arxiv: v1 [math-ph] 15 Nov 2010

Σχετικά έγγραφα
Fundamental Equations of Fluid Mechanics

Matrix Hartree-Fock Equations for a Closed Shell System

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

Analytical Expression for Hessian

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d

Tutorial Note - Week 09 - Solution

Laplace s Equation in Spherical Polar Coördinates

The Laplacian in Spherical Polar Coordinates

Curvilinear Systems of Coordinates

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Orbital angular momentum and the spherical harmonics

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Strain and stress tensors in spherical coordinates

2 Composition. Invertible Mappings

Example 1: THE ELECTRIC DIPOLE

Section 8.3 Trigonometric Equations

ANTENNAS and WAVE PROPAGATION. Solution Manual

1 3D Helmholtz Equation

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

Reminders: linear functions

Every set of first-order formulas is equivalent to an independent set

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

derivation of the Laplacian from rectangular to spherical coordinates

Approximation of distance between locations on earth given by latitude and longitude

Section 9.2 Polar Equations and Graphs

Math221: HW# 1 solutions

The Simply Typed Lambda Calculus

SPECIAL FUNCTIONS and POLYNOMIALS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

4.2 Differential Equations in Polar Coordinates

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Inverse trigonometric functions & General Solution of Trigonometric Equations

EE512: Error Control Coding

Second Order RLC Filters

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Theoretical Competition: 12 July 2011 Question 1 Page 1 of 2

Section 7.6 Double and Half Angle Formulas

Finite Field Problems: Solutions

On a four-dimensional hyperbolic manifold with finite volume

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Example Sheet 3 Solutions

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

Srednicki Chapter 55

CRASH COURSE IN PRECALCULUS

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

PARTIAL NOTES for 6.1 Trigonometric Identities

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Second Order Partial Differential Equations

w o = R 1 p. (1) R = p =. = 1

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Problems in curvilinear coordinates

Statistical Inference I Locally most powerful tests

Exercise, May 23, 2016: Inflation stabilization with noisy data 1

Congruence Classes of Invertible Matrices of Order 3 over F 2

A NEW CLASS OF MODULAR EQUATIONS IN RAMANUJAN S ALTERNATIVE THEORY OF ELLIPTIC FUNCTIONS OF SIGNATURE 4 AND SOME NEW P-Q ETA-FUNCTION IDENTITIES

Homomorphism in Intuitionistic Fuzzy Automata

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

6.3 Forecasting ARMA processes

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Concrete Mathematics Exercises from 30 September 2016

D Alembert s Solution to the Wave Equation

Solutions to Exercise Sheet 5

Homework 3 Solutions

Solutions Ph 236a Week 2

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Derivation of Optical-Bloch Equations

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

q-analogues of Triple Series Reduction Formulas due to Srivastava and Panda with General Terms

Areas and Lengths in Polar Coordinates

[1] P Q. Fig. 3.1

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Tridiagonal matrices. Gérard MEURANT. October, 2008

r = x 2 + y 2 and h = z y = r sin sin ϕ

( y) Partial Differential Equations

1 Full derivation of the Schwarzschild solution

Product of two generalized pseudo-differential operators involving fractional Fourier transform

Math 6 SL Probability Distributions Practice Test Mark Scheme

Space-Time Symmetries

Example of the Baum-Welch Algorithm

Orbital angular momentum and the spherical harmonics

Fractional Colorings and Zykov Products of graphs

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

Galatia SIL Keyboard Information

Uniform Convergence of Fourier Series Michael Taylor

ST5224: Advanced Statistical Theory II

C.S. 430 Assignment 6, Sample Solutions

Transcript:

