Dark matter from Dark Energy-Baryonic Matter Couplings

Σχετικά έγγραφα
Higher Derivative Gravity Theories

Cosmological dynamics and perturbations in Light mass Galileon models

Derivation of Optical-Bloch Equations

Cosmology with non-minimal derivative coupling

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

Space-Time Symmetries

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

Lifting Entry (continued)

Cosmological Space-Times

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Symmetric Stress-Energy Tensor

Higher spin gauge theories and their CFT duals

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Homework 3 Solutions

Geodesic Equations for the Wormhole Metric

The Simply Typed Lambda Calculus

Three coupled amplitudes for the πη, K K and πη channels without data

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Ó³ Ÿ , º 1(199).. 66Ä79 .. Ê 1. Œμ ±μ ± μ Ê É Ò Ê É É ³. Œ.. μ³μ μ μ, Œμ ±

ΚΑΘΟΡΙΣΜΟΣ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΠΑΡΑΓΟΜΕΝΗ ΙΣΧΥ ΣΕ Φ/Β ΠΑΡΚΟ 80KWp

( y) Partial Differential Equations

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Theory of Cosmological Perturbations

On the Galois Group of Linear Difference-Differential Equations

Nonminimal derivative coupling scalar-tensor theories: odd-parity perturbations and black hole stability

Cosmological Perturbations from Inflation

Example Sheet 3 Solutions

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

ΕΜΠΕΙΡΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΤΗΣ NASH ΙΣΟΡΡΟΠΙΑΣ

Homework 3 Solutions

From Fierz-Pauli to Einstein-Hilbert

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας

Constitutive Relations in Chiral Media

EE512: Error Control Coding

UV fixed-point structure of the 3d Thirring model

Finite Field Problems: Solutions

3+1 Splitting of the Generalized Harmonic Equations

X g 1990 g PSRB

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Markov chains model reduction

Φαινόμενο Unruh. Δημήτρης Μάγγος. Εθνικό Μετσόβιο Πολυτεχνείο September 26, / 20. Δημήτρης Μάγγος Φαινόμενο Unruh 1/20

High order interpolation function for surface contact problem

Non-Gaussianity from Lifshitz Scalar

Theory of Cosmological Perturbations

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

ADVANCED STRUCTURAL MECHANICS

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

MSM Men who have Sex with Men HIV -

Περίληψη (Executive Summary)

Durbin-Levinson recursive method

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

Eulerian Simulation of Large Deformations

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Δυσκολίες που συναντούν οι μαθητές της Στ Δημοτικού στην κατανόηση της λειτουργίας του Συγκεντρωτικού Φακού

X x C(t) description lagrangienne ( X , t t t X x description eulérienne X x 1 1 v x t

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Relativistic particle dynamics and deformed symmetry

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

derivation of the Laplacian from rectangular to spherical coordinates

Lecture 21: Scattering and FGR

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΘΕΜΑ»

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

arxiv: v2 [gr-qc] 3 Sep 2015

Differential equations

[1] P Q. Fig. 3.1

, -.

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΕΝΙΣΧΥΣΗ ΤΩΝ ΚΟΜΒΩΝ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΜΕ ΒΑΣΗ ΤΟΥΣ ΕΥΡΩΚΩΔΙΚΕΣ

DuPont Suva 95 Refrigerant

Homework 8 Model Solution Section

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Strain gauge and rosettes

Hartree-Fock Theory. Solving electronic structure problem on computers

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

DuPont Suva 95 Refrigerant

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

ΣΧΕΔΙΑΣΜΟΣ ΕΠΙΓΕΙΟΥ ΣΥΣΤΗΜΑΤΟΣ ΑΛΥΣΟΚΙΝΗΣΗΣ ΓΙΑ ΜΕΤΑΦΟΡΑ ΤΡΟΛΕΪ

Physics 582, Problem Set 2 Solutions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

1 String with massive end-points

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ

Massive gravitons in arbitrary spacetimes

Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου

5. Choice under Uncertainty

Matrices and Determinants

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

2.1

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling

1 Lorentz transformation of the Maxwell equations

Transcript:

Dark matter from Dark Energy-Baryonic Matter Coulings Alejandro Avilés 1,2 1 Instituto de Ciencias Nucleares, UNAM, México 2 Instituto Nacional de Investigaciones Nucleares (ININ) México January 10, 2010 Cosmología en la Playa 2011 Puerto Vallarta

Outline Motivations Interactions with the Trace of the Energy Momentum Tensor Background Cosmology Cosmological Perturbations Summary and Conclusions

Motivations Dark Degeneracy [M. Kunz PRD 80, 123001 (2009)]: Dark comonents in the Universe are defined through 8πG Tµν dark = G µν 8πG Tµν obs Interacting models between dark energy and matter fields have been roosed in order to amelliorate the Coincidence Problem. But, this interactions give rise to long range undetected new forces. Some screening mechanism have been roosed in order to evade fifth forces and equivalence rincile tests.[khoury and Weltman PRD 69, 044026 (2004)] In some interactions the continuity equation of baryonic matter is reserved.

