arxiv: v1 [math.na] 16 Apr 2017

Σχετικά έγγραφα
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

α & β spatial orbitals in

V. Finite Element Method. 5.1 Introduction to Finite Element Method

Non polynomial spline solutions for special linear tenth-order boundary value problems

LECTURE 4 : ARMA PROCESSES

Πεπερασμένες διαφορές για την ελλειπτική εξίσωση στις δύο διαστάσεις

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

A domain decomposition method for the Oseen-viscoelastic flow equations

8.323 Relativistic Quantum Field Theory I

A Class of Orthohomological Triangles

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Finite Field Problems: Solutions

2 Lagrangian and Green functions in d dimensions

Noriyasu MASUMOTO, Waseda University, Okubo, Shinjuku, Tokyo , Japan Hiroshi YAMAKAWA, Waseda University

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Supplementary materials for Statistical Estimation and Testing via the Sorted l 1 Norm

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Duals of the QCQP and SDP Sparse SVM. Antoni B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckriet

Example Sheet 3 Solutions

1 Complete Set of Grassmann States

The one-dimensional periodic Schrödinger equation

Supporting information for: Functional Mixed Effects Model for Small Area Estimation

EE512: Error Control Coding

Finite difference method for 2-D heat equation

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Some generalization of Cauchy s and Wilson s functional equations on abelian groups

Matrices and Determinants

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Second Order Partial Differential Equations

A Two Sample Test for Mean Vectors with Unequal Covariance Matrices

2 Composition. Invertible Mappings

Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

Every set of first-order formulas is equivalent to an independent set

Congruence Classes of Invertible Matrices of Order 3 over F 2

THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey

New bounds for spherical two-distance sets and equiangular lines

Quantum annealing inversion and its implementation

8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ. ICA: συναρτήσεις κόστους & εφαρμογές

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Estimators when the Correlation Coefficient. is Negative

Uniform Convergence of Fourier Series Michael Taylor

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

u i t=0 = u i0 (x) 0, (1.2)

Phasor Diagram of an RC Circuit V R

IF(Ingerchange Format) [7] IF C-STAR(Consortium for speech translation advanced research ) [8] IF 2 IF

A General Note on δ-quasi Monotone and Increasing Sequence

Pricing of Options on two Currencies Libor Rates

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Journal of Theoretics Vol.4-5

Homework 8 Model Solution Section

Tridiagonal matrices. Gérard MEURANT. October, 2008

Other Test Constructions: Likelihood Ratio & Bayes Tests

Differentiation exercise show differential equation

Discrete Fourier Transform { } ( ) sin( ) Discrete Sine Transformation. n, n= 0,1,2,, when the function is odd, f (x) = f ( x) L L L N N.

C.S. 430 Assignment 6, Sample Solutions

Areas and Lengths in Polar Coordinates

arxiv: v2 [math.ap] 6 Dec 2015

8.324 Relativistic Quantum Field Theory II

Statistical Inference I Locally most powerful tests

( y) Partial Differential Equations

Pseudo Almost Periodic Solutions for HCNNs with Time-Varying Leakage Delays

Appendix. Appendix I. Details used in M-step of Section 4. and expect ultimately it will close to zero. αi =α (r 1) [δq(α i ; α (r 1)

Areas and Lengths in Polar Coordinates

Constant Elasticity of Substitution in Applied General Equilibrium

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

NON-HOMOGENEOUS BOUNDARY-VALUE PROBLEMS OF HIGHER ORDER DIFFERENTIAL EQUATIONS WITH p-laplacian

Nonlinear problem with subcritical exponent in Sobolev space

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

D Alembert s Solution to the Wave Equation

arxiv: v1 [math.ca] 6 Dec 2012

4.6 Autoregressive Moving Average Model ARMA(1,1)

Lecture 34 Bootstrap confidence intervals

ST5224: Advanced Statistical Theory II

Local Approximation with Kernels

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

Concomitants of Dual Generalized Order Statistics from Bivariate Burr III Distribution

1 String with massive end-points

Section 8.3 Trigonometric Equations

THREE-DIMENSIONAL VISCO-ELASTIC ARTIFICIAL BOUNDARIES IN TIME DOMAIN FOR WAVE MOTION PROBLEMS

derivation of the Laplacian from rectangular to spherical coordinates

On homeomorphisms and C 1 maps

Homework 3 Solutions

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Fractional Colorings and Zykov Products of graphs

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

CRASH COURSE IN PRECALCULUS

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

A Note on Intuitionistic Fuzzy. Equivalence Relation

SPECIAL FUNCTIONS and POLYNOMIALS

Transcript:

Energy estmates for two-dmensonal space-resz fractonal wave equaton Mnghua Chen, Wenshan Yu arxv:17.716v1 math.na 16 Apr 17 School of Mathematcs and Statstcs, Gansu Key Laboratory of Appled Mathematcs and Complex Systems, Lanzhou Unversty, Lanzhou 73, P.R. Chna Abstract The fractonal wave equaton governs the propagaton of mechancal dffusve waves n vscoelastc meda whch exhbts a power-law creep, and consequently provded a physcal nterpretaton of ths equaton n the framework of dynamc vscoelastcty. In ths paper, we frst develop the energy method to estmate the one-dmensonal space-resz fractonal wave equaton. For two-dmensonal cases wth the varable coeffcents, the dscretzed matrces are proved to be commutatve, whch ensures to carry out of the pror error estmates. The uncondtonal stablty and convergence wth the global truncaton error Oτ +h are theoretcally proved and numercally verfed. In partculary, the framework of the pror error estmates and convergence analyss are stll vald for the compact fnte dfference scheme and the nonlocal wave equaton. Keywords: Resz fractonal wave equaton; Nonlocal wave equaton; Pror error estmates; Energy method; Numercal stablty and convergence 1. Introducton The fractonal wave equaton s obtaned from the classcal wave equaton by replacng the secondorder dervatve wth a fractonal dervatve of order, 1 <. Manard 18 ponted out that the fractonal wave equaton governs the propagaton of mechancal dffusve waves n vscoelastc meda whch exhbts a power-law creep, and consequently provded a physcal nterpretaton of ths equaton n the framework of dynamc vscoelastcty. In ths paper, we study a second-order accurate numercal method n both space and tme for the two-dmensonal space-resz fractonal wave equaton wth the varable coeffcents whose prototype s, for 1 <,β, ux,y,t t = ax,y ux,y,t x +bx,y β ux,y,t y β +fx,y,t. 1.1 The ntal condtons are ux,y, = ϕx,y for x,y Ω, u t x,y, = ψx,y for x,y Ω, 1. and the Drchlet boundary condton ux,y,t = for x,y Ω Correspondng author. E-mal: chenmh@lzu.edu.cn; yuwsh1@lzu.edu.cn

