Note: Please use the actual date you accessed this material in your citation.

Σχετικά έγγραφα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

For a wave characterized by the electric field

6.003: Signals and Systems. Modulation

MathCity.org Merging man and maths

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Section 8.3 Trigonometric Equations

Section 7.6 Double and Half Angle Formulas

Homework 8 Model Solution Section

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Second Order Partial Differential Equations

2.019 Design of Ocean Systems. Lecture 6. Seakeeping (II) February 21, 2011

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

[1] P Q. Fig. 3.1

Graded Refractive-Index

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

derivation of the Laplacian from rectangular to spherical coordinates

Topic 4. Linear Wire and Small Circular Loop Antennas. Tamer Abuelfadl

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

1 String with massive end-points

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Areas and Lengths in Polar Coordinates

CORDIC Background (2A)

D Alembert s Solution to the Wave Equation

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Section 9.2 Polar Equations and Graphs

Section 8.2 Graphs of Polar Equations

6.4 Superposition of Linear Plane Progressive Waves

CRASH COURSE IN PRECALCULUS

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Homework 3 Solutions

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

Chapter 7 Transformations of Stress and Strain

Strain gauge and rosettes

ANTENNAS and WAVE PROPAGATION. Solution Manual

Capacitors - Capacitance, Charge and Potential Difference

6.642 Continuum Electromechanics

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

4.4 Superposition of Linear Plane Progressive Waves

If we restrict the domain of y = sin x to [ π 2, π 2

Numerical Analysis FMN011

Review of Single-Phase AC Circuits

Reminders: linear functions

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Higher Derivative Gravity Theories

Spectrum Representation (5A) Young Won Lim 11/3/16

Solutions - Chapter 4

CORDIC Background (4A)

Chapter 6 BLM Answers

BandPass (4A) Young Won Lim 1/11/14

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΠΕ ΙΑ Β 12/02/2019

2 Composition. Invertible Mappings

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

Congruence Classes of Invertible Matrices of Order 3 over F 2

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Trigonometric Formula Sheet

Second Order RLC Filters

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Γe jβ 0 z Be jβz 0 < z < t t < z The associated magnetic fields are found using Maxwell s equation H = 1. e jβ 0 z = ˆx β 0

PARTIAL NOTES for 6.1 Trigonometric Identities

Constitutive Relations in Chiral Media

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Durbin-Levinson recursive method

Κυματοδηγοί Waveguides

len(observed ) 1 (observed[i] predicted[i]) 2

EE 570: Location and Navigation

Approximation of distance between locations on earth given by latitude and longitude

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

Areas and Lengths in Polar Coordinates

Example Sheet 3 Solutions

Προσωπική Aνάπτυξη. Ενότητα 2: Διαπραγμάτευση. Juan Carlos Martínez Director of Projects Development Department

ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ

F-TF Sum and Difference angle

Section 7.7 Product-to-Sum and Sum-to-Product Formulas

1000 VDC 1250 VDC 125 VAC 250 VAC J K 125 VAC, 250 VAC

ΕΞΙΣΩΣΕΙΣ MAXWELL ΣΕ ΜΕΣΟ

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15

Lifting Entry (continued)

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Lecture 26: Circular domains

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Creative Commons ΤΙ ΕΙΝΑΙ ΟΙ ΑΔΕΙΕΣ ΠΩΣ ΛΕΙΤΟΥΡΓΟΥΝ

EE101: Resonance in RLC circuits

the total number of electrons passing through the lamp.

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

Srednicki Chapter 55

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

EE512: Error Control Coding

Forced Pendulum Numerical approach

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Transcript:

MIT OpenCourseWare http://ocw.mit.edu 6.03/ESD.03J Electromagnetics and Applications, Fall 005 Please use the following citation format: Markus Zahn, 6.03/ESD.03J Electromagnetics and Applications, Fall 005. (Massachusetts Institute of Technology: MIT OpenCourseWare). http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative Commons Attribution-Noncommercial-Share Alike. Note: Please use the actual date you accessed this material in your citation. For more information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms

6.03 - Electromagnetics and Applications Fall 005 Lecture 9 - Oblique Incidence of Electromagnetic Waves Prof. Markus Zahn October 6, 005 I. Wave Propagation at an Arbitrary Angle From Electromagnetic Field Theory: A Problem Solving Approach, by Markus Zahn, 987. Used with permission. In general: z = x sin(θ) + z cos(θ) kz = k x x + k z z, k x = k sin(θ), k z = k cos(θ), k = ω µɛ Ee j(ωt kz ) Ē(x, z, t) = Re ˆ ī y = Re Ee ˆ j(ωt kxx kz z) ī y E y + E y E = jωµ H H = jωµ E = jωµ ī x i z z x [ Ĥ = jk z Ei ˆ x jk z Ei ˆ ] z e j(k xx+k z z) jωµ = Ê j(kxx+kz z) [cos(θ)ī x sin(θ)ī z ] e j(ωt k xx k z z) H (x, z, t) = Re E ˆ (cos(θ)īx sin(θ)ī z ) e k = kx ī x + k y ī y + k z ī z is the wave vector r = x ī x + y ī y + z ī z is a position vector e jk r j(kxx+ky y+kz z) = e e jk r = j (k x i + k y + k z ) e jk r x i y i z = j j k ke jk r