Recuence and diffeential elations fo spheical spinos Rados law Szmytkowski axiv:1011.3433v1 [math-ph] 15 Nov 010 Atomic Physics Division, Depatment of Atomic Physics and Luminescence, Faculty of Applied Physics and Mathematics, Gdańsk Univesity of Technology, Nautowicza 11/1, PL 80 33 Gdańsk, Poland email: adek@mif.pg.gda.pl Published as: J. Math. Chem. 4 007 397 413 doi: 10.1007/s10910-006-9110-0 Abstact We pesent a compehensive table of ecuence and diffeential elations obeyed by spin one-half spheical spinos spino spheical hamonics Ω κµn used in elativistic atomic, molecula, and solid state physics, as well as in elativistic quantum chemisty. Fist, we list finite expansions in the spheical spino basis of the expessions A BΩ κµn and A B CΩ κµn, whee A, B, and C ae eithe of the following vectos o vecto opeatos: n = / the adial unit vecto, e 0, e ±1 the spheical, o cyclic, vesos, σ the Pauli matix vecto, ˆL = i I the dimensionless obital angula momentum opeato; I is the unit matix, Ĵ = ˆL+ 1 σ the dimensionless total angula momentum opeato. Then, we list finite expansions in the spheical spino basis of the expessions A BFΩ κµn and A B CFΩ κµn, whee at least one of the objects A, B, C is the nabla opeato, while the emaining ones ae chosen fom the set n, e 0, e ±1, σ, ˆL, Ĵ. KEY WORDS: spheical spinos, spino spheical hamonics, angula momentum, ecuence elations, diffeential elations AMS subject classification: 33C50, 33C55, 33E30, 81Q99 1 Intoduction The spin one-half spheical spinos spino spheical hamonics emege in elativistic quantum mechanics in the context of the sepaation of spheical vaiables when solving the cental-field Diac poblem, e.g., in the elativistic analysis of one-electon atoms [1 5]. In the elativistic theoy of many-electon systemsincluding atoms, molecules, and the solid state, they ente elementay oneelecton Diac cental-field obitals of which appoximate multi-electon wave functions descibing such systems ae fequently constucted see numeous efeences cited in Refs. [6 9]. Despite the so well documented pactical impotance of the spheical spinos, thus fa elatively little space has been devoted in the liteatue to systematic studies o pesentations of thei popeties. Standad textbooks o efeence woks on the angula momentum theoy, such as Refs. [10 13], discuss the spheical spinos only supeficially. In fact, even in the most compehensive elevant teatise by Vashalovich et al. [14] the spheical spinos have been teated much less exhaustively than scala o vecto spheical hamonics. In consequence, atomic and molecula eseaches usually have to deive paticula popeties of the spheical spinos ad hoc, as exemplified by Refs. [15 19]. As a pat of ou eseach pogam in this connection, see also Ref. [0] aimed at changing this unsatisfactoy situation, in this pape we pesent a compehensive table of ecuence and diffeential elations obeyed by the spheical spinos. 1

Peliminaies.1 Definitions Let e x, e y, e z be vesos of some ight-handed Catesian coodinate system. The cyclic vesos e 0, e ±1, ae defined though the elationships e 0 = e z, e ±1 = 1 e x ±ie y..1.1 The dimensionless obital ˆL and total Ĵ angula momentum opeatos both with espect to the cente of the afoementioned Catesian system ae defined as ˆL = i I.1. and Ĵ = ˆL+ 1 σ,.1.3 espectively. In Eqs..1. and.1.3, and heeafte, I is the unit matix, while σ is the Pauli matix vecto σ = σ x e x +σ y e y +σ z e z,.1.4 with σ x = 0 1 1 0 0 i, σ y = i 0 1 0, σ z = 0 1..1.5 Let n = / be a unit adius vecto with espect to the oigin of the afoementioned Catesian system. The spatial oientation of n is uniquely detemined by specifying two angles, 0 θ π and 0 ϕ < π, such that e x n = sinθcosϕ, e y n = sinθsinϕ, e z n = cosθ..1.6 Evidently, θ and ϕ ae, espectively, the pola and the azimuthal angles in the spheical system of coodinates, with its pola and azimuthal axes diected along the Catesian vesos e z and e x, espectively. We define the spin one-half spheical spinos, heeafte denoted as Ω κµ n, as two-component functions of the unit vecto n o, equivalently, of the afoementioned angles θ and ϕ of the fom Ω κµ n = sgn κ κ+ 1 µ κ+1 Y l,µ 1/n,.1.7 κ+ 1 +µ κ+1 Y l,µ+1/n with κ {±1,±,...}, µ { κ + 1, κ + 3,..., κ 1 }, and l = κ+ 1 1 = { κ fo κ > 0 κ 1 fo κ < 0..1.8 In Eq..1.7, Y lm n = l+1l m! 4π l+m! Pm l cosθe imϕ.1.9 is the scala spheical hamonics, with P m l ξ = m l l! 1 ξ m/ dl+m dξ l+mξ 1 l 1 ξ +1.1.10