wth Ω =,x r,y r. The functon fx,y,t s a source term and all the coeffcents are postve,.e., < a ax,y a 1 and < b bx,y b 1. The space-resz fractonal dervatve appears n the contnuous lmt of lattce models wth long-range nteractons 9, for n N, n 1 < n, whch s defned as where ux,y,t x = κ Dx + x Dx 1 r ux,y,t wth κ = cosπ/, 1.3 n Dx ux,y,t = 1 Γn x n xdx r ux,y,t = 1n Γn x n x n xr x x ξ n 1 uξ,y,tdξ, ξ x n 1 uξ,y,tdξ. For the Caputo-Resz tme-space fractonal wave equaton c D γ t ux,t = ux,t x wth 1 <,γ, Manard 1 et al. obtaned the fundamental soluton of the space-tme fractonal dffuson equaton 19. Metzler and Nonnenmacher nvestgated the physcal backgrounds and mplcatons of a space-and tme-fractonal dffuson and wave equaton 1. The numercal soluton of space-tme fractonal dffuson-wave equatons are dscussed n 1, 11, but they are lack of the stablty and convergence analyss. To rewrte the fractonal dffuson-wave equaton as the the Volterra type ntegro-dfferental equatons, the stablty and convergence analyss are gven wth the zero ntal condtons 5. For 1 < γ < and =, t has been proposed by varous authors 6, 7, 16,,, 3, 33, 3, 35. For example, based on the second-order fractonal Lubch s methods 17, Cuesta 6 et al. derved the second-order error bounds of the tme dscretzaton n a Banach space wth the u x a sectoral operator 7 and Yang 1 et al. obtaned the second-order convergence schemes wth 1 γ 1.7183 33. For γ = and 1 < <, t seems that achevng a second-order accurate scheme for 1.1 s not an easy task wth the nonzero ntal condtons. Ths paper focuses on provdng the weghted numercal scheme to solve the space-resz fractonal wave equaton wth the nonzero ntal condtons and the varable coeffcents n one-dmensonal and two-dmensonal cases. The uncondtonal stablty and convergence wth the global truncaton error Oτ + h are theoretcally proved and numercally verfed by the energy method, whch can be easly extended to the nonlocal wave equaton 1. The rest of the paper s organzed as follows. The next secton proposes the second-order accurate scheme for 1.1. In Secton 3, we carry out a detaled stablty and convergence analyss wth the second order accuracy n both tme and space drectons for the derved schemes. To show the effectveness of the schemes, we perform the numercal experments to verfy the theoretcal results n Secton. The paper s concluded wth some remarks n the last secton.. Dscretzaton Schemes Let the mesh ponts x = h, =,1,...,N x, and t k = kτ, k N t wth h = x r /N x, τ = T/N t,.e., h s the unform space stepsze and τ the tme stepsze. And u k denotes the approxmated value of ux,t k, a = ax, f k = fx,t k. Nowadays, there are already many types of hgh order dscretzaton schemes for the Remann-Louvlle space fractonal dervatves, 1, 1, 3, 6, 8, 31. Here, we take the followng schemes to approach

1.3, see n 3, 31 D x ux = δ x,+ ux +Oh wth δ x,+ ux = 1 h +1 m= ϕ m ux m+1, xdx r ux = δx, ux +Oh wth δx, ux = 1 N x +1 h ϕ mux +m 1, m=.1 where ϕ = g, ϕ m = g m + g m 1, m 1, and g m = 1m m,.e., g = 1, g m = 1 +1 gm 1 m, m 1. wth Usng 1.3 and.1, we obtan the approxmaton operator of the space-resz fractonal dervatve ux x = hux +Oh. hux = κ δ x,+ +δx, ux = κ h N x ϕ,lux l, where = 1,...,N x 1 together wth the zero Drchlet boundary condtons and ϕ l+1, l < 1, ϕ +ϕ, l = 1, ϕ,l = ϕ 1, l =, ϕ +ϕ, l = +1, ϕ l +1, l > +1. Takng u = ux 1,ux,,ux N T, and usng.1,., there exsts t yelds Nx 1 N x N T x h ϕ 1,lux l, ϕ,lux l,..., ϕ N,lux l = δ l= l= l= l= x,+ +δ x, 1 u = h A u, hu = κ δ x,+ +δ x, u = κ h A u,.3

where the matrx ϕ 1 ϕ ϕ 3 ϕ N x ϕ N ϕ ϕ 1 ϕ ϕ 3 ϕ N x A = B +B T ϕ ϕ 1 ϕ.... wth B =........... ϕ 3... ϕ 1 ϕ ϕ ϕ 1.1. Numercal scheme for one-dmensonal space-resz fractonal wave equaton We now examne the full dscretzaton scheme to the one-dmensonal space-resz fractonal wave equaton,.e, ux,t t = ax ux,t x +fx,t.5 wth < a ax a 1 and the zero Drchlet boundary condton. The ntal condtons are ux, = ϕx for x Ω, u t x, = ψx for x Ω..6 In the tme drecton dervatve, we use the followng center dfference scheme ux,t t = δt ux,t k +Oτ wth δt ux,t k = uk+1 u k +uk 1 τ..7 In order to acheve an uncondtonal stable algorthm, we use the weghted algorthm for the space- Resz fractonal dervatve,.e., θ +1 θu k +θu k 1, 1 θ 1, to approxmate ux,t k. From. and the above equatons, we can rewrte.5 as ux,t k+1 ux,t k +ux,t k 1 τ = ax h θux,t k+1 +1 θux,t k +θux,t k 1 +fx,t k +R k.8 wth the local truncaton error R k C u, τ +h,.9 where the constant C u, s ndependent of h and τ. Therefore, the full dscretzaton of.5 has the followng form δ t uk = θa h uk+1 +1 θa h uk +θa h uk 1 +f k,.1

