SOME INCLUSION RELATIONSHIPS FOR CERTAIN SUBCLASSES OF MEROMORPHIC FUNCTIONS ASSOCIATED WITH A FAMILY OF INTEGRAL OPERATORS. f(z) = 1 z + a k z k,

Σχετικά έγγραφα
PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

STRONG DIFFERENTIAL SUBORDINATIONS FOR HIGHER-ORDER DERIVATIVES OF MULTIVALENT ANALYTIC FUNCTIONS DEFINED BY LINEAR OPERATOR

n=2 In the present paper, we introduce and investigate the following two more generalized

Research Article Some Properties of Certain Class of Integral Operators

Neighborhood and partial sums results on the class of starlike functions involving Dziok-Srivastava operator

The Fekete Szegö Theorem for a Subclass of Quasi-Convex Functions

2 Composition. Invertible Mappings

On Classes Of Analytic Functions Involving A Linear Fractional Differential Operator

A Note on Intuitionistic Fuzzy. Equivalence Relation

On a Subclass of k-uniformly Convex Functions with Negative Coefficients

ON INTEGRAL MEANS FOR FRACTIONAL CALCULUS OPERATORS OF MULTIVALENT FUNCTIONS. S. Sümer Eker 1, H. Özlem Güney 2, Shigeyoshi Owa 3

Palestine Journal of Mathematics Vol. 2(1) (2013), Palestine Polytechnic University-PPU 2013

On New Subclasses of Analytic Functions with Respect to Conjugate and Symmetric Conjugate Points

Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points

Every set of first-order formulas is equivalent to an independent set

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.

Statistical Inference I Locally most powerful tests

Example Sheet 3 Solutions

Meromorphically Starlike Functions at Infinity

The k-α-exponential Function

4.6 Autoregressive Moving Average Model ARMA(1,1)

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Some Properties of a Subclass of Harmonic Univalent Functions Defined By Salagean Operator

AN APPLICATION OF THE SUBORDINATION CHAINS. Georgia Irina Oros. Abstract

Homomorphism in Intuitionistic Fuzzy Automata

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Section 8.3 Trigonometric Equations

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

C.S. 430 Assignment 6, Sample Solutions

Second Order RLC Filters

Second Order Partial Differential Equations

Commutative Monoids in Intuitionistic Fuzzy Sets

Homework 3 Solutions

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

A General Note on δ-quasi Monotone and Increasing Sequence

ON A SUBCLASS OF UNIFORMLY CONVEX FUNCTIONS INVOLVING CHO-SRIVASTAVA OPERATOR

Areas and Lengths in Polar Coordinates

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

1. Introduction and Preliminaries.

CERTAIN PROPERTIES FOR ANALYTIC FUNCTIONS DEFINED BY A GENERALISED DERIVATIVE OPERATOR

EE512: Error Control Coding

Congruence Classes of Invertible Matrices of Order 3 over F 2

Reminders: linear functions

Fractional Colorings and Zykov Products of graphs

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

CERTAIN SUBCLASSES OF UNIFORMLY STARLIKE AND CONVEX FUNCTIONS DEFINED BY CONVOLUTION WITH NEGATIVE COEFFICIENTS

Inclusion properties of Generalized Integral Transform using Duality Techniques

w o = R 1 p. (1) R = p =. = 1

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

On the k-bessel Functions

derivation of the Laplacian from rectangular to spherical coordinates

Areas and Lengths in Polar Coordinates

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Concrete Mathematics Exercises from 30 September 2016

A summation formula ramified with hypergeometric function and involving recurrence relation

A Novel Subclass of Analytic Functions Specified by a Family of Fractional Derivatives in the Complex Domain

Matrices and Determinants

Bulletin of the. Iranian Mathematical Society

Fractional Calculus of a Class of Univalent Functions With Negative Coefficients Defined By Hadamard Product With Rafid -Operator

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

SOME PROPERTIES OF FUZZY REAL NUMBERS

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

ST5224: Advanced Statistical Theory II

Uniform Convergence of Fourier Series Michael Taylor

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Other Test Constructions: Likelihood Ratio & Bayes Tests

Partial Differential Equations in Biology The boundary element method. March 26, 2013

On class of functions related to conic regions and symmetric points

The semiclassical Garding inequality

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Math221: HW# 1 solutions

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Entisar El-Yagubi & Maslina Darus