Ê = jωµ H ˆ jk Ê = jωµ Ĥ k E ˆ = ωµ H ˆ Ĥ = jωɛ E ˆ jk Ĥ = jωɛ Ê k H ˆ = ωɛ E ˆ E ˆ = 0 jk E ˆ = 0 (k Ēˆ ) H ˆ = 0 jk H ˆ = 0 ( k H) ˆ E ˆ = k k 0 E ˆ Ēˆ(k k ) = ωµ k H ˆ k k k = k x + k y + k z = ω ɛµ A (B C ) = B (A C ) C (A B ) = ω ɛµe ˆ S ˆ = ˆ H ˆ, H ˆ = ( Ēˆ) E ωµ k ( ˆ ˆ k( ˆ ˆ Ê ( 0 ) S = E ωµ k Ê = E Ē ) Ê k ) ωµ ˆ Ŝ = k E (S ˆ in the direction of k ) ωµ II. Oblique Incidence Onto a Perfect Conductor A. E Field Parallel to Interface (TE - Transverse Electric) Ē i = Re e j(ωt k xix k zi z) ī y H i = Re ( cos(θi )ī x + sin(θ i )ī z )e j(ωt k xix k zi z) k xi = k sin(θ i ), k zi = k cos(θ i ), k = ω µ ɛµ, = ɛ Ē r = Re Ê r e j(ωt kxr x+kzrz) ī y Ê r j(ωt kxr x+kzrz) H r = Re (cos(θr )ī x + sin(θ r )ī z )e Boundary conditions require that k xr = k sin(θ r ), k zr = k cos(θ r )

From Electromagnetic Field Theory: A Problem Solving Approach, by Markus Zahn, 987. Used with permission. Ê y (x, z = 0) = 0 = Ê yi (x, z = 0) + Ê yr (x, z = 0) = e jk xix + Ê r e jkxr x = 0 Ĥ z (x, z = 0) = 0 = Ĥ zi (x, z = 0) + Ĥ zr (x, z = 0) Eˆ i e jk xix sin(θ i ) + Ê r e jkxr x sin(θ r ) = 0 angle of incidence = k xi = k xr sin(θ i ) = sin(θ r ) θ i = θ r angle of reflection Ê r = [ ] = E i (real) E y (x, z, t) = Re e jkz z e +jkz z e j(ωt kxx) = E i sin(k z z) sin(ωt k x x) [ ˆ [ ] H (x, z, t) = Re E i cos(θ) e jkz z e +jkz z ī x + sin(θ) e jkz z e +jkz z ī z ] j(ωt k e xx) = E i [ cos(θ) cos(k z z) cos(ωt k x x)ī x + sin(θ) sin(k z z) sin(ωt k x x)ī z ] 3

K y (x, z = 0, t) = H x (x, z = 0, t) = E i cos(θ) cos(ωt kx x) E S = Re E ˆ H ˆ i = sin(θ) sin (k z z)ī x B. H Field Parallel to Interface (TM - Transverse Magnetic) Ē i = Re (cos(θ i )ī x sin(θ i )ī z ) e j(ωt k xix k zi z) H i = Re e j(ωt k xi x k zi z) ī y j(ωt kxr x+kzr z) Ē r = Re Ê r ( cos(θ r )ī x sin(θ r )ī z ) e Ê r H r = Re e j(ωt k xr x k zrz) ī y E x (x, z = 0, t) = 0 cos(θ i )e jk xix Ê r cos(θ r )e jkxr x = 0 k xi = k xr sin(θ i ) = sin(θ r ) θ i = θ r = Ê r [ [ ] ] = E i (real) E = Re Êi cos(θ) e jkz z e +jkz z ī x sin(θ) e jkz z + e +jkz z ī z e j(ωt kxx) = E i [cos(θ) sin(k z z) sin(ωt k x x)ī x sin(θ) cos(k z z) cos(ωt k x x)ī z ] ˆ H E i = Re e jkz z + e +jkz z e j(ωt kxx) ī y = E i cos(kz z) cos(ωt k x x)ī y K x (x, z = 0) = H y (x, z = 0) = E i cos(ωt kx x) σ s (x, z = 0) = ɛe z (x, z = 0) = ɛe i sin(θ) cos(ωt k x x) Check: Conservation of Charge σ s K x σ s Σ K + = 0 + = 0 }{{} t x t surface divergence E S = Re E ˆ H ˆ i = sin(θ) cos (k z z)ī x 4

