TRM +4!5"2# 6!#!-!2&'!5$27!842//22&'9&2:1*;832<
|
|
- Θάλεια Δουμπιώτης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 TRM!"#$%& ' *,-./ *!#!!%!&!3,&!$-!$./!!"#$%&'*" 4!5"# 6!#!-!&'!5$7!84//&'9&:*;83< 3!H*!!$!&'!5$! &!!F#!!!5$ *"P# Generaion The Transiion Rae Marix TRM for Exonenial Disribuion Absrac In some imes queuing rocess does no found soluion and so no reach o seady sae. If no use ransien soluion. This case haen when he queuing sysem is work for shor ime, arrival and service raes are flucuaion wih ime and service saion is work inermienly. In his research we sudy he ransien behavior for one of hase disribuions which is exonenial disribuion; he square coefficien of variaion o his disribuion is equal o one. Tha is he cusomer will comlee one hase in arrival saion and one hase in service saion. The case ha we assume i is iner arrival and service imes are exonenially disribued, single service saion, finie sysem caaciy, and infinie oulaion caaciy. Afer ha we generae differenial equaion for his sysem and we solved his equaion by using Rung- Kua order 4 mehod, and so obain on he ransien soluion and seady sae soluion.
2 Inroducion #"! $% &' * &' %!% %,& #"% *./,-.% Waiing 93$''3$453$67#8 /Lines Aim of research M/M//GD/N/ 93$3&$-4% #4 # #.3$3$&$ ": /3$ :numerical soluion9;% <'!- queuing heory 3 queue3$3$453! ">' * %?37#waiing lines3$''!.-3$ "%?*6!@A"'!!?%%!!" 3>'!--' B&- -!.#'!C>D;#>#. - 3>'!.-/3$453#5>,6 3>'!.-!"-EF5. 3 ;#! *!3$43$>;#!!:.@9> 36#"C? 3!&!-EFG *!.7#* 3$ Basic Elemens of Queuing 3. Sysem 3!!?!H53$453@$6%!,$"Inu source93g!*!#%!!3$4!& *!3$3!!!? <C- ' 43$4 C-C '!% 3C%!% :I9''A#3$ 3D4
3 &; CD& Q Queuing Sysem 3- K6G!!.!3 3;J?! Arrival Process!"#-3..!'!?6J?-! &C#!.!&>. -%'!5'%-B&/3GEF5.!!"%G!!?-% Inerarrival ime *.'!!.'!!5;# $%*.! 5$ &' R*' 9 :PDF9Probabiliy densiy funcionc $!.#"Poisson'& $-4-!/ n > n...> > >!#,,.., n, n 6'!? /n!n!!!* n - n Service rocessdearure "#3..! &'! $G!4-! $ EF?-EFD-!. -4>!#"!% *.-%!.C &B56'> -B&"Deerminisic disribuion!.!;"consan '%%G!#!?-% '!?%?G!.!'!/!' -!CG%>$-%!.! /.!.!3!? Number of Service channels $#3..3 &!' ->-! >#' 9; 3A3-''C :
4 &'5$!34!3,5 Service Sysem Wih Single % & 3- Server Sysem caaciy' $ 3..4 "NC" 3 -!!.;#!?!CL-> %$ 3$453.!" 3>6!! / 83!?D Poulaion Size'3..5!?!.% "C :9G58 7-!.! #!/.!!# Queue Disciline ' !!#!? &'43$ 3! K$ <- #!. /$ $!MFCFSfirs come firs service /$!MLCFSlas come firs service. 3MSIROservice in random order. 3!;6!.$8&C>' 3- /?- %3$45 3MGDgeneral disciline /:7G-*G*$! ; G!!3$45N#O %4! ' ""3-!
