P α) +S b (P αp αqα) S b (A(βα)A(βα)Qβ)S b (B(βα)B(βα)P β) +S b (P βp βqβ) ( ) S = ϕ b (α α B(α β)) S b (β β B(β α)) S b (B(α β) B(α β) α) S b (B(β α) B(β α) β) ( b S b (α α B(α β)) S b (β β B(β α)) ) 2 b 5 S b (β β B(β α)) ( b S b (α α B(α β)) S b (β β B(β α)) ) Sb (α α B(α β)) S b (β β B(β α)) ( Sb (α α B(α β)) b S b (β β B(β α)) ) It follows that B(α β) = α = Qα and B(β α) = β = Qβ Thus (α β) is a common coupled fixed point of A B P and Q

A NEW SUZUKI TYPE UNIQUE COMMON COUPLED FIXED POINT THEOREM 7 To prove uniqueness let us take (α β ) as another common coupled fixed point of A B P and Q Since it is clear that S b (A(α β) A(α β) P α) S b (A(β α) A(β α) P β) 3 S b (B(α β ) B(α β ) Qα = 0 ) S b (B(β α ) B(β α ) Qβ ) From (24) we have Sb (P α P α Qα ) S b (P β P β Qβ ) 2 b 5 S b (α α α ) = 2 b 5 S b (A(α β) A(α β) B(α β )) S b (α α α ) S(β β β ) S b (α α α) S b (β β β) S b (α α α ) S b (β β β ) Similarly Thus S b (ααα )S b (α α α) +S b (ααα ) S b(βββ )S b (β β β) +S b (βββ ) (b S b (α α α ) S b (β β β )) 2 b 5 S(β β β ) (bs(α α α ) bs b (β β β )) 2 b 5 S b (α α α ) S b (β β β ) ( b S b (α α α ) S b (β β β ) ) It follows that α = α and β = β Hence (α β) is unique common coupled fixed point of A B P and Q Sub case(b) Sb (z 2n z 2n z 2n ) 3 S b (w 2n w 2n w 2n ) Sb (α α z 2n ) S b (β β w 2n ) holds By proceeding as in Sub case(a) we can prove that (α β) is unique common coupled fixed point of A B P and Q Similarly the theorem holds when Q(X) is a S b -complete subspace of (X S b ) Now we give an example to illustrate the Theorem 2 Example 2 Let X = [0 ] and S : X X X R + by S b (x y z) = ( y + z 2x + y z ) 2 then (X S b ) is a S b -metric space with b = 4 P Q : X X by A(x y) = x2 + y 2 4 8 B = x2 + y 2 Define A B : X X X and 4 9 P (x) = x2 4

8 KPRRAO ETARAKA RAMUDU AND GNVKISHORE and Q(x) = x2 6 Let ϕ : R+ R + be defined by ϕ(t) = t 4 6 Consider 2b 5 S b (A(x y) A(x y) B(u v)) = 2 ( 4 6) ( A(x y) B(u v) ) 2 = 2(4 6 ) = 2(4 6 ) x2 +y 2 4 u2 +v 2 8 4 9 2 4x2 u 2 4 + 4y2 v 2 9 4 9 2 2(4 6 4x ) 2 u 2 4 + 4y 2 v 2 2 9 4 9 ( 2(46 ) 2 (4 7 ) 2 = 2(4 6 ) x 2 4x 2 u 2 6 4 u2 6 2 4y 2 v 2 6 y2 4 v2 6 ) 2 2 = 2(4 7 ) S(P x P x Qu) S(P y P y Qv) S(P x P x Qu) S(P y P y Qv) S(A(x y) A(x y) P x)s(a(y x) A(y x) P y) S(B(u v) B(u v) Qu) S(B(v u) B(v u) Qv) S(A(xy)A(xy)Qu) S(B(uv)B(uv)P x) +S(P xp xqu) S(A(yx)A(yx)Qv) S(B(vu)B(vu)P y) +S(P yp yqv) Thus the condition (24) is satisfiedone can easily verify the remaining conditions of Theorem 2 In this example (0 0) is the unique common coupled fixed point of A B P and Q References [] M Abbas and M Ali khan and S Randenović Common coupled fixed point theorems in cone metric spaces for w-compatible mappings Appl Math Comput 27()(200) 95-202 [2] S Banach Theorie des Operations lineaires Manograic Mathematic Zne Warsaw Poland 932 [3] S Czerwik Contraction mapping in b-metric spaces Communications in Mathematics Formerly Acta Mathematica et Informatica Universitatis Ostraviensis ()(993) 5 - [4] T Gnana Bhaskar and V Lakshmikantham Fixed point theorems in partially ordered metric spaces and applications Nonlinear Analysis Theory Methods and Applications 65(7)(2006) 379-393

A NEW SUZUKI TYPE UNIQUE COMMON COUPLED FIXED POINT THEOREM 9 [5] V Lakshmikantham and Lj Ćirić Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces Nonlinear Analysis Theory Methods and Applications 70(2)(2009) 434-4349 [6] Z Mustafa and B Sims A new approach to generalized metric spaces J Nonlinear Convex Anal 7(2)(2006) 289-297 [7] S Sedghi I Altun N Shobe and M Salahshour Some properties of S-metric space and fixed point results Kyungpook Math J 54()(204) 3-22 [8] S Sedghi Gholidahneh T Došenović J Esfahani and S Radenović Common fixed point of four maps in S b -metric spaces J Linear Top Algebra 5(2)(206) 93-04 [9] S Sedghi N Shobe and A Aliouche A generalization of fixed point theorem in S-metric spaces Mat Vesnik 64(3)(202) 258-266 [0] S Sedghi N Shobe and T Došenović Fixed point results in S-metric spaces Nonlinear Functional Analysis and Applications 20()(205) 55-67 [] T Suzuki A generalized Banach contraction principle which characterizes metric completeness Proc Amer Math Soc 36(2008) 86-869 Receibed by editors 804207; Revised version 25207; Available online 042207 Department of Mathematics Acharya Nagarjuna University Nagarjuna Nagar Guntur - 522 50 Andhra Pradesh India E-mail address: kprrao2004@yahoocom Amrita Sai Institute of Science and Technology Paritala-5280 Andhra Pradesh India E-mail address: tarakaramudu32@gmailcom Department of Mathematics K L University Vaddeswaram Guntur - 522 502 Andhra Pradesh India E-mail address: gnvkishore@kluniversityin kishoreapr2@gmailcom