CRASH COURSE IN PRECALCULUS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

F19MC2 Solutions 9 Complex Analysis

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Section 9.2 Polar Equations and Graphs

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Homework 8 Model Solution Section

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

Inverse trigonometric functions & General Solution of Trigonometric Equations

Problem Set 3: Solutions

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

New bounds for spherical two-distance sets and equiangular lines

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

D Alembert s Solution to the Wave Equation

GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)

5. Choice under Uncertainty

F A S C I C U L I M A T H E M A T I C I

SECOND HANKEL DETERMINANT FOR SUBCLASSES OF PASCU CLASSES OF ANALYTIC FUNCTIONS M. S. SAROA, GURMEET SINGH AND GAGANDEEP SINGH

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

M a t h e m a t i c a B a l k a n i c a. On Some Generalizations of Classical Integral Transforms. Nina Virchenko

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Transcript:

Acta Math. Univ. Comenianae Vol. LXXVIII, 2(2009), pp. 245 254 245 SOME INCLUSION RELATIONSHIPS FOR CERTAIN SUBCLASSES OF MEROMORPHIC FUNCTIONS ASSOCIATED WITH A FAMILY OF INTEGRAL OPERATORS C. SELVARAJ and K. R. KARTHIKEYAN Abstract. We define a family of integral operators using multiplier transformation on the space of normalized meromorphic functions and introduce several new subclasses using this operator. We investigate various inclusion relations for these subclasses and some interesting applications involving a certain class of the integral operator are also considered. 1. Introduction, Definitions And Preliminaries Let M denote the class of functions of the form (1) f(z) = 1 z + a k z k, k=0 which are analytic in the punctured open unit disk U = {z : z C and 0 < z < 1} = U \ {0}. A function f M is said to be in the class MS (γ) of meromorphic starlike functions of order γ in U if and only if ( ) zf (z) (2) Re < γ (z U; 0 γ < 1). f(z) A function f M is said to be in the class MC(γ) of meromorphic convex functions of order γ in U if and only if ) zf (z) (3) Re (1 + < γ (z U; 0 γ < 1). f (z) We now define a subclass of meromorphic close-to-convex functions of order δ type γ as follows. A function f M is said to be in the class C (δ, γ) if there Received May 24, 2008. 2000 Mathematics Subject Classification. Primary 30C45, 30C60. Key words and phrases. Meromorphic functions; Hadamard product; generalized hypergeometric functions; linear operators.

246 C. SELVARAJ and K. R. KARTHIKEYAN exists a function g(z) MC(γ) such that ( ) zf (z) (4) Re < δ (z U; 0 γ < 1; 0 δ < 1). g(z) Similarly, a function f M is said to be in the class K(δ, γ) if there exists a function g(z) MC(γ) such that ( ) z(zf (z)) (5) Re < δ (z U; 0 γ < 1; 0 δ < 1). g(z) In recent years, several families of integral operators and differential operators were introduced using Hadamard product (or convolution). For example, we choose to mention the Ruscheweyh derivative [11], the Carlson-Shaffer operator [1], the Dziok-Srivastava operator [2], the Noor integral operator [9] and so on (see[3, 5, 8, 10]). Motivated by the work of N. E. Cho and K. I. Noor [7], we introduce a family of integral operators defined on the space meromorphic functions in the class M. By using these integral operators, we define several subclasses of meromorphic functions and investigate various inclusion relationships and integral preserving properties for the meromorphic function classes introduced here. For complex parameters α 1,..., α q and β 1,..., β s (β j C \ Z 0 ; Z 0 = 0, 1, 2,... ; j = 1,..., s), we define the function φ(α 1, α 2,..., α q, β 1, β 2,..., β s ; z) by φ(α 1, α 2,..., α q, β 1, β 2,..., β s ; z) := 1 z + k=0 (q s + 1; q, s N 0 := N {0}; z U), (α 1 ) k+1 (α 2 ) k+1... (α q ) k+1 z k (β 1 ) k+1 (β 2 ) k+1... (β s ) k+1 (k + 1)! where (x) k is the Pochhammer symbol defined by { 1 if k = 0 (x) k = x(x + 1)(x + 2)... (x + k 1) if k N 0 = {1, 2,,...}. Now we introduce the following operator Iµ(α p 1, α 2,..., α q, β 1, β 2,..., β s ): M M as follows: ( ) Let F µ, p (z) = 1 z + p k + µ + 1 z k, p N 0, µ 0 and let Fµ, 1 k=0 µ p(z) be defined such that Then (6) (7) F µ, p (z) F 1 µ, p(z) = φ(α 1, α 2,..., α q, β 1, β 2,..., β s ; z). I p µ(α 1, α 2,..., α q, β 1, β 2,..., β s )f = F 1 µ, p(z) f(z). From (6) it can be easily seen that Iµ(α p 1, α 2,..., α q, β 1, β 2,..., β s )f = 1 z + ( ) p µ (α 1 ) k+1 (α 2 ) k+1... (α q ) k+1 z k k + µ + 1 (β 1 ) k+1 (β 2 ) k+1... (β s ) k+1 (k + 1)!. k=0

