A Laplace Type Problem for a Lattice with Cell Composed by Three Triangles with Obstacles

Σχετικά έγγραφα
A Laplace Type Problem for Lattice with Cell Composed by Four Isoscele Triangles and the Test Body Rectangle

LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS

Congruence Classes of Invertible Matrices of Order 3 over F 2

On a four-dimensional hyperbolic manifold with finite volume

Reminders: linear functions

Section 8.3 Trigonometric Equations

Homework 8 Model Solution Section

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Lecture 26: Circular domains

Matrices and Determinants

Strain gauge and rosettes

Example Sheet 3 Solutions

Areas and Lengths in Polar Coordinates

Spherical Coordinates

Homomorphism in Intuitionistic Fuzzy Automata

CE 530 Molecular Simulation

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Partial Differential Equations in Biology The boundary element method. March 26, 2013

derivation of the Laplacian from rectangular to spherical coordinates

ST5224: Advanced Statistical Theory II

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Hitting Probabilities for Random Convex Bodies and Lattices of Triangles

Areas and Lengths in Polar Coordinates

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

CRASH COURSE IN PRECALCULUS

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Homomorphism of Intuitionistic Fuzzy Groups

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Laplace s Equation in Spherical Polar Coördinates

The k-α-exponential Function

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Generating Set of the Complete Semigroups of Binary Relations

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

2 Composition. Invertible Mappings

Second Order Partial Differential Equations

Other Test Constructions: Likelihood Ratio & Bayes Tests

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

CYLINDRICAL & SPHERICAL COORDINATES

4.6 Autoregressive Moving Average Model ARMA(1,1)

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Section 8.2 Graphs of Polar Equations

CORDIC Background (2A)

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Uniform Convergence of Fourier Series Michael Taylor

CORDIC Background (4A)

Solution Series 9. i=1 x i and i=1 x i.

On Numerical Radius of Some Matrices

( y) Partial Differential Equations

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Commutative Monoids in Intuitionistic Fuzzy Sets

Answer sheet: Third Midterm for Math 2339

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Math221: HW# 1 solutions

Sampling Basics (1B) Young Won Lim 9/21/13

The Simply Typed Lambda Calculus

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

Προσωπική Aνάπτυξη. Ενότητα 2: Διαπραγμάτευση. Juan Carlos Martínez Director of Projects Development Department

High order interpolation function for surface contact problem

Section 7.6 Double and Half Angle Formulas

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)

Parametrized Surfaces

Scrum framework: Ρόλοι

Inverse trigonometric functions & General Solution of Trigonometric Equations

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

N. P. Mozhey Belarusian State University of Informatics and Radioelectronics NORMAL CONNECTIONS ON SYMMETRIC MANIFOLDS

Geodesic Equations for the Wormhole Metric

D Alembert s Solution to the Wave Equation

Fractional Colorings and Zykov Products of graphs

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Every set of first-order formulas is equivalent to an independent set

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

A Note on Intuitionistic Fuzzy. Equivalence Relation

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Trigonometry 1.TRIGONOMETRIC RATIOS

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.

Math 6 SL Probability Distributions Practice Test Mark Scheme

Longitudinal Changes in Component Processes of Working Memory

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Variational Wavefunction for the Helium Atom

Τμήμα Πολιτικών και Δομικών Έργων

ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΕΞΟΥΑΛΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΩΝ ΓΥΝΑΙΚΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ ΕΓΚΥΜΟΣΥΝΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

Προσωπική Aνάπτυξη. Ενότητα 4: Συνεργασία. Juan Carlos Martínez Director of Projects Development Department

Διπλωματική Εργασία. Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική. Αντωνίου Φάνης

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Example 1: THE ELECTRIC DIPOLE

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3:

(Biomass utilization for electric energy production)

Transcript:

