Lecture Summary. 7/30/2014 Linus Metzler 1 11

Σχετικά έγγραφα
Oscillatory integrals

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

Solutions_3. 1 Exercise Exercise January 26, 2017

AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Homework 8 Model Solution Section

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI STEPHEN HANCOCK

2 Composition. Invertible Mappings

EE512: Error Control Coding

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Notes on Tobin s. Liquidity Preference as Behavior toward Risk

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Second Order Partial Differential Equations

Lecture 5: Numerical Integration

Solutions to Exercise Sheet 5

Example Sheet 3 Solutions

Some definite integrals connected with Gauss s sums

Parametrized Surfaces

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates

Rectangular Polar Parametric

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Differentiation exercise show differential equation

Reminders: linear functions

INTEGRAL INEQUALITY REGARDING r-convex AND

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Section 8.3 Trigonometric Equations

Differential equations

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

Numerical Analysis FMN011

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

Second Order RLC Filters

Inverse trigonometric functions & General Solution of Trigonometric Equations

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Other Test Constructions: Likelihood Ratio & Bayes Tests

Math221: HW# 1 solutions

Quadratic Expressions

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Oscillation of Nonlinear Delay Partial Difference Equations. LIU Guanghui [a],*

Solution to Review Problems for Midterm III

Srednicki Chapter 55

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

w o = R 1 p. (1) R = p =. = 1

Matrices and Determinants

Trigonometric Formula Sheet

Homework 3 Solutions

New bounds for spherical two-distance sets and equiangular lines

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Physics 505 Fall 2005 Practice Midterm Solutions. The midterm will be a 120 minute open book, open notes exam. Do all three problems.

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

Approximation of distance between locations on earth given by latitude and longitude

1 String with massive end-points

Problem Set 3: Solutions

Partial Differential Equations in Biology The boundary element method. March 26, 2013

D Alembert s Solution to the Wave Equation

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Chapter 7b, Torsion. τ = 0. τ T. T τ D'' A'' C'' B'' 180 -rotation around axis C'' B'' D'' A'' A'' D'' 180 -rotation upside-down C'' B''

SOLVING CUBICS AND QUARTICS BY RADICALS

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Lecture 15 - Root System Axiomatics

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Tridiagonal matrices. Gérard MEURANT. October, 2008

Section 7.6 Double and Half Angle Formulas

C.S. 430 Assignment 6, Sample Solutions

ENGR 691/692 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework 1: Bayesian Decision Theory (solutions) Due: September 13

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

If we restrict the domain of y = sin x to [ π 2, π 2

derivation of the Laplacian from rectangular to spherical coordinates

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Every set of first-order formulas is equivalent to an independent set

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions

LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Rectangular Polar/Cylindrical Spherical Parametric Vector Matrix

F19MC2 Solutions 9 Complex Analysis

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

6. MAXIMUM LIKELIHOOD ESTIMATION

2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim

Transcript:

Lecture Summry Note This document ws written in the following wy (which might explin its structure): First, I copied Prof. Immoglu s non-exmple notes for the review. Then I merged the in-clss exmples from the review nd our ssistnt s (Tim) review. The lnguge is inconsistent. Tle of Contents Integrtion... 3. Fcts... 3.2 Properties... 3.3 Mittelwertstz der Integrlrechnung... 3.4 Fundmentl theorem of Clculus... 3.5 How do we clculte integrls?... 3.6 Improper Integrls... 4.7 Exmples... 4.7. Exmples BP 203... 4.7.2 Exmple Spring 200... 4.8 Additionl Wisdom... 5 2 Differentil Equtions... 5 2. Liner differentil equtions with constnt coefficients... 5 2.. Finding the homogeneous solution yh of Ly = 0... 5 2..2 How to find the specil solution of Ly = x using the method of Anstz... 5 2.2 Boundry or initil vlue prolems... 6 2.3 Solving DGL y seprtion of vriles... 6 2.4 Ansätze... 6 2.5 Exmples... 6 2.5. Exmple Spring 20... 6 2.5.2 Exmple Summer 203... 7 2.5.3 Exmple Spring 20... 7 3 Differentition in Rn... 7 3. Differentition rules... 8 3.2 Directionl derivtive... 8 3.3 Higher prtil derivtives... 8 3.4 The extrem of function f: Ω. R... 8 3.5 Line integrl... 9 3.6 div, rot,... 9 3.7 Tngentileene usrechnen... 0 3.8 Potentil usrechnen... 0 3.9 Additionl Wisdom... 0 4 Integrtion in Rn... 0 7/30/204 Linus Metzler