being the associated Legende function of the fist kind. The phases in Eqs..1.9 and.1.10 have been chosen so that the spheical hamonics.1.9 confoms to the Condon Shotley [1] phase convention; in this connection, see also the emak concluding Sec... In this wok, we shall label the spheical spinos with the two indices κ and µ. Howeve, it should be mentioned that in the elevant liteatue one encountes also numeous examples of labeling these functions by thee indices j, l, and µ, with the fist index in this tiple elated to κ though j = κ 1,.1.11 with l defined as in Eq..1.8, and with µ assuming the same value as explained below Eq..1.7. In view of the elations.1.8 and.1.11, and the convese one, κ = l jj +1,.1.1 both labeling schemes ae completely equivalent.. Remaks Pepaing the collection of fomulas pesented in Sec. 3 we have made an attempt to minimize the numbe of enties with a few exceptions when the opeato Ĵ has been involved. To this end, we have made an extensive use of the popety A B C = A B C,..13 valid alike fo odinay vectos and vecto opeatos. Also, we have extensively exploited the identities like ˆL ˆL = iˆl, σ σ = iσ, Ĵ Ĵ = iĵ,..14 n = n, n ˆL = ˆL n = 0, ˆL = ˆL = 0,..15 etc., to educe opeatos acting on the spheical spinos to the simplest possible foms. If a esult of such a eduction of a paticula opeato has been found to be a scala multiple of the identity, the action of this opeato on the spheical spinos has not been displayed in the table. Fo instance, the equation n ˆL nω κµ n = iω κµ n..16 has not been included in Sec. 3 since it eflects the opeato identity n ˆL n = n ˆL n = ii..17 athe than some paticula popety of the spheical spinos. In Sec. 3.3, F is a once o twice, depending on the needs diffeentiable, and othewise abitay, function of the adial vaiable =. Befoepoceedingtothe table, awodofcautionisstill inode. Itappeasthat, analogouslyto the case of scala spheical hamonics, ecuence and diffeential elations obeyed by the spheical spinos depend on the choices of phases in the defining equations. In othe wods, if the net phase of spheical spinos in use diffes fom that following fom ou Eqs..1.7,.1.9, and.1.10, o if the Pauli matix σ y is defined with the opposite sign, as it occasionally happens in the liteatue, signs in some of the elationships listed in Sec. 3 may need to be changed. 3

3 Table of ecuence and diffeential elations fo spheical spinos 3.1 Algebaic ecuence elations e 0 nω κµ n = µ 4κ 1 Ω κ+ 1 κµn+ µ Ω κ+1,µ n κ+1 κ 1 + µ Ω κ 1,µ n 3.1.1 κ 1 e ±1 nω κµ n = ± κ µ± 1 4κ Ω κ,µ±1 n 1 κ±µ+ 1 + κ±µ+ 3 Ω κ+1,µ±1 n κ+1 κ µ 1 κ µ 3 Ω κ 1,µ±1 n 3.1. κ 1 n σω κµ n = Ω κµ n 3.1.3 e 0 σω κµ n = µ κ+1 Ω κ+ 1 κµn µ Ω κ 1,µ n 3.1.4 κ+1 e ±1 σω κµ n = ± κ µ± 1 Ω κ,µ±1 n κ+1 κ±µ+ 1 κ±µ+ 3 Ω κ 1,µ±1 n 3.1.5 κ+1 4µκ e 0 n σω κµ n = i 4κ 1 Ω κ+ 1 κµn+i µ Ω κ+1,µ n κ+1 κ 1 i µ Ω κ 1,µ n 3.1.6 κ 1 e ±1 n σω κµ n = i κ µ± 1 κ 4κ Ω κ,µ±1 n 1 κ±µ+ 1 +i κ±µ+ 3 Ω κ+1,µ±1 n κ+1 κ µ 1 +i κ µ 3 Ω κ 1,µ±1 n 3.1.7 κ 1 4

