Modeling of the Charge-discharge Behavior of a 12-V Automotive Lead-acid Battery

Σχετικά έγγραφα
Modeling and Simulation of Drying Cylinders in Paper Processes

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

High order interpolation function for surface contact problem

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

[1] P Q. Fig. 3.1

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

DuPont Suva 95 Refrigerant

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

Design Method of Ball Mill by Discrete Element Method

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

The Improvement of Cake Filtration Rate using CO 2

ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Conductivity Logging for Thermal Spring Well

LUNGOO R. Control Engineering for Development of a Mechanical Ventilator for ICU Use Spontaneous Breathing Lung Simulator LUNGOO

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

GF GF 3 1,2) KP PP KP Photo 1 GF PP GF PP 3) KP ULultra-light 2.KP 2.1KP KP Fig. 1 PET GF PP 4) 2.2KP KP GF 2 3 KP Olefin film Stampable sheet

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Capacitors - Capacitance, Charge and Potential Difference

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ. Χρήστος Αθ. Χριστοδούλου. Επιβλέπων: Καθηγητής Ιωάννης Αθ. Σταθόπουλος

DuPont Suva 95 Refrigerant

THICK FILM LEAD FREE CHIP RESISTORS

ER-Tree (Extended R*-Tree)

Supporting Information

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

Διερεύνηση ακουστικών ιδιοτήτων Νεκρομαντείου Αχέροντα

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water

SMD Transient Voltage Suppressors

Buried Markov Model Pairwise

A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Lecture 21: Scattering and FGR

the total number of electrons passing through the lamp.

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

Metal Oxide Varistors (MOV) Data Sheet

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Proses = 0 / 0 Proses = 0 / 36 16" 4576 / 2.3 Barat : 4833 / Utara : 5941 / 3.05 Proses = 63 / 37 Flow : 9936 / 3.2

DLG Series. Lowara SPECIFICATIONS APPLICATIONS ACCESSORIES MATERIALS. General Catalogue

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

ΥΒΡΙΔΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΑΡΟΧΗΣ ΙΣΧΥΟΣ

DATA SHEET Surface mount NTC thermistors. BCcomponents

ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ

ΜΕΛΕΤΗ ΣΥΜΠΕΡΙΦΟΡΑΣ ΦΛΟΓΩΝ ΠΡΟΠΑΝΙΟΥ ΣΤΑΘΕΡΟΠΟΙΗΜΕΝΩΝ ΣΕ ΕΠΙΠΕΔΟ ΣΩΜΑ ΜΕ ΔΙΑΣΤΡΩΜΑΤΩΜΕΝΗ ΕΙΣΑΓΩΓΗ ΜΙΓΜΑΤΟΣ

2. Chemical Thermodynamics and Energetics - I

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

* * E mail : matsuto eng.hokudai.ac.jp. Zeiss

Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ

CorV CVAC. CorV TU317. 1

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και. Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του. Πανεπιστημίου Πατρών

Neutralization E#ects of Acidity of Rain by Cover Plants on Slope Land

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

Influence of Flow Rate on Nitrate Removal in Flow Process

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

Strain gauge and rosettes

Congruence Classes of Invertible Matrices of Order 3 over F 2

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Multi-GPU numerical simulation of electromagnetic waves

Comparison of Evapotranspiration between Indigenous Vegetation and Invading Vegetation in a Bog

Supporting Information

8Q5SAC) 8Q5SAC UV2Vis 8500 ( ) ; PHS23C ) ;721 ( ) :1 4. ;8Q5SAC : molπl ;Britton2Robinson Q5SAC BSA Britton2Robinson,

The optimization of EV powertrain s efficiency control strategy under dynamic operation condition

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

PETROSKILLS COPYRIGHT

Approximation of distance between locations on earth given by latitude and longitude

Electronic Supplementary Information:

Section 8.3 Trigonometric Equations

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

Finish: Anticorrosive finish in polyester. Number of motor poles 4=1400 r/min. 50 Hz 6=900 r/min. 50 Hz 8=750 r/min. 50 Hz

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

27 7 Vol. 27 No CHINESE JOURNAL OF APPLIED CHEMISTRY July CV SEM EIS DTD. MCMB / 0. 01% DTD MCMB /Li. 300 ma h /g 350 ma h /g

