LIMITED DEPENDENT VARIABLES - BASIC

Σχετικά έγγραφα
6. MAXIMUM LIKELIHOOD ESTIMATION

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.

Other Test Constructions: Likelihood Ratio & Bayes Tests

Statistical Inference I Locally most powerful tests

Homework 3 Solutions

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Homework for 1/27 Due 2/5

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Χρονοσειρές Μάθημα 3

Example Sheet 3 Solutions

Solution Series 9. i=1 x i and i=1 x i.

2 Composition. Invertible Mappings

4.6 Autoregressive Moving Average Model ARMA(1,1)

ST5224: Advanced Statistical Theory II

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Solutions to Exercise Sheet 5

The Simply Typed Lambda Calculus

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

C.S. 430 Assignment 6, Sample Solutions

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Lecture 21: Properties and robustness of LSE

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

5.4 The Poisson Distribution.

Notes on the Open Economy

Every set of first-order formulas is equivalent to an independent set

Theorem 8 Let φ be the most powerful size α test of H

6.3 Forecasting ARMA processes

Multi-dimensional Central Limit Theorem

derivation of the Laplacian from rectangular to spherical coordinates

Lecture 12 Modulation and Sampling

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Homework 8 Model Solution Section

Lecture 2. Soundness and completeness of propositional logic

Μηχανική Μάθηση Hypothesis Testing

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)

EE512: Error Control Coding

Math221: HW# 1 solutions

Second Order Partial Differential Equations

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Fractional Colorings and Zykov Products of graphs

Introduction to the ML Estimation of ARMA processes

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

Tridiagonal matrices. Gérard MEURANT. October, 2008

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Problem Set 3: Solutions

The ε-pseudospectrum of a Matrix

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Multi-dimensional Central Limit Theorem

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Mean-Variance Analysis

Section 8.3 Trigonometric Equations

Levin Lin(1992) Oh(1996),Wu(1996) Papell(1997) Im, Pesaran Shin(1996) Canzoneri, Cumby Diba(1999) Lee, Pesaran Smith(1997) FGLS SUR

From the finite to the transfinite: Λµ-terms and streams

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Math 6 SL Probability Distributions Practice Test Mark Scheme

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Chapter 3: Ordinal Numbers

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

Matrices and Determinants

Galatia SIL Keyboard Information

The conditional CAPM does not explain assetpricing. Jonathan Lewellen & Stefan Nagel. HEC School of Management, March 17, 2005

Lecture 34 Bootstrap confidence intervals

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

Models for Probabilistic Programs with an Adversary

Modbus basic setup notes for IO-Link AL1xxx Master Block

Exercises to Statistics of Material Fatigue No. 5

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

w o = R 1 p. (1) R = p =. = 1

Inverse trigonometric functions & General Solution of Trigonometric Equations

Finite Field Problems: Solutions

ω = radians per sec, t = 3 sec

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Lecture 7: Overdispersion in Poisson regression

& Risk Management , A.T.E.I.

D Alembert s Solution to the Wave Equation

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

Higher Derivative Gravity Theories

ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Key Formulas From Larson/Farber Elementary Statistics: Picturing the World, Second Edition 2002 Prentice Hall

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Transcript:

LIMITED DEPENDENT VARIABLES - BASIC [1] Binary choice models Moivaion: Dependen variable (y ) is a yes/no variable (eg, unionism, migraion, labor force paricipaion, or dealh ) (1) Linear Model (Somewha Defecive) Digression o Bernoulli's Disribuion: Y is a random variable wih pdf; p = Pr(Y=1) and (1-p) = Pr(Y=0) f(y) = p y (1-p) 1-y E(y) = Σ y yf(y) = 1p + 0 (1-p) = p; var(y) = Σ y y f(y) - [E(y)] = p - p = p(1-p) End of Digression Linear Model: y = x β + ε, where y = 1 if yes and y = 0 if no i Assume ha E( ε x ) = 0 i E( y x ) = x β p = Pr( y = 1 x ) p x j i i i = β : So, he coefficiens measure effecs of x j on p j Limied_Basic-1

Problems in he linear model: 1) The ε are nonnormal and heeroskedasic Noe ha y = 1 or 0 ε 1 = x i β wih prob = p = x β = x i β wih prob = 1 p = 1 x β E( ε x ) = (1 x x β + ( x (1 x = 0 var( ε x ) = E( ε x ) = (1 x x β + ( x (1 x ) β = x β(1 x No consan over OLS is unbiased bu no efficien GLS using ˆ σ ( ˆ = x ( 1 x ˆ i i is more efficien han OLS ) Suppose ha we wish o predic p o = P(y o = 1 x o ) a x o The naural predicor of p o is of he range (0,1) x ˆ β where ˆ β is OLS or GLS Bu o x ˆ β would be ouside o Limied_Basic-

