GAYAZA HIGH SCHOOL MATHS SEMINAR- APPLIED MATHS SOLUTIONS

Σχετικά έγγραφα
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Homework 8 Model Solution Section

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Solution to Review Problems for Midterm III

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Second Order Partial Differential Equations

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Matrices and Determinants

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Inverse trigonometric functions & General Solution of Trigonometric Equations

Section 8.3 Trigonometric Equations

Trigonometric Formula Sheet

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Math 6 SL Probability Distributions Practice Test Mark Scheme

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

Areas and Lengths in Polar Coordinates

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1

Lifting Entry (continued)

Areas and Lengths in Polar Coordinates

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Differentiation exercise show differential equation

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

1 Adda247 No. 1 APP for Banking & SSC Preparation Website:store.adda247.com

is like multiplying by the conversion factor of. Dividing by 2π gives you the

Solutions to Exercise Sheet 5

CRASH COURSE IN PRECALCULUS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Section 7.6 Double and Half Angle Formulas

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

1 String with massive end-points

Rectangular Polar Parametric

Section 9.2 Polar Equations and Graphs

Review Exercises for Chapter 7

PhysicsAndMathsTutor.com

Homework 3 Solutions

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

EE512: Error Control Coding

Reminders: linear functions

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Probability and Random Processes (Part II)

D Alembert s Solution to the Wave Equation

the total number of electrons passing through the lamp.

CHAPTER 70 DOUBLE AND TRIPLE INTEGRALS. 2 is integrated with respect to x between x = 2 and x = 4, with y regarded as a constant

MathCity.org Merging man and maths

Quadratic Expressions

6.4 Superposition of Linear Plane Progressive Waves

( ) 2 and compare to M.

Fourier Analysis of Waves

PARTIAL NOTES for 6.1 Trigonometric Identities

EE1. Solutions of Problems 4. : a) f(x) = x 2 +x. = (x+ǫ)2 +(x+ǫ) (x 2 +x) ǫ

Answers to practice exercises

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

Spherical Coordinates

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

Answer sheet: Third Midterm for Math 2339

ST5224: Advanced Statistical Theory II

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Example Sheet 3 Solutions

Section 8.2 Graphs of Polar Equations

Trigonometry 1.TRIGONOMETRIC RATIOS

FORMULAS FOR STATISTICS 1

Second Order RLC Filters

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

Finite Field Problems: Solutions

F19MC2 Solutions 9 Complex Analysis

Strain gauge and rosettes

Approximation of distance between locations on earth given by latitude and longitude

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Biostatistics for Health Sciences Review Sheet

Graded Refractive-Index

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Parametrized Surfaces

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

Differential equations

Solution Series 9. i=1 x i and i=1 x i.

If we restrict the domain of y = sin x to [ π 2, π 2

Math221: HW# 1 solutions

List MF20. List of Formulae and Statistical Tables. Cambridge Pre-U Mathematics (9794) and Further Mathematics (9795)

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Transcript:

PROBABILITY AND STATISTICS. (a) Let X be a r.v number of games won. X~B(6, ) (i) Expectation, E(X) = np 6x = 4 (ii) P(X ) = P(X < ) = (P(X = ) + P(= 0)) 5 0 6 6 = C x x C0x x 0. 98 (b) Let X be a r.v number outside the tolerance limit. Since n >00, then X~N(np, npq) μ = np = 00x0.5 = 0 and σ = npq = 00x0.5x0.85 =.5 (i) P(X > ) = P(X.5) = P (Z >.5 0 ) = P(Z >.79) = 0.5 + (.79).5 = 0.5 + 0.465 = 0. 965 6. (ii) P(0 X 0) = P(9.5 < X < 0.5) = P ( 9.5 0 = P(.4 < Z < 0.05) = (0.05) + (.4) = 0.54 + 0.4865 = 0.8407.5 < Z < 0.5 0.5 ) Marks Frequency Mid fx Cumulative fx (f) point(x) frequency(c.f) 5-<9 6 7 6 6 474 9-<5 84 8 88 5-<40 7 7.5 0.5 45 7968.75 40-<50 0 45 50 75 60750 50-<55 8 5.5 945 9 496.5 55-<60 4 57.5 805 07 4687.5 60-<70 9 65 585 6 805 70-<75 4 7.5 90 0 05 75-<80 5 77.5 87.5 5 00.5 f=5 fx=59 fx =006 COMPILED BY: THEODE NIYIRINDA. TEL: 0776-8648/070-0048 Email: niyirinda0@yahoo.com Page