Electronic Supplementary Information

Journal of the Institute of Science and Engineering. Chuo University

. O 2 + 2H 2 O + 4e 4OH -

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο, εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευτεί ότι αντιπροσωπεύουν τις

Thermistor (NTC /PTC)

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

Applications. 100GΩ or 1000MΩ μf whichever is less. Rated Voltage Rated Voltage Rated Voltage

RECIPROCATING COMPRESSOR CALCULATION SHEET ISOTHERMAL COMPRESSION Gas properties, flowrate and conditions. Compressor Calculation Sheet

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ

Lifting Entry (continued)

Table of Contents 1 Supplementary Data MCD

Homework 8 Model Solution Section

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου

(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017

Hydrologic Process in Wetland

Medium Data on Big Data

ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ

Transcript:

Korean Chem. Eng. Res., Vol. 45, No. 3, June, 2007, pp. 242-248 y k 12-V }nsm } n m Çn ÇnksÇ Ço * Ç * kt l vedš 443-749 oe m o} 5 * q 445-706 e q 772-1 (2007 2o 9p r, 2007 3o 1p) Modeling of the Charge-discharge Behavior of a 12-V Automotive Lead-acid Battery Ui Seong Kim, Sehoon Jeon, Wonjin Jeon and Chee Burm Shin, Seung Myun Chung* and Sung Tae Kim* Ajou University, Division of Energy Systems Research, San 5, Wonchun-dong, Yeongtong-gu, Suwon 443-748, Korea *Hyundai Motor Company, 772-1, Jangduk-dong, Hwaseong 445-706, Korea (Received 9 February 2007; accepted 1 March 2007) k q r q edšp r o n rvp r r p m p p n. l l o n p pn l n 12-V rvp r r p m p 2 o p m. p l l n r l r p, r vp o, l p p mp r, r p e l p p l. p e p v o l r re p m. re p 25 o Cl C/5, C/10 C/20p rpl l m, re p 25 o Cl rr -rrk p (r r 30A, r rk 14.24 V) m. l l m r p r e m q p m. 2 o p l rp v k er rp r v p r, r kp r ˆ(state of charge; SOC)p m pl. h Abstract For an optimal design of automotive electric system, it is important to have a reliable modeling tool to predict the charge-discharge behaviors of the automotive battery. In this work, a two-dimensional modeling was carried out to predict the charge-discharge behaviors of a 12-V automotive lead-acid battery. The model accounted for electrochemical kinetics and ionic mass transfer in a battery cell. In order to validate the modeling, modeling results were compared with the experimental data of the charge-discharge behaviors of a lead-acid battery. The discharge behaviors were measured with three different discharge rates of C/5, C/10, and C/20 at operating temperature of 25 o C. The batteries were charged with constant current of 30A until the charging voltage reached to a predetermined value of 14.24 V and then the charging voltage was kept constant. The discharge and charge curves from the measurements and modeling were in good agreement. Based on the modeling, the distributions of the electrical potentials of the solid and solution phases, the porosity of the electrodes, and the current density within the electrodes as well as the acid concentration can be predicted as a function of charge and discharge time. Key words: Lead-Acid Battery, Charge, Discharge, Model, Finite Element Method 1. 12-V rv 2 rvp s, PbO 2 p k Pbp p r v l p. rv 2 rvl p r kr p l qr l, q v p e (starting), r (lighting), r (ignition) p l p r q p n p n l To whom correspondence should be addressed. E-mail: cbshin@ajou.ac.kr p l v l p p. l s (steering), r (braking), s(air-conditioning) p r n kr, r, k p po p p r r n ~ p. p rvl n r v p p. pm p s v r l rv krrp q l l rop plk. p rp o l er l n p rvp m p e m p lr m. p l e p 242