SOME INCLUSION RELATIONSHIPS FOR CERTAIN SUBCLASSES 247 For convenience, we shall henceforth denote (8) I p µ(α 1, α 2,..., α q, β 1, β 2,..., β s )f = I p µ(α 1, β 1 )f. For the choice of the parameters p = 0, q = 2, s = 1, the operator I p µ(α 1, β 1 )f is reduced to an operator introduced by N. E. Cho and K. I. Noor in [7] and when p = 0, q = 2, s = 1, α 1 = λ, α 2 = 1, β 1 = (n + 1), the operator I p µ(α 1, β 1 )f is reduced to an operator recently introduced by S.-M. Yuan et. al. in [12]. It can be easily verified from the above definition of the operator I p µ(α 1, β 1 )f that (9) z(i p+1 µ (α 1, β 1 )f(z)) = µi p µ(α 1, β 1 )f(z) (µ + 1)I p+1 µ (α 1, β 1 )f(z) and (10) z(iµ(α p 1, β 1 )f(z)) = α 1 Iµ(α p 1 + 1, β 1 )f(z) (α 1 + 1)Iµ(α p 1, β 1 )f(z). By using the operator I p µ(α 1, β 1 )f, we now introduce the following subclasses of meromorphic functions: and We note that MS p µ(α 1, β 1, γ) := { f : f M and I p µ(α 1, β 1 )f MS (γ) }, MC p µ(α 1, β 1, γ) := { f : f M and I p µ(α 1, β 1 )f MC(γ) }, QC p µ(α 1, β 1, γ, δ) := { f : f M and I p µ(α 1, β 1 )f C (δ, γ) } QK p µ(α 1, β 1, γ, δ) := { f : f M and I p µ(α 1, β 1 )f K(δ, γ) }. (11) f(z) MC p µ(α 1, β 1, γ) zf (z) MS p µ(α 1, β 1, γ) and a similar relationship exists between the classes QC p µ(α 1, β 1, γ, δ) and QK p µ(α 1, β 1, γ, δ). In order to establish our main results, we need the following lemma which is popularly known as the Miller-Mocanu Lemma. Lemma 1.1 ([6]). Let u = u 1 + i u 2, v = v 1 + i v 2 and let ψ(u, v) be a complex function, ψ : D C, D C C. Suppose that ψ satisfies the following conditions (i) ψ(u, v) is continuous in D; (ii) (1, 0) D and Re{ψ(1, 0)} > 0; (iii) Re{ψ(i u 2, v 1 )} 0 for all (i u 2, v 1 ) D and such that v 1 (1+u2 2 ) 2. Let p(z) = 1 + p 1 z + p 2 z 2 + p 3 z 3 be analytic in E, such that (p(z), zp (z)) D for all z U. If Re{ψ(p(z), zp (z))} > 0 (z U), then Re(p(z)) > 0 for z U.