006 59 (a) (i) Var ( x) 59. 686 5 5 Mode 40 x0 4 (ii) (b) (i) From the graph below, 68 th percentile= 68 00 x5 th 85 value = 5.5 th value (ii) Number of students who scored above 47% = (5-65) =60 students COMPILED BY: THEODE NIYIRINDA. TEL: 0776-8648/070-0048 Email: niyirinda0@yahoo.com Page

GAYAZA HIGH SCHOOL MATHS SEMINAR- APPLIED MATHS SOLUTIONS COMPILED BY: THEODE NIYIRINDA. TEL: 0776-8648/070-0048 Email: niyirinda0@yahoo.com Page

. (a) (i) P(AuB) = P(A) + P(B) P(AnB); but P(AnB)= P(A)xP(A/B) = x (0.) 0.6 = x y - (0.)x 0.6 0.8x y 6 8x 0y 4x 5y...() (ii) P(BuC) = P(B) + P(C) 0.9 y ( x y) 0.9 y x 9 0y 0x...( ) Solving equation () and () simultaneously gives; x 0.5, y 0. For independent events P(AnB) = P(A) x P(B) P(AnB) = 0.5x0. = 0. and P(A)xP(B) = 0.5x0. = 0.. Hence A and B are independent events. (b) (i) P(AuB) = P(A) + P(B) P(AnB) P( B). P( B) P( B) 6 P( AnB) P( A) xp( B) P A P( B) B P( A) P( A) (ii) P B P ( B na) P( B ) (iii) A P( A) P ( B) 4 x x d 4. (i) f ( x) dx allx ax ( d x) dx a d a 0 4 4 0 a( 4d )...( i) E ( X ) x. f ( x) dx 0.6 x. ax ( d x) dx allx 0 4 5 x x 0.6 a d 0.6 a d 4 5 a(5d 4)...( ii) Divide equation (ii) by equation (i) a(5d 4) 5d 4 4d d From equation (i) a a(4d ) (b) P(0.9 x ) 0.9 x 4 x x ( x) dx 4 0.9 4 0.9 4 5 0 0.9 4 4 0.05 COMPILED BY: THEODE NIYIRINDA. TEL: 0776-8648/070-0048 Email: niyirinda0@yahoo.com Page 4

5. (a) (i) P(X = x) X P(X = x) = k X X 4 P(x=x) k k k k 4 9 6 But k + K + K + K = 05 4 9 6 k 44 k = 44 05 (ii) Var(x) = Var(X) = [E(X ) (E(X) )] But E(X) = ( k) + ( k ) + 4 ( k) + (4 k ) = 5k = 60 and 9 6 4 k k k E( x ) k 4 4k 4 9 6 44 60 Hence Var (x) 94x 6. 04 05 4 b) P(X = x) = all x K + k+ k+..+nk = K(+++ +n) = K( n (n+)) = K = n(n+).(i) Also E ( x) x. P( X x) allx K + (K) + (K) +...+n(nk) = 5 K( + + +..+n ) = 5 K( n(n+)(n+) ) = 5 6 Substituting K from equation (i) n(n+) x(n(n+)(n+) 6 ) = 5 4n + = 0, 4n = 8, n = 7 Hence k =, k = 7(8) 8 COMPILED BY: THEODE NIYIRINDA. TEL: 0776-8648/070-0048 Email: niyirinda0@yahoo.com Page 5

ii) Var( x ) Var( x) 4E ( x ) E( x) x 4 5 6 7 P(X=x) 4 5 6 7 x 8 8 4 8 9 8 6 8 5 8 6 8 49 X.P(X=x) 8 7 8 7 7 6 8 5 7 54 4 49 X. P( X x) 8 Hence Var ( x) 48 5 6. (a) -<x<0; f(-) = k(-+)=k, f(0) = k(0+) = k 0 <x<; f(0)=f() = k (5 ) (5 ) <x<; f ( ) k k ; f ( ) k k f(x) f(x)=k(x+) k f(x)= k f(x)=k (5- x) k - 0 x Area under the graph = ( kx 4) k(4 ) (b) t F ( x) f ( x) dx k COMPILED BY: THEODE NIYIRINDA. TEL: 0776-8648/070-0048 Email: niyirinda0@yahoo.com Page 6

