3.1 Transformations by dvips

Σχετικά έγγραφα
Antonis Tsolomitis Laboratory of Digital Typography and Mathematical Software Department of Mathematics University of the Aegean

Antonis Tsolomitis Laboratory of Digital Typography and Mathematical Software Department of Mathematics University of the Aegean

Antonis Tsolomitis Laboratory of Digital Typography and Mathematical Software Department of Mathematics University of the Aegean

Antonis Tsolomitis Laboratory of Digital Typography and Mathematical Software Department of Mathematics University of the Aegean

Oscillatory integrals

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

Solutions_3. 1 Exercise Exercise January 26, 2017

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

2 Composition. Invertible Mappings

derivation of the Laplacian from rectangular to spherical coordinates

Inverse trigonometric functions & General Solution of Trigonometric Equations

Finite Field Problems: Solutions

EE512: Error Control Coding

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

INTEGRAL INEQUALITY REGARDING r-convex AND

Areas and Lengths in Polar Coordinates

Statistical Inference I Locally most powerful tests

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Congruence Classes of Invertible Matrices of Order 3 over F 2

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Tridiagonal matrices. Gérard MEURANT. October, 2008

Approximation of distance between locations on earth given by latitude and longitude

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Areas and Lengths in Polar Coordinates

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

The Simply Typed Lambda Calculus

AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

C.S. 430 Assignment 6, Sample Solutions

Μηχανική Μάθηση Hypothesis Testing

The challenges of non-stable predicates

Other Test Constructions: Likelihood Ratio & Bayes Tests

ST5224: Advanced Statistical Theory II

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Section 1: Listening and responding. Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016

Every set of first-order formulas is equivalent to an independent set

Uniform Convergence of Fourier Series Michael Taylor

Second Order Partial Differential Equations

4.6 Autoregressive Moving Average Model ARMA(1,1)

TMA4115 Matematikk 3

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Homework 3 Solutions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Section 9.2 Polar Equations and Graphs

Strain gauge and rosettes

Galatia SIL Keyboard Information

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Instruction Execution Times

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Section 7.6 Double and Half Angle Formulas

Problem Set 3: Solutions

Math 6 SL Probability Distributions Practice Test Mark Scheme

Section 8.3 Trigonometric Equations

LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV. 18 February 2014

Example Sheet 3 Solutions

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

5. Choice under Uncertainty

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 133: ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΕΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΑΣΤΗΡΙΟ 3 Javadoc Tutorial

On a four-dimensional hyperbolic manifold with finite volume

BRAND MANUAL AND USER GUIDELINES

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Reminders: linear functions

Fractional Colorings and Zykov Products of graphs

Lecture 2. Soundness and completeness of propositional logic

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ ΚΑΙ ΔΙΑΤΡΟΦΗΣ ΤΟΥ ΑΝΘΡΩΠΟΥ ΤΜΗΜΑ ΦΥΤΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΔΠΜΣ ΑΜΠΕΛΟΥΡΓΙΑ- ΟΙΝΟΛΟΓΙΑ

Concrete Mathematics Exercises from 30 September 2016

MathCity.org Merging man and maths

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

( ) 2 and compare to M.

SPEEDO AQUABEAT. Specially Designed for Aquatic Athletes and Active People

Some definite integrals connected with Gauss s sums

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

CRASH COURSE IN PRECALCULUS

FSM Toolkit Exercises Part II

Solutions to Exercise Sheet 5

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI STEPHEN HANCOCK

Matrices and Determinants

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Partial Trace and Partial Transpose

A Note on Intuitionistic Fuzzy. Equivalence Relation

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Math221: HW# 1 solutions

Assalamu `alaikum wr. wb.