p n. r p m p p, pl l rvp pn pp, n n sl n p rvp kp p p n l [1-3]. Tiedemann [4]p rvp r p m o l r p r p, s v r l p vr p 1 o p rk m. Vaaler [5]p p p q l, r m k Žp ro m m. Tiedemann [6]p k Ž k p Žl p r m ro m p r p rk m. Morimoto [7] p r p v r[4-6]p r 2 o p r m ro m m. Bernadi [8]p r m ro k r kp, p, m m. op l p r pl l. Gu [1]p rr r p(25 o C, -18 o C)l p rk m r k m p m. Maja [9]p vp p k, rk p r l l m p v m. Gu [3]p r pl 2 o p re m. l l l l ˆ o l r p, r vp o l p pmp r, r p p l p rp r p r m. o n p pn l 2 o p p r ol l n ol pn l m p l. q~ rq rv k n 12-V rv( l p 90 Ah rv) pn l re p m, p e m l p e p v m. 2-1. }ns 2. n Fig. 1p rv p p. rv k p PbO 2 m p p Pb pm p l PbSO 4 m p r n 12-V rvp r 243 pp l v r l v. PbSO 4 m p l PbO 2 m Pb o r pp p r ˆ. pp rv l pl pp e pep. ( rv k l p p) discharge PbO 2 3H + + + HSO 4 + 2e PbSO 4 + 2H 2 O (1.685 V) ( rv p l p p) discharge charge Pb+ HSO 4 PbSO 4 + H + + 2e (1.685 V) charge ( rv r~p p) discharge PbO 2 + Pb+ 2H 2 SO 4 2PbSO 4 + 2H 2 O (2.041 V) charge 2-2. s o 12-V rvp rr (rrk) r p o l, rv l l v r [3] l l m. rvl n ~ ˆp r l p p sq. p kl r kp n nkp l p. l l r r l r p ~ r l r v nkp r s, o l p pmp v s, Butler-Volmerp r p, r ˆ ˆ SOC(state of charge)p, r p ˆ re p l p. r r p ~ r l r v nkp r sp ˆ rel l. r r p p pl r (i) ~ ˆp r pl r (i s )m r v nkl r p p p r (i l )p p. ~ r l m r e p k p rp, r p divergence 0p. p r p. i = i s + i l (1) i s + i l = 0 r v nkl r d(flux) r v r p r k p p(a)m Butler-Volmerp r p ep rp r r (transfer current density, j)p p. (2) i l = Aj (3) Fig. 1. Schematic illustration of a lead-acid cell. j i c 0 -------- exp α a F --------η α c F = --------η RT exp RT c ref l ro η PbO 2 l l η = φ s - φ l - U PbO2, Pbl l η=φ s - φ l rp. PbO 2 p n, ro( U PbO2 ) r r kp s m p p. r l p o l p ro (2.05) r m. α a (α c ) k (p )p r (anodic(cathodic) apparent (4) Korean Chem. Eng. Res., Vol. 45, No. 3, June, 2007