5 A #/!?!>6 $ MC;%P ;%PB #/>6 $ MC 3$ 3>- 3>' 3$ 3C;# 3P A B m N P QD Phase Disribuions Service >Inerarrival-Time!!>!.!!.!Random Variables?-D"Time /!% $%!P?%DJ 4&57# D7#J!"Exonenial Disribuion$$ 4% #./$.d.f $*.<'!-!.?% G!#7G-4G$%!" '- /Lalace TransformBG$ Phase Tye Disribuions *3.4 *. "'%! -4%&57# /$"3$453 Exonenial Disribuion,I3.4. $!.#$!!>4 >6?%4 $4%
6 ', '!! /3$ 3!! /.#Q >.d.f $*.!!!?-% a e, > K$RD!. "3$ 3!D!?-%!' b e >!. $*.! ' ' '#'!:3I49:3-39!G.!?!? /- 3-3/!-. 3-4/!-.! Parameers Of Exonenial Disribuion,' I3.4. L s KS- BG$ G! s.. 3-! '- 3-*6&#T!?D /-$
7 dl s T ds d L s σ ds σ σ C d 4 L s ds s s s σ mean { s } 4 s mean mean / C var iance "$*#4G$%! Transiion Rae Marix!! $ 3&$ 3$453?.! 4%":Markovian Queuing Sysem.3$36&$ %5G!'TRM&$%55.-&57# -G 6#5$%.&$ --%!.!-'&%!.>>/ 3&$ /- 3!!? C / C / m / N / GD 3.5. k L / 3 D - 4% &5 7#!;":KL9-" C / C / m / N / GD k L / ',! '$ - $ %; KS5G!3$3N#A4%!.! /?%J?!5!?!Ka
8 P "%&!!>- >Kc 7#!"'&!-; >;3- '$!"KM!!.!!>& { n C,: k, n : C, k, } : n, k K! 3!;: 3!!?!:n99' $!/8% G3$ 3C"' :k'!!n P { n n : } /PA", P A $C#"%& '.-! d 7#'!"!R!!*.! ' { C : k, n, C : k, } P n : n, j P B!-!!!./'6!L-; ' C.%j'!D' $!/8% /PB, G 3CD *! >$ $!.33-!:3-59. />!:n9$!%>
9 3333! 3333! & M / M / m/ N / / GD Model Sae and Transiion Rae Marix for Queuing Sysem M / M / m/ N / / GD K$<'!-5!.!N#6$! Si S Si { n C : k, } : 75&6 K!.3$4N#$.$ -7S {,,...,nsae} 8$.%7n sae /A -#T3!!?-K n n N /3$ 3>'*7N C j!#!?-*9'.!!?-*7 /:'.'6!%B5 /' '$-*KK /' '6-*KL 5<&' 4& #-9"#:; 7>!?
10 ' -!. 7# nsae m K n L n C n /mn C5 3>'3$ $3>'!. 7# /N>m"53' -!. nsae m K C n L n n N m C L m m ' -!. 7# 8m>N"53>'!.3$3$3 nsae N K n L n C n Transien Soluion!"3.7 3&$!.$3$45-! 6H% - 7#":Transien Soluion9&$ <'!-$3$ />%3$3 />##$% /:inermienly 9'&.%' K!.,
11 #3$3&$%55.-4%4# " 3 >'!. - > >$ $./&&5 3$3N!!4. $%G!3$ 3N#$ %% 3TRM&$%55.!&57# :3.69&5!7#3$3H5 / M / M / /5 / / GD 3$ CC' %$!!> >-"C-7 %$>"- 3>'">mC '6%*T5 #.-!.&$%5! 3' %*T#."'! $%!.-;5! #! *! 3>' D5!.&'*"6#5 ;%'!'$-!"$!%>>%!$KL '$-!#"%;!.$%4G$% /%!.' -!-. >!.!&$%5 /5;5 :69N#$$ -!. 3#&$%5-5$%-"C&:469&$%5$&$-" &$%5,.%"%:9 36#.IU&' -G $%7#! 3$%. & 3&$ Runge-Kua Order 4%# / 3 3#&$%5!' K6.
