Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Σχετικά έγγραφα
( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

Fractional Calculus. Student: Manal AL-Ali Dr. Abdalla Obeidat

Lecture 12 Modulation and Sampling

Section 8.3 Trigonometric Equations

2 Composition. Invertible Mappings

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Example Sheet 3 Solutions

Homework 3 Solutions

Χρονοσειρές Μάθημα 3

is the home less foreign interest rate differential (expressed as it

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling

Math221: HW# 1 solutions

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Notes on the Open Economy

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Srednicki Chapter 55

Finite Field Problems: Solutions

4.6 Autoregressive Moving Average Model ARMA(1,1)

Areas and Lengths in Polar Coordinates

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10

Second Order Partial Differential Equations

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

C.S. 430 Assignment 6, Sample Solutions

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

ω = radians per sec, t = 3 sec

Matrices and Determinants

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Areas and Lengths in Polar Coordinates

Partial Differential Equations in Biology The boundary element method. March 26, 2013

IIT JEE (2013) (Trigonomtery 1) Solutions

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.

Section 7.6 Double and Half Angle Formulas

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

EE512: Error Control Coding

Managing Production-Inventory Systems with Scarce Resources

w o = R 1 p. (1) R = p =. = 1

1. For each of the following power series, find the interval of convergence and the radius of convergence:

Statistical Inference I Locally most powerful tests

Second Order RLC Filters

Nonlinear Analysis: Modelling and Control, 2013, Vol. 18, No. 4,

Boundary-Layer Flow over a Flat Plate Approximate Method

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

STARTING STEPS IN GRAMMAR, FINAL TEST C TERM 2012 UNITS 1-18

6.3 Forecasting ARMA processes

Inverse trigonometric functions & General Solution of Trigonometric Equations

1) Formulation of the Problem as a Linear Programming Model

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Concrete Mathematics Exercises from 30 September 2016

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

( y) Partial Differential Equations

TRM +4!5"2# 6!#!-!2&'!5$27!842//22&'9&2:1*;832<

11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Multi-dimensional Central Limit Theorem

Other Test Constructions: Likelihood Ratio & Bayes Tests

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Orbital angular momentum and the spherical harmonics

Multi-dimensional Central Limit Theorem

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ

Uniform Convergence of Fourier Series Michael Taylor

The Simply Typed Lambda Calculus

RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form:

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)

Homomorphism of Intuitionistic Fuzzy Groups

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Lecture 26: Circular domains

ST5224: Advanced Statistical Theory II

CRASH COURSE IN PRECALCULUS

Approximation of distance between locations on earth given by latitude and longitude

PARTIAL NOTES for 6.1 Trigonometric Identities

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

The challenges of non-stable predicates

Higher Derivative Gravity Theories

Bounding Nonsplitting Enumeration Degrees

Tridiagonal matrices. Gérard MEURANT. October, 2008

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Solution Series 9. i=1 x i and i=1 x i.

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Analysis of optimal harvesting of a prey-predator fishery model with the limited sources of prey and presence of toxicity

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Strain gauge and rosettes

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Fourier Series. Fourier Series

Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου

The Student s t and F Distributions Page 1

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +

Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Problem Set 3: Solutions

Transcript:

Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as o ime, we oain: E E E E [ X. A. This exression is a ierence equaion in he execaion erms. Use o he lag oeraor L allows he susiue: E LE, E L E P. A. We hereore oain: L [ L E P 0 A.4 Thereore, eiher we require ha E P 0 or we require ha he quaraic exression in L e ienically equal o zero. As a resul, a nonrivial soluion requires ha: L [ L 0. A.5 Denoe he roos o his quaraic equaion y, i,, hen: i

an >. A.6 From Eq. A.6, we can assure ha one roo is greaer han an he oher roo is less han. Furhermore, he general soluion o Eq. A. is given y: j j E P j c, A.7 wih c an eermine y an iniial-value coniion. In he secial case o E P P, we can hereore susiue j ino Eq. A.7 an oain: P c. A.8 The consan c or corresoning o he greaer roo is assume o e equal o zero o ensure a convergen sysem. Now eine <, where is selece as he smaller o he wo roos. In his case, is suose o e zero so ha Eq. A.8 is exress as: E P P c. A.9 We can re-exress i as: c P. Thereore, he raional rice execaion rocess is given y: E P P, A.0 j j an so See Sargen 987, Ch.9. In calculaion, we ao he ackwar meho o oain 0 < < an >, an hen selec o ensure a convergen sysem. However, i he orwar meho is aoe, we may oain anoher wo roos: 0 < < an >, an hen choose o ensure a convergen 0 < <, raher han he value o sysem. In our ollowing analysis, we only use he roery o. Thereore, eiher ackwar soluion or orwar soluion will lea o he same conclusions.

E P P an EP P. A. Susiue Eq. A. ino Eq. A., we oain: X. A. Aenix A: The ynamic equaion o he sock rice. To oain he sock rice s ynamic equaion, we irs have o comue he long-run equilirium. In he long run, all unexece shocks will no exis anymore an he sock rice in each erio will e equal o he long-run equilirium sock rice. Juging rom he aove, we hereore se u ε 0, an relace an y in Eq.A. o oain: αy AR c, A. where c α y AR. In aiion, we can rewrie he RE equaion as ollows:. A.4 Susiue Eq.A. an Eq.A.4 ino Eq.A., we oain: c [ u α ε α q ε. A.5 u

Aenix A: Derivaion o. From Eq.. an Eq..4, we have:, RE A.6. SB A.7 θ Diereniaing he aove wo exressions wih resec o,,, an hen exressing hem in marix noaion, we oain:, { } A.8 where enoes he SB equaion: θ { α u ε, A.9 enoes he arial erivaive o wih resec o : α θ [ u ε 4, A.0 5 an enoes he arial erivaive o wih resec o :

α θ[ u ε 4 α [ u ε 4. A. Thus, alicaion o Cramer s rule yiels erivaion o:. A. Aenix A4: Deerminaion o uner ieren yes o shocks. The issuing shock Susiuing ε 0 ino an, we have: 0, an > 0. A. θ u Thereore, > 0. A.4 θ u The ivien shock Susiuing u 0 ino an, we have: 0, an > 0. A.5 α θ ε Thereore,

θ α ε > 0. A.6 The margin-rae shock Susiuing u ε 0 ino an, we have: 4 < 0, an 0 <. A.7 θ θ Thereore, 4 θ < 0. A.8 Aenix A5: Deerminaion o h uner ieren yes o shocks. The issuing shock From Eq..7 an Eq..8, we have: u h. A.9 θ θ Thus, iereniaing h wih resec o, we oain: h u [ θ u θ [ { u u { u θ u }

} u > 0. A.0 u The ivien shock From Eq.. an Eq.., we have: h α ε θ θ. A. Thus, iereniaing h wih resec o, we oain: h αε [ θ αε θ [ { αε α { ε α ε α θ ε } ε < 0. A. α ε } The margin-rae shock From Eq..6 an Eq.., we have: h θ θ. A. Similarly, le us iereniaing he aove exression wih resec o, we oain: h θ var [

} [ { θ [ { θ } 0 < θ, A.4 since 0 < in his case.