248 C. SELVARAJ and K. R. KARTHIKEYAN 2. Main Results In this section, we give several inclusion relationships for meromorphic function classes, which are associated with the integral operator I p µ(α 1, β 1 )f. Theorem 2.1. Let α 1, µ > 0 and 0 γ < 1. Then MS p µ(α 1 + 1, β 1, γ) MS p µ(α 1, β 1, γ) MS p+1 µ (α 1, β 1, γ). Proof. To prove the first part of Theorem 2.1, let f MS p µ(α 1 + 1, β 1, γ) and set (12) z(i p µ(α 1, β 1 )f(z)) I p µ(α 1, β 1 )f(z) + γ = (1 γ)p(z) where p(z) = 1 + p 1 z + p 2 z 2 +... is analytic in U and p(z) 0 for all z U. Then by applying the identity (10), we obtain (13) α 1 I p µ(α 1 + 1, β 1 )f(z) I p µ(α 1, β 1 )f(z) = z(ip µ(α 1, β 1 )f(z)) Iµ(α p + (α 1 + 1) 1, β 1 )f(z) = (1 γ)p(z) γ + (α 1 + 1). By logarithmically differentiating both sides of the equation (13), we get z(i p µ(α 1 + 1, β 1 )f(z)) I p µ(α 1 + 1, β 1 )f(z) = z(ip µ(α 1, β 1 )f(z)) I p µ(α 1, β 1 )f(z) = γ (1 γ)p(z) + + (1 γ)zp (z) (1 γ)p(z) + γ (α 1 + 1) (1 γ)zp (z) (1 γ)p(z) + γ (α 1 + 1). Now we form the equation ψ(u, v) by choosing u = p(z) = u 1 +i u 2, v = zp (z) = v 1 + i v 2, (14) ψ(u, v) = (1 γ)u (1 γ)v (1 γ)u + γ (α 1 + 1). Then clearly, ψ(u, v) is continuous in ( { }) α1 + 1 γ D = C \ C 1 γ and (1, 0) D with Re ( ψ(1, 0) ) > 0. Moreover, for all (i u 2, v 1 ) D such that v 1 1 2 (1 + u2 2), we have { } (1 γ)v 1 Re ψ(i u 2, v 1 ) = Re (1 γ) i u 2 + γ (α 1 + 1) (1 γ)(1 + u2 2)(α 1 + 1 γ) 2[(γ 1 α 1 ) 2 + (1 γ) 2 u 2 2 ] < 0. = (1 γ)(α 1 + 1 γ)v 1 (γ α 1 1) 2 + (1 γ) 2 u 2 2

SOME INCLUSION RELATIONSHIPS FOR CERTAIN SUBCLASSES 249 Therefore ψ(u, v) satisfies the hypothesis of the Miller-Mocanu Lemma. This shows that if Re ψ(p(z), zp (z)) > 0 (z U), then Re(p(z)) > 0 (z U), that is if f(z) MS p µ(α 1 + 1, β 1, γ) then f(z) MS p µ(α 1, β 1, γ). To prove the second inclusion relationship asserted by Theorem 2.1, let f MS p µ(α 1, β 1, γ) and put (15) (1 γ)s(z) = γ + z(ip+1 µ (α 1, β 1 )f(z)) Iµ p+1 (α 1, β 1 )f(z) where the function s(z) is analytic in U with s(0) = 1. Then using the arguments to those detailed above with (9), it follows that MS p µ(α 1, β 1, γ) MS p+1 µ (α 1, β 1, γ), which completes the proof of the Theorem 2.1. and Theorem 2.2. Let α 1, µ > 0 and 0 γ < 1. Then MC p µ(α 1 + 1, β 1, γ) MC p µ(α 1, β 1, γ) MS p+1 µ (α 1, β 1, γ). Proof. We observe that f(z) MC p µ(α 1 + 1, β 1, γ) I p µ(α 1 + 1, β 1 )f(z) MC(γ) z(i p µ(α 1 + 1, β 1 )f(z)) MS (γ) I p µ(α 1 + 1, β 1 )( zf (z)) MS (γ) zf (z) MS p µ(α 1 + 1, β 1, γ) = zf (z) MS p µ(α 1, β 1, γ) I p µ(α 1, β 1 )( zf(z)) MS (γ) z(i p µ(α 1, β 1 )f(z)) MS (γ) I p µ(α 1, β 1 ) MC(γ) f(z) MC p µ(α 1, β 1, γ) f(z) MC p µ(α 1, β 1, γ) zf (z) MS p µ(α 1, β 1, γ) which evidently proves Theorem 2.2. = zf (z) MS p+1 µ (α 1, β 1, γ) z(i p+1 µ (α 1, β 1 )f(z)) MS (γ) f(z) MC p+1 µ (α 1, β 1, γ) Theorem 2.3. Let α 1, µ > 0 and 0 γ, δ < 1. Then QC p µ(α 1 + 1, β 1, γ, δ) QC p µ(α 1, β 1, γ, δ) QC p+1 µ (α 1, β 1, γ, δ). Proof. We begin proving that QC p µ(α 1 + 1, β 1, γ, δ) QC p µ(α 1, β 1, γ, δ).