.e., +1 +θ τ h κ a ϕ m m= = u k 1 θτ h κ a u k 1 m+1 + Nx +1 +1 m= +1 θ τ h κ a ϕ m uk 1 m= m= ϕ m +m 1 N x +1 ϕ m uk m+1 + m+1 + Nx +1 m= m= ϕ m uk +m 1 ϕ m uk 1 +m 1 +τ f k..11 Usng.5,.6 and Taylor expanson wth ntegral form of the remander, there exsts ux,τ = ux,+τ ux, t = ϕx +τψx + τ + τ ux, t + 1 τ ax ux, x +fx, τ t 3 ux,t t 3 dt + 1 τ τ t 3 ux,t t 3 dt..1 Then we can obtan u 1,.e., u 1 = ϕx +τψx + τ ax hux,+fx,.13 wth the local truncaton error Oτ 3 +τ h, see Secton 3. For the convenence of mplementaton, we use the matrx form of the grd functons U k = u k 1,u k,...,u k N T, F k = f k 1,f k,...,f k N T. Hence, the fnte dfference scheme.11 can be recast as I +θ τ h κ DA U k+1 = I 1 θ τ h κ DA U k I +θ τ h κ DA U k 1 +τf k,.1 where A s defned by. and the dagonal matrx a 1 a D =... a N..15.. Numercal scheme for two-dmensonal space-resz fractonal wave equaton Let the mesh ponts x = h x, =,1,...,N x and y j = jh y, j =,1,...,N y and t k = kτ, k N t wthh x = x r /N x,h y = y r /N y,τ = T/N t. Smlarly,wetakeu k,j astheapproxmatedvalueofux,y j,t k, a,j = ax,y j, b,j = bx,y j, f k,j = fx,y j,t k. We use the center dfference scheme to do the dscretzaton n tme drecton dervatve, ux,y,t t = uk+1,j u k,j +uk 1,j τ +Oτ,

and the weghted schemes for the space-resz fractonal dervatve,.e., θ,j +1 θu k,j +θuk 1,j to approxmate ux,y j,t k. Therefore 1.1 can be rewrtten as ux,y j,t k+1 ux,y j,t k +ux,y j,t k 1 τ = ax,y j h x θux,y j,t k+1 +1 θux,y j,t k +θux,y j,t k 1 +bx,y j β h y θux,y j,t k+1 +1 θux,y j,t k +θux,y j,t k 1 +fx,y j,t k +R,j k,.16 where the local truncaton error s R,j k C u,,βτ +h x +h y..17 Smlarly, we denote h x ux,y j = κ δ x,+ +δx, ux,y j and β h y ux,y j = κ β δ β y,+ +δ β y, ux,y j..18 Therefore, the resultng dscretzaton of 1.1 has the followng form δt uk,j = θa,j h x,j +1 θa,j h x u k,j +θa,j h x u,j k 1 +θb,j β h y,j +1 θb,j β h y u k,j +θb,j β h y u k 1,j +f k,j,.19.e., 1 θτ a,j h x +b,j β h y,j = +1 θτ a,j +b hx,j βhy u k,j 1 θτ a,j h x +b,j β. h y u,j k 1 +τ f,j k. Usng.1 and.13, we can obtan u 1,j = ϕx,y j +τψx,y j + τ a,j +b hx,j β h y u,j +f,j.1 wth the local truncaton error Oτ 3 +τ h x +τ h y, see Secton 3. For the two-dmensonal space-resz fractonal wave equaton1.1, the relevant perturbaton equaton of. s of the form 1 θτ a,j hx 1 θτ b,j βhy,j = 1 θτ a,j hx 1 θτ b,j +τ βhy a,j hx +τ b,j βhy 1 θτ a,j 1 θτ b hx,j βhy u,j k 1 +τ f,j k. Comparng. wth., the splttng term s gven by u k,j. θ τ a,j b,j h x β h y u k+1,j u k,j +uk 1,j, snce,j u k,j +uk 1,j s an Oτ term, t mples that the perturbaton contrbutes an Oτ 6 error

component to the truncaton error of.. Thus we can rewrte 1.1 as ux,y j,t k+1 ux,y j,t k +ux,y j,t k 1 τ +θ τ a,j b,j h x β h ux y,y j,t k+1 ux,y j,t k +ux,y j,t k 1 = ax,y j h x θux,y j,t k+1 +1 θux,y j,t k +θux,y j,t k 1 +bx,y j β h y θux,y j,t k+1 +1 θux,y j,t k +θux,y j,t k 1 +fx,y j,t k + R,j k.3 where R k,j = R k,j +θ τ a,j b,j h x β h y ux,y j,t k+1 ux,y j,t k +ux,y j,t k 1 C u,,β τ +h x +h y.. Hence, the system. can be solved by the alternatng drecton mplct method D-ADI 8, 9: 1 θτ a,j hx u,j = u k,j uk 1,j +τ a,j h x 1 θu k,j +θu k 1,j +τ b,j β h y u k,j +τ f,j k 1 θτ,.5 b,j βhy,j = u,j +θτ b,j β h y u k,j +u k 1,j, where u,j s an ntermedate soluton. Take and denote U k = u k 1,1,uk,1,...,uk N,1,uk 1,,uk,,...,uk N,,...,uk 1,N y 1,uk,N y 1,...,uk N,N y 1 T, F k = f k 1,1,f k,1,...,f k N,1,f k 1,,f k,,...,f k N,,...,f k 1,N y 1,f k,n y 1,...,f k N,N y 1 T, A x = I A and A y = A β I,.6 where I denotes the unt matrx and the symbol the Kronecker product 15, and A, A β are defned by.. Therefore, we can rewrte.5 as the followng form I +θ τ h κ DA x U = I 1 θ τ x I +θ τ h x I +θ τ h β κ β EA y U k+1 = y h x κ DA x τ h β κ β EA y U k y κ DA x U k 1 +τ F k, θ τ h β κ β EA y U k y θ τ h β κ β EA y U k 1 +U, y.7 where D 1 D D =... a 1,j a,j wth D j =... D Ny 1 a N,j