4. Sustitution in Rn... 0 4.2 Green s theorem... 4.3 Additionl Wisdom... 7/30/204 Linus Metzler 2

Integrtion Let f: R R e continuous function, P = { = x o < x x < < x n = } prtition of the intervl [, ] nd ξ k [x k, x k+ ] points in ech suintervl. Then the sum S(f, P, ξ) = n k=0 f(ξ k )(x k+ x k ) is clled the Riemnn sum ttched to f nd to P. For I k = [x k, x k+ ], U(f, P) = n k=0 (inf f) (x k+ x k ) nd O(f, P) = I k n k=0 (sup f) (x k+ x k ) re clled the lower nd upper Riemnn sums. Similrly f dx = sup{u(f, p), p P(I)} I k nd f dx = inf{o(f, p), p P(I)} re clled lower nd upper integrls. f is clled Riemnn integrle if f dx =. f dx. Fcts - Ech continuous function is Riemnn integrle - Ech monotonic function is Riemnn integrle.2 Properties - Let f, g Riemnn integrle on I, α, β R. Then. (αf + βg)dx = α f dx + β g dx 2. If f(x) g(x) x [, ] then f dx 3. f dx f(x) dx 4. (inf I 5. f dx f) ( ) f(x) dx = f(x) dx c 6. f dx = f(x) dx 7. f(x) 0 x D f dμ D 0.3 Mittelwertstz der Integrlrechnung g dx (sup f) ( ) I + f(x) dx,, c R c f: [, ] R continonous. Then ξ [, ] such tht f(x) dx = f(ξ)( )..4 Fundmentl theorem of Clculus 7/30/204 Linus Metzler 3 x. Let f: [, ] R continuous. Define F(x) f(t) dt x [, ]. Then F is differentile nd F = f. F is clled primitive (Stmmfunktion) of f 2. If G is n nohte rpmimirve of f then G = F + c for some constnt c 3. Let F e ny pmirmitve of f, then f(x) dx = F() F().5 How do we clculte integrls? Never forget the constnt!. Prtil integrtion: follows product rule for differentition f(x)g (x) dx = f(x)g(x) f (x)g(x) dx f(x)g (x) dx = f(x)g(x) f (x)g(x) dx 2. Sustitution: follows chin rule for differentition f(x) dx = f(φ(y))φ (y) dy f(x) dx = f(φ(y))φ (y) dy 3. Prtil frctions: to integrtion rtionl functions of the form P(x) φ() φ() P(x) = P(x) Q(x) (x 2 +)(x ) 2 (x+2) Anstz: P(x) = Ax+B + C + D Q(x) x 2 + x Bechte Vielfchheiten, C Nullstellen Bsic types of integrtion of rtionl functions Polynomil: n x n x dx = n+ n + E (x ) 2 x+2 n+ + c Q(x), P, Q re polynomils