250 C. SELVARAJ and K. R. KARTHIKEYAN Let f(z) QC p µ(α 1 + 1, β 1, γ, δ). Then, in view of the definition of the function class QC p µ(α 1 + 1, β 1, γ, δ), there exists a function q MC(γ) such that ( z(i p µ (α 1 + 1, β 1 )f(z)) ) Re < δ. q(z) Choose the function g(z) such that q(z) = Iµ(α p 1 + 1, β 1 )g(z), then ( z(i p g MC p µ (α 1 + 1, β 1 )f(z)) ) (16) µ(α 1 + 1, β 1, γ) and Re Iµ(α p < δ. 1 + 1, β 1 )g(z) We next put (17) z(i p µ(α 1, β 1 )f(z)) I p µ(α 1, β 1 )g(z) + δ = (1 δ)p(z), where p(z) = 1 + c 1 z + c 2 z 2 +... is analytic in U and p(z) 0 for all z U. Thus, by using the identity (10), we have (18) z(iµ(α p 1 + 1, β 1 )f(z)) I p µ(α 1 + 1, β 1 )g(z) = Ip µ(α 1 + 1, β 1 )(zf (z)) I p µ(α 1 + 1, β 1 )g(z) = z[ip µ(α 1, β 1 )(zf (z))] + (α 1 + 1)I p µ(α 1, β 1 )(zf (z)) z(i p µ(α 1, β 1 )g(z)) + (α 1 + 1)I p µ(α 1, β 1 )g(z) = z[iµ(α p 1,β 1 )(zf (z))] Iµ(α p 1,β 1 )g(z) z(iµ(α p 1,β 1 )g(z)) + Iµ(α p +(α 1 +1) 1,β 1 )g(z) (α 1 +1)Iµ(α p 1,β 1 )(zf (z)) Iµ(α p 1,β 1 )g(z) z(iµ(α p 1,β 1 )g(z)). Iµ(α p +(α 1 +1) 1,β 1 )g(z) Jack [4] showed that g MC(γ) implies that g MS (σ) where σ = 2γ 1 + 9 4γ + 4γ 2. 4 Since g(z) MC p µ(α 1 + 1, β 1, γ) and MC p µ(α 1 + 1, β 1, γ) MC p µ(α 1, β 1, γ), for some σ we can set z(iµ(α p 1, β 1 )g(z)) Iµ(α p + σ = (1 σ)h(z) 1, β 1 )g(z) where H(z) = h 1 (x, y) + i h 2 (x, y) and Re ( H(z) ) = h 1 (x, y) > 0, (z U). Then (19) z(iµ(α p 1 + 1, β 1 )f(z)) Iµ(α p = 1 + 1, β 1 )g(z) z[i p µ(α 1, β 1 )(zf (z))] I p µ(α 1, β 1 )g(z) σ (1 σ)h(z) + (α 1 + 1) (α 1 + 1) [ δ + (1 δ)p(z) ] σ (1 σ)h(z) + (α 1 + 1).