and E 1 E E =... b 1,j b,j wth E j =.... E Ny 1 b N,j 3. Convergence and Stablty Analyss To rewrte the fractonal dffuson-wave equaton as the the Volterra type ntegro-dfferental equatons, the stablty and convergence analyss are gven wth the zero ntal condtons 5. Here, we frst develop the energy method to estmate the space-resz fractonal wave equaton wth the nonzero ntal condtons. For two-dmensonal cases wth the varable coeffcents, the dscretzed matrces are proved to be commutatve, whch ensures to carry out of the pror error estmates. Lemma 3.1. 3 Let h be gven n.3 and 1 <. Then there exsts an symmetrc postve defnte matrx Λ h such that h u,u > and h u,v = Λ h u,λ h v wth h = Λ h Λ h. Lemma 3.. Dscrete Gronwall Lemma 5 Assume that {a k } and {b k } s a nonnegatve sequence, and the sequence ϕ k satsfes where c. Then the sequence {ϕ k } satsfes k 1 k 1 ϕ c, ϕ k c + b l + a l ϕ l, k 1, l= k 1 ϕ k c + b l exp l= l= k 1 a l, k 1. Lemma 3.3. 15, p.11 Let A R n n have egenvalues {λ } n and B Rm m have egenvalues {µ j } m j=1. Then the mn egenvalues of A B are l= λ 1 µ 1,...,λ 1 µ m,λ µ 1,...,λ µ m,...,λ n µ 1...,λ n µ m. Lemma 3.. 15, p.1 Let A R m n, B R r s, C R n p, and D R s t. Then A BC D = AC BD R mr pt. Moreover, for all A and B, A B T = A T B T. Lemma 3.5. Let A x = I A and A y = A β I be defned by.6. Then A x A y = A y A x, Λ x A y = A y Λ x and Λ x Λ y = Λ y Λ x wth A = Λ Λ, A β = Λ β Λ β where we denote Λ x := I Λ and Λ y := Λ β I. Proof. From 3 or Lemma 3.1, there exsts A = Λ Λ and A β = Λ β Λ β, snce A and A β

are the symmetrc postve defnte matrces. Takng Λ x := I Λ and Λ y := Λ β I and usng Lemma 3., the results are obtaned. Lemma 3.6. Let h x and β h y be gven n.18 wth 1 <,β. Then there exst the symmetrc postve defnte matrces Λ h x and, respectvely, such that h x U,U > and h x U,V = Λ h x U,Λ h x V wth h x = Λ h x Λ h x, and β h y U,U > and β h y U,V = U, V wth β h y =. Proof. Accordng to.18 and.6, t mpled that h x U = κ δ x,+ +δx, κ U = A x U. From Lemmas 3.3 and 3.5, we know that A x = I A s a symmetrc negatve defnte, whch leads to h x or β h y s the symmetrc postve defnte. The proof s completed. 3.1. Convergence and stablty for one-dmensonal space-resz fractonal wave equaton Frst, we ntroduce some relevant notatons and propertes of dscretzed nner product gven n13, 7. Denote u k = {u k N x, k N t } and v k = {v k N x, k N t }, whch are grd functons. And N u k t, = uk u k 1 /τ, u k,v k = h u k v, k u k = u k,u k 1/. 3.1 Lemma 3.7. Let 1 θ 1, 1 < and {uk } be the soluton of the dfference scheme h x δ t uk = θa h uk+1 +1 θa h uk +θa h uk 1 wth the ntal condtons and the Drchlet boundary condtons u = ϕ, N x, u 1 = ψ, N x, u k =, uk N x =, k N t 1. +f k Then E k e 3 kτ E + 3 k τ f l, l=1 where the energy norm s defned by E k = + 1 aλ h +Λ hu k + 1 θ 1 aλ h Λ hu k. Proof. Multplyng.1 by h δ tu k h u k 1, respectvely, t yelds u k +hu k u k 1 = h, hu k,,

and θa h uk+1 +1 θa h uk +θa h uk 1 +f k hu k+1 u k 1. Then summng up for from 1 to N x 1 for the above equatons, respectvely, there exsts and h, hu k, = u k, 3. θa h = I 1 +I +f k, u k 1, +1 θa hu k +θa hu k 1 +f k hu k+1 u k 1 3.3 where I 1 = θa h uk+1 +a h uk 1, u k 1, I = 1 θa h uk, u k 1. Accordng to Lemma 3.1, whch leads to I 1 = θ aλ h uk+1 +u k 1,Λ h uk+1 u k 1 = θ aλ h uk+1 aλ h uk 1, and I = 1 θ aλ h uk,λ h uk+1 aλ h uk,λ h uk 1 = 1 θ aλ hu k +aλ h,λ hu k +Λ h aλ hu k aλ h,λ hu k Λ h aλ h uk +aλ h uk 1,Λ h uk +Λ h uk 1 +aλ h uk aλ h uk 1,Λ h uk Λ h uk 1 = 1 θ aλ h +Λ hu k aλ h Λ hu k aλ h uk +Λ h uk 1 + aλ h uk Λ h uk 1. Combne.1, 3. and 3.3, we obtan.e., u k I 1 I = f k, u k 1, 3. +θ aλ h uk+1 + 1 θ = u k +θ aλ h uk 1 + 1 θ +f k, u k 1. aλ h +Λ h uk aλ h uk+1 Λ h uk aλ h u k +Λ h uk 1 aλ h uk Λ h uk 1