12 6.%G!"3$ 3N#$ - 79% K m nsae KC n n L n N m C L m m L n nsae * C n 5 C n [ 4* ] 6 * L 3&$ M / M //5/ / GD3$3&$$ :4-9 sae n q C K
13 !.! $& 3 G 3 &$ % 5, ", &&$%5$ "! $% &"7G- 3$ 3 &$ % 5,. %7% G! $%7#!."5G!- 5 & U #"Visual Basic D 7- U /7G-3$3 M / M //5/ GD/ 3$3-*4-'' M / M //5/ GD/ 3$35$% />3&$%5G!- d d d d d 3 d 3 3 4
14 d d d d d d d d d d d d d d d d d d d d d d d d d d!"4. $%.>3$3&$%5.% "&$%5$C#5 >G!3$3, JU5$% '!!%%%U#!"Visual BasicCDC. > 3D #"&$ 3!Ses & 3;-!'7#! V'. /:4-9A./&$
15 &$ :4-9 Probabiliy Se 5 Se Se Se 5 se 6 P P P E- 9.6E- P E- 8.73E- P E E- 7.94E- 7.94E- P 5 7.9E- 7.3E- 7.8E- 7.E- 7.E- P 6 6.6E- 5.59E- 5.9E- 6.56E- 6.56E- P 7 5.4E- 4.33E- 4.9E- 5.96E- 5.96E- P8 4.38E- 3.3E- 4.8E- 5.4E- 5.4E- P9 3.5E-.5E- 3.4E- 4.93E- 4.9E- P.76E-.87E-.83E- 4.48E- 4.48E- P.6E-.39E-.35E- 4.7E- 4.7E- P.69E-.3E-.96E- 3.7E- 3.7E- P3.33E- 7.69E-3.63E- 3.37E- 3.37E- P4.8E- 5.85E-3.36E- 3.6E- 3.6E- P5 9.E-3 4.6E-3.3E-.78E-.78E- %" '-&$ 3!7G-G!3 G # '.U?& U'-# /&$ 3- ".>;#U7T>;#N#C!.<&! 3$ 3 U? :4-9 ;% U?!& 5&!.!H5" K &$ $%! M / M //5/ GD/ /C>
16 P / / N P j / j P j,,..., N />3 ;%!&U?!:4-39 3& ;% U?:4-39 M / M //5/ GD/ 3$ Probabiliy Numerics Soluion Analyics Soluion Absolue Difference P E-6 P E-6 P P P E-5 P P E-5 P E-5 P E-5 P E-6 P P E-5 P E-5 P P E-4 P
17 Recommendaions and Conclusions Conclusions 5. U? #C? >;#N#> 4G$!&-!$";%! /C>5!.<' --$!.$%>3$3!*. /;%, Recommendaions /&& 33!#T&& -<' 453%>*.!.8'%-4% /
18 References -Al-Hanbali.A.7 Absorbing rocesses: hase ye disribuion sochasic and oeraions research grou, universiy of wene. - Chevalier, J-Chr. Van den Schrieck May 6 Aroximaing he Performance of Call Ceners wih Queues using Loss Models. 3-Dakheel,F.I996, An Aroach For Deerming The Analyical Soluion The machine Inerferance model E k /E L /m/n College Of Educaion, Al-Musansiriayah Universiy. 4-Hermanns.H. and PieerKaoen.J. Auomaed comosiional markov chain generaion 5-John H.& Kuris D.999 Numerical Mehods Using malab 3 rd Ediion,Prenice Hall.Inc.Simon &Schuser Aviacom Comany. 6-Taha, Hamdy A.997 Oeraions Research An Inroducion,6 h ediion,prenice Hall.Inc.Simon &Schuser Aviacom Comany. 7-Winson.L.Wayle 994 Oeraions Research Alicaions and Algorihms Inernaional Thomson Publishing.
ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ & ΕΛΕΓΧΟΥ ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ
Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)
Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as
Χρονοσειρές Μάθημα 3
Χρονοσειρές Μάθημα 3 Ασυσχέτιστες (λευκός θόρυβος) και ανεξάρτητες (iid) παρατηρήσεις Chafield C., The Analysis of Time Series, An Inroducion, 6 h ediion,. 38 (Chaer 3): Some auhors refer o make he weaker
d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i
d d S = ()SI d d I = ()SI ()I d d R = ()I d d S = ()SI μs + fi + hr d d I = + ()SI (μ + + f + ())I d d R = ()I (μ + h)r d d P(S,I,) = ()(S +1)(I 1)P(S +1, I 1, ) +()(I +1)P(S,I +1, ) (()SI + ()I)P(S,I,)
Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling
Reservoir modeling Reservoir modelling Linear reservoirs Paul Torfs Basic equaion for one reservoir:) change in sorage = sum of inflows minus ouflows = Q in,n Q ou,n n n jus an ordinary differenial equaion
Key Formulas From Larson/Farber Elementary Statistics: Picturing the World, Second Edition 2002 Prentice Hall
64_INS.qxd /6/0 :56 AM Page Key Formulas From Larson/Farber Elemenary Saisics: Picuring he World, Second Ediion 00 Prenice Hall CHAPTER Class Widh = round up o nex convenien number Maximum daa enry - Minimum
Levin Lin(1992) Oh(1996),Wu(1996) Papell(1997) Im, Pesaran Shin(1996) Canzoneri, Cumby Diba(1999) Lee, Pesaran Smith(1997) FGLS SUR
EVA M, SWEEEY R 3,. ;. McDonough ; 3., 3006 ; ; F4.0 A Levin Lin(99) Im, Pesaran Shin(996) Levin Lin(99) Oh(996),Wu(996) Paell(997) Im, Pesaran Shin(996) Canzoner Cumby Diba(999) Levin Lin(99) Coe Helman(995)
University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10
Universiy of Washingon Deparmen of Chemisry Chemisry 553 Spring Quarer 1 Homework Assignmen 3 Due 4/6/1 v e v e A s ds: a) Show ha for large 1 and, (i.e. 1 >> and >>) he velociy auocorrelaion funcion 1)
The Student s t and F Distributions Page 1
The Suden s and F Disribuions Page The Fundamenal Transformaion formula for wo random variables: Consider wo random variables wih join probabiliy disribuion funcion f (, ) simulaneously ake on values in
J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]
Vol 36 ( 216 ) No 3 J of Mah (PR) 1, 2, 3 (1, 4335) (2, 4365) (3, 431) :,,,, : ; ; ; MR(21) : 35A1; 35A2 : O17529 : A : 255-7797(216)3-591-7 1 d d [x() g(, x )] = f(, x ),, (11) x = ϕ(), [ r, ], (12) x(
( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential
Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a
is the home less foreign interest rate differential (expressed as it
The model is solved algebraically, excep for a cubic roo which is solved numerically The mehod of soluion is undeermined coefficiens The noaion in his noe corresponds o he noaion in he program The model
9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.
9.1 Inroducion 9.2 Lags in he Error Term: Auocorrelaion 9.3 Esimaing an AR(1) Error Model 9.4 Tesing for Auocorrelaion 9.5 An Inroducion o Forecasing: Auoregressive Models 9.6 Finie Disribued Lags 9.7
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
ω = radians per sec, t = 3 sec
Secion. Linear and Angular Speed 7. From exercise, =. A= r A = ( 00 ) (. ) = 7,00 in 7. Since 7 is in quadran IV, he reference 7 8 7 angle is = =. In quadran IV, he cosine is posiive. Thus, 7 cos = cos
APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES
APPENDIX A DERIVAION OF JOIN FAILRE DENSIIES I his Appedi we prese he derivaio o he eample ailre models as show i Chaper 3. Assme ha he ime ad se o ailre are relaed by he cio g ad he sochasic are o his
Analysis of optimal harvesting of a prey-predator fishery model with the limited sources of prey and presence of toxicity
ES Web of Confeences 7, 68 (8) hps://doiog/5/esconf/8768 ICEIS 8 nalsis of opimal havesing of a pe-pedao fishe model wih he limied souces of pe and pesence of oici Suimin,, Sii Khabibah, and Dia nies Munawwaoh
= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).