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

PARTIAL NOTES for 6.1 Trigonometric Identities

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Notes on the Open Economy

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Transcript:

The GFSDIDOT font fmily Alin Aubord Sourire Informtique Genev / Switzerlnd Antonis Tsolomitis Lbortory of Digitl Typogrphy nd Mthemticl Softwre Deprtment of Mthemtics University of the Aegen 9 Jnury 208 Introduction The Didot fmily of the Greek Font Society ws mde vilble for free in utumn 2005. This font existed with commercil license for mny yers before. Support for LTeX nd the bbel pckge ws prepred severl yers go by the uthor nd I. Vsilogiorgkis (A. Aubord hs done some modifictions to improve the support of the ccented nd other specil chrcters). With the free vilbility of the fonts I hve modified the originl pckge so tht it reflects the chnges occured in the ltest releses by GFS. The pckge supports four encodings: OT, T, TS nd LGR. When some chrcters re missing in the Didot font, they re tken from the font TEX Gyre Pgell nd, for the oblique rule (chrcter 0x20 in OT encoding) used to build the chrcter L with stroke (Ł), from the cmr fmily. All the provided encodings should be firly complete. The greek prt is to be used with the greek option of the Bbel pckge. The Didot fmily in LGR nd OT encoding hs been tested successfuly with Plin TEX too. The fonts re loded with the LATEX commnd (to be given in the premble of LATEX document): \usepckge{gfsdidot}. This commnd lods implicitely the pckge textcomp (Text Compnion) which defines the defult vlues for some chrcters in the NFSS LATEX font selection mechnism. If this behviour is not desired, it is possible to prevent the loding of the textcomp pckge by pssing the option nogfsdidotts when clling the pckge gfsdidot: \usepckge[nogfs DidotTS]{gfsdidot}.

The pckge provides new test to check if the pckge textcomp is loded. It cn be used like tht: \ifthenelse{\boolen{gfsdidotts}}% {Wht to do when "textcomp" is loded}% {Wht to do when "textcomp" is not loded} The fonts s relesed contin n itlic version, but its greek prt is just the romn in slnted form. To overcome this problem for the greek prt, we use for itlic nother font by GFS clled Olg. As fr s the ltin prt is concerned the itlic chrcters re tken from Didot-Itlic (Olg contins no ltin chrcters). The pckge provides lso mtching smll cps shpe for both ltin nd greek including old style numbers. Finlly, the mth symbols re tken from the pxfonts pckge except of course the chrcters tht re lredy provided by Didot nd Olg. The choice of pxfonts ws mde on the bsis tht the ltin prt of Didot is bsed on Pltino. Moreover, ll Didot chrcters re scled in the.fd files by fctor of.04 in order to mtch the x-height of pxfonts. 2 Instlltion. Copy the contents of the subdirectories: fm in texmf/fonts/fm/gfs/didot doc in texmf/doc/ltex/gfs/didot enc in texmf/fonts/enc/dvips/gfs/didot mp in texmf/fonts/mp/dvips/gfs/didot tex in texmf/tex/ltex/gfs/didot tfm in texmf/fonts/tfm/gfs/didot type in texmf/fonts/type/gfs/didot vf in texmf/fonts/vf/gfs/didot vpl in texmf/fonts/source/public/gfs/didot/vpl. The vpl files re the sources used to produce vf nd tfm files. In theory, with the utilities tftopl nd vftovp, these files cn be rebuilded. Unfortuntely, the comments re lost nd they re useful with some utilities. 2. In your instlltions updmp.cfg file dd the line: Mp gfsdidot.mp If you use MikTEX (one of the commonly used TEX distribution in Windows) you should dd the following line too: Mp qpl-cs.mp which describe the fonts used for the Czech TeX encoding for font Pgell. This encoding is identicl to the OT encoding for the lower prt (slots under 28) nd it is used to dd the missing chrcter (the dotless j) to the Didot font. 2