Addng θ aλ h uk on both sdes of the above equaton, there exsts Denotng.e., +θ aλ h uk+1 + aλ h uk + 1 θ aλ h uk+1 +Λ h uk aλ h uk+1 Λ h uk = u k +θ aλ hu k + aλ hu k 1 + 1 θ aλ hu k +Λ hu k 1 aλ hu k Λ hu k 1 +f k, u k 1. E k = +θ aλ h + aλ hu k + 1 θ aλ h +Λ hu k aλ h Λ hu k, E k = + 1 aλ h +Λ hu k + 1 θ 1 aλ h Λ hu k, 3.5 where we use aλ hu k + aλ hu k 1 = 1 aλ h u k +Λ hu k 1 + aλ hu k Λ hu k 1. From f k, u k 1 = hτ hτ τ f k f k u k 1 τ + + u k +τ f k, u k +uk uk 1 τ 3.6 and 3.5, 3., we obtan E k E k 1 = f k, u k 1 τ Ek +E k 1 +τ f k,.e, 1 τ E k 1+ τ E k 1 +τ f k. Therefore, for τ /3, t yelds E k 1+ 3τ E k 1 + 3 τ fk. Usng the dscrete Gronwall nequalty see Lemma 3., we have E k e 3 kτ E + 3 k τ f l. l=1

The proof s completed. Theorem 3.1. Let ux,t k be the exact soluton of.5 wth 1 <, 1 θ 1; uk of the fnte dfference scheme.1 and e k = ux,t k u k. Then be the soluton E k = Oτ +h, where the energy norm s defned by E k = e k+1 + 1 aλ he k+1 +Λ he k + 1 θ 1 aλ he k+1 Λ he k. Proof. Subtractng.1 from.8, t yelds δ t ek = θa h ek+1 +1 θa h ek +θa h ek 1 +R k. 3.7 Usng Lemma 3.7, we obtan E k e 3 kτ E + 3 k τ R l, 3.8 l=1 where E k = e k+1 + 1 aλ he k+1 +Λ he k + 1 θ 1 aλ he k+1 Λ he k. 3.9 Next we estmate the local error truncaton of E. Snce e = and e 1 = τ where ξ,x r and t mples that ux, ax x h ϕx = τ ax C 1, + uξ,t x + h + 1 C, = max x x r, t T τ + 1 τ τ t 3 ux,t t 3 dt τ t 3 ux,t t 3 dt C, τ 3 +τ h, { 1 1 a + uξ,t, 1 τ C 1, x + 6 3 ux,t t 3 dt }, e 1 t = e1 e τ N x 1h 1 τ C,τ 3 +τ h C, τ 3 +τ h C,x r τ +τh. 3.1 Here, the coeffcents C l,,1 l are the constants ndependent of h and τ.

Accordng to. and the above equatons, there exsts aλ he 1 = a he 1,e 1 = h a h e 1 1 e = h N x a l= a C 1, = h a h a τ κ a C 1, + uξ,t h ϕ,l x + τ h + 1 τ + uξ,t x + τ h + uξ +C,t 3, x + τ h τ t +3 ux,t t 3 x C 5, τ 3 +τ h C, τ 3 +τ h, +5 u ξ,t +C, t 3 h x + τ t 3 ux,t t 3 dt e 1 e 1 dt e 1 where ξ,ξ, ξ,x r and C l,,1 l 5 are the constants ndependent of h and τ. Usng 3.9, 3.1 and the above equaton, we have wth a constant C. From.9, 3.8 and 3.11, t means that E C x rτ +τh 3.11 E k e 3 kτ C x r τ +τh + 3 kτc u,τ +h C e 3 T τ +h wth C = max{c x r, 3 C u,t}. The proof s completed. Theorem 3.. The dfference scheme.1 wth 1 < and 1 θ 1 s uncondtonally stable. Proof. From Lemma 3.7, the proof s completed. 3.. Convergence and stablty for two-dmensonal space-resz fractonal wave equaton Denote u k = {u k,j N x, j N y, k N t } and v k = {v k,j N x, j N y, k N t }, whch are grd functons. And u k t,,j = uk,j u k 1,j /τ, u k,v k = h x h y N y 1 j=1 u k,jv k,j, u k = u k,u k 1/. 3.1 Lemma 3.8. Let 1 θ 1, 1 <,β and {uk j } be the soluton of the dfference scheme δt uk,j +θ τ a,j b,j h x β h y u k+1,j u k,j +uk 1,j = θa,j h x,j +1 θa,j h x u k,j +θa,j h x u k 1,j +θb,j β h y,j +1 θb,j β h y u k,j +θb,j β h y u k 1,j +f k,j 3.13 wth the ntal condtons and the Drchlet boundary condtons u,j = ϕ,j, N x, j N y, u 1,j = ψ,j, N x, j N y, u k,j =, x,y j Ω, k N t 1.

Then E k e 3 kτ E + 3 k τ f l, l=1 where the energy norm s defned by E k = + 1 aλ h x +Λ h x u k + 1 θ 1 aλ h x Λ h x u k + 1 b + u k + 1 θ 1 b u k +θ τ 6 abλ h x t. Proof. Multplyng 3.13 by h x h y,j u k 1,j and usng Lemmas 3.5, 3.6, there exsts δtu k,j +θ τ a,j b,j h x β h y,j u k,j +u k 1,j h x h y,j u k,j+h x h y u k,j u k 1,j =h x h y,,j h x h y u k,,j +h x h y θ τ 6 a,j b,j Λ h x t,,j h x h y θ τ 6 a,j b,j Λ h x u k t,,j, and θa,j h x,j +1 θa,j h x u k,j +θa,j h x u,j k 1 +θ,j +1 θb,j β h y u k,j +θb,j β h y u k 1,j +f k,j h x h y,j u k 1,j. Then summng up for from 1 to N x 1 and for j from 1 to N y 1, we have N y 1 j=1 N y 1 j=1 h x h y,,j h x h y u k,,j = u k, h x h y θ τ 6 a,j b,j Λ h x t,,j h x h y θ τ 6 a,j b,j Λ h x u k t,,j = θ τ 6 abλ h x t θ τ 6 abλ h x u k t, 3.1 and N y 1 j=1 θa,j h x,j +1 θa,j h x u k,j +θa,j h x u k 1,j +θb,j,j +1 θb,j u k,j +θb,j u k 1,j +f,j k h x h y,j u k 1,j = I 1 +I +I 3 +I +f k, u k 1, 3.15 where I 1 = θ a h x +a h x u k 1, u k 1, I = 1 θ a h x u k, u k 1, I 3 = θ b β h y +b β h y u k 1, u k 1, I = 1 θ b β h y u k, u k 1.

