Three-Dimensional Experimental Kinematics

Σχετικά έγγραφα
CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square

K r i t i k i P u b l i s h i n g - d r a f t

1. For each of the following power series, find the interval of convergence and the radius of convergence:

Estimators when the Correlation Coefficient. is Negative

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

Solve the difference equation

p n r

Boundary-Fitted Coordinates!

Discrete Fourier Transform { } ( ) sin( ) Discrete Sine Transformation. n, n= 0,1,2,, when the function is odd, f (x) = f ( x) L L L N N.

Second Order RLC Filters

Srednicki Chapter 55

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Exam Statistics 6 th September 2017 Solution

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Homework 8 Model Solution Section

EE512: Error Control Coding

ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ

Examples of Cost and Production Functions

Operating Temperature Range ( C) ±1% (F) ± ~ 1M E-24 NRC /20 (0.05) W 25V 50V ±5% (J) Resistance Tolerance (Code)

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

Ψηφιακή Επεξεργασία Εικόνας

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Presentation of complex number in Cartesian and polar coordinate system

( y) Partial Differential Equations

(6,5 μονάδες) Θέμα 1 ο. Τμήμα Πολιτικών Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Διεθνές Πανεπιστήμιο Ελλάδος ΟΝΟΜΑΤΕΠΩΝΥΜΟ

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Inertial Navigation Mechanization and Error Equations

(6,5 μονάδες) Θέμα 1 ο. Τμήμα Πολιτικών Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Διεθνές Πανεπιστήμιο Ελλάδος ΟΝΟΜΑΤΕΠΩΝΥΜΟ


One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

CYLINDRICAL & SPHERICAL COORDINATES

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

Homework 3 Solutions

F19MC2 Solutions 9 Complex Analysis

Matrices and Determinants

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Lifting Entry (continued)

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

Multi-Body Kinematics and Dynamics in Terms of Quaternions: Langrange Formulation in Covariant Form Rodriguez Approach

Multi-dimensional Central Limit Theorem

Homework for 1/27 Due 2/5

Outline. Detection Theory. Background. Background (Cont.)

Στο εστιατόριο «ToDokimasesPrinToBgaleisStonKosmo?» έξω από τους δακτυλίους του Κρόνου, οι παραγγελίες γίνονται ηλεκτρονικά.

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

α β

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Review: Molecules = + + = + + Start with the full Hamiltonian. Use the Born-Oppenheimer approximation

FEATURES APPLICATION PRODUCT T IDENTIFICATION PRODUCT T DIMENSION MAG.LAYERS

aluset sliding system for doors and windows

Boundary-Layer Flow over a Flat Plate Approximate Method

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

Lecture 26: Circular domains

Lecture 13 - Root Space Decomposition II

Math221: HW# 1 solutions

Finite Field Problems: Solutions

Κεφάλαιο 3. Εξίσωση Καθαρής Συναγωγής Εξίσωση Καθαρής Συναγωγής Ρύπου

Multi-dimensional Central Limit Theorem

Μηχανική Μάθηση Hypothesis Testing

ΚΖ ΙΩΝΙΔΕΙΑ ΕΤΩΝ ΝΙΚΑΙΑ Φεβ 2014

[1] P Q. Fig. 3.1

PARTIAL NOTES for 6.1 Trigonometric Identities

Political Science 552. Qualitative Variables. Dichotomous Predictor. Dummy Variables-Gender. Qualitative Variables March 3, 2004

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Latent variable models Variational approximations.

Latent variable models Variational approximations.

Numerical Analysis FMN011

14 Lesson 2: The Omega Verb - Present Tense

EE 570: Location and Navigation

The Heisenberg Uncertainty Principle

Markov Processes and Applications

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ 035: οµές εδοµένων και Αλγόριθµοι για Ηλεκτρολόγους Μηχανικούς και Μηχανικούς Υπολογιστών

Thin Film Chip Resistors

Partial Trace and Partial Transpose

Thin Film Chip Resistors

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

( )( ) ( )( ) 2. Chapter 3 Exercise Solutions EX3.1. Transistor biased in the saturation region

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

Histogram list, 11 RANDOM NUMBERS & HISTOGRAMS. r : RandomReal. ri : RandomInteger. rd : RandomInteger 1, 6

Tridiagonal matrices. Gérard MEURANT. October, 2008

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Capacitors - Capacitance, Charge and Potential Difference

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Ed Stanek. c08ed01v6.doc A version of the grant proposal to be submitted for review in 2008.