The file updmp.cfg should not be edited directly under MikTEX but edit it with the commnd initexmf edit-config-file updmp. This commnd cn be typed by opening commnd prompt from the Windows utility provided by MikTEX. 3. Finlly, you hve to refresh the different dtbses by pssing (s the user owning the different TEX trees) the two following commnds: mktexlsr to rebuild the list of ll the files locted in the different texmf tree. updmp-sys to rebuild the mp files for the different bckend drivers (dvips, pdftex etc.). In the subdirectory tools, the Perl script instlldidot.pl utomtizes this process. This script should be clled with two rguments:. the root directory of the distribution of the GFS Didot pckge; 2. the root directory of texmf tree where the GFS Didot pckge should be instlled. You re now redy to use the fonts provided tht you hve reltively modern instlltion tht includes pxfonts. 3 Usge As sid in the introduction the pckge covers both english nd greek (nd most western lnguges if the output encoding T is specified). Greek covers polytonic too through bbel (red the documenttion of the bbel pckge nd its greek option). For exmple, the premble: \documentclss{rticle} \usepckge[english,greek]{bbel} \usepckge[t]{fontenc} \usepckge[iso-8859-7]{inputenc} \usepckge{gfsdidot} will be the correct setup for rticles in Greek. For rticles written exclusively in Greek, the line \usepckge[t]{font enc} is not mndtory. This instruction forces the use of the T encoding which is designed to write texts in most of the lnguges of western Europe (including English). However, even if one writes exclusively in English or Greek, the encoding T cn be useful. Without specifying the T encoding, the encoding OT is used. This is the originl encoding of TEX. Unfortuntely this encoding (bsed on 28 chrcters/slots only) is vrible nd it does not mtch the ASCII code for ll chrcters. 3

For instnce the dollr ($) is unvilble in itlic fonts (in the sme slot the english pound is defined). The pipe chrcter ( ) is not correctly printed either. The T encoding is identicl to the ASCII code for ll the printble slots (32 to 27) nd ll the ASCII chrcters re printed s expected. 3. Trnsformtions by dvips Other thn the shpes provided by the fonts themselves, this pckge provides n upright itlic shpe nd slnted smll cps shpe using the stndrd mechnism provided by dvips. Upright itlics re clled with \uishpe nd slnted smll cps with \scslshpe. For exmple, the code: {\itshpe itlics} {\uishpe upright itlics} {\itshpe itlics gin} \textgreek{{\itshpe ἄβγδζξφψῲ} {\uishpe ἄβγδζξφψῲ} {\itshpe ἄβγδζξφψῲ}} will give: \textsc{smll cps \textgreek{πεζοκεφαλαία} 023456789} {\scslshpe \textgreek{πεζοκεφαλαία 023456789}} itlics upright itlics itlics gin ἄβγδζξφψῲ ἄβγδζξφψῲ ἄβγδζξφψῲ SMALL CAPS 023456789 023456789 The commnds \textui{} nd \textscsl{} re lso provided. 3.2 Tbulr numbers Tbulr numbers (of fixed width) re ccessed with the commnd \tbnums{}. Compre 0 2 3 4 5 6 7 8 9 0 2 3 4 5 6 7 8 9 \tbnums{ 0 2 3 4 5 6 7 8 9 } 0 2 3 4 5 6 7 8 9 3.3 Text frctions Text frctions re composed using the lower nd upper numerls provided by the fonts, nd re ccessed with the commnd \textfrc{}{}. For exmple, \textfrc{-22}{7} gives -²² ₇. Precomposed frctions re provided too by \onehlf, \onethird, etc. 4

3.4 Additionl chrcters \textbullet \textprgrph \textprgrphlt \creof \numero \estimted \whitebullet \textlozenge \eurocurrency \interrobng \textdgger \textdggerdbl \yencurrency \texteuro 3.5 Alternte chrcters In the greek encoding the initil thet is chosen utomticlly. Compre: ϑάλασσα but Αθηνά. Other lternte chrcters re not chosen utomticlly. Olg provides double lmbd: š. This cn be ccessed with the commnd \lmbddbl in textmode. For exmple, in LGR encoding \textit{\lmbddbl kt llhlos metsjhmtism;oc} gives αšά κατάšηλος μετασχηματισμός. 4 Problems The ccents of the cpitl letters should hng in the left mrgin when such letter strts line. TEX nd LATEX do not provide the tools for such feture. However, this seems to be possible with pdftex As this is work in progress, plese be ptient... 5 Smples The next two pges provide smples in english nd greek with mth. This commnd is vilble only if the pckge textcomp is used. Euro is lso vilble in LGR enconding. \textgreek{\euro} gives. 5