F( t) x 0; t F ( x) 0 x ; ( x ) dx x 4x 4 F t) F(0) dx 0 t x x t F( 0) t t 4x ( F( t) 4t F ( x) 4x F( ) 7 t 0 4t t 4t x ; x F t F 5 ( ) () dx F( t) 7 t x 5x t 7 F ( x) 0x x 5 F() 6 Hence t 5t 5 6 0t t 5 F(x) = x 0 4x 0x x 5 6 { 4x (c) P0.5 x P(0.5 X nx x X = 6 X<- -<X<0 <X< X> 0<X< ) P( x ) F() F() P( x ) F() 0x 5 4x 4x 7 0.58 COMPILED BY: THEODE NIYIRINDA. TEL: 0776-8648/070-0048 Email: niyirinda0@yahoo.com Page 7

7. Let X be a r.v weight of the cabbage X~N(50, 6 ) (a) (i) 48 50 57.4 50 P( 48 X 57.4) P Z P 0. Z. 6 6 (b) P(48 <X <57.4) = (.) + (0.) = 0.9 + 0.04 = 0.57 46. 50 (ii) P ( X 46.) P Z P( Z 0.65) 6 Hence P ( X 46.) 0.5 (0.65) 0.5 0.4 0. 74 y 50 P P ( Z Z) 0. where Z y 50 6Z 6 (c) X y 0. COMPILED BY: THEODE NIYIRINDA. TEL: 0776-8648/070-0048 Email: niyirinda0@yahoo.com Page 8

From critical table, Z =.8 Hence y = 50 +6(.8) =57.69 57.7g 8. (a) Let X be a r.v number of students with blue eyes. X~B (n, 5 ) P ( X 0) n 0 n 0 C x 5 4 5 n 4 x 5 0.00 0.00 4 log 5 n log(0.00) n 0.95655 Hence the least value is 0 log(0.00) n 4 log 5 (b) Let events A and B be John wins the first and second game respectively. P ( A) 0., P ( A ) 0. 7, P B 0. 6, A P B 0. 5 A A P( AnB) B P( B) P( AnB) P( A nb) P( A) xp B P( A ) xp B P( B) A A P but = 0.x0.6 + 0.7x0.5 = 0.85 0.x0.6 Hence P A 0. 66 B 0.85 (d) Let R and A be events Robot and aeroplane respectively; Dan 0 5 P ( RD ), P( AD ) 5 5 Emma 7 7 x P( RE ), P( AE ) x 7 x 4 x 4 7 P( RD xre ) 8 Hence 7 7 x ( x 4) x 8 x 4 8 COMPILED BY: THEODE NIYIRINDA. TEL: 0776-8648/070-0048 Email: niyirinda0@yahoo.com Page 9

9. MECHANICS Weight α Area W=gA, where g is a constant Portion Area Weight Position of c.o.g from OA and OE Rectangle, OABE (4x6) =4cm 4g ( 7, 8) Triangle, CBD x x9 = 49.5cm 49.5g 0, Remainder (4 49.5) = 74.5g ( x, y ) 74.5cm Taking moments about O, x 7 x 568 64.5 94.5 74.5g 4g 49.5g 0 74.5 y 8 y 79 0 46 x 5.980 y 8.78 Position of c.o.g is (5.980, 8.78) (b) COMPILED BY: THEODE NIYIRINDA. TEL: 0776-8648/070-0048 Email: niyirinda0@yahoo.com Page 0

8.78 Tanθ= 5.980 Θ=57.7 6 Tanα= 4 =48.8 Hence OB makes an angle of (57.7 48.8 ) = 8.9 with the vertical 0. (a) Impulse = Change in momentum 6 4 F.t = m(v-u) x.5 v 9 8 v 6.5 4 0.5 v 4.5.5 Hence final velocity, v 0.5i 4.5 j. 5k (b) Let the body have mass, mkg, natural length, l and displaced by x equilibrium T l 0.5m x In equilibrium; e T = mg, but T l (0.5) mg... ( i) l mg COMPILED BY: THEODE NIYIRINDA. TEL: 0776-8648/070-0048 Email: niyirinda0@yahoo.com Page

(0.5 When displaced by x; restoring force is; mg T ma where T l ( 0.5) (0.5 x) x ma ma a x..(ii) l l l ml Compare eqn(ii) by a x mgl From equation (i) 0.5 g=0ms - Hence T 5 seconds 5. (a) Let the acceleration of the car be a ms - But T ml ml x) ml(0.5) 0.5 5 5 T ; mgl 0 00 0 Sinα= 0 Along the plane; 900 (400000g sin) 000a 500000x0x a 0.5ms 0 000a 08x000 U 0ms V = 0 ms - 60x60 Using V = U +as 0 = 0 +(-0.5)S Hence distance travelled is S = 900m COMPILED BY: THEODE NIYIRINDA. TEL: 0776-8648/070-0048 Email: niyirinda0@yahoo.com Page