Worked Soluion 95 Chaper 25: The Invere Laplace Tranform 25 a From he able: L ] e 6 6 25 c L 2 ] ] L! + 25 e L 5 2 + 25] ] L 5 2 + 5 2 in(5) 252 a L 6 + 2] L 6 ( 2)] 6L ( 2)] 6e 2 252 c L 3 8 4] 3L ] 8L
Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations
J. Mah. Anal. Appl. 321 (2006) 553 568 www.elsevier.com/locae/jmaa Necessary sufficien condiions for oscillaion of firs order nonlinear neural differenial equaions X.H. ang a,, Xiaoyan Lin b a School of
The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.
hp://www.nd.ed/~gryggva/cfd-corse/ The Eler Eqaions The Eler Eqaions The Eler eqaions for D flow: + + p = x E E + p where Define E = e + / H = h + /; h = e + p/ Gréar Tryggvason Spring 3 Ideal Gas: p =
Analiza reakcji wybranych modeli
Bank i Kredy 43 (4), 202, 85 8 www.bankikredy.nbp.pl www.bankandcredi.nbp.pl Analiza reakcji wybranych modeli 86 - - - srice - - - per capia research and developmen dynamic sochasic general equilibrium
Lecture 12 Modulation and Sampling
EE 2 spring 2-22 Handou #25 Lecure 2 Modulaion and Sampling The Fourier ransform of he produc of wo signals Modulaion of a signal wih a sinusoid Sampling wih an impulse rain The sampling heorem 2 Convoluion
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
Cable Systems - Postive/Negative Seq Impedance
Cable Systems - Postive/Negative Seq Impedance Nomenclature: GMD GMR - geometrical mead distance between conductors; depends on construction of the T-line or cable feeder - geometric mean raduius of conductor
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Anti-aliasing Prefilter (6B) Young Won Lim 6/8/12
ni-aliasing Prefiler (6B) Copyrigh (c) Young W. Lim. Permission is graned o copy, disribue and/or modify his documen under he erms of he GNU Free Documenaion License, Version. or any laer version published
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University
Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
A Control Method of Errors in Long-Term Integration
1,a) Hamilon Runge Kua Hamilonian 1/2 Runge Kua (Brouwer s law) Runge Kua Runge Kua Hamilonian 1/2 Brouwer 3 A Conrol Mehod of Errors in Long-Term Inegraion Ozawa Kazufumi 1,a) Absrac: When solving he
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Riemann Hypothesis: a GGC representation
Riemann Hypohesis: a GGC represenaion Nicholas G. Polson Universiy of Chicago Augus 8, 8 Absrac A GGC Generalized Gamma Convoluion represenaion for Riemann s reciprocal ξ-funcion is consruced. This provides
Γ. Κορίλη, Μοντέλα Εξυπηρέτησης
Γ. Κορίλη, Μοντέλα Εξυπηρέτησης 2-1 hp://www.seas.upenn.edu/~com501/lecures/lecure3.pdf Καθυστερήσεις στα ίκτυα Πακέτων Εισαγωγή στη Θεωρία Ουρών Ανασκόπηση Θεωρίας Πιθανοτήτων ιαδικασία Poisson Θεώρηµα
( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω
Fourier series e jm when m d when m ; m is an ineger. jm jm jm jm e d e e e jm jm jm jm r( is periodi (>, r(+ r(, Fundamenal period smalles Fundamenal frequeny r ( + r ( is periodi hen M M e j M, e j,
Queueing Theory I. Summary. Little s Law Queueing System Notation Stationary Analysis of Elementary Queueing Systems. M/M/1 M/M/m M/M/1/K
Queueing Theory I Suary Little s Law Queueing Syste Notation Stationary Analysis of Eleentary Queueing Systes M/M/ M/M/ M/M// Little s Law a(t): the process that counts the nuber of arrivals up to t. d(t):
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.
EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
Χρονοσειρές - Μάθημα 4
Χρονοσειρές - Μάθημα 4 Sysem is a se of ieracig or ierdeede comoes formig a iegraed whole. Fields ha sudy he geeral roeries of sysems iclude sysems heory, cybereics, dyamical sysems, hermodyamics ad comlex
Electronic Companion to Supply Chain Dynamics and Channel Efficiency in Durable Product Pricing and Distribution
i Eleconic Copanion o Supply Chain Dynaics and Channel Efficiency in Duable Poduc Picing and Disibuion Wei-yu Kevin Chiang College of Business Ciy Univesiy of Hong Kong wchiang@ciyueduh I Poof of Poposiion
Positive solutions for a multi-point eigenvalue. problem involving the one dimensional
Elecronic Journal of Qualiaive Theory of Differenial Equaions 29, No. 4, -3; h://www.mah.u-szeged.hu/ejqde/ Posiive soluions for a muli-oin eigenvalue roblem involving he one dimensional -Lalacian Youyu
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Homework for 1/27 Due 2/5
Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where
Fourier transform of continuous-time signals
Fourier ransform of coninuous-ime signals Specral represenaion of non-periodic signals Fourier ransform: aperiodic signals repeiion of a finie-duraion signal x()> periodic signals. x x T x kt x kt k k
D-Wave D-Wave Systems Inc.
D-Wave D-Wave sems Inc. Anaol Yu. mirnov D-Wave sems Inc. Vancouver Briish Columbia HE QUANUM COMPUING COMPANY M Decoherence and Noise Conrol in rongl Driven uperconducing Quanum Bis Collaboraion: M. Grajcar
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) XJ130246).
Vol. 34 ( 2014 ) No. 4 J. of Math. (PRC) (, 710123) :. -,,, [8].,,. : ; - ; ; MR(2010) : 91A30; 91B30 : O225 : A : 0255-7797(2014)04-0779-08 1,. [1],. [2],.,,,. [3],.,,,.,,,,.., [4].,.. [5] -,. [6] Markov.
16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.
SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he
Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue
Queueig Aalysis Outlie M/M/ Queue (ifiite buffer M/M//N (fiite buffer M/M// (Erlag s B forula M/M/ (Erlag s C forula Networks of M/M/ Queues M/G/ Priority Queue M/M/ M: Markovia/Meoryless Arrival process
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Problem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
2002 Journal of Software
1000-9825/2002/13(02)0239-06 2002 Journal of Sofware Vol13, No2 -,, (, 100084) E-mail: shijing@mailssinghuaeducn; xingcx@singhuaeducn; dcszlz@singhuaeducn hp://dbgroupcssinghuaeducn : 10 12,, I/O -, -,,,
Dark matter from Dark Energy-Baryonic Matter Couplings
Dark matter from Dark Energy-Baryonic Matter Coulings Alejandro Avilés 1,2 1 Instituto de Ciencias Nucleares, UNAM, México 2 Instituto Nacional de Investigaciones Nucleares (ININ) México January 10, 2010
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΥΨΗΛΩΝ ΤΑΣΕΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΥΨΗΛΩΝ ΤΑΣΕΩΝ Διπλωµατική Εργασία Της Φοιτήτριας του Τµήµατος Ηλεκτρολόγων
OILGEAR TAIFENG. (ml/rev) (bar) (bar) (L/min) (rpm) (kw)
PVWW!"#$ PVWW!"#$%&'()*+!"#$% 12!"#$%&'()*!!"#$%&'(!"#$!"#$%&'()*+!"#$%!!"#!$%&'()*+!"#$%!"!"#$%&'!"#$%&'!"#!"#$%!" SE!"!"#$%&'!"#!"#$%&'!"#$%&'!"#$!"#$!"#$%&'!"#$%&'!"#$%&!"#$%&'!"!"#$%&!"#$%&!"!"#$%!"#$%!"#$%&'(!"#$%&'!!"#!"#!"#$%&!"#$%&'(
Outline. Detection Theory. Background. Background (Cont.)