3. Diffeential elations of the fist kind e 0 ˆLΩ κµ n = µκ+1 κ+1 Ω κ+ 1 κµn+ µ Ω κ 1,µ n 3..1 κ+1 e ±1 ˆLΩ κµ n = κ µ± 1 κ+1 Ω κ,µ±1 n κ+1 κ±µ+ 1 + κ±µ+ 3 Ω κ 1,µ±1 n 3.. κ+1 σ ˆLΩ κµ n = κ+1ω κµ n 3..3 n ĴΩ κµn = 1 Ω κµn 3..4 e 0 ĴΩ κµn = µω κµ n 3..5 e ±1 ĴΩ κµn = 1 κ µ± 1 Ω κ,µ±1 n 3..6 σ ĴΩ κµn = κ 1 Ωκµ n 3..7 ˆL Ω κµ n = κκ+1ω κµ n 3..8 Ĵ Ω κµ n = κ 1 4 Ωκµ n 3..9 ˆL ĴΩ κµn = κ 1 κ+1ωκµ n 3..10 e 0 n ˆLΩ κµ n = i µκ+1 4κ 1 Ω κ+ 1 κµn iκ µ Ω κ+1,µ n κ+1 κ 1 +iκ+1 µ Ω κ 1,µ n 3..11 κ 1 e ±1 n ˆLΩ κµ n = ±i κ µ± 1 κ+1 4κ Ω κ,µ±1 n 1 κ±µ+ 1 iκ κ±µ+ 3 Ω κ+1,µ±1 n κ+1 κ µ 1 iκ+1 κ µ 3 Ω κ 1,µ±1 n 3..1 κ 1 e 0 ˆL nω κµ n = i µκ 1 4κ 1 Ω κ+ 1 κµn+iκ+ µ Ω κ+1,µ n κ+1 κ 1 iκ 1 µ Ω κ 1,µ n 3..13 κ 1 5

e ±1 ˆL nω κµ n = i κ µ± 1 κ 1 4κ Ω κ,µ±1 n 1 κ±µ+ 1 +iκ+ κ±µ+ 3 Ω κ+1,µ±1 n κ+1 κ µ 1 +iκ 1 κ µ 3 Ω κ 1,µ±1 n 3..14 κ 1 n σ ˆLΩ κµ n = iκ+1ω κµ n 3..15 e 0 σ ˆLΩ κµ n = isgnκ κ+ 1 µ Ω κ 1,µ n 3..16 e ±1 σ ˆLΩ κµ n = i 1 κ±µ+ 1 κ±µ+ 3 Ω κ 1,µ±1n 3..17 σ ˆL nω κµ n = iκ 1Ω κµ n 3..18 e 0 n ĴΩ µ κµn = i 4κ 1 Ω κµn i κ+ 1 κ 1 µ Ω κ+1,µ n κ+1 +i κ 1 κ+ 1 µ Ω κ 1,µ n 3..19 κ 1 e ±1 n ĴΩ κµn = ±i κ µ± 1 4κ Ω κ,µ±1 n 1 i κ 1 i κ+ 1 κ±µ+ 1 κ±µ+ 3 Ω κ+1,µ±1 n κ+1 κ µ 1 κ µ 3 κ 1 Ω κ 1,µ±1 n 3..0 e 0 Ĵ nω µ κµn = i 4κ 1 Ω κµn+i κ+ 1 κ+ 3 µ Ω κ+1,µ n κ+1 i κ 1 κ 3 µ Ω κ 1,µ n 3..1 κ 1 e ±1 Ĵ nω κµn = ±i κ µ± 1 4κ Ω κ,µ±1 n 1 +i κ+ 3 +i κ 3 κ±µ+ 1 κ±µ+ 3 Ω κ+1,µ±1 n κ+1 κ µ 1 κ µ 3 κ 1 Ω κ 1,µ±1 n 3.. n σ ĴΩ κµn = iκω κµ n 3..3 6