Accordng to Lemma 3.6, we have I 1 = θ aλ h x aλ h x u k 1 I = 1 θ aλ h x +Λ h x u k aλ h x Λ h x u k aλ h x u k +Λ h x u k 1 + aλ h x u k Λ h x u k 1, and I 3 = θ b b u k 1, I = 1 θ b + u k b u k b u k + u k 1 + b u k u k 1. From 3.1 and 3.15, we obtan.e., u k +θ τ 6 abλ h x θ τ 6 abλ t h x u k t I 1 I I 3 I = f k, u k 1, +θ τ 6 abλ h x +θ aλ t h x + 1 θ aλ h x +Λ h x u k aλ h x Λ h x u k +θ b + 1 θ bλ β h y + u k b u k = u k +θ τ 6 abλ h x u k t +θ aλ h x u k 1 + 1 θ aλ h x u k +Λ h x u k 1 aλ h x u k Λ h x u k 1 +θ b u k + 1 θ bλ β h y u k + u k 1 b u k u k 1 +f k, u k 1. Addng θ aλ h x u k +θ b u k on both sdes of the above equaton, we have +θ aλ h x + aλ h x u k + 1 θ aλ h x +Λ h x u k aλ h x Λ h x u k +θ b + b u k + 1 θ bλ β h y + u k b u k +θ τ 6 abλ h x t = u k +θ aλ h x u k + aλ h x u k 1 + 1 θ aλ h x u k +Λ h x u k 1 aλ h x u k Λ h x u k 1 +θ b u k + b u k 1 + 1 θ bλ β h y u k + u k 1 b u k u k 1 +θ τ 6 abλ h x u k t +f k, u k 1.

Denotng E k = +θ aλ h x + aλ h x u k + 1 θ aλ h x +Λ h x u k aλ h x Λ h x u k +θ b + b u k + 1 θ bλ β h y + u k b u k +θ τ 6 abλ h x, t 3.16 we have E k = E k 1 +f k, u k 1. 3.17 We rewrte 3.16 as the followng form E k = + 1 aλ h x +Λ h x u k + 1 θ 1 aλ h x Λ h x u k + 1 b + u k + 1 θ 1 b u k 3.18 where we use +θ τ 6 abλ h x t, aλ h x + aλ h x u k = 1 aλ h x +Λ h x u k + aλ h x Λ h x u k, and b + b u k = 1 b + u k + b u k. Accordng to f k, u k 1 = h x h y τ and 3.18, 3.17, there exsts h x h y τ τ N y 1 j=1 N y 1 j=1 f k,j f k,j + u k +τ f k, u k+1,j u k 1,j τ u k+1,j u k,j +uk,j uk 1,j + τ E k E k 1 = f k, u k 1 τ Ek +E k 1 +τ f k,.e., 1 τ E k 1+ τ E k 1 +τ f k. For τ /3, whch leads to E k 1+ 3τ E k 1 + 3 τ fk.

From Lemma 3., there exsts E k e 3 kτ E + 3 k τ f l. l=1 The proof s completed. Theorem 3.3. Let ux,y j,t k be the exact soluton of 1.1 wth 1 <,β, u k,j. and e k j = ux,y j,t k u k j. Then be the soluton of E k = Oτ +h x +h y, where the energy norm s defned by E k = e k+1 + 1 aλ h x e k+1 +Λ h x e k + 1 θ 1 aλ h x e k+1 Λ h x e k + 1 b e k+1 + e k + 1 θ 1 b e k+1 e k +θ τ 6 abλ h x e k+1 t. Proof. Subtractng. from.3, t yelds 1 τ δ t ek,j +θ τ a,j b,j h x β h y e k+1,j e k,j +ek 1,j = θa,j h x e k+1,j +1 θa,j h x e k,j +θa,j h x e k 1,j +θb,j β h y e k+1,j +1 θb,j β h y e k,j +θb,j β h y e k 1,j + R k,j. Usng Lemma 3.8, there exsts wth the energy norm E k e 3 kτ E + 3 k τ R l l=1 3.19 E k = e k+1 + 1 aλ h x e k+1 +Λ h x e k + 1 θ 1 aλ h x e k+1 Λ h x e k + 1 b e k+1 + e k + 1 θ 1 b e k+1 e k 3. +θ τ 6 abλ h x e k+1 t. Next we estmate the local error truncaton of E. Snce e,j =, θ τ 6 abλ h x e 1 t = Oτ 6 n