Inverse powers: dx = { log x x 0, für = (x x 0 ) r r, für 2 r (x x 0 ).6 Improper Integrls The improper integrl of n integrle function f on (, ) which is integrle on ny suintervl [, ]. We define the improper integrl f(x) dx Integrlkriterium Fcts lim lim f(x) dx. - f(x) is defined on [, [ - f(x) 0 x [, [ - f(x) monoton fllend f (x) 0 - n= f(n) konvergiert f(x) dx konvergiert s. s R, > 0, dx = {, s > x s s, s 2. If f is on [, ) continuous nd c nd s > so tht f(x) c/x s x, then f(x) dx converges 3. If f is in [, ) continuous nd c > 0 such tht f(x) c/x, x, then f(x) dx diverges to..7 Exmples.7. Exmples BP 203-2 +ln x x dx - cos x cosh x dx - x2 x+2 x 3 x 2 +x u = + ln x du = dx x 2 + ln x dx x u = cos x u = sin x u I = (cos x) +ln 2 = u /2 du v = cosh x v = sinh x = u3/2 3/2 v cosh x dx = uv vu = (cos x)(cosh x) + (sin x) from to + ln 2 7/30/204 Linus Metzler 4 u v sinh x dx = cos x cosh x + [sin x cosh x cos x cosh x dx] I = [cos x sinh x + sin x cosh x] + C 2 x 3 x 2 + x = x 2 (x ) + (x ) = (x )(x 2 + ) x2 x + 2 x 3 x 2 + x = A Bx + C + x x 2 + A(x 2 + ) + (Bx + C)(x ) = x 2 x + 2 A =, C =, B = 0; x2 x + 2 x 3 x 2 + x = x x 2 + dx = ln x tn x + C.7.2 Exmple Spring 200 Untersuche, o ds untere Integrl x 2 + x dx konvergiert. x 2 + x x 2 x 2 + x x 2 dx converges

or lim dx = lim x(x + ) x x + dx = lim[ln x ln x + ] x = lim ln x + = lim ln + ln 2 = ln 2.8 Additionl iisdom From http://en.wikipedi.org/wiki/differentition_under_the_integrl_sign: ( f(x) dx ) = f(), ( f(x) dx ) = f() φ(α) f(x, α) dx, dφ = f(x, α) dx + f(, α) f(, α) dα (Leiniz) α α α n! (2πn) ( n e )n (Stirling) Solids of revolution when integrting prllel to the xis of revolution: V = π f 2 (x) dx when integrting perpendiculr to the xis of revolution: V = 2π x f(x) dx Don t forget +C when integrting 2 Differentil Equtions 2. Liner differentil equtions with constnt coefficients To solve liner differentil equtions of the form Ly = (x) where L dn + dx n n + + dx n + dx 0, (x) function, i R.. Find homogenous solutiony H. Nmely solution of Ly = 0. 2. Find specil solution y S of Ly = (x) using the method of Anstz vom Typ der rechten Seite. 3. The generl solution is given y y = y H + y S 2.. Finding the homogeneous solution y H of Ly = 0. Find the chrcteristic polynomil of L. Nmely P L (λ) = λ n + n λ n + + λ + 0 2. Fct: if λ, λ r C re the pirwise distinct roots of p(λ) = 0 with ssocited multiplicities m,, m R, then the functions x x k e λ jx, j r, 0 k m j form system of fundmentl solutions of the homogenous eqution Ly = 0. Note: if L hs rel coffeicients, every pir of cimplex conjugte, non-rl roots λ j = μ λ ± iν j of multiplicity m j give fundmentl solution x k e (μ j±iν j )x = x k e μ j(cos ν j x ± i sin ν j x) for 0 k < m j. So one cn s sis tke x k e μ jx cos ν j x nd x k e μ jx sin ν j x insted of x k e (μ j+iν j )x nd x k e (μ j iν j )x. Then the generl homogenous solutions is of the form y H (x) = c jk x k e λ jx j= with constnts c jk. 2..2 How to find the specil solution of Ly = (x) using the method of Anstz Fcts r m j k=0. Let λ C. If λ is not solution of p L (λ) =??, then the inhomongoues DGL Ly = e λx hs prticulr solution y = p L (λ) eλx 2. Let λ C, m its multiplicity s solution of p L(λ) = 0 (m cn e zero which mens λ is not solution of p L (λ) = 0). Let Q(x) polynomil of degree k. Then prticulr solution of Ly(x) = Q(x)e λx is of the form y(x) = R(x)e λx for polynomil R(x) of degree k + m 3. If L hs rel coefficients. Let μ, ν R, m the multiplicity of μ ± iν s solution of p L (λ) = 0 (m = 0 mens μ ± iν is root of p L ). Let Q(x), R(x) e polynomil of degree k. The prticulr solution of the inhomogeneous DGL Ly = Q(x)e μx cos νx + R(x)e μx sin x is of the form y(x) = s(x)e μx cos νx + T(x)e μx sin x for polynomils S, T of degree k + m d n d 7/30/204 Linus Metzler 5