Outlie etectio heory Chapter7. etermiistic Sigals with Ukow Parameters afiseh S. Mazloum ov. 3th Backgroud Importace of sigal iformatio Ukow amplitude Ukow arrival time Siusoidal detectio Classical liear
Additional Results for the Pareto/NBD Model
Additional Results for the Pareto/NBD Model Peter S. Fader www.petefader.com Bruce G. S. Hardie www.brucehardie.com January 24 Abstract This note derives expressions for i) the raw moments of the posterior
!! " # $%&'() * & +(&( 2010
!!" #$%&'() *& (&( 00 !! VISNIK OF HE VOLODYMYR DAL EAS UKRAINIAN NAIONAL UNIVERSIY 8 (50) 00 8 (50) 00 HE SCIENIFIC JOURNAL " 996 WAS FOUNDED IN 996 " - - " I IS ISSUED WELVE IMES A YEAR "#$% Founder
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy
Higher order corrections to H. production. Nikolaos Kidonakis. production channels. Higher-order corrections. Charged Higgs production at the LHC
igher order correcions o producion Nikolaos Kidonakis (Kennesaw Sae Universiy) producion channels igher-order correcions Charged is producion a he LC N. Kidonakis, c arged 008, Uppsala, Sepember 008 Charged
NATIONAL BANK OF POLAND WORKING PAPER No. 86
NATIONAL BANK OF POLAND WORKING PAPER No. 86 Compeiiveness channel in Poland and Slovakia: a pre-emu DSGE analysis Andrzej Torój Warsaw 2 Andrzej Torój Minisry of Finance in Poland andrzej.oroj@mofne.gov.pl)
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul. 2016
4 4 Vol 4 No 4 26 7 Journal of Jiangxi Normal Universiy Naural Science Jul 26-5862 26 4-349-5 3 2 6 2 67 3 3 O 77 9 A DOI 6357 /j cnki issn-5862 26 4 4 C q x' x /q G s = { α 2 - s -9 2 β 2 2 s α 2 - s
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Answers to practice exercises
Answers to practice exercises Chapter Exercise (Page 5). 9 kg 2. 479 mm. 66 4. 565 5. 225 6. 26 7. 07,70 8. 4 9. 487 0. 70872. $5, Exercise 2 (Page 6). (a) 468 (b) 868 2. (a) 827 (b) 458. (a) 86 kg (b)
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
ΠΟΛΥΜΕΤΑΒΛΗΤΑ ΔΙΑΓΡΑΜΜΑΤΑ ΕΛΕΓΧΟΥ ΜΕ ΜΕΤΑΒΛΗΤΟ ΡΥΘΜΟ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΘΕΩΡΙΑΣ ΡΟΩΝ
Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά ου Πανελληνίου Συνεδρίου Στατιστικής (8), σελ 6-7 ΠΟΛΥΜΕΤΑΒΛΗΤΑ ΔΙΑΓΡΑΜΜΑΤΑ ΕΛΕΓΧΟΥ ΜΕ ΜΕΤΑΒΛΗΤΟ ΡΥΘΜΟ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΘΕΩΡΙΑΣ ΡΟΩΝ Αντζουλάκος Δημήτριος,
Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data
Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data Rahim Alhamzawi, Haithem Taha Mohammad Ali Department of Statistics, College of Administration and Economics,
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics
A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Markov chains model reduction
Markov chains model reduction C. Landim Seminar on Stochastic Processes 216 Department of Mathematics University of Maryland, College Park, MD C. Landim Markov chains model reduction March 17, 216 1 /
! "#" "" $ "%& ' %$(%& % &'(!!")!*!&+ ,! %$( - .$'!"