() Probi Model Model: y = x i β + ε, = 1,, T, where y is a unobservable laen variable (eg, level of uiliy); y = 1 if y > 0 = 0 if y < 0; E( ε x ) = 0; ε ~ N (0,1) condiional on x ; E( ε x,, x, ε,, ε ) 0 i 1i 1 1 = ; he x are ergodic and saionary Digression o normal pdf and cdf X ~ N(μ,σ ): 1 ( x μ f( x) = exp πσ σ ), - < x < 1 z Z ~ N(0,1): φ( z) = exp π ; ( ) Pr( ) z Φ z = Z < z = φ ( v ) dv In GAUSS, φ(z) = pdfn(z) and Φ(z) = cdfn(z) Some useful facs: dφ(z)/dz = φ(z); dφ/dz = -zφ(z); Φ(-z) = 1 - Φ(z); φ(z) = φ(-z) End of digression Reurn o he Probi model Limied_Basic-3

PDF of he y : Condiional on x, Pr(y = 1) = Pr(y > 0) = Pr(x β + ε > 0) = Pr(x β > -ε ) = Pr(-ε < x = Φ(x This gauranees p Pr(y = 1) being in he range (0,1) y f( y x ) = ( Φ( x ) ( 1 Φ( x ) 1 y i Shor Digression i ε, = 1,, T, y = x β + (-ε ) are iid U(0,1) Then, Pr(y = 1 x ) = x β (linear) (Heckman and Snyder, Rand, 1997) End of Digression Log-likelihood Funcion of he Probi model T L T ( = Π 1 f( y x i ) = { } l T ( = Σ ln(f(y x )) = Σ y ln Φ ( x β ) + (1 y )ln ( 1 Φ ( x β ) Some useful facs: E(y x ) = Φ(x Φ( x β ) Φ( x x β = = φ( x x β x β β Φ( x Φ( x = = ( x βφ ) ( x x x β β β β i j k k Limied_Basic-4

lt ( β ) β = = ln Φ( x ln(1 Φ( x ) Σ y + (1 y) β β φ( x φ( x Σ y x + (1 y ) Φ( x 1 Φ( x x = Σ ( y Φ( x ) φ( x Φ( x (1 Φ( x ) x Numerical Propery of he MLE of β ( ˆ β ) l ( ˆ T β ) = β Σ ( y ( ˆ)) ( ˆ Φ x β φ x x Φ( x ˆ (1 Φ( x ˆ ) = 0 k 1 H T ( ˆ ˆ lt β ) ( β ) = β β should be negaive definie [See Judge, e al for he exac form of H T ] l T ( is globally concave wih respec o β; ha is, H T ( is negaive definie [Amemiya (1985, Advanced Economerics)] Use [ H ( ˆ β )] T 1 as Cov( ˆ β ) Limied_Basic-5

How o find MLE (See Greene Ch 5 or Hamilon, Ch 5) 1 Newon-Raphson s algorihm: STEP 1: Choose an iniial ˆo θ Then compue () ˆ ˆ ˆ 1 ˆ 1 o [ T( o)] T( o θ = θ + H θ s θ ) STEP : Using ˆ θ 1, compue ˆ θ by () STEP 3: Coninue unil ˆ θ ˆ q+ 1 θ q Noe: N-R mehod is he bes if l T (θ) is globally concave (ie, he Hessian marix is always negaive definie for any θ) N-R may no work, if l T (θ) is no globally concave BHHH [Bernd, Hall, Hall, Hausman] l T (θ) = Σ ln[f (θ)] Define: g (θ) = ln[ f ( θ )] θ [p 1] (s T (θ) = Σ g (θ)) BBT(θ) = Σ g (θ)g (θ) [cross produc of firs derivaives] Theorem: Under suiable regulariy condiions, 1 1 BT( ) p lim T E T( o) T θ T H θ Limied_Basic-6