3.1 and e 1,j = τ ux,y j, ax,y j x h x ϕx,y j β ux,y j, +bx,y j y β β h y ϕx,y j + 1 = τ + 1 + uξ,y j,t ax,y j C 1, x + τ τ τ t 3 ux,y j,t t 3 dt h β+ ux,η j,t x +bx,y j C 1,β y β+ h y τ t 3 ux,y j,t t 3 dt C 1,,β τ 3 +τ h x +τ h y. Here the coeffcents C 1, and C 1,β are the constants ndependent of h, τ and Then we obtan C 1,,β = { 1 1 a + uξ,y j,t, C 1, x + 1 b β+ ux,η j,t, 1 τ 3 ux,y j,t } 1 C 1,β y β+ 6 t 3 dt. max x x r, y y r, t T e 1 t = e1 e τ N x 1h x N y 1h y 1 τ C 1,,βτ 3 +τ h x +τ h y C 1,,β τ 3 +τ h x +τ h y C 1,,βx r y r τ +τh x +τh y. 3.1 From 1.1 and the above equatons, there exsts aλ h x e 1 = a h x e 1,e 1 = h x h y = h x h y + b,jc 1,β = h x h y + b,jc 1,β h x h y N y 1 j=1 N x a,j l= κ h ϕ a,j C 1,,l x β+ ux,η j,t y β+ τ h y + 1 y 1 j=1 a,j a,j C 1, τ N y 1 j=1 a,j hx e 1,j e 1,j + uξ,y j,t x + τ h x τ t 3 ux,y j,t t 3 dt e 1,j + uξ,y j,t x + τ h x +C + u ξ,y j,t, x + τ h x +β+ ux,η j,t x y β+ τ h +β+ uξ,η j,t y +C,,β N y 1 j=1 a,j τ τ t +3 ux,y j,t t 3 x C 3,,β τ 3 +τ h x +τ h y C 1,,β τ 3 +τ h x +τ h y, x + y β+ τ h xh y e 1,j +5 u ξ,y j,t +C 3, t 3 x + h x dt e 1,j where ξ, ξ,ξ, ξ,x r and C l, and C l,,β,1 l 3 are the constants. Smlarly, we have b e 1 C 3,,β τ 3 +τ h x +τ h y C 1,,β τ 3 +τ h x +τ h y wth the constants C 1,,β and C 3,,β.

Accordng to 3., 3.1 and the above equatons, we get E C,β x ry r τ +τh x +τh y, 3. where C,β s a constant. Hence, usng.17, 3.19 and 3., there exsts E k e 3 kτ C,β x ry r τ +τh x +τh y + 3 kτc u,,β τ +h x +h y C,β e 3 T τ +h x +h y wth C,β = max{c,β x ry r, 3 C u,,βt}. The proof s completed. Theorem 3.. The dfference scheme.7 wth 1 <,β and 1 θ 1 s uncondtonally stable. Proof. From Lemma 3.7, the result s obtaned. Remark 3.1. The operator L appears n the nonlocal wave equaton 1 ux,t t L δ ux,t = f δ x,t on Ω, t >, ux, = u on Ω Ω I, u = g on Ω I,t >. From, we known that the approxmaton operator of L δ s also the symmetrc postve defnte. Hence, the framework of the stablty and convergence analyss are stll vald for the nonlocal wave equaton.. Numercal results In ths secton, we numercally verfy the above theoretcal results and the l norm s used to measure the numercal errors. Example.1. Consder the space-resz fractonal wave equaton.5, on a fnte doman < x < 1, < t 1 wth the coeffcent dx = x, the forcng functon s fx,t =e t x 1 x + x e t cosπ/ Γ5 x +1 x Γ5 Γ x3 +1 x 3 Γ +Γ3 x +1 x Γ3 wth the ntal condtons ux, = x 1 x, t ux, = x 1 x, and the boundary condtons u,t = u1,t =. The exact soluton of the fractonal PDEs s ux,t = e t x 1 x. Table 1 shows that the scheme.1 s second order convergent n both space and tme drectons. Example.. Consder the two-dmensonal space-resz fractonal wave equaton 1.1, on a fnte doman < x < 1, < y < 1, < t 1/ wth the varable coeffcents dx,y = x y, ex,y = xy β,

Table 1: The maxmum errors and convergent orders for.1 wth τ = h. τ = 1.3,θ =.5 Rate = 1.6,θ =.5 Rate = 1.9,θ = 1 Rate 1/ 8.8516e-5 9.53e-5 7.5678e-5 1/8.156e-5 1.9983.39e-5.195 1.987e-5 1.957 1/16 5.5e-6.38 5.5161e-6.17.777e-6.37 1/3 1.3761e-6.5 1.3636e-6.163 1.1581e-6.355 Table : The maxmum errors and convergent orders for.7 wth τ = h x = h y and θ =.75. τ = 1.3,β = 1.7 Rate = 1.5,β = 1.5 Rate = 1.7,β = 1.3 Rate 1/ 1.66e- 1.66e- 1.5e- 1/ 3.89e-5 1.877 3.79e-5 1.993 3.71e-5 1.9688 1/8 9.99e-6.111 9.99e-6 1.979 9.99e-6 1.963 1/16.9e-6 1.9818.9e-6 1.9818.9e-6 1.9818 and the ntal condtons ux,y, = sn1x 1 x y 1 y, t ux,y, = cos1x 1 x y 1 y wth the zero Drchlet boundary condtons on the rectangle. The exact soluton of the PDEs s ux,y,t = snt+1x 1 x y 1 y. Usng the above condtons, t s easy to obtan the forcng functon fx,y,t. Table shows that the scheme.7 s second order convergent n both space and tme drectons. 5. Concluson In ths work we have developed the energy method to estmate the two-dmensonal space-resz fractonal wave equaton wth the varable coeffcents. To the best of our knowledge, the convergence and stablty are lack of study for the one-dmensonal space-resz fractonal wave equaton wth the nonzero condtons. In ths paper, the pror error estmates have been establshed and the convergence analyss and stablty of the proposed method have been proved. For two-dmensonal cases wth the varable coeffcents, the dscretzed matrces are proved to be commutatve, whch ensures to carry out of the pror error estmates. Numercal results have been gven to llustrate the robustness and effcency of the presented method wth the second order convergence. We remark that though ths current paper focus on the space-resz fractonal wave equaton, the energy estmates s stll vald for the compact fnte dfference schemes and the nonlocal wave equaton 1. Acknowledgments Ths work was supported by NSFC 11616, the Fundamental Research Funds for the Central Unverstes under Grant No. lzujbky-16-15, and SIETP 1717365. References 1 Bhrawy, A.H., Zaky, M.A., Van Gorder, R.A.: A space-tme Legendre spectral tau method for the two-sded space Caputo fractonal dffuson-wave equaton. Numer. Algor. 71, 151-18 16.