e 0 σ ĴΩ µ κµn = i κ+1 Ω κ+ 1 κµn+iκ 1 µ Ω κ 1,µ n 3..4 κ+1 e ±1 σ ĴΩ κµn = ±i κ µ± 1 Ω κ,µ±1 n κ+1 κ±µ+ 1 +iκ 1 κ±µ+ 3 Ω κ 1,µ±1 n 3..5 κ+1 σ Ĵ nω κµn = iκ Ω κµ n 3..6 n Ĵ σω κµn = iκ+ω κµ n 3..7 e 0 Ĵ σω µ κµn = i κ+1 Ω κ+ 1 κµn iκ+3 µ Ω κ 1,µ n 3..8 κ+1 e ±1 Ĵ σω κµn = ±i κ µ± 1 Ω κ,µ±1 n κ+1 κ±µ+ 1 iκ+3 κ±µ+ 3 Ω κ 1,µ±1 n 3..9 κ+1 Ĵ σ nω κµn = iκω κµ n 3..30 n ˆL ĴΩ κµn = i 1 κ+1ω κµn 3..31 e 0 ˆL ĴΩ κµn = i µκ+1 κ+1 Ω κµn i κ+ 1 κ 1 µ Ω κ 1,µ n 3..3 κ+1 e ±1 ˆL ĴΩ κµn = i κ µ± 1 κ+1 Ω κ,µ±1 n κ+1 i κ±µ+ 1 κ 1 κ±µ+ 3 Ω κ 1,µ±1 n 3..33 κ+1 ˆL Ĵ nω κµn = i 1 κ 1Ω κµn 3..34 ˆL Ĵ σω κµn = iκ+1ω κµ n 3..35 n Ĵ ˆLΩ κµ n = i 1 κ+1ω κµn 3..36 e 0 Ĵ ˆLΩ κµ n = i µκ+1 κ+1 Ω κµn+i κ+ 1 κ+ 3 µ Ω κ 1,µ n 3..37 κ+1 7

e ±1 Ĵ ˆLΩ κµ n = i κ µ± 1 κ+1 Ω κ,µ±1 n κ+1 +i κ±µ+ 1 κ+ 3 κ±µ+ 3 Ω κ 1,µ±1 n 3..38 κ+1 σ Ĵ ˆLΩ κµ n = iκ+1ω κµ n 3..39 Ĵ ˆL nω κµ n = i 1 κ 1Ω κµn 3..40 ˆL n ĴΩ κµn = i 1 κ 1Ω κµn 3..41 Ĵ n ˆLΩ κµ n = i 1 κ+1ω κµn 3..4 σ Ĵ σω κµn = iκ+5ω κµ n 3..43 Ĵ n ĴΩ κµn = i 1 Ω κµn 3..44 Ĵ σ ĴΩ κµn = i κ 1 Ωκµ n 3..45 Ĵ ˆL ĴΩ κµn = i κ 1 κ+1ωκµ n 3..46 ˆL Ĵ ˆLΩ κµ n = i κ+ 1 κ+1ωκµ n 3..47 3.3 Diffeential elations of the second kind n FΩ κµ n = df Ω κµ n d 3.3.1 nfω κµ n = + FΩ κµ n 3.3. e 0 FΩ κµ n = µ 4κ 1 + + e ±1 FΩ κµ n = ± + κ+1 FΩ κµ n κ+ 1 µ κ+1 κ 1 µ + κ 1 κ µ± 1 κ FΩ κ+1,µ n + κ+1 FΩ κ 1,µ n 3.3.3 + κ+1 FΩ κ,µ±1 n 4κ 1 κ±µ+ 1 κ±µ+ 3 κ+1 κ FΩ κ+1,µ±1 n κ µ 1 κ µ 3 κ 1 + κ+1 FΩ κ 1,µ±1 n 3.3.4 8