244 p Ër ËrovËe Ërd Ë ˆ transfer coefficient)p (α a =1.5, α c =0.6). ~r p r (i s ) mp l ~ p ro n l. i s = σ eff Φ s l ~r p r (σ) (ε =0.6) r o r p n m. σ eff = σ 1 ε ( ) 1.5 r p r kp r (i l ) ro n m r kp n l. i l = κ eff Φ l κ eff D ( lnc) eff l κ D pmp l p p rpq p r r p. p Š, ~ r l r v nkp r sp ˆ rep ˆ p. ( ~r p r s re) (5) (6) (7) Aj p. l ----- 2F pm d(flux) p, Faraday p r pl r r (A j)l p. a 1 p r vp, PbO 2 l l a 1 = M PbSO4 M PbSO2 --------------- ---------------, Pbl l a 1 = M Pb M PbSO2 --------- --------------- p. ρ PbSO4 ρ PbSO2 ρ Pb ρ PbSO2,, p (migration)l p vr l pmp v sp ˆ ep εc ( ) ------------ + v c D eff Aj = ( c) + a 2 ----- 2F (14) p. l a 2 PbO 2 l l a 2 =3 2t +0, Pbl l a 2 =1 2t + 0 p. t + r (transference number)p. v p r kp o p Boussinesq m l rep Navier-Stokes ep p. v ----- + v v 1 ν = -- + p + ( ν v) + g1 [ β( c c ρ 0 )] + --- ( εv) K (15) v = 0 (16) ν l κ -- ( εv) o~p r m Œ l p (drag) l p p. (εv) p Œ v r l Darcyp p. ( σ eff Φ s ) Aj = 0 (8) K εv = --- { p ρg[ 1 β( c c µ 0 )]} (17) (r v nkp r s re) l Œ (K) Kozeny-Carman ep p. ( k eff F 1 ) + [ k eff D ( lnc) ] + Aj = 0 r rp r(a)p rvp p ˆ ˆpq tl p. po r pp v r r v p pl p vp p pl l, r pl r rp rp r pl p r p v k p. r rp rp k m p SOC p pn ep. (9) ε 3 d 2 K = ------------------------- 180( 1 ε) 2 l d r p pq p v p. (18) 2-3. { o o ~m k~ p ro r ˆp Poisson ep v p s p n. r v rn rv(cell)p l ~m k~ p rol rr s p ( r) A = A max SOC 0.6 (10) Φ -------- l Φ s = -------- = 0 (19) ( r) A = A max ( 1 SOC) 0.6 (11) l A max rp p. e l SOCp ˆ ep ( SOC) ------------------ i l = ± ---------- ( + for PbO 2, for Pb) Q max o45 o3 2007 6k (12) p. l Q max r ˆl p r p pn p r p ˆ. e (5)~(9)l n o (o ~q eff) p rvp p ˆ ˆpqp r l p v p. e l p ˆ ep ε ---- Aj a 1 ----- = 0 2F (13) p. l np l vp o p. r v l p s p ( r rkp p lp n) Φ s = 0 or V ( r r r lp n) σ eff Φ s -------- = I (20) (21) p. l Ip p (+)p n r p, ( )p n r p p np. rv p l, p s p c ----- = 0 (22)

n 12-V rvp r 245 n (finite element method)p n m [10]. e l r p implicit predictor-multicorrector method n m [11]. rvp l n o n q(finite element mesh) Fig. 3 l ˆ l. l m p, p ˆ ml(, )p s, v k p mll l. o n q 4,032 p nodem 3,875 p bilinear quadrilateral element l. 3. n }n Fig. 2. Input and output parameters for the modeling of the lead-acid battery. p. (c)p s p r kp l. c=c 0 (23) l c o 5Ë10-3 (mol/cm 3 )p. 2-4. m} mm rvp l n p pq vpq, ˆpq, q pq, p pq p. vpq r kl p pmp m r kp r, r, p r v r vp r kp l p. ˆpq r vp, Žp, Ž p, Žp p. q pq q r m m p, p p q s p p. pq rv rk(cell voltage) r, SOC, r kp p. Fig. 2l p pqm p q r m. 2-5. r l n rep l o l o l l l l rs n 12-V(90 Ah ) rv n m. e p ml lp, er l p k r ˆ p C/5, C/10, C/20(5e, 10e, 20e )p rpl l s rkp r 10.5 V v re p m. r p 130% v r rr -rrk p (r r 30A, r rk 14.24 V) re p m. rp r p l lrp p p l rvp p r r eˆ l rs rkp 10.5 V r m. 4. y 4-1. n Fig. 4 rpp C/5, C/10, C/20p re m p, e e p, p rp e m. re m r rp p m. e l p rrkp p n o, r e p p l p r vp rp r p q p. 9A r C/10 re 4.5A r C/20 re mll p rrk p p ˆ. po l [1, 3, 12] p p, l rk 12.5 V r rkp r rkp m p. e m 18 A r C/5 re p mll, rkp lr wp e Fig. 3. Finite element mesh used for the lead-acid battery. Fig. 4. Comparison between experimental and modeling discharge curves at discharge rates of C/5, C/10, and C/20. Korean Chem. Eng. Res., Vol. 45, No. 3, June, 2007