(b) Work done= F. AB but F = ( 5 4 ) + ( 0 7 ) + ( 0 ) = ( 4 5 ) N 8 4 4 Distance, AB = ( 4) ( ) = ( 6) m 5 4 4 Hence Work done =( ). ( 6) = (4x4 + x6 + 5x) = 8 Joules 5. Let the body make an angle, θ Distance = xr 60 (r ) xr 6 60 60 Using V U as r V rg ( g)( h) But h r( cos60) r V rg ( g)( ) rg Hence V rgms (0.) rg Resolving along the radius, R 0x9.8( cos60) 49N R 0.gCos60 r COMPILED BY: THEODE NIYIRINDA. TEL: 0776-8648/070-0048 Email: niyirinda0@yahoo.com Page

. (a) Resolving along the plane; FCos 0 gsin FCos 0.5R 0 but R FSin0 gcos0 FSin0 gcos0 0 0 0.5 gsin x9.8(0.5cos0 Sin0) F 4. 707N Cos0 0.5Sin0 0 5 Cos45 4 0 7 (b) (i) Resultant force, F 0 8 5 Sin45 0 4 9 Taking moment about point O, G = 8x 4x = 8Nm Let the line of action of the resultant force act at a point (x, y) x y Momemnt of the resultant is G 8x 7 y 7 8 But G = G ; Hence 8x 7y = 8 (ii) The line crosses C at a point when x = 0. -7y = 8 8 y Hence it crosses at a 7 point 8 cm below point C 7 COMPILED BY: THEODE NIYIRINDA. TEL: 0776-8648/070-0048 Email: niyirinda0@yahoo.com Page 4

4. Whole system Resolving vertically in equilibrium, R R W 5W 6W...( i) A C Taking moments about point A R C 4R R x4bcos45 C W 5W 6W C 4W WxbCos45 From equation (i) R A 6W 4W W Splitting the joint at B 5WxbCos45 COMPILED BY: THEODE NIYIRINDA. TEL: 0776-8648/070-0048 Email: niyirinda0@yahoo.com Page 5

Considering rod BC; Taking moments at the hinge B; 4wxbCos45 8W T tan 45 TxbSin45 5W W T Resolving on rod BC; 5WxbCos 45 Vertically; Y+4W = 5W Y W Horizontally: X T W W W W Hence reaction is R X Y W 4 Let the direction of the reaction act at θ to the horizontal, 5. Y W Tan. 7 X W a m/s - T T T am/s - g 5g (i) Using F = ma For 5Kg mass; 5g-T=5a () For kg mass; T-g=a T g = a...() COMPILED BY: THEODE NIYIRINDA. TEL: 0776-8648/070-0048 Email: niyirinda0@yahoo.com Page 6

Adding () and () 4g = 6a a g x9.8 6.5ms (ii) From equation () T = 5x9.8 5x6.5 = 6.5N s ut at s 0 x.5 x6.5x(.5) 7. 50N (iii) 6. Usinθ U y θ z X Horizontal displacement; X = (Ucosθ)t Ucosθ t x U cos..() Vertical displacement; y U sin. t gt () Put t from. () in () x x y U sin. g U cos U cos Hence y = xtanθ gx u ( + tan θ) gx gx Sec y x tan y x tan U Cos U COMPILED BY: THEODE NIYIRINDA. TEL: 0776-8648/070-0048 Email: niyirinda0@yahoo.com Page 7

(b) U = 0 g y 40m Ɵ 40m x For the particle to clear the tower; y 40 9.8x40 ( tan 40tan x 0 9.8 40tan 8( tan ) 40 40tan 8tan 48 0 tan 5tan 6 0 tan tan 0 ) 40 tan 0 or tan 0 tan 0r tan Hence tan NUMERICAL ANALYSIS 7. (a) x 0.5.0.5.0.5.0 Sinx ln x.76 0.844 0.590 0.6-0.78-0.9575 From graph x. 5 root COMPILED BY: THEODE NIYIRINDA. TEL: 0776-8648/070-0048 Email: niyirinda0@yahoo.com Page 8

COMPILED BY: THEODE NIYIRINDA. TEL: 0776-8648/070-0048 Email: niyirinda0@yahoo.com Page 9