Motivations Dark Degeneracy [M. Kunz PRD 80, 123001 (2009)]: Dark comonents in the Universe are defined through 8πG Tµν dark = G µν 8πG Tµν obs Interacting models between dark energy and matter fields have been roosed in order to amelliorate the Coincidence Problem. But, this interactions give rise to long range undetected new forces. Some screening mechanism have been roosed in order to evade fifth forces and equivalence rincile tests.[khoury and Weltman PRD 69, 044026 (2004)] In some interactions the continuity equation of baryonic matter is reserved.

Motivations Dark Degeneracy [M. Kunz PRD 80, 123001 (2009)]: Dark comonents in the Universe are defined through 8πG Tµν dark = G µν 8πG Tµν obs Interacting models between dark energy and matter fields have been roosed in order to amelliorate the Coincidence Problem. But, this interactions give rise to long range undetected new forces. Some screening mechanism have been roosed in order to evade fifth forces and equivalence rincile tests.[khoury and Weltman PRD 69, 044026 (2004)] In some interactions the continuity equation of baryonic matter is reserved.

Motivations Dark Degeneracy [M. Kunz PRD 80, 123001 (2009)]: Dark comonents in the Universe are defined through 8πG Tµν dark = G µν 8πG Tµν obs Interacting models between dark energy and matter fields have been roosed in order to amelliorate the Coincidence Problem. But, this interactions give rise to long range undetected new forces. Some screening mechanism have been roosed in order to evade fifth forces and equivalence rincile tests.[khoury and Weltman PRD 69, 044026 (2004)] In some interactions the continuity equation of baryonic matter is reserved.

Interactions with the trace of the energy momentum tensor 1 Z S = S φ + S m + S int S int = Fermionic Field d 4 x A(φ)T g. T = g µν T µν, T µν = 2 g δ(s m + S int ) δg µν L = g ψ(iγ µ µ m)ψ + A(φ)T g g ψ(iγ µ µ e α(φ) m)ψ e α(φ) = 1 1 A(φ) Electromagnetic Field L = 1 4 F µν F µν g + A(φ)T g 1 4 F µν F µν g Perfect Fluid L = ρ g + A(φ)T g e α(φ) ρ g

Interactions with the trace of the energy momentum tensor 1 Z S = S φ + S m + S int S int = Fermionic Field d 4 x A(φ)T g. T = g µν T µν, T µν = 2 g δ(s m + S int ) δg µν L = g ψ(iγ µ µ m)ψ + A(φ)T g g ψ(iγ µ µ e α(φ) m)ψ e α(φ) = 1 1 A(φ) Electromagnetic Field L = 1 4 F µν F µν g + A(φ)T g 1 4 F µν F µν g Perfect Fluid L = ρ g + A(φ)T g e α(φ) ρ g

Interactions with the trace of the energy momentum tensor 1 Z S = S φ + S m + S int S int = Fermionic Field d 4 x A(φ)T g. T = g µν T µν, T µν = 2 g δ(s m + S int ) δg µν L = g ψ(iγ µ µ m)ψ + A(φ)T g g ψ(iγ µ µ e α(φ) m)ψ e α(φ) = 1 1 A(φ) Electromagnetic Field L = 1 4 F µν F µν g + A(φ)T g 1 4 F µν F µν g Perfect Fluid L = ρ g + A(φ)T g e α(φ) ρ g

Interactions with the trace of the energy momentum tensor 1 Z S = S φ + S m + S int S int = Fermionic Field d 4 x A(φ)T g. T = g µν T µν, T µν = 2 g δ(s m + S int ) δg µν L = g ψ(iγ µ µ m)ψ + A(φ)T g g ψ(iγ µ µ e α(φ) m)ψ e α(φ) = 1 1 A(φ) Electromagnetic Field L = 1 4 F µν F µν g + A(φ)T g 1 4 F µν F µν g Perfect Fluid L = ρ g + A(φ)T g e α(φ) ρ g