ΠΑΛΙΟΓΙΑΝΝΗΣ ΓΡΗΓΟΡΙΟΣ ΜΠL/1033

Correction Table for an Alcoholometer Calibrated at 20 o C

Other Test Constructions: Likelihood Ratio & Bayes Tests

REAL-TIME CLOCKS MIXED-SIGNAL DESIGN GUIDE. Data Sheets Applications Notes Free Samples. DS32kHz

Congruence Classes of Invertible Matrices of Order 3 over F 2

Second Order Partial Differential Equations

Transcript:

Notes_5_3 o 8 Three-Dmesoal Epermetal Kematcs Dgte locatos o ladmarks { r } o bod or pots to at gve tme t All pots must be o same bod Use ladmark weghtg actor = pot k s avalable at tme t. Use = pot k ot avalable at gve tme t. r r r at gve tme t. Determe { } { } { } Mea values mea { r } = { r } / = = = = = / / / / k mea { r } { r } mea { r } { r } mea { r } { r } mea { r } { r } = mea [ X ] ({ r } { r } ){ r } { r } [ M] = ([ I3 ] trace( [ X] )) [ X] mea T ( ) / Veloct [ V] = mea T ( ) / { r } { r } { r } 32 { ω } = [ M] V V = ω ω = orm{ ω } V V 3 2 V V 23 3 2 ω ω

ω [ ω ] = ω ω { û} = { ω} ω / ω ω ω Notes_5_3 2 o 8 ot ISA s o the stataeous screw as or bod at the root o the perpedcular rom the cetrod o the ladmarks. Note that the ISA s ot attached to the bod. A pot o the bod cocdet wth the ISA has traslatoal veloct s alog the ISA. ISA ( ) or a pot attached to bod { r } = s { û} + [ ω ]{ r } { r} ISA mea mea 2 { r} = { r } + [ ω]{ r } / ω s = { û} T { r } mea Accelerato [ A] = mea T ( ) / { r } { r } { r } [ B] = [ A] [ ω ][ ω ][ X] 32 { ω } = [ M] B B = ω ω = orm{ ω } B B 3 2 B B 23 3 2 ω ω [ ω ] = ω ω [ β ] = [ ω ] ω ω ω ω ot IA s the stataeous accelerato pole or bod. Note that the IA s ot attached to the bod. ot o the bod cocdet wth IA has ero accelerato. IA ( ) { r } = [ β ]{ r } { r} or a pot attached to bod IA mea mea _ IA { r} = { r } [ β ] { r } or { r } _ at =

Notes_5_3 3 o 8 Jerk [ J] = mea T ( ) / { r } { r } { r } ( )[ X] [ H] = [ J] 2[ ω ] 32 { ω } = [ M] H H = ω ω = orm{ ω } H H 3 2 H H 23 3 2 ω ω [ ω ] = ω ω [ η ] = [ ω ] + 2[ ω ] ω ω ω ω ot IJ s the stataeous jerk pole or bod. Note that the IJ s ot attached to the bod. ot o the bod cocdet wth IJ has ero jerk. IJ ( ) { r } = [ η ]{ r } { r} or a pot attached to bod IJ mea mea _ IJ { r} = { r } [ η ] { r } or { r} _ at = Secod Order Screw As Ω Ω 2 { Ω } = Ω = [ ω]{ ω }/ ω Ω = orm{ Ω} { tˆ } = { Ω} / Ω d = T IA IHA T ({ tˆ } [ β]{ ( r} { r} )/ { tˆ } [ β]{ û} { c} = { r} IHA + d{ û} ( ) T ({ } [ ω IA 2 tˆ ][ β]{ ( c} { r} )/ ω ) s Ω ω S = /