Adding up these inequlities with respect to i, we get c i d i p + q () since c p i d q i. In the cse p q 2 the bove inequlity is lso clled the Cuchy- Schwrtz inequlity. Notice, lso, tht by formlly defining ( b k q ) / q to be sup b k for q, we give sense to (9) for ll p. A similr inequlity is true for functions insted of sequences with the sums being substituted by integrls. Theorem Let < p < nd let q be such tht / p + / q. Then, for ll functions f, g on n intervl [, b] such tht the integrls b f (t) p dt, b g(t) q dt nd b f (t)g(t) dt exist (s Riemnn integrls), we hve b f (t)g(t) dt ( b ) / p ( b / q f (t) p dt g(t) dt) q. (2) Notice tht if the Riemnn integrl b f (t)g(t) dt lso exists, then from the inequlity b f (t)g(t) dt b f (t)g(t) dt follows tht b ( b f (t)g(t) dt ) / p ( b / q f (t) p dt g(t) dt) q. (3) Proof: Consider prtition of the intervl [, b] in n equl subintervls with endpoints x 0 < x < < x n b. Let x (b )/ n. We hve f (x i )g(x i ) x i f (x i )g(x i ) ( x) p + q i ( f (xi ) p x ) / p ( g(xi ) q x ) / q. (4) i 6

Εμβαδόν επιφάνειας από περιστροφή Πρόταση 5. Εστω γ καμπύλη με παραμετρική εξίσωση x g(t), y f (t), t [, b] αν g, f συνεχείς στο [, b] τότε το εμβαδόν από περιστροφή της γ γύρω από τον xx δίνεται B 2π b f (t) g (t) 2 + f (t 2 )dt. Αν η γ δίνεται από την y f (x), x [, b] τότε B 2π b f (t) + f (x) 2 dx Ογκος στερεών από περιστροφή Εστω f : [, b] R συνεχής και R {f, Ox, x, x b} είναι ο όγκος από περιστροφή του γραφήματος της f γύρω από τον Ox μεταξύ των ευθειών x, και x b, τότε V π b f (x)2 dx Αν f, g : [, b] R και 0 g(x) f (x) τότε ο όγκος στερεού που παράγεται από περιστροφή των γραφημάτων των f και g, R {f, g, Ox, x, x b} είναι V π b {f (x)2 g(x) 2 }dx. Αν x g(t), y f (t), t [t, t 2 ] τότε V π t 2 {f (t) 2 g (t)}dt για g(t t ), g(t 2 ) b. 6 Ασκήσεις Ασκηση 6. Να εκφραστεί το παρακάτω όριο ως ολοκλήρωμα Riemnn κατάλληλης συνάρτησης lim n n k e k Υπόδειξη: Πρέπει να σκεφτούμε μια συνάρτηση της οποίας γνωρίζουμε ότι υπάρχει το ολοκλήρωμα. Τότε παίρνουμε μια διαμέριση P n και δείχνουμε π.χ. ότι το U(f, P n ) είναι η ζητούμενη σειρά. Λύση: Πρέπει να σκεφτούμε μια συνάρτηση της οποίας γνωρίζουμε ότι υπάρχει το ολοκλήρωμα. Τότε παίρνουμε μια διαμέριση P n και δείχνουμε π.χ. ότι το U(f, P n ) είναι η ζητούμενη σειρά. Εχουμε ότι n k e k n e + n e 2 + + n e n n e n + n e 2 n + + n e n n 7