Applied Matheatical Sciences Vol. 11 017 no. 6 65-7 HIKARI Ltd www.-hikari.co https://doi.org/10.1988/as.017.6195 A Laplace Type Proble for a Lattice with Cell Coposed by Three Triangles with Obstacles Marius Stoka Sciences Acadey of Turin Via Maria Vittoria 101 Torino Italy Copyright c 016 Marius Stoka. This article is distributed under the Creative Coons Attribution License which perits unrestricted use distribution and reproduction in any ediu provided the original work is properly cited. Abstract In this paper a lattice with a cell represented in fig. 1 is considered and we copute the probability that a segent of rando position and of constant length intersects a side of the lattice. Matheatics Subject Classification: 60D05 5A Keywords: Geoetric Probability stochastic geoetry rando sets rando convex sets and integral geoetry 1 Introduction Poincaré [6] and Stoka [7] have obtained the fundaental results for the ost iportant probles of geoetric probles in particular they have solved several Buffon-Laplace type probles. In recent years different authors have considered several Buffon-Lapalce type probles for particular fundaental cells [1] [] [] [] [5] and [6]. Starting fro these results in this paper we consider as fundaental cell a lattice coposed by four isoscele triangles and a rhobus and the Laplace type proble was solved. We copute the probability that a rando segent of constant length intersects the fundaental cell represented in fig. 1.

66 Marius Stoka Main Result Let R a ; where is an angle with π π and 0 < a be the lattice with fundaental cell C 0 = C 01 C 0 C 0 represented in fig. 1 A a C 01 C 0 D D D 1 D B B B / / B C 0 C / / C C 1 C fig.1 Fro this figure we obtain the following BC = a cos BE = a cos AE = a sin DE = a cos tg AD = a sin cos tg BD = CD = a cos cos ; 1 B 1 B = B B = C 1 C = C C = sin

Three triangles with obstacles 67 D 1 D = D 1 D = D D = sin ; D 1 DD = D 1 DD = D DD = π DD 1 D = DD D 1 = DD 1 D = DD D 1 = DD D = DD D = π 6 ; areabb 1 B = areabb B = areacc 1 C = areacc C = sin areadd 1 D = areadd 1 D = areadd D =. 5 areac 01 = areac 0 = sin a cos cos tg sin 6 areac 0 = a cos tg sin 7 areac 0 = a sin sin. 8 We want to copute the probability that a segent s with a rando position and of constant length l < in a/ a cos intersects a side of lattice R i.e. the probability P int that a segent s intersects a side of the fundaental cell C 0. The position of the segent s is deterinated by its centre and by the angle ϕ fored with the line BC. To copute the probability P int we consider the liiting positions of segent s for a specified value of ϕ in the cells C 0i i = 1. Thus we obtain fig.

68 Marius Stoka A a 1 A A 1 c 1 A A 5 A a c ˆ C 01 ϕ a 6 ˆ C 0 ϕ c 6 D 5 D6 D c a 5 B B 6 B B 5 a B / / B 7 B 1 a b 1 D D 8 ˆ C 0 ϕ D D 1 D b 6 D 7 C C 5 C 6 C 7 b ϕ b b B b 5 c C 9 C 8 c 5 C C C 1 C fig. and the following By fig. we have areaĉ01 ϕ = areac 01 areaĉ0 ϕ = areac 0 areaĉ0 ϕ = areac 0 areaa i ϕ 9 areab i ϕ 10 areac i ϕ. 11 areac 5 ϕ = l sin ϕ sin ϕ + sin sin areac ϕ = al cos sin ϕ l sin ϕ l sin ϕ sin sin ϕ +

Three triangles with obstacles 69 a cos areac ϕ = cos areac ϕ = l sin ϕ cos ϕ cos. l ϕ sin l sin ϕ cos cos ϕ areac 1 ϕ = l 8 a cos areac 6 ϕ = cos We obtain: ctg + sin ϕ + l ctg 8 cos ϕ l ϕ sin + l sin ϕ sin ϕ + sin. A ϕ = areac i ϕ = al cos sin ϕ l [ cos ctg + 1 In the sae way we have: sin ϕ sin ] + ctg cos ϕ l sin ϕ sin ϕ + sin sin. 1 areaĉ0 ϕ = areac 0 A ϕ. 1 areaa ϕ = l sin cos ϕ areaa 1 ϕ = l sin ϕ cos ϕ cos areaa ϕ = a l sin ϕ l sin ϕ cos ϕ cos areaa 6 ϕ = al sin cos tg cos ϕ l cos ϕ+

70 Marius Stoka l sin ϕ tg cos ϕ tg areaa 5 ϕ = l sin ϕ sin ϕ + π 6 a cos areaa ϕ = cos We obtain: A 1 ϕ = [ 1 sin l ϕ sin l sin ϕ sin ϕ + π. 6 areaa i ϕ = al sin cos tg cos ϕ l cos ϕ + cos + cos ] sin ϕ + l sin ϕ tg cos ϕ tg. 1 In the sae way we have: areab ϕ = al areaĉ01 ϕ = areac 01 A 1 ϕ. 15 areab 1 ϕ = l cos ϕ sin ϕ + cos sin cos tg cos ϕ l cos ϕ l cos ϕ sin ϕ + cos areab 5 ϕ = l sin ϕ + sin ϕ + sin areab 6 ϕ = al sin ϕ + l cos ϕ sin ϕ + cos a cos areab ϕ = cos areab ϕ = l sin l ϕ sin + sin l sin ϕ + sin ϕ + sin π sin ϕ l sin ϕ + sin ϕ + sin.