Chen, M.H., Deng, W.H.: Fourth order accurate scheme for the space fractonal dffuson equatons. SIAM J. Numer. Anal. 5, 118-138 1. 3 Chen, M.H., Deng, W.H.: Hgh order algorthm for the tme-tempered fractonal Feynman-Kac equaton. arxv:167.599. Chen, M.H., Deng, W.H.: Convergence proof for the multgrd method of the nonlocal model. SIAM J. Matrx Anal. Appl mnor revsed. arxv:165.581. 5 Chen, M.H., Deng, W.H.: A second-order accurate numercal method for the space-tme tempered fractonal dffuson-wave equaton. Appl. Math. Lett. 68, 87-93 17. 6 Chen, C., Thomée. V., Wahlbn. L.B.: Fnte element approxmaton of a parabolc ntegrodfferental equaton wth a weakly sngular kernel. Math. Comput. 198, 587-6 199. 7 Cuesta, E., Lubch, Ch., Palenca, C.: Convoluton quadrature tme dscretzaton of fractonal dffuson-wave equatons. Math. Comput. 75, 673-696 6. 8 Dougls, J.: On the numercal ntegraton of u xx + u yy = u tt by mplct methods. J. Soc. Indust. Appl. Math. 3, -65 1955. 9 Dougls, J.: Alternatng drecton methods for three space varables. Numer. Math. 6, 8-53196. 1 Du, Q., Gunzburger, M., Lehoucq, R., Zhou, K.: Analyss and approxmaton of nonlocal dffuson problems wth volume constrants. SIAM Rev. 56, 676-696 1. 11 Garg, M., Manohar, P.: Matrx method for numercal soluton of space-tme fractonal dffuson-wave equatons wth three space varables. Afr. Mat. 5, 161-181 1. 1 Hao, Z.P., Ln, G., Sun, Z.Z: A hgh-order dfference scheme for the fractonal sub-dffuson equaton. Int. J. Comput. Math. 9, 5-6 17. 13 Hu, J.W., Tang, H.M.: Numercal Methods for Dfferental Equatons. Scence Press, Bejng, 1999. 1 J, C.C., Sun, Z.Z.: A hgh-order compact fnte dfference shcemes for the fractonal sub-dffuson equaton. J. Sc. Comput. 6, 959-985 15. 15 Laub, A.J.: Matrx Analyss for Scentsts and Engneers. SIAM, 5. 16 Lu, F., Meerschaert, M., McGough, R. Zhuang, P., Lu, Q.: Numercal methods for solvng the mult-term tme-fractonal wave-dffuson equaton. Fract. Calc. Appl. Anal. 16, 9-5 13. 17 Lubch, Ch.: Dscretzed fractonal calculus. SIAM J. Math. Anal. 17, 7-719 1986. 18 Manard, F.: Fractal calculus: some basc problems n contnuum and statstcal mechancs, In: Carpnter, A., Manard, F. Eds., Fractals and Fractonal Calculus n Contnuum Mechancs. Sprnger, 1997. 19 Manard, F., Luchko, Y., Pagnn G.: The fundamental soluton of the space-tme fractonal dffuson equaton. Fract. Calc. Appl. Anal., 153-19 1. McLean, W., Thomée. V.: Numercal soluton of an evoluton equaton wth a postve-type memory term. J. Austral. Math. Soc. Ser. B 35, 3-7 1993. 1 Metzler, R., Nonnenmacher, T.F.: Space-and tme-fractonal dffuson and wave equatons, fractonal Fokker-Planck equatons, and physcal motvaton. Chem. Phys. 8, 67-9. Mustapha, K., Mclean, W.: Superconvergence of a dscontnous galerkn method for fractonal dffuson and wave equatons. SIAM J. Numer. Anal. 51, 91-515 13. 3 Ortguera, M.D.: Resz potental operators and nverses va fractonal centred dervatves. Int. J. Math. Math. Sc. 1-1 6. Podlubny, I.: Fractonal Dfferental Equatons. Academc Press, New York, 1999. 5 Quarteron, A., Vall, A.: Numercal Approxmaton of Partal Dfferental Equatons. Sprnger, 8.

6 Sousa, E., L, C.: A weghted fnte dfference method for the fractonal dffuson equaton based on the Remann-Louvlle drvatve. Appl. Numer. Math. 9, -37 15. 7 Sun, Z.Z.: Numercal Methods for Partal Dfferental Equatons. Scence Press, Bejng, 5. 8 Tadjeran, C., Meerschaert, M.M., Scheffler, H.P.: A second-order accurate numercal approxmaton for the fractonal dffuson equaton. J. Comput. Phys. 13, 5-13 6. 9 Tarasov, V.E.: Fractonal Dynamcs: Applcatons of Fractonal Calculus to Dynamcs of Partcles, Felds and Meda. Hgher Educaton Press, Bejng and Sprnger-Verlag Berln Hedelberg, 1. 3 Sun, Z.Z., Wu, X.N.: A fully dscrete dfference scheme for a dffuson-wave system. Appl. Numer. Math. 56, 193-9 6. 31 Tan, W.Y., Zhou, H., Deng, W.H.: A class of second order dfference approxmatons for Solvng space fractonal dffuson equatons. Math. Comput. 8, 173-177 15. 3 Wang, P.D., Huang, C.M.: An energy conservatve dfference scheme for the nonlnear fractonal Schrödnger equatons. J. Comput. Phys. 93, 38-51 15. 33 Yang, J.Y., Huang, J.F., Lang, D.M., Tang, Y.F.: Numercal soluton of fractonal dffuson-wave equaton based on fractonal multstep method. Appl. Math. Modell. 38, 365-3661 1. 3 Zeng, F.H.: Second-order stable fnte dfference schemes for the tme-fractonal dffuson-wave equaton. J. Sc. Comput. 65, 11-3 15. 35 Zhang, Y.N., Sun, Z.Z., Zhao, X.: Compact alternatng drecton mplct scheme for the twodmensonal fractonal dffuson-wave equaton. SIAM J. Numer. Anal. 5, 1535-1555 1.