III. Oblique Incidence Onto a Dielectric From Electromagnetic Field Theory: A Problem Solving Approach, by Markus Zahn, 987. Used with permission. A. TE ( E Interface) Waves Ē i = Re e j(ωt k xix k zi z) ī y H i = Re ( cos(θi )ī x + sin(θ i )ī z ) e j(ωt k xix k zi z) Ē r = Re Ê r e j(ωt kxr x+kzrz) ī y Ê r j(ωt kxr x+kzr z) H r = Re (cos(θr )ī x + sin(θ r )ī z ) e Ē t = Re Ê t e j(ωt kxtx kztz) ī y Ê r H t = Re ( cos(θt )ī x + sin(θ t )ī z ) e j(ωt kxtx kztz) 5

k xi = k sin(θ i ) k xr = k sin(θ r ) k xt = k sin(θ t ) k zi = k cos(θ i ) k zr = k cos(θ r ) k zt = k cos(θ t ) ω k = c = ω ɛ µ k = c = ω ɛ µ c = ɛµ c = ɛµ µ µ = ɛ = ɛ E y (z = 0 ) = E y (z = 0 + ) e jk xix + Ê r e jkxrx = Ê t e jkxtx H x (z = 0 ) = H x (z = 0 + ) cos(θ i )e jk xix + Ê r cos(θ r )e jkxr x = Ê t cos(θ t )e jkxtx k xi = k xr = k xt k sin(θ i ) = k sin(θ r ) = k sin(θ t ) θ i = θ r k ωc c sin(θ t ) = sin(θ i ) = sin(θ i ) = sin(θ i ) (Snell s Law) k ωc c c 0 ɛµ Index of refraction: n = = = ɛ r µ r c ɛ0 µ 0 sin(θ t ) = n sin(θi ) ˆ Reflection Coefficent: R = E r cos(θ = t) cos(θ i ) cos(θ i ) cos(θ t ) = ˆ + cos(θ i ) + cos(θ t ) sin (θ i ) c = c [ ] µ ɛ µ µ µ µ sin (θ i ) = ɛ ɛ µ ɛ ɛ ɛ ɛ µ ɛ µ sin (θ i ) = sin (θ B ) = µ µ ω E i cos(θt) cos(θ i ) Ê t cos(θ i ) Transmission Coefficent: T = = = Ê i cos(θt ) + cos(θ i ) + cos(θ t ) B. Brewster s Angle of No Reflection R = 0 cos(θ i ) = cos(θ t ) n cos(θ t) cos(θ i ) cos (θ i ) = ( sin (θ i )) = cos (θ t ) = ( sin (θ t )) = c sin (θ i ) θ B is called the Brewster angle. There is no Brewster angle for TE polarization if µ = µ. C. Critical Angle of No Power Transmission If c > c, sin(θ t ) can be greater than : c sin(θ t ) = c sin(θi ) c θ i = θ c sin(θ i ) = c c 6 (Real solution for θ i if c < c )

θ c is called the critical angle. At the critical angle, θ t = π k zt = k cos(θ t ) = 0. For θ i > θ c, sin(θ t ) > cos(θ t ) = sin (θ t ) jα = k zt Ē t = Re Ê t e j(ωt kxtx) e αz ī y Ê t H t = Re ( cos(θt )ī x + sin(θ t )ī z ) e j(ωt kxt) e αz These are non-uniform plane waves. S z = Re Ê te Ê y Ĥ x = Re ˆt ( cos(θ t )) e αz = 0 cos(θ t ) = jα k D. TM ( H interface) Waves Ē i = Re (cos(θ i )ī x sin(θ i )ī z ) e j(ωt k xix k zi z) Eˆ i H i = Re e j(ωt k xi x k zi z) ī y j(ωt kxr x+kzr z) Ē r = Re Ê r ( cos(θ r )ī x sin(θ r )ī z ) e Ê r H r = Re e j(ωt k xr x+k zrz) ī y Ē t = Re Ê t (cos(θ t )ī x sin(θ t )ī z ) e j(ωt kxtx kztz) Ê t H t = Re e j(ωt k xtx k ztz) ī y E x (x, z = 0, t) = E x (x, z = 0 +, t) cos(θ i )e jk xix Ê r cos(θ r )e jkxr x = Ê t cos(θ t )e jkxtx ( ) H y (x, z = 0, t) = H y (x, z = 0 +, t) Ê e jk xix + Ê r e jkxr x = Ê t e jkxtx k xi = k xr = k xt θ i = θ r sin(θ t ) = c sin(θi ) (Snell s Law) c Ê r cos(θ i ) cos(θ t ) R = = cos(θ t ) + cos(θ ) Ê t cos(θ i ) T = = cos(θ t ) + cos(θ i ) 7

Brewster s Angle: R = 0 cos(θ i ) = cos(θ t ) cos (θ i ) = ( sin (θ i )) = cos (θ t ) = ( sin (θ t )) = c sin (θ i ) sin (θ i ) c = c [ ] µ ɛ µ µ µ µ sin (θ i ) = ɛ ɛ µ ɛ ɛ ɛ ɛ µ sin (θ i ) = sin ɛ µ (θ B ) = ( ɛ ɛ c ) If µ = µ : sin (θ B ) = tan(θ B ) = + ɛ ɛ π θ B + θ t = = + θ C > θ B sin (θ B ) sin (θ C ) ɛ ɛ 8