2.2 Boundry or initil vlue prolems y( ) = A y(0) = A y( When we re given DGL Ly = (x) together with either oundry vlues 2 ) = A 2 y or initil vlues (0) = A 2, y( n ) = A n y n (0) = A n we first find the generl solution y = y H + y S. Then we determine the constnts c,, c n in the homogenous solution using the given oundry/initil vlues. 2.3 Solving DGL y seprtion of vriles Fcts - If f: Ω R is differentile in x 0 R, then the prtil derivtives exists nd the differentil df(x 0 ) hs the mtrix representtion ( (x x 0 ) (x x n 0 )) = f the grdient of f. - f diff in x 0 f is continous in x 0 - If ll prtil derivtives of f exists nd continuous, then f is differentile. Using the lst two fcts nd the definition of differentiility, one cn study if given is differentile of not. Recipe - Sei die DG in der Form df(x) = g(x)h(f(x)) dx - Sei nun y = f(x), dnn dy = g(x)h(x) dx - Flls h(y) 0, dnn dy = g(x)dx h(y) dy h(y) - Alterntive Nottion: = g(x) dx - werden nun eide Seiten nch x integriert, dnn - y y dy = ln y 2.4 Ansätze,, c, d R, μ, ν R, n N, X n = Polynomil of degree x Störfunktion q(x) e μx sin νx cos νx e μx sin νx e μx cos νx P n (x)e μx P n (x)e μx sin νx Q n (x)e μx cos νx dy h(y) dx dx = g(x) dx dy = g(x) dx h(y) Anstz für y p (x) 2.5. Exmple Spring 20 ) Bestimme lle Lösungen y = y(x) der DGL y (4) y = 0 welche für x eschränkt leien. Chrcteristic polynomil: x 4 = 0 (x 2 )(x 2 + ) = 0 λ = ± ex, e x λ = ±i cos x, sin x y H (x) = c e x + c x 2 + c 3 cos x + c 4 sin x The solutions tht remin ounded s x re of the form c 3 cos x + c 4 sin x ) Bestimme eine Lösung y = y(x) der DGL y (4) y = e x + x 7/30/204 Linus Metzler 6 e μx c sin νx + d cos νx e μx (c sin νx + d cos νx) R n (x)e μx e μx (R n (x) sin νx + S n (x) cos νx) Bem Liegt eine Linerkomintion der Störfunktionen vor, so ht mn uch ls Anstz eine entsprechende Linerkomintion zu wählen. Bem 2 Flls λ = μ + iν eine m fche Nullstelle des chrkteristischen Polynoms von (H) ist, so muss mn den Anstz für y p (x) mit dem Fktor x m multiplizieren. 2.5 Exmples