σ FΩ κµ n = + κ+1 FΩ κµ n 3.3.5 Ĵ FΩ κµ n = 1 ĴFΩ κµn = 1 FΩ κµ n = 1 + κ+1 + κ+1 κκ+1 4µκ e 0 σ FΩ κµ n = i 4κ 1 i +i e ±1 σ FΩ κµ n = ±i κ i i FΩ κµ n 3.3.6 FΩ κµ n 3.3.7 FΩ κµ n 3.3.8 + κ+1 FΩ κµ n κ+ 1 µ κ+1 κ 1 µ κ 1 κ µ± 1 κ FΩ κ+1,µ n + κ+1 FΩ κ 1,µ n 3.3.9 + κ+1 FΩ κ,µ±1 n 4κ 1 κ±µ+ 1 κ±µ+ 3 κ+1 κ FΩ κ+1,µ±1 n κ µ 1 κ µ 3 κ 1 + κ+1 FΩ κ 1,µ±1 n 3.3.10 Ĵ σ FΩ κµ n = iκ + κ+1 FΩ κµ n 3.3.11 n ˆL FΩ κµ n = i κκ+1 FΩ κµ n 3.3.1 e 0 ˆL FΩ κµ n = i µκ 1 4κ 1 +iκ+ iκ 1 + κ+1 κ+ 1 µ κ+1 κ 1 µ κ 1 FΩ κµ n κ FΩ κ+1,µ n + κ+1 FΩ κ 1,µ n 3.3.13 9

e ±1 ˆL FΩ κµ n = i κ 1 +iκ+ +iκ 1 κ µ± 1 + κ+1 FΩ κ,µ±1 n 4κ 1 κ±µ+ 1 κ±µ+ 3 κ+1 κ FΩ κ+1,µ±1 n κ µ 1 κ µ 3 κ 1 + κ+1 FΩ κ 1,µ±1 n 3.3.14 σ ˆL FΩ κµ n = iκ 1 + κ+1 FΩ κµ n 3.3.15 Ĵ ˆL FΩ κµ n = i 1 κ 1 + κ+1 e 0 ˆLFΩ κµ n = i µκ+1 4κ 1 iκ κ+ 1 µ +iκ+1 e ±1 ˆLFΩ κµ n = ±i κ+1 iκ FΩ κµ n 3.3.16 + κ+1 FΩ κµ n κ+1 κ 1 µ κ 1 κ µ± 1 κ FΩ κ+1,µ n + κ+1 FΩ κ 1,µ n 3.3.17 + κ+1 FΩ κ,µ±1 n 4κ 1 κ±µ+ 1 κ±µ+ 3 κ+1 κ FΩ κ+1,µ±1 n iκ+1 κ µ 1 κ µ 3 κ 1 + κ+1 FΩ κ 1,µ±1 n 3.3.18 σ ˆLFΩ κµ n = iκ+1 + κ+1 FΩ κµ n 3.3.19 Ĵ ˆLFΩ κµ n = i 1 κ+1 + κ+1 FΩ κµ n 3.3.0 ˆL nfω κµ n = i + κ +κ+4 FΩ κµ n 3.3.1 ˆL ĴFΩ κµn = i 1 κ+1 + κ+1 FΩ κµ n 3.3. n Ĵ FΩ κµn = i κ+1κ 1 FΩ κµ n 3.3.3 10

e 0 Ĵ FΩ µ κµn = i 4κ 1 + κ+1 κ+ 1 µ e ±1 Ĵ FΩ κµn = ±i +i κ+ 3 i κ 3 +i κ+ 3 +i κ 3 κ µ± 1 κ+1 κ 1 µ κ 1 FΩ κµ n κ FΩ κ+1,µ n + κ+1 FΩ κ 1,µ n 3.3.4 + κ+1 FΩ κ,µ±1 n 4κ 1 κ±µ+ 1 κ±µ+ 3 κ+1 κ FΩ κ+1,µ±1 n κ µ 1 κ µ 3 κ 1 + κ+1 FΩ κ 1,µ±1 n σ Ĵ FΩ κµn = iκ + κ+1 FΩ κµ n 3.3.6 ˆL Ĵ FΩ κµn = i 1 κ 1 + κ+1 e 0 ĴFΩ µ κµn = i 4κ 1 + κ+1 κ+ 1 µ e ±1 ĴFΩ κµn = ±i i κ 1 +i κ+ 1 i κ 1 i κ+ 1 κ µ± 1 κ+1 κ 1 µ κ 1 3.3.5 FΩ κµ n 3.3.7 FΩ κµ n κ FΩ κ+1,µ n + κ+1 FΩ κ 1,µ n 3.3.8 + κ+1 FΩ κ,µ±1 n 4κ 1 κ±µ+ 1 κ±µ+ 3 κ+1 κ FΩ κ+1,µ±1 n κ µ 1 κ µ 3 κ 1 + κ+1 FΩ κ 1,µ±1 n σ ĴFΩ κµn = iκ + κ+1 FΩ κµ n 3.3.30 ˆL ĴFΩ κµn = i 1 κ 1 + κ+1 11 3.3.9 FΩ κµ n 3.3.31