Implicaion: B ( θ ) H ( θ ), as T T T Cov( θ ) can be esimaed by 1 [ B ( θ )] or 1 [ H ( θ )] BHHH algorihm uses ( ) 1 θ 1 = θ o + λ B ( θ o) s ( θ o), o T T where λ is called sep lengh When BHHH is used, no need o compue second derivaives Oher available algorihms: BFGS, BFGS-SC, DFP T T BHHH for Probi: Can show g ( = ξ x, where, ( y Φ) φ ξ = ; φ = φ( x ; Φ =Φ( x Φ (1 Φ ) ˆ ˆ BT( =Σ gˆˆ g =Σ ξ x x [B T ( ˆ β )] -1 is Cov( ˆ β ) by BHHH Inerpreaion of β 1) β j shows direcion of influence of x j on Pr( y x ) = Φ ( x β ) β j > 0 means ha Pr( y = 1 ) increases wih x j ) Rae of change: x Pr( y = 1 x ) Φ( x β ) = = φ( x β j x x j j Limied_Basic-7

Esimaion of probabiliies and raes of changes Esimaion of p = Pr(y =1 x ) a mean of x Use pˆ =Φ ( x ˆ β ) ˆ ( ˆ ) var( p) = φ( x x Ωx ˆ where Ω= ˆ Cov( ˆ β ) [by dela-mehod] Esimaion of raes of change Use ( ˆ j Φ x β ) pˆ = = φ( x ˆ ˆ β j x j j ˆ j ( ) ( ˆ j p β ) var( ˆ ) ˆ p β p = Ω [by dela-mehod] β β Noe ha: j p ( β ) β = ( x βφ ) ( x ββ ) x + φ( x J, where J j = 1 k vecor of zeros excep ha he j h elemen = 1 j j Noe on normalizaion: Model: y = x β + ε, -ε ~ N(0,σ ) y = 1 iff y > 0 p = Pr( y = 1 x ) = Pr( y > 0 x ) = Pr( x β + ε > 0 x ) = Pr( ε < x β x ) = Pr( ε / σ < x ( β / σ) x ) =Φ[ x ( β / σ)] Can esimae β/σ, bu no β and σ separaely Limied_Basic-8

Tesing Hypohesis: 1 Wald es: H o : w( = 0 1 W T = w( ˆ β ) W( ˆ ˆ W( ˆ w( ˆ Ω β ) d χ (df = # of resricions), LR es: where ˆ β = probi MLE and W( = w( β ) β Easy for equaliy or zero resricions (ie, H o : β = β 3, or H o : β = β 3 = 0) EX 1: Suppose you wish o es H o : β 4 = β 5 = 0 STEP 1: Do Probi wihou resricion and ge l T,UR = ln(l T,UR ) STEP : Do Probi wih he resricrions and ge l T,R = ln(l T,R ) Probi wihou x 4 and x 5 STEP 3: LR T = [l T,UR - l T,R )] χ (df = ) EX : Suppose you wish o es H o : β = = β k = 0 (Overall significance es) Le n = Σ y l T = n ln(n/t) + (T-n) ln[(t-n)/t] LR T = [l T,UR l T ] p χ (k-1) Limied_Basic-9

Pseudo-R (McFadden, 1974) ρ = 1 l T,UR /l T 0 ρ 1 If Φ x ˆ) β = 1 whenever y = 1, and if Φ x ˆ β ) = 0 whenever y = 0, ρ ( ( = 1 If 0 < ρ < 1, no clear meaning (3) Logi Models Model: y = xi β + ε, ε ~ logisic wih g(ε) = e ε /(1+e ε ) and G(ε) = e ε /(1+e ε ) Use Pr( y = 1 x ) = G( x β ) (insead of Φ ( x β ) Logi MLE ˆ β log max Use i { ( β ) ( β )} ln( L ) =Σ y ln G( x ) + (1 y )ln 1 G( x ) [ ( ˆ )] 1 HT βlog i or T [ B ( ˆ β )] T log i 1 as Cov( βlog i ) ˆ p = gx ( β ) β j x j Limied_Basic-10

Facs: The logisic dis is quie similar o sandard normal dis excep ha he logisic dis has hicker ails (similarly o (7)) If daa conain few obs wih y = 1 or y = 0, hen probi and logi may be quie differen Oher han ha, probi and logi yield very similar predicions Especially, marginal effecs are quie similar Roughly, ˆ β = 16 ˆ β log i probi Limied_Basic-11