y 4 y = e x y p y 4 y = x y p2 Superposition: y p = y p + y p2 y = c e x + c 2 e x + + (x) y p = Cxe x nd y p2 = Dx + E Try y p = Cxe x + Dx + E, put this in y 4 y = e x + x y p (4) (x) = C[ 4e x + xe x ] y p (4) (x) y p (x) = C[ 4e x + xe x ] [Cxe x + Dx + E] = e x + x c =, D = 4 2.5.2 Exmple Summer 203 ) Für welche Werte des Prmters R stret die llgemeine Lösung der DGL y + 2y + y = 0 unhängig von den Anfngsedingungen gegen 0 für x? λ 2 2 ± 4 4 + 2λ + = 0 λ,2 = = ± 2 For < 0: there re 2 complex conjugte roots. Let = 2. Then ± i c e x cos x + c 2 e x sin x 0 s x For = 0: ( ) is doule root. The solution c e x + c 2 e x x 0 independent of the initil conditions. For > 0: then one of the roots will e positive if >. Tht will led to λ = + > 0 which leds to growing solution. We do not wnt > or < 0. If < then λ,2 < 0 ) Finden Sie eine homogene DGL 2. Ordnunug mit konstnten Koeffizienten, deren llgemeine Lösung y(x) = e x + 2xe x ist. Ws sind dnn die Anfngsedingungen ei x = 0? y = e x + 2xe x We re looking for 2 nd DGL. By looking t the eqution, you cn see tht λ = with multiplicity 2 (i. e. doule root of the chr. pol. ). (λ + ) 2 = λ 2 + 2λ + y + 2y + y = 0 + initil vlues c =, c 2 = 2 y GH generl homogenous solution = c e x + c 2 xe x y(0) = e 0 = nd y (0) = e x + 2[e x xe x ] for x = 0 = 2.5.3 Exmple Spring 20 Bestimme die Lösung y = y(x) der DGL y = e x y mit y(0) = 0 y = ex e y dyey = e x dx e y dy = e x dx e y = e x + c y = ln e x + c 0 = y(0) = ln e 0 + c = ln + c c = 0 3 Differentition in R n A function f: Ω R n R is differentile in x 0 if there exists liner mp A: R n R such tht f(x) = f(x x 0 ) + A(x x o ) + R(x, x 0 ) where lim x x0 R(x,x 0 ) x x 0 = 0. In this cse A is clled the differentil of f t x 0 nd it is dented y (df)(x 0 ). Let (A, A 2,, A n ) e mtrix representtion of the liner mp A: R n R. The f differentile t x 0 mens f(x) = f(x 0 ) + A (x x 0 ) + A 2 (x 2 x 0 2 ) + + A n (x n x 0 n ) + R(x, x 0 ). A prtil derivtive is defined s f( ( ) lim,.., i, i +h, i+,, n ) f(,, i,, n ) i h 0 h Fct Let h(s, t) e continuously differentile function of two vriles nd (t) differentile function of one (t) vrile. Define u(t) h(s, t) ds. Then u is diffenetle nd u (t) = h((t), t) t(t) + (t) h t (s, t) d?? 7/30/204 Linus Metzler 7