Notes_5_3 4 o 8 t_lm2k3d.m - test 3D kematcs rom ladmark moto HJSIII, 4..4 clear eample data - CRS = [ ]; r = [. 9. 9... 9. 9.. ;.. -. -... -. -. ;.... 8. 8. 8. 8. ]; rd = [ -35.75-35.75-3.75-3.75-28.75-28.75-23.75-23.75 ; 27.5 22.5 22.5 27.5 27.5 22.5 22.5 27.5 ; 8... 8. 8... 8. ]; rdd = [ -45.25-8.25-9.25-56.25-58.25-2.25-32.25-69.25 ; -233. -222. -29.5-22.5-98. -87. -74.5-85.5 ; -3.375-7.375-7.375-3.375-5.875-92.875-92.875-5.875 ]; rddd = [ ; ; ]; vel_test = [ 5.773 ; -3.5-4.23 4.4257 ; 2.5 3.376 -.34 ]; accel_test = [ 8.75 2.644 ; 6.5 -.544 ; -5.5 3.799 ]; jerk_test = [.5. ; -53.825 ; 6.5625 9. ]; aode_test = [.622 5.773.385 ;.824.372 2.789 ;.6554.2734 3.8947 ]; eample data - RSUR = [ ]; r = [ -9.89-6.793-4.289-4.7924-7.83 -.396 ; -5.476-8.967-3.7733-6.829-4.284-8.539 ; -.9764 -.7795-7.258-4.469-5.6659-9.496 ]; rd = [.824 -.4639 7.5799 7.9 2.763 2.325 ;.79.3955.859.982.8737.4 ; -4.582-9.7-6.5-6.9559 -.33-4.864 ]; rdd = [ -4.638-5.2233-5.869-2.954 52.6698 43.384 ; 5.396 35.2375 76.664 98.628 78.2349 36.883 ; -48.5442-3.593-58.6743-58.854-3.879-48.724 ]; rddd = [ 596.567 523.6492 4.6583-44.9252-369.577 49.4732 ; 3.57-4.6333-59.9366-33.5496.48 29.444 ; 435.585-35.2544-34.466 236.644 76.957 86.642 ]; vel_test = [.383.423 -.297 ; -.3498 -.45.468 ;.895 -.945 -.694 ]; accel_test = [ 3.33-52.7472 ; -7.8355 8.887 ; 8.368-97.6836 ]; jerk_test = [ -2.364-22.3536 ; 6.642 32.7874 ;

Notes_5_3 5 o 8.585-2.8695 ]; aode_test = [ -5.543.6887 53.334 ; -.6-2.2.579 ; 2.2768 -.2983-2.964 ]; test ucto [ vel, accel, jerk, aode ] = lm2k3d(, r, rd, rdd, rddd ) bottom o t_lm2k3d

Notes_5_3 6 o 8 ucto [ vel, accel, jerk, aode ] = lm2k3d(, r, rd, rdd, rddd ) 3D kematcs o a rgd bod rom ladmark moto HJSIII, 4..4 USAGE [ vel, accel, jerk, aode ] = lm2k3d(, r, rd, rdd, rddd ) INUTS - vector o weghts - (j)= meas data vald, (j)= meas data ot avalable r - 3 matr o,, ladmark locato rd - 3 matr o,, ladmark veloct rdd - 3 matr o,, ladmark accelerato rddd - 3 matr o,, ladmark jerk OUTUTS vel = [ w_vec risa sisa ] w_vec = 3 agular veloct vector risa = 3 locato o ISA at root o perpedcular rom cetrod o ladmarks sisa = sldg veloct vector alog ISA accel = [ wd_vec ria rdd_at_ia ] wd_vec = 3 agular accelerato vector ria = 3 locato o accelerato pole rdd_at_ia = 3 accelerato o pot o bod at IA jerk = [ wdd_vec rij rddd_at_ij ] wdd_vec = 3 agular jerk vector rij = 3 locato o jerk pole rddd_at_ij = 3 jerk o pot o bod at IJ aode = [ OMEGA_vec c Sd ] OMEGA_vec = 3 rotato o secod order screw c = 3 cetral pot o geerator Sd = 3 sldg veloct vector alog secod order screw costats eps = e-4; umber o coordates ad ladmarks [ coord, ] = se( r ); mea values mat = dag(); s = trace( mat ); rm = sum( mat*r' )' /s; rdm = sum( mat*rd' )' /s; rddm = sum( mat*rdd' )' /s; rdddm = sum( mat*rddd' )' /s; cetered locato rc = r - rm*oes(,); X = rc * mat * rc' /s; M = trace(x) * ee(coord) - X; Mv = v( M ); veloct V = rd * mat * rc' /s; w_vec = Mv * [ V(3,2)-V(2,3) ; V(,3)-V(3,) ; V(2,)-V(,2) ]; w = orm( w_vec ); w_mat = skew_sm( w_vec ); geeral veloct soluto w > eps, u = w_vec / w; sd = u' * rdm; risa = rm + w_mat * rdm / w^2; sisa = sd * u; specal case - w=, pure traslato risa s at cetrod o ladmarks, sisa s traslato veloct sd = orm( rdm ); u = rdm / sd;