[] Censoring vs Truncaion (Greene, ch 0) (1) Classical disincion Consider shos on arge Truncaion: cases where you have daa on hole only Censoring: cases where you know how many shos missed () Censoring y ~ pdf: f(y ) Observe y = y if A < y < B ; A if y A ; B if y B (For obs wih y = A or y = B, y is unknown) Log-likelihood funcion: OB = { y observed}; NOB = { y unobserved}, ( ) l =Σ ln ( ) Pr( ) ln Pr( ) T OB f y OB OB +Σ NOB NOB Noe: f(y OB)Pr( OB) = f(y A < y < B)Pr(A < y < B) = [f(y )/Pr(A < y < B)]Pr(A < y < B) = f(y ) lt = ln ( f( y )) + ln( Pr( y A) ) + ln ( Pr( y B) ) A< y < B y = A y = B lt = ln ( f( y) ) + ln ( Pr( y A) ) + ln ( Pr( y B) ) A< y < B y = A y = B Limied_Basic-1

(3) Truncaion Observe y = y iff A < y < B Log-likelihood funcion: pdf of y : g(y ) = f(y A < y < B) = f y Pr( A < y < B) Pr( A< y < B) ( ) f( y) = lt =Σ{ ln( f( y)) ln[pr( A< y <B) } (4) Tobi (A censored model) 1) Laen model: y = x i β + ε, ε ~ N(0,σ ) condiional on x [y ~ N(x β, σ )] ) 3 possible cases: A Observe y = y if y > 0; = 0, oherwise y = max(0, y ) B Observe y = y if y < 0; = 0 oherwise y = min(0, y ) C Observe y = y if y < L ; = L oherwise Limied_Basic-13

3) Log-likelihood for A Pr(y 0 x ) = Pr(x β + ε 0) = Pr(ε -x = Pr(ε /σ -x (β/σ)) f(y ) = Therefore, = Φ[-x (β/σ)] = 1 - Φ[x (β/σ)] 1 ( y exp πσ y > 0 x β ) σ T( βσ, ) = ln f( y) + ln 1 Φ y > 0 y = 0 σ l x β = ln f( y ) + ln 1 Φ y > 0 y = 0 σ { 1 1 } ln( π ) ln( σ) ( y x = σ x β + ln 1 Φ y = 0 σ x β Limied_Basic-14

5) Inerpreaion: (i) E(y x ) = E[laen var (eg, desired consumpion) x ] = x β β j = E y x ( j x ) (ii) E(y x ) = E[observed variable (eg, acual expendiure)] = Pr(y 0)E(y y 0) + Pr(y < 0)E(y y < 0) = Pr(y 0)E(y y 0) + Pr(y < 0)E(0 y < 0) = Φ(x β/σ)e(x β + ε ε -x = Φ(x β/σ)[x β + σλ(x β/σ)] [where λ(x β/σ) = φ(x β/σ)/φ(x β/σ) (inverse Mill s raio)] = Φ(x β/σ)x β + σφ(x β/σ) Shor Digression: Suppose ha ε ~ N(0,σ ) Then, φ( h / σ ) E( ε ε > h) = σ Φ( h / σ ) End of Digression Noe: Condiional on x, E( y ) x β β j x x β β β β j = φ ( x +Φ β j + σ x φ x j σ σ σ σ i σ σ x β =Φ β j σ 6) Esimaion of E(y x) and E(y x) Limied_Basic-15

Le g 1 ( = x β Esimaed E(y ) a sample mean = g ˆ 1( β ) se= GΩ ˆ G, where ˆ ( ˆ g1( β ) Ω= Cov β ) and G1 = = β 1 1 x Le g (β,σ) = x β x β Φ x β + σφ σ σ Esimaed E(y ) a sample mean = g ˆ ( β, ˆ σ ) g x β x β G (β,σ) = = Φ x, φ ( β, σ) σ σ se = Gˆ ˆ Ω G, where ˆ Cov β Ω= σˆ Limied_Basic-16

(5) Truncaion (Maddala, Ch 6) 1) Example 1: Earnings funcion from a sample of poor people (Hausman and Wise, ECON 1979): y = x i β + ε, ε ~ N(0,σ ) condiional on x Observe y = y iff y < L (L = 15 povery line dep on family size) Log-likelihood funcion: pdf of y : g(y x ) = f(y y L, x ) = f y Pr( y L x ) ( x ) Pr(y L ) = ε L x β L x β y L x = x =Φ σ σ σ Pr(, ) Pr L x β ln L = Σ ln( f( y x )) ln Φ σ where f is he normal densiy funcion E y x E y y L ( ) = ( < ) = Ex ( β + ε x β + ε < L) = x β + E( ε ε > ( L x ) = x β E( ε ε > ( L x ) x β L σλ x β σ = Limied_Basic-17