246 p Ër ËrovËe Ërd Ë ˆ Fig. 5. The distribution of the current density within the cell after 1, 4, and 8 hours of discharge with C/10 rate. Fig. 7. The distribution of the state of charge within the cell after 1, 4, and 8 hours of discharge with C/10 rate. kl e coup de fouet p rp rk (voltage-dip) p ˆ. p rk p r tol p ƒv l p, rr ƒ v. p p r rkp m e, r p l m p p p [12]. l p rk p v kk. Fig. 5 rv p r ˆ (contour plot)p ( rp = C/10). rv p r rp v l m m. r (a)l Pb r p p p p r k. p p r l p v p l p. r (c)l r p lr p pl. rp v l l p vp kp tl, r p v v p. Fig. 6p rv p r k ˆ p ( rp = C/10). r l rv p r kp pl l, rp v rv p r kp p l l p m l. rv p r k v p, p tp p p rp n p oyp p, rp n p k yp p l p. PbO 2 r yp r k Pb r yp r k p m l. p p Pb r p PbO 2 r r r p, v pn ƒr m ep qkv p. Žl r p r p p l l, p l. Fig. 7p rv p SOC ˆ p ( rp = C/10). rp v l SOC p, PbO 2 r p SOC p Pb r p SOC, rv p SOC p p SOC p p p m l. r l rv p v p. Žl r p r p ll SOC p 0p. 4-2. }n Fig. 8p r r 30 A, r rk 14.24 V p re m p, e }ov (rk; Ë, r ; Ë)p, p (rk; Ë, r ; Ë)p e m. re m r rp p m. rr r l rkp n r rkl p Fig. 6. The distribution of the concentration of sulfuric acid within the cell after 1, 4, and 8 hours of discharge with C/10 rate. o45 o3 2007 6k Fig. 8. Comparison between experimental and modeling charge curves. The battery was charged with the constant current of 30 A for 1 hour and then with the constant voltage of 14.24 V.

n 12-V rvp r 247 Fig. 9. The distribution of current density within the cell after 10, 20, and 40 minutes of charge with constant current of 30 A for 1 hour and then with the constant voltage of 14.24 V. Fig. 11. The distribution of the concentration of sulfuric acid within the cell after 10, 20, and 40 minutes of charge with constant current of 30 A for 1 hour and then with the constant voltage of 14.24 V. Fig. 10. The distribution of the concentration of sulfuric acid within the cell after 10, 20, and 40 minutes of charge with constant current of 30 A for 1 hour and then with the constant voltage of 14.24 V. v m. p p rvp r p ƒv l p. rrk r l p r n m p r n l p sq m. v p l p r p n r l q n p o. Fig. 9 re l rv p r ˆ p. Pb r p r rvp kv p m l. p p rvp PbSO 4 Pb o p p. Fig. 10p re l rv p r k ˆ p. r (a)p r k rv r ~rp pr. rp eq, r tab n rv o r. PbO 2 r p r k Pb r p r k v m. r r PbO 2 r tabp l r p r q p p. PbO 2 r -Reservoir p ml. p r ƒvl vr r p v p p [13]. Fig. 11 re l rv p SOC ˆ p. rp eq 20 p vl l 40 p l, SOC p Pb r l rv o, PbO 2 r l rv k d m. 5. l l rvp r r p m p r ol m. p l n r l rv l pl r p, r vp o l p pmp r, r p p l p rp l. p r r l rvp p l m pl. rp l p l n rv p r m r k, SOC p erp m p l. r ol lp m n 12-V rv pn r e l p e p v m. 25 o Cl k rp re m r rp p m. rrkp p n o, r e p p l p rvp rp r p q p. rv p r rp v l m p p pl. r l Pb r p p p p r v, r l r p lr p pl. r l rv p r kp pl l, rp v rv p r kp pl l p m l. rp v l SOC p, PbO 2 r p SOC p Pb r p SOC, rv p SOC p p SOC p p p ˆ. 25 o Cl r r 30 A, r rk 14.24 V re m r rp p m. rr r l rkp n r rkl p v m. Pb r p r rvp kv p m l. p p rvp PbSO 4 Korean Chem. Eng. Res., Vol. 45, No. 3, June, 2007