Interactions with the trace of the energy momentum tensor 1 Z S = S φ + S m + S int S int = Fermionic Field d 4 x A(φ)T g. T = g µν T µν, T µν = 2 g δ(s m + S int ) δg µν L = g ψ(iγ µ µ m)ψ + A(φ)T g g ψ(iγ µ µ e α(φ) m)ψ e α(φ) = 1 1 A(φ) Electromagnetic Field L = 1 4 F µν F µν g + A(φ)T g 1 4 F µν F µν g Perfect Fluid L = ρ g + A(φ)T g e α(φ) ρ g

Interactions with the trace of the energy momentum tensor 2 Action Z S = d 4 x» R g 16πG 1 2 φ,α φ,α V (φ) A(φ)T ρ, Field Equations G µν = 8πG(T φ µν + e α(φ) T b µν), φ V (φ) = α (φ)e α(φ) ρ, V ef (φ) = V (φ) + e α(φ) ρ. Conservation Equations: 1. Continuity Equation 2. Geodesic Equation Newtonian Limit µ (ρ u µ) = 0, u µ µu ν = α (φ)(g µν + u µ u ν ) µφ. d 2 X dt 2 = Φ N α(φ)

Interactions with the trace of the energy momentum tensor 2 Action Z S = d 4 x» R g 16πG 1 2 φ,α φ,α V (φ) e α(φ) ρ. Field Equations G µν = 8πG(T φ µν + e α(φ) T b µν), φ V (φ) = α (φ)e α(φ) ρ, V ef (φ) = V (φ) + e α(φ) ρ. Conservation Equations: 1. Continuity Equation 2. Geodesic Equation Newtonian Limit µ (ρ u µ) = 0, u µ µu ν = α (φ)(g µν + u µ u ν ) µφ. d 2 X dt 2 = Φ N α(φ)

Interactions with the trace of the energy momentum tensor 2 Action Z S = d 4 x» R g 16πG 1 2 φ,α φ,α V (φ) e α(φ) ρ. Field Equations G µν = 8πG(T φ µν + e α(φ) T b µν), φ V (φ) = α (φ)e α(φ) ρ, V ef (φ) = V (φ) + e α(φ) ρ. Conservation Equations: 1. Continuity Equation 2. Geodesic Equation Newtonian Limit µ (ρ u µ) = 0, u µ µu ν = α (φ)(g µν + u µ u ν ) µφ. d 2 X dt 2 = Φ N α(φ)

Interactions with the trace of the energy momentum tensor 2 Action Z S = d 4 x» R g 16πG 1 2 φ,α φ,α V (φ) e α(φ) ρ. Field Equations G µν = 8πG(T φ µν + e α(φ) T b µν), φ V (φ) = α (φ)e α(φ) ρ, V ef (φ) = V (φ) + e α(φ) ρ. Conservation Equations: 1. Continuity Equation 2. Geodesic Equation Newtonian Limit µ (ρ u µ) = 0, u µ µu ν = α (φ)(g µν + u µ u ν ) µφ. d 2 X dt 2 = Φ N α(φ)

Interactions with the trace of the energy momentum tensor 2 Action Z S = d 4 x» R g 16πG 1 2 φ,α φ,α V (φ) e α(φ) ρ. Field Equations G µν = 8πG(T φ µν + e α(φ) T b µν), φ V (φ) = α (φ)e α(φ) ρ, V ef (φ) = V (φ) + e α(φ) ρ. Conservation Equations: 1. Continuity Equation 2. Geodesic Equation Newtonian Limit µ (ρ u µ) = 0, u µ µu ν = α (φ)(g µν + u µ u ν ) µφ. d 2 X dt 2 = Φ N α(φ)

Background Cosmology 1 H 2 = 8πG 1 φ 3 2 2 + V (φ) + (e α(φ) 1)ρ + ρ φ + 3H φ + V (φ) + α (φ)e α(φ) ρ = 0 ρ + 3Hρ = 0 ρ dark = ρ φ + (e α(φ) 1)ρ 1 ρ dark + 3H(1 + w dark )ρ dark = 0, w dark. 1 + eα(φ) 1 ρ V (φ) 0 a 3 V (φ) = Mn+4 φ n e α(φ) = e β M P φ V (φ) = 1 2 m2 φ φ2 e α(φ) = 1 + 1 2 β φ2 M 2