) Example : Observe y = y iff y > L f(y y L, x ) = f(y x )/Pr(y L x ) Pr(y L x β L x ) = 1 - Φ σ L x β lt =Σ ln( f( y x )) ln 1 Φ σ E(y x ) = E(y y L x β L, x ) = x β + σλ σ 3) Link beween Truncaion and Tobi Suppose L = 0 for all in Example, L x β x β x β 1 Φ = 1 Φ =Φ σ σ σ Then, he log-likelihood funcion becomes: 1 1 x β lt =Σ ln( π) ln( σ) ( y ) ln x β Φ σ σ Consider obi Choose observaions wih y > 0 and do runcaion MLE This is he case where we observe y = y iff y > L = 0 The runcaion MLE using he runcaed daa is consisen even if i is inefficien If he esimaion resuls from runcaion and obi MLE are quie differen, i means ha he obi model is no correcly specified Limied_Basic-18

(6) Two-par Model Cragg (ECON, 1971), Lin and Schmid (Review of Economics and Saisics (RESTAT), 1984) 1) Model: y = x β + ε i, where g(ε x,z,v ) = h = z γ + v wih v ~ N(0,1); h = 1 iff h > 0; = 0, oherwise 1 1 exp ε πσ σ and ε > - x x β; β Φ σ 3) Example: y : desired spending on clohing; h : iming o buy Limied_Basic-19

4) Log-likelihood funcion: Noe: g(y x ) = 1 1 exp ( y ) x β πσ σ x β Φ σ ln[ g( y h > 0) Pr( h > 0)] + ln[pr( h < 0)] h = 1 h = 0 g(y h > 0) = g(y ), because ε and v are so indep l T 1 1 ln( π) ln( σ) ( y ) x iβ σ = + x β + ln Φ( z γ ) ln Φ σ 1 1 ln( π) ln( σ) ( y ) x iβ σ = h = 1 x iβ ln Φ σ h = 1 i h = 0 i ( z γ ) ( z γ ) + ln Φ ( ) + ln 1 Φ( ) i h = 1 h = 0 runc for y > 0 + probi for all obs Esimae (β,σ) by runc and γ by probi l Cragg = l runc + l probi i ; Pr(h > 0) = Φ(z γ) [ Φ z γ ] ln 1 ( ) i Limied_Basic-0

Noe: Le z = x If γ = β/σ, Cragg becomes obi!!! 5) LR es for obi specificaion STEP 1: Do obi and ge l obi STEP : Do runc using observaions wih y > 0 and ge l runc STEP 3: Do probi using all observaions, and ge l probi STEP 4: l cragg = l runc + l probi STEP 5: LR = [l cragg - l obi ] d χ (k) Limied_Basic-1

[3] Selecion Model Heckman, ECON, 1979 Moivaion: Model of ineres: y 1 = x 1 β 1 + ε 1 Observe y 1 (or/and x 1, ) under a cerain condiion ( selecion rule ) Example: Observe a woman s marke wage if she works Complee Model: y 1 = x 1 β 1 + ε 1, y = x β + ε y = 1 if y > 0; = 0 if y < 0 We observe y 1 iff y = 1 (x mus be observable for any ) Assumpions: Condiional on ( x 1, x ), ε1 0 σ1 σ1 ~ N, ε 0 σ1 σ Limied_Basic-

Theorem: Suppose: h1 0 σ1 σ1 ~ N, h 0 σ1 σ φ( a) Then, E(h 1 h > -a) = σ1 Φ ( a) Facs: Condiional on ( x 1, x ) E( ε y > 0) = E( ε ε > x β ) = σ λ( x β ), 1 1 1 φ( x where λ( x = Φ( x β ) λ [inverse Mill s raio] E( y y > 0) = x β + E( ε ε > x β ) = x β + σ λ( x β ) 1 1 1 1 1 1 1 y = x + σ λ + v, 1 1β1 1 where Ev ( ε > x = 0; var( > ) ξ ; v ε xβ σ1 ξ = σ [( x β ) λ + λ ] 1 Two-Sep Esimaion: STEP 1: Do probi for all, and ge ˆ ( ˆ ) β, and ˆ φ x β λ = Φ( x ˆ β ) STEP : Do OLS on y ˆ 1 = x 1β1+ σ1λ + η, and ge ˆ β 1 and ˆ σ 1 Limied_Basic-3

Facs on he Two-Sep Esimaor: Consisen -es for H o : σ 1 = 