248 p Ër ËrovËe Ërd Ë ˆ Pb o p p. r p r k rv r ~rp pr. rp eq, r tab n r v o r. PbO 2 r p r k Pb r p r k v m. rp eq 20 p vl l 40 p l, SOC p Pb r l rv o, PbO 2 r l rv k d m. l q m (t)lv p vop ld. pl. o45 o3 2007 6k k A : active surface area of electrode [cm 2 /cm 3 ] a : coefficient A max : maximum specific active surface area of electrode [cm 2 /cm 3 ] c : concentration of binary electrolyte [mol/cm 3 ] c ref : reference concentration of the binary electrolyte [mol/cm 3 ] D : diffusion coefficient of the binary electrolyte [cm 2 /s] F : Faraday s constant [96,487 C/mol] g : gravitational vector [cm/s 2 ] i 0 : exchange current density [A/cm 2 ] j : transfer current density [A/cm 3 ] K : permeability [cm 2 ] M : molecular weight of species [g/ mol] p : pressure [Pa] Q : electrode capacity [Coulomb/cm 3 ] R : universal gas constant [8.3143 J/mol K] t : time [sec] + t 0 : transference number of H + with respect to solvent velocity T : absolute temperature [K] U PbO2 : equilibrium potential at c ref for positive electrode [V] v : velocity vector [cm/s] x : distance from centre of positive electrode [cm] k D eff : effective diffusion conductivity [A/cm] m α : transfer coefficient β : volume expansion coefficient [cm 3 /mol] γ : exponent for the concentration dependence of the exchange current density Γ : diffusion coefficient ε : porosity of electrode ξ : exponent for charge dependence of the specific active surface area η : electrode overpotential [V] κ : electrolyte conductivity [S/cm] µ : dynamic viscosity [kg/cm s] ν : kinematic viscosity [cm 2 /s] ρ : density [g/cm 3 ] σ : conductivity of the solid matrix [S/cm] Φ s : electric potential of solid phase [V] : electric potential of liquid phase [V] φ l lzm eff g zm D L max O Ref S : effective, corrected for tortuosity : pertinent to diffusion : liquid solution : maximum or theoretical : initial value : reference state : solid phase y 1. Gu, H., Nguyen, T. V. and White, R. E., A Mathematical Model of a Lead-Acid Cell, J. Electrochem. Soc., 134(12), 2953-2960(1987). 2. Nguyen, T. V. and White, R. E., The Effects of Separator Design on the Discharge Performance of a Starved Lead-Acid Cell, J. Electrochem. Soc., 137(10), 2998-3004(1990). 3. Gu, W. B., Wang, C. Y. and Liaw, B. Y., Numerical Modeling of Coupled Electrochemical and Transport Processes in Lead-Acid Batteries, J. Electrochem. Soc., 144(6), 2053-2061(1997). 4. Tiedemann, W. H., Newman, J. and DeSua, F., Power Sources 6, Collins, D. H.(Ed.), p.15, Academic Press, NY(1977). 5. Vaaler, L. E. and Brooman, E. W., Paper 780221, SAE Congress and Exposition, Detroit, MI(1978). 6. Tiedemann, W. H. and Newman, J., Battery Design and Optimization, Gross, S.(Ed.), p.23-39, The Electrochemical Society Softbound Proceedings Series, 79-1, Princeton, NJ(1979). 7. Morimoto, Y., Ohya, Y., Abe, K., Yoshida, T. and Morimoto, H., Computer Simulation of the Discharge Reaction in Lead-Acid Batteries, J. Electrochem. Soc., 135(2), 293-298(1988). 8. Bernadi, D. M., Gu, H. and Schoene, A. Y., Two-Dimensional Mathematical Model of a Lead-Acid Cell, J. Electrochem. Soc., 140(8), 2250-2258(1993). 9. Maja, M., Morello, G. and Spinelli, P., A Model for Simulating Fast Charging of Lead/acid Batteries, J. Power Sources, 40(1-2), 81-91(1992). 10. Hughes, T. J. R., The Finite Element Method, Prentice-Hall, NJ(1987). 11. Brooks, A. N. and Hughes, T. J. R., Streamline Upwind/Petrov- Galerkin Formulations for Convective Dominated Flows with Particular Emphasis on the Incompressible Navier-Stokes Equations, Comput. Math. Appl. Mech. Eng., 32(1/3), 199-259(1982). 12. Kim, S. C. and Hong, W. H., Analysis of the Discharge Performance of a Flooded Lead/acid Cell Using Mathematical Modeling, J. Power sources, 77(1), 74-82(1999). 13. Kim, S. C. and Hong, W. H., Effect of Electrode Parameters on Charge Performance of a Lead-acid Cell, J. Power sources, 89(1), 15-28(2000).