(b) let f ( x) Sinx ln x x ( n) x n f ( Sinxn ln x Cosxn xn x) Cosx x n Using x. 5 x x o Sin(.5) ln(.5).5.94 Cos(.5).5 Sin(.94) ln(.94).94.9 Cos(.94).94 x x.9.94 0.000 Hence x. 9 root 8. (a) From the graph on the next page, there is a positive relationship between mock and final mark (b) Mock Final R m R F d 8 54 7 7 0 4 66 6 5.5 0.5 6 68 5 4 4 70 4 5 76 4 54 66 5.5.5 60 74 d = 9.5 Spearman s Correlation coefficient, ρ = 6x9.5 7(7 ) = 0.658 Comment: There is a high positive correlation between the Mock and Final mark COMPILED BY: THEODE NIYIRINDA. TEL: 0776-8648/070-0048 Email: niyirinda0@yahoo.com Page 0

GAYAZA HIGH SCHOOL MATHS SEMINAR- APPLIED MATHS SOLUTIONS COMPILED BY: THEODE NIYIRINDA. TEL: 0776-8648/070-0048 Email: niyirinda0@yahoo.com Page

9. True value= X Y; X=x± x and Y=y± y (X Y) max =X maxy max =(x+ x) (y+ y) =(x +x x+ x )(y+ y) = (x y+ xxy+ x y+ yx + x yx + x y) (X Y) min = X miny min = (x x) (y y) = (x x x + x )(y y) Error= = (x y xxy + x y yx + x yx x y) (Max limit min limit) = x y+ xxy+ x y+ yx + x yx+ x y x y+ xxy x y+ yx x yx+ x y = 4 xxy + yx + x y Error = xy x + x y + x y For maximum error; if x and y are very small then, x y 0 Error= xy x + x y Error = xy x + x y xy x + x y Hence Max error = xy x + x y Max limit= x max y max = (.8 + 0.06) (.44 + 0.008) =.484 Min limit=x min y min = (.8 0.06) (.44 0.008) =.0989 Limits are [.0989,.484] or (.0989 x y.484) 0. (a) COMPILED BY: THEODE NIYIRINDA. TEL: 0776-8648/070-0048 Email: niyirinda0@yahoo.com Page

A = pqsinα da dq = dp dα (psinα + q sin α + pqcosα ) dq dq Multiplying through by dq da = (p sin α dq + q sinα dp + pqcosα dα) da = (psinα dq + qsinα dp + pq cosα dα) da { psinα dq + qsinα dp + pqcosαdα } Maximum possible error = { psinα dq + qsinα dp + pqcosα dα } (ii) dp = 0.05 dq = 0.05 dα = 0.5 Error = π {4.5x sin 0x0.05 + 8.4x sin 0x0.05 + 4.5x8.4 cos 0x0.5x } 80 = 0.608 Exact Area = 4.5 8.4 8 sin 0 = 9.45 sq units %age error = 0.608 9.45 00 = 6.4 (b) e (.679) = 0.0005 e (7.0) = 0.05 e () = 0.5 e (5.48) = 0.005 Let.679 P 7.0 5.48 P max =.6795 6.95.6785 =.859 P min = 7.05 = 0.87.5 5.485.5 5.475 The range is from 0.87 P.859 or 0.87,.859 COMPILED BY: THEODE NIYIRINDA. TEL: 0776-8648/070-0048 Email: niyirinda0@yahoo.com Page

. (a) h 0. 4 Let y x ln x 6 x, y5 y,..., y.0 0.0000.4 0.65.8.9044..86.6 6.459.0 9.8875 Sum 9.8875.56 y o 4 x ln xdx x.0.4 9.8875 x.56 6. 984 (b) Exact value; x x ln xdx ln x x. dx x x x x ln xdx ln x 9 x ln x x () ln () ln Hence x ln xdx 6.8875 0. 6. 999 9 9 9 Error = 6.999 6.984 0. 05 Therefore; % error = 0.05 x00 = 0.4 6.999 Error can be reduced by increasing the number of sub-intervals or number of ordinates COMPILED BY: THEODE NIYIRINDA. TEL: 0776-8648/070-0048 Email: niyirinda0@yahoo.com Page 4

. (i) START Read: a, b, c d = b 4ac Is d o? X = X = b i d a b i d a X = b d a X = b+ d a Print :X, X STOP (ii) d x x -6 i i For any inquiries feel free to drop me a line on contacts below COMPILED BY: THEODE NIYIRINDA. TEL: 0776-8648/070-0048 Email: niyirinda0@yahoo.com Page 5