Ĵ ĴFΩ κµn = i 1 Ĵ nfω κµn = i + κ +κ+7 + κ+1 FΩ κµ n 3.3.3 FΩ κµ n 3.3.33 Ĵ σfω κµn = iκ+ + κ+1 FΩ κµ n 3.3.34 Ĵ ˆLFΩ κµ n = i 1 κ+1 + κ+1 FΩ κµ n 3.3.35 ˆL FΩ κµ n = i Ĵ FΩ κµn = i Acknowledgments κκ+1 κκ+1 FΩ κµ n 3.3.36 FΩ κµ n 3.3.37 The autho acknowledges discussions with Sebastian Bielski, Justyna Kunicka, and Kzysztof Mielewczyk. Refeences [1] A. I. Akhieze, V. B. Beestetskii, Quantum Electodynamics, nd ed., GIFML, Moscow, 1959 in Russian. [] M. E. Rose, Relativistic Electon Theoy, Wiley, New Yok, 1961. [3] J. D. Bjoken, S. D. Dell, Relativistic Quantum Mechanics, McGaw-Hill, New Yok, 1964. [4] W. Geine, Relativistic Quantum Theoy. Wave Equations, Spinge, Belin, 1990. [5] B. Thalle, The Diac Equation, Spinge, Belin, 199. [6] P. Pyykkö, Relativistic Theoy of Atoms and Molecules. A Bibliogaphy 1916 1985, Spinge, Belin, 1986. [7] P. Pyykkö, Relativistic Theoy of Atoms and Molecules. II. A Bibliogaphy 1986 199, Spinge, Belin, 1993. [8] P. Pyykkö, Relativistic Theoy of Atoms and Molecules. III. A Bibliogaphy 1993 1999, Spinge, Belin, 000. [9] Database RTAM at http://www.csc.fi/tam/. [10] M. E. Rose, Elementay Theoy of Angula Momentum, Wiley, New Yok, 1957. [11] A. R. Edmonds, Angula Momentum in Quantum Mechanics, nd ed., Pinceton Univesity Pess, Pinceton, NJ, 1960. [1] L. C. Biedenhan, J. D. Louck, Angula Momentum in Quantum Physics, Addison-Wesley, Reading, Mass., 1981. [13] J. D. Louck, in: Atomic, Molecula, and Optical Physics Handbook, ed. G. W. F. Dake, Ameican Institute of Physics, Woodbuy, NY, 1996, p. 6. 1

[14] D. A. Vashalovich, A. N. Moskalev, V. K. Khesonskii, Quantum Theoy of Angula Momentum. Ieducible Tensos, Spheical Hamonics, Vecto Coupling Coefficients, 3nj-symbols, Nauka, Leningad, 1975 in Russian, Wold Scientific, Singapoe, 1988 in English. [15] A. Bechle, J. Phys. A 6 1993 6039. [16] A. Rutkowski, R. Koz lowski, J. Phys. B 30 1997 1437. [17] R. Szmytkowski, J. Phys. B 35 00 1379. [18] R. Szmytkowski, K. Mielewczyk, J. Phys. B 37 004 3961. [19] K. Mielewczyk, R. Szmytkowski, Phys. Rev. A 73 006 0511, 039908E. [0] R. Szmytkowski, J. Phys. A 38 005 8993. [1] E. U. Condon, G. H. Shotley, The Theoy of Atomic Specta, Cambidge Univesity Pess, Cambidge, 1935. 13