Three triangles with obstacles 71 We have: A ϕ = areab i ϕ = al sin cos ϕ + cos sin ϕ + l [ 1 + sin sin cos ϕ + cos ] + sin sin ϕ l [ 1 + cos + sin ctg sin ϕ + tg cos ctg cos ϕ+ tg + cos ctg ] sin. 16 areaĉ0 ϕ = areac 0 A ϕ. 17 Denoting with M i i = 1 the set of segents s which have their centre in C 0i and with N i the set of segents s entirely contained in the cell C 0i we have cf. [10]: P int = 1 µ N i µ M i 18 where µ is the Lebesgue easure in the Euclidean plane. To copute the above easure µ M i and µ N i we used the Poincaré kineatic easure [9]: dk = dx dy dϕ where x y are the coordinates of the centre of s and ϕ the fixed angle. Since [ ϕ π ] µ M i = dϕ dxdy = {xyɛc 0i } areac 0i dϕ = π areac 0i i = 1.

7 Marius Stoka and µ N i = µ M i = π areac 0 19 areaĉ0i dϕ = π areac 0i dϕ µ N i = π areac 0 Equations 1 1 and 16 give us [ ] [ A i ϕ dϕ = al 1 sin + cos l {xyɛĉ0i} dxdy = [ ] areaĉ0i A i ϕ dϕ = [A i ϕ] dϕ i = 1 [ ] A 1 ϕ dϕ. 0 sin 1 cos tg + 1 cos sin sin tg + sin + sin tg cos ] [ sin + cos sin cos + sin cos ϕ+ cos + 1 sin sin ϕ ] l [ 1 + cos + sin ctg sin ϕ+ tg ctg cos ctg cos ϕ + tg + ctg + cos ctg ] sin. 1 Forulas 8 18 19 0 and 1 give us the probability P int. For = 0 we have the probability coputed in paper [1].

Three triangles with obstacles 7 References [1] U. Baesel A. Dua A Laplace type proble for a lattice of rectangles with triangular obstacles Applied Matheatical Sciences 8 01 no. 166 809-815. https://doi.org/10.1988/as.01.11918 [] D. Barilla M. Bisaia G. Caristi and A. Puglisi On Laplace type probles I Journal of Pure and Applied Matheatics: Advances and Applications 6 011 no. 1 51-70. [] D. Barilla M. Bisaia G. Caristi and A. Puglisi On Laplace type probles II Far East Journal of Matheatical Sciences 58 011 no. 15-155. [] D. Barilla G. Caristi M. Stoka A Buffon-Laplace type proble for a lattice with cell coposed by four triangles and a rhobus with circular section obstacles Applied Matheatical Sciences 8 01 no. 168 811-816. https://doi.org/10.1988/as.01.1199 [5] G. Caristi M. Pettineo M. Stoka A Laplace type proble for three lattices with non-convex cell J. Nonlinear Sci. Appl. 9 015 75-8. [6] G. Caristi A. Puglisi M. Stoka A Buffon-Laplace Type Proble for an Irregular Lattice with Cell Coposed by Pentagon + Triangle with Obstacles International Journal of Matheatical Analysis 9 015 no. 1 67-681. https://doi.org/10.1988/ija.015.51 [7] G. Caristi A. Puglisi M. Stoka A Buffon-Laplace type proble for a lattice with cell coposed by four triangles and a rhobus with triangular obstacles Applied Matheatical Sciences 8 01 no. 168 80-8509. https://doi.org/10.1988/as.01.1198 [8] G. Caristi and M. Stoka Soe extension of the Laplace proble Rend. Cric. Mat di Palero 60 011 89-98. https://doi.org/10.1007/s115-011-001-9 [9] H. Poincarè Calcul des Probabilitès nd ed. Gauthier-Villard Paris 191. [10] M. Stoka Probabilités géoétriques de type Buffon dans le plan euclidien Atti Accd. Sci. Torino T. 110 1975-1976 5-59. Received: July 15 016; Published: January 1 017