! "#" "" $ "%& ' %$(%&!"#$ % &'(!!")!*!&+,! %$( -.$'!" /01&$23& &4+ $$ /$ & & / ( #(&4&4!"#$ %40 &'(!"!!&+ 5,! %$( - &$ $$$".$'!" 4(02&$ 4 067 4 $$*&(089 - (0:;
ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS
Pa J Statist 2009 Vol 25(2), 135-140 ON NEGTIVE MOMENTS OF CERTIN DISCRETE DISTRIBUTIONS Masood nwar 1 and Munir hmad 2 1 Department of Maematics, COMSTS Institute of Information Technology, Islamabad,
ΣΧΕΔΙΑΣΜΟΣ ΔΙΚΤΥΩΝ ΔΙΑΝΟΜΗΣ. Η εργασία υποβάλλεται για τη μερική κάλυψη των απαιτήσεων με στόχο. την απόκτηση του διπλώματος
ΣΧΕΔΙΑΣΜΟΣ ΔΙΚΤΥΩΝ ΔΙΑΝΟΜΗΣ Η εργασία υποβάλλεται για τη μερική κάλυψη των απαιτήσεων με στόχο την απόκτηση του διπλώματος «Οργάνωση και Διοίκηση Βιομηχανικών Συστημάτων με εξειδίκευση στα Συστήματα Εφοδιασμού
THEORETICAL PROPERTIES OF THE WEIGHTED FELLER-PARETO AND RELATED DISTRIBUTIONS
ASIAN JOURNAL OF MATHEMATICS AND APPLICATIONS Volume 204 Aricle ID ama073 2 pages ISSN 2307-7743 hp://scienceasia.asia THEORETICAL PROPERTIES OF THE WEIGHTED FELLER-PARETO AND RELATED DISTRIBUTIONS OLUSEYI
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
6.003: Signals and Systems
6.3: Signals and Sysems Modulaion December 6, 2 Communicaions Sysems Signals are no always well mached o he media hrough which we wish o ransmi hem. signal audio video inerne applicaions elephone, radio,
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ιπλωµατική Εργασία του φοιτητή του τµήµατος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Ηλεκτρονικών
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων νευρωνικων δικτυ ων»
Ανώτατο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ανατολικής Μακεδονίας και Θράκης Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων
Repeated measures Επαναληπτικές μετρήσεις
ΠΡΟΒΛΗΜΑ Στο αρχείο δεδομένων diavitis.sav καταγράφεται η ποσότητα γλυκόζης στο αίμα 10 ασθενών στην αρχή της χορήγησης μιας θεραπείας, μετά από ένα μήνα και μετά από δύο μήνες. Μελετήστε την επίδραση
INDIRECT ADAPTIVE CONTROL
INDIREC ADAPIVE CONROL OULINE. Inroducion a. Main properies b. Running example. Adapive parameer esimaion a. Parameerized sysem model b. Linear parameric model c. Normalized gradien algorihm d. Normalized
The Metric Characterization ofthegeneralized FermatPoints
Global Journal of Science Fronier Research Mahemaics and Decision Sciences Volume Issue 0 Version 0 Year 0 Type : Double Blind Peer Reviewed Inernaional Research Journal Publisher: Global Journals Inc
Fourier Series. Fourier Series
ECE 37 Z. Aliyazicioglu Elecrical & Compuer Egieerig Dep. Cal Poly Pomoa Periodic sigal is a fucio ha repeas iself every secods. x() x( ± ) : period of a fucio, : ieger,,3, x() 3 x() x() Periodic sigal