Background Cosmology 1 H 2 = 8πG 1 φ 3 2 2 + V (φ) + (e α(φ) 1)ρ + ρ φ + 3H φ + V (φ) + α (φ)e α(φ) ρ = 0 ρ + 3Hρ = 0 ρ dark = ρ φ + (e α(φ) 1)ρ 1 ρ dark + 3H(1 + w dark )ρ dark = 0, w dark. 1 + eα(φ) 1 ρ V (φ) 0 a 3 V (φ) = Mn+4 φ n e α(φ) = e β M P φ V (φ) = 1 2 m2 φ φ2 e α(φ) = 1 + 1 2 β φ2 M 2

Background Cosmology 1 H 2 = 8πG 1 φ 3 2 2 + V (φ) + (e α(φ) 1)ρ + ρ φ + 3H φ + V (φ) + α (φ)e α(φ) ρ = 0 ρ + 3Hρ = 0 ρ dark = ρ φ + (e α(φ) 1)ρ 1 ρ dark + 3H(1 + w dark )ρ dark = 0, w dark. 1 + eα(φ) 1 ρ V (φ) 0 a 3 V (φ) = Mn+4 φ n e α(φ) = e β M P φ V (φ) = 1 2 m2 φ φ2 e α(φ) = 1 + 1 2 β φ2 M 2

Background Cosmology 2 Ωdark 1.0 0.5 0.0 β = 1 β = 0.2 β = 0.04 - - - - - ΛCDM 0.5 1.0 0.0 0.5 1.0 1.5 2.0 β = 0.04 β M 2 G 1.5 1.5 1.0 1.0 a a 0.5 0.5 0.0 0.00 0.02 0.04 0.06 0.08 0 0.0 0.00 0.05 0.10 0.15

Suernovae Ia Fit UNION 2 [R. Amanullah et al. (SCP), Astrohys. J. 716, 712 (2010).] Union2 data 0.40 Union2 44 42 0.35 Μ 40 38 C1 0.30 36 34 0.25 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 z z = 1 a 1 «dl µ = 5 log 10 + 25 Mc Z z d L (z) = (1 + z) 0 dz H(z ) 0.20 4.2 4.4 4.6 4.8 5.0 5.2 C 2 C 1 = eα(φ) 1 V (φ) ρ, today C 2 = e α(φ) 1. today

Cosmological Perturbations Scalar erturbations on longitudinal gauge ds 2 = (1 + 2Ψ)dt 2 + a 2 (t)(1 2Φ)δ ij dx i dx j Perturbed variables ρ( x, t) = ρ 0 (t)(1 + δ( x, t)) φ( x, t) = φ 0 (t) + δφ( x, t) u µ ( x, t) = u µ 0 + 1 a v µ ( x, t)

Cosmological Perturbations Scalar erturbations on longitudinal gauge ds 2 = (1 + 2Ψ)dt 2 + a 2 (t)(1 2Φ)δ ij dx i dx j Perturbed variables ρ( x, t) = ρ 0 (t)(1 + δ( x, t)) φ( x, t) = φ 0 (t) + δφ( x, t) u µ ( x, t) = u µ 0 + 1 a v µ ( x, t)

Cosmological Perturbations Scalar erturbations on longitudinal gauge ds 2 = (1 + 2Ψ)dt 2 + a 2 (t)(1 2Φ)δ ij dx i dx j Perturbed variables ρ( x, t) = ρ 0 (t)(1 + δ( x, t)) φ( x, t) = φ 0 (t) + δφ( x, t) u µ ( x, t) = u µ 0 + 1 a v µ ( x, t)

Cosmological Perturbations 2 1.0 1.0 0.8 0.8 0 0.6 0.4 0 0.6 0.4 0.2 0.2 0.0 0. 0.0 0.0010. 0.001 0.0005 Φ M 0.000 0.001 Φ M 0.0000 0.0005 0.0010 0.002 0. 0.0015 0.0020. 0.0002 0.0003 0.0001 0.0002 0.0001 c s 2 0.0000 c s 2 0.0000 0.0001 0.0001 0.0002 0.0002 0.002 0. 0.0003 0.00 0.05 0.10 0.15 0.002. 0.003 0.004 0.005 0.006 0.003 0.004 0.005 0.007 0.00 0.02 0.04 0.06 0.08 0 0.006 0.00 0.05 0.10 0.15 m Φ t

Conclusions Interactions between dark energy and baryonic matter could be an alternative to some of the dark matter in the Universe. Coulings to the trace of the energy momentum tensor are suitable for this urose: The interaction to the electromagnetic field and to relativistic matter become zero. The continuity equation of matter is reserved. The numerical analysis shows that these models are caable of reroducing the observed background cosmology. Also, that linear erturbations have an accetable behavior.

Thank you A.A. and Jorge L. Cervantes-Cota. To be ublished in PRD arxiv: 1012.3203