SOME INCLUSION RELATIONSHIPS FOR CERTAIN SUBCLASSES 251 We thus find from (17) that (20) z(i p µ(α 1, β 1 )f(z)) = I p µ(α 1, β 1 )g(z) [ δ + (1 δ)p(z) ]. Upon differentiating both sides of (20) with respect to z, we have (21) z [ z(iµ(α p 1, β 1 )f(z)) ] Iµ(α p = (1 δ)zp (z) 1, β 1 )g(z) + [ σ + (1 σ)h(z) ][ δ + (1 δ)p(z) ]. By substituting (21) in (19), we obtain z(iµ(α p 1 + 1, β 1 )f(z)) { (1 δ)zp } (z) Iµ(α p + δ = (1 δ)p(z). 1 + 1, β 1 )g(z) σ + (1 σ)h(z) (α 1 + 1) We now choose u = p(z) = u 1 + i u 2 and v = zp (z) = v 1 + i v 2, we define the function ψ(u, v) by (22) ψ(u, v) = (1 δ)u (1 δ)v σ + (1 σ)h(z) (α 1 + 1) where (u, v) D = (C \ D ) C and { D = z : z C and Re(H(z)) = h 1 (z) 1 + α } 1. 1 σ It is easy to see that ψ(u, v) is continuous in D and (1, 0) D with Re ( ψ(1, 0) ) > 0. Moreover, for all (i u 2, v 1 ) D such that we have { Re ψ(i u 2, v 1 ) = Re = v 1 1 2 (1 + u2 2), (1 δ)v 1 (1 σ)h(z) + σ (α 1 + 1) (1 δ)v 1 [ (α1 + 1) (1 σ)h 1 (x, y) σ ] [ (1 σ)h1 (x, y) + σ α 1 1 ] 2 + [ (1 σ)h2 (x, y) ] 2 (1 δ)(1 + u 2 2) [ (α 1 + 1) (1 σ)h 1 (x, y) σ ] 2 [ (1 σ)h 1 (x, y) + σ α 1 1 ] 2 [ + 2 (1 σ)h2 (x, y) ] 2 < 0. Therefore ψ(u, v) satisfies the hypothesis of the Miller-Mocanu Lemma. This shows that if Re ψ(p(z), zp (z)) > 0, (z U), then Re(p(z)) > 0, (z U), that is if f(z) QC p µ(α 1 + 1, β 1, γ, δ) then f(z) QC p µ(α 1, β 1, γ, δ). Using the arguments similar to those detailed above, we can prove the second part of the inclusion. We therefore choose to omit the details involved. Using arguments similar to those detailed in Theorem 2.2, we can prove Theorem 2.4. Let α 1, µ > 0 and 0 γ, δ < 1. Then QK p µ(α 1 + 1, β 1, γ, δ) QK p µ(α 1, β 1, γ, δ) QK p+1 µ (α 1, β 1, γ, δ). }

252 C. SELVARAJ and K. R. KARTHIKEYAN 3. Inclusion Properties Involving the Operator L c In this section, we examine the closure properties involving the integral operator L c (f) defined by (23) L c (f) = c z z c+1 t c f(t) dt, (f M, c > 0). 0 In order to obtain the integral-preserving properties involving the integral L c (f), we need the following lemma which is popularly known as the Jack s Lemma. Lemma 3.1 ([4]). Let w(z) be a nonconstant analytic function in U with w(0) = 0. If w(z) attains its maximum value on the circle z = r < 1 at z 0, then z 0 w (z 0 ) = kw(z 0 ), where k is a real number and k 1. Theorem 3.2. Let c, α 1, µ > 0 and 0 γ < 1. If f MS p µ(α 1, β 1, γ), then L c (f) MS p µ(α 1, β 1, γ). Proof. From definition of L c (f) and the linearity of operator I p µ(α 1, β 1 )f we have (24) z(i p µ(α 1, β 1 )L c (f)) = ci p µ(α 1, β 1 )f(z) (c + 1)I p µ(α 1, β 1 )L c (f). Suppose that f(z) MS p µ(α 1, β 1, γ) and let (25) z(iµ(α p 1, β 1 )L c f(z)) 1 + (1 2γ)w(z) Iµ(α p =, 1, β 1 )L c f(z) 1 w(z) where w(0) = 1. Then by applying (24) in (25), we have I p µ(α 1, β 1 )f(z) I p µ(α 1, β 1 )L c f(z) which upon logarithmic differentiation yields z(iµ(α p 1, β 1 )f(z)) Iµ(α p = 1, β 1 )f(z) Thus we have z(i p µ(α 1, β 1 )f(z)) (26) Now, assuming that I p µ(α 1, β 1 )f(z) + γ = c (c + 2 2γ)w(z) =, c[1 w(z)] 1 + (1 2γ)w(z) 1 w(z) (c + 2 2γ)zw (z) c (c + 2 2γ)w(z). (γ 1)[1 + w(z)] 1 w(z) max w(z) = w(z 0) = 1 z z 0 and applying Jack s Lemma 3.1, we have (27) + zw (z) 1 w(z) + zw (z) 1 w(z) (c + 2 2γ)zw (z) c (c + 2 2γ)w(z). z 0 w (z 0 ) = kw(z 0 ) (k 1). (z 0 U),