In prticulr if u(t) is defined s definite integrl of h(s, t) in the vrile s, u(t) h(s, t) ds, then u is differentile nd one cn interchnge the order of differentition nd integrtion. Tht is d dt u(t) = d dt h(s, t) ds. t 3. Differentition rules Let f, g: Ω R differentile in x 0. Then:. d(f ± g)(x 0 ) = df(x 0 ) + dg(x 0 ) 2. d(fg)(x 0 ) = g(x 0 )df(x 0 ) + f(x 0 )dg(x 0 ) 3. If g(x 0 ) 0 then d(f/g)(x 0 ) = g(x 0 )fd(x 0 ) f(x 0 )dg(x 0 ) (g(x 0 )) 2 4. Let h: R R e differentile in g(x 0 ). Then d(h g)(x 0 ) = h (g(x 0 )) dg(x 0 ) h(s, t) ds = 5. Let H: I R Ω R n e differentile in x 0 I nd f: Ω R differentile in H(t 0 ). Then d dt (f H)(t 0 ) = df(h(t 0 )) H (t 0 ) where H(t) = (H (t), H 2 (t),, H n (t)), H (t) = (H (t), H 2 (t),, H n (t)) d 6. Chin rule: (f g)(t dt 0 ) = df(g(t 0 )) g (t 0 ); d (f(x(t), y(t))) = df(x(t), y(t)) (t) dt (x y (t) ) = (x(t), y(t)) x x (t) + (x(t), y(t)) y y (t) 3.2 Directionl derivtive The directionl derivtive of f is in the direction of unit vector e R n {0} is given y d e f(x 0 ) = f(x 0 ) e. 3.3 Higher prtil derivtives One cn similrly define higher order prtil derivtives for functions f C m (Ω). Fct (Schwrz) If f C 2 (Ω) then 2 f = 2 f x i x j x j x independent of the order of differentition. i nd in generl for f C^m(Ω), ll prtil derivtives of order m re Using higher order derivtives one cn nlogous to the -dimensionl cse define Tylor pproximtion of f. Fct Let f C m (Ω), f: Ω R, Ω R, x 0, x Ω. Then f(x ) = f(x 0 ) + f(x 0 )(x x 0 ) + 2 x 0 i )(x j x 0 j ) + R(f, x, x 0 ) where lim x x 0 R(f,x,x 0 ) x x 0 0. 2 i,j= x i x j (x 0 )(x i The nlog of the second derivtive is given y the mtrix of prtil derivtives of order 2. The mtrix is clled the Hesse mtrix of f. Hess f 2 f ( 2 f x i x j) i,j= n 3.4 The extrem of function f: Ω. R Definition A point x Ω is clled criticl point if f(x) = 0 Fct If f is differentile nd x 0 is locl extrem of f, then x 0 is criticl point. Fct Let x 0 e criticl point of f. Then we hve. x 0 is locl minimum if 2 f(x 0 ) is positive definite (det Hess f > 0 tr Hess f > 0) 2. x 0 is locl mximum if 2 f(x 0 ) is negtive definite (det Hess f > 0 tr Hess f < 0) 3. Otherwise x 0 is sddle point (det Hess f < 0) To find extrem of f on region Ω.. Find criticl points f = 0, x 0 is criticl point 2. Check the nture of criticl points y Hess(f)(x 0 ) 3. Check the criticl points tht rise from here 7/30/204 Linus Metzler 8

H f (x) ( 2 f x i x j (x)) i,j=,,n Flls 2D: H f (x) ( 2 f x y (x)) = i,j=,,n (x) (x) x x x x 2 = (x) (x) x 2 x x 2 x 2 (x) ( x n x x x (x) ( y x (x) x x n (x) x 2 x n (x) x n 2 (x) (x) x n x n )n n x y (x) y y (x) ) 2 2 The Jcoi-Mtrix works similr to the Hesse-Mtrix, ut it only uses the first derivtives. Fct Let f: Ω R e continours nd differentile on n open set Ω R n. Let Ω e the oundry of Ω. Then every glol extrem of f is either criticl point of f in Ω or glol extrml point of f x. 3.5 Line integrl Let v: Ω R n e vector field nd curve with prmeteriztion : [, ] Ω, t (t). Then the line integrl of v long is deinfed s v ds v((t)), (t) dt Fcts.. v ds is independent of the prmeteriztion of the pth 2. v ds = + 2 v ds + v ds 2 3. v ds = v ds, where is the sme pth s in opposite direction 4. If v is the grdient vector field ssocited to function f i.e. v = df, then v ds = f(()) f(()), : [, ] Ω 5. Wir können den Begriff des Wegintegrls uf Wege erweitern, die stückweise C sind. Ein stückweise C -Weg ist eine stetige Aildung : [, ] R n mit einer endlichen Unterteilung des Intervlls = c 0 < c < < c n = so dss [ci,c i+ ]: [c i, c i+ ] R n, (i = 0 n ) in C ist. Dnn definiert mn: λ n i=0 λ ( [ci,c i+ ] ) Equivlent once cn write everything in terms of forms: λ = λ dx + λ 2 dx 2 + + λ n dx n then λ λ((t)) (t) dt Fcts λ: Ω L(R n R) continuous forms, then the following re equivlent. f C (Ω) st df = λ 2. For every two continuous C pths, 2 with the sme eginning nd end points: λ = λ 2 3. For every closed curve, λ = 0 Definition A vector field v: Ω R n is clled conservtive if v ds = 0 for ll closed curves. Fct For simply connected region Ω, we hve: v conservtive v = f for some function f. 3.6 div, rot, div K K = K + K 2 + K 3 x y z grd f = f = ( (x x 0 ),, x n (x 0 )), in 3D: ( x y z), Richtungsleitung: f r = 7/30/204 Linus Metzler 9