Notes_5_3 7 o 8 risa = rm; sisa = rdm; ed accelerato A = rdd * mat * rc' / s; B = A - w_mat*w_mat * X; wd_vec = Mv * [ B(3,2)-B(2,3) ; B(,3)-B(3,) ; B(2,)-B(,2) ]; wd = orm( wd_vec ); wd_mat = skew_sm( wd_vec ); beta_mat = wd_mat + w_mat*w_mat; geeral accelerato soluto abs(det(beta_mat)) > eps; ria = rm - v(beta_mat) * rddm; rdd_at_ia = eros(coord,); specal case - w=, wd=, pure traslato ria s at cetrod o ladmarks, rdd_at_ia s traslato accelerato w < eps, wd < eps, sdd = orm( rddm ); e = rddm / sdd; ria = rm; rdd_at_ia = rddm; specal case 2 - w=, wd>, pure agular accelerato smlar to geeral agular veloct soluto ria s at root o perpedcular to agular accelerato vector rom cetrod o ladmarks rdd_at_ia s traslato accelerato e = wd_vec / wd; sdd = e' * rddm; ria = rm + wd_mat * rddm / wd^2; rdd_at_ia = sdd * e; ed specal case 3 - w>, wd=, pure agular veloct smlar to ero agular veloct soluto wd < eps, e = u; sdd = e' * rddm; rdd_at_ia = sdd * e; ria = rm + (rddm-rdd_at_ia) / w*w; specal case 4 - w>, wd>, w_vec parallel to wd_vec e = wd_vec / wd; sdd = e' * rddm; rdd_at_ia = sd * e; ed ed ed w2a = w*w*ee(3) - wd_mat; ria = rm + v(w2a) * (rddm-rdd_at_ia); jerk J = rddd * mat * rc' / s; eta_mat_mwdd = 2*wd_mat*w_mat + w_mat*wd_mat + w_mat*w_mat*w_mat; H = J - eta_mat_mwdd * X; wdd_vec = Mv * [ H(3,2)-H(2,3) ; H(,3)-H(3,) ; H(2,)-H(,2) ]; wdd = orm( wdd_vec ); h = wdd_vec / wdd; wdd_mat = skew_sm( wdd_vec ); eta_mat = eta_mat_mwdd + wdd_mat; rij = rm - v(eta_mat) * rdddm; rddd_at_ij = eros(coord,); secod order screw

Notes_5_3 8 o 8 OMEGA_vec = w_mat * wd_vec /w/w; OMEGA = orm( OMEGA_vec ); t = OMEGA_vec / OMEGA; d = t' * beta_mat * (ria-risa) / (t' * beta_mat * u ); c = risa + d * u; Sd = ( t' * w_mat * beta_mat * (c-ria) /w/w ) - sd * OMEGA /w; Sd_vec = Sd * t; retur argumets vel = [ w_vec risa sisa ]; accel = [ wd_vec ria rdd_at_ia ]; jerk = [ wdd_vec rij rddd_at_ij ]; aode = [ OMEGA_vec c Sd_vec ]; bottom o lm2k3d