SOME INCLUSION RELATIONSHIPS FOR CERTAIN SUBCLASSES 253 If we set w(z 0 ) = e i θ, (θ R) in (26) and observe that ( [ (γ 1) 1 + w(z0 ) ] ) Re = 0. 1 w(z 0 ) then we obtain ( z0 (Iµ(α p 1, β 1 )f(z 0 )) Re Iµ(α p 1, β 1 )f(z 0 ) ) ( z0 w (z 0 ) + γ = Re = Re 1 w(z 0 ) (c + 2 2γ)z 0w ) (z 0 ) c (c + 2 2γ)w(z 0 2(1 γ)k e i θ ) (1 e i θ ) [ c (c + 2 2γ) e ] i θ ( 2k(1 γ)(c + 1 γ) = c 2 2c(c + 2 2γ) cos θ + (c + 2 2γ) 2 0, which obviously contradicts the hypothesis f(z) MS p µ(α 1, β 1, γ). Consequently, we can deduce that w(z) < 1 (z U) which in view of (25) proves the integralpreserving property asserted by Theorem 3.2. Theorem 3.3. Let c, α 1, µ > 0 and 0 γ < 1. If f MC p µ(α 1, β 1, γ), then L c (f) MC p µ(α 1, β 1, γ). Proof. We observe that f(z) MC p µ(α 1, β 1, γ) zf (z) MS p µ(α 1, β 1, γ) which completes the proof of the Theorem 3.3. = L c ( zf (z) ) MS p µ(α 1, β 1, γ) z(l c f(z)) MS p µ(α 1, β 1, γ) L c f(z) MC p µ(α 1, β 1, γ). Next, we derive an inclusion property which is obtained by using (24) and the same techniques as in the proof of the Theorem 2.3. Theorem 3.4. Let c, α 1, µ > 0 and 0 γ < 1. If f QC p µ(α 1, β 1, γ, δ) then so is L c (f). Finally, we obtain Theorem 3.5 below by using (24) and the same techniques as in the proof of the Theorem 3.3. Theorem 3.5. Let c, α 1, µ > 0 and 0 γ < 1. If f QK p µ(α 1, β 1, γ, δ) then so is L c (f). References 1. Carlson B. C. and Shaffer D. B., Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15(4) (1984), 737 745. 2. Dziok J. and Srivastava H. M., Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103(1) (1999), 1 13. 3. Hohlov Yu. E., Operators and operations in the class of univalent functions, Izv. Vyss. Ucebn. Zaved. Matematika, 10 (1978), 83 89.

254 C. SELVARAJ and K. R. KARTHIKEYAN 4. Jack I. S., Functions starlike and convex of order α, J. London Math. Soc. 2 (3) (1971), 469 474. 5. Jung I. B., Kim Y. C. and Srivastava H. M., The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl., 176 (1993), 138 147. 6. Miller S. S. and Mocanu P. T., Differential subordinations and inequalities in the complex plane, J. Differ. Equations, 67 (1987), 199 211. 7. Cho N. E. and Noor K. I., Inclusion properties for certain classes of meromorphic functions associated with the Choi-Saigo-Srivastava operator, J. Math. Anal. Appl. 320(2) (2006), 779 786. 8. Cho N. E., Kwon O. S. and Srivastava H. M., Inclusion relationships for certain subclasses of meromorphic functions associated with a family of multiplier transformations, Integral Transforms Spec. Funct. 16(8) (2005), 647 659. 9. Noor K. I. and Noor M. A., On integral operators, J. Math. Anal. Appl. 238 (1999), 341 352. 10. Noor K. I., On new classes of integral operators, J. Nat. Geomet. 16 (1999), 71 80. 11. Ruscheweyh S., New criteria for univalent functions, Amer. Math. Soc., 49 (1975), 109 115. 12. Yuan S.-M., Liu Z.-M. and Srivastava H. M., Some inclusion relationships and integralpreserving properties of certain subclasses of meromorphic functions associated with a family of integral operators, J. Math. Anal. Appl. 337(1) (2008), 505 515. C. Selvaraj, Department of Mathematics, Presidency College, Chennai-600 005, Tamilnadu, India, e-mail: pamc9439@yahoo.co.in. K. R. Karthikeyan, R. M. K. Engineering College R. S. M. Nagar, Kavaraipettai-601206 Thiruvallur District, Gummidipoondi Taluk Tamilnadu, India, e-mail: kr karthikeyan1979@yahoo.com.