rot K K = K 3 K 2 y z K K 3 z x K 2 K x ( y ) div(fk) = f K + f div K div(k L) = L rot K K rot L 0 rot(grd f) = ( 0) 0 div(rot K) = 0 div(f rot K) = grd f rot K 3.7 Tngentileene usrechnen Um die Tngentileene m Grph G(t) uszurechnen, git es drei Möglichkeiten. T(x, y) = f(x 0, y 0 ) + ( )(x x x 0 ) + ( )(y y y 0 ) = df(x, y) -. Möglichkeit: T(x, y) usrechnen f(x, y) - 2. Möglichkeit: Tngentilvektoren; Tngentilvektoren sind immer: ( ) - 3. Möglichkeit: Linerkomintion 3.8 Potentil usrechnen Sei F = (6xy + 4z 2, 3x 2 + 3y 2, 8xz) ein Vektorfeld. Bestimme ds Potentil f - - - =y 3 +h(z) = 6xy + x 4z2 (6xy + 4z 2 )dx = 3x 2 y + 4xz + g(y, z) = f(x, y, z) = y 3x2 + 3y 2 = y 3x2 + g g (y, z) = y y 3y2 3y 2 dy = y 3 + h(z) = 8xz = z z z (3x2 y + 4xz + y 3 + h(z)) = 8xz + g (z) - f(x, y, z) = 3x 2 y + 4xz + y 3 + c 3.9 Additionl iisdom = g z g (z) = 0, 0 dz = c d f(x(t), y(t)) = df(x(t), y(t)) (t) dt (x y (t) ) = (x(t), y(t)) x x (t) + (x(t), y(t)) y y (t) (chin rule) Ein geschlossener Weg in einem konservtiven Vektorfeld ist = 0, E ds = 0. 4 Integrtion in R n The Riemnn integrl in R n is constructed in n nlog wy to the cse n = with Riemnn sums over suintervls replced with sums over surectngles, with dx replced with n-ddimensionl volume element dvol n which we denote either y dvol n or dμ(x ). Fct For rectngle Q = [, ] [c, d] R 2 : f dμ Q d c d. c = f dy dx = f dx dy Fuini F(t)dt = J f(x, y) dxdy = J I f(x, y)dydx = I J f(x, y) d(x, y) I J 4. Sustitution in R n Let u, v R n open, Φ: u v ijective with det Φ 0 u. Then for f = v R continuous we hve f(x )dμ(x ) v = f(φ(y)) det(dφ(y)) dμ(y ) u Theorem 9.7 U, V R open, Φ: U V ijective, continuous, differentile, det dφ(y ) 0 y U, f: V R continuous. f(x )dμ(x ) = f(φ(y )) det dφ(y ) dμ. dφ(y ) is the Jcoi mtrix. V Φ(U)=V https://www.youtue.com/wtch?v=tsljeont9y 7/30/204 Linus Metzler 0

4.2 Green s theorem Let Ω R 2 whose oundry Ω hs C prmeteriztion. Let U Ω nd f = Q P where P, Q x y C (U). Then ( Q P ) dμ = Ω P dx + Q dy x y Ω OR Let V = (P, Q) e vector field then v ds = Ω rot v dμ where rot V = Q Ω P nd the line integrl is tken x y round the oundry of Ω in counter-clockwise direction. 4.3 Additionl iisdom - Prmeterintegrl 2 d dx ( (x) (x) f(x, t) dt (x) ) = f(x, (x)) (x) f(, (x)) (x) + f x (x, t) dt - Mehrdimensionle Integrtion Bei der Koordintentrnsformtion ds r (o.ä.) nicht vergessen (x) 2 Differentition under the integrl sign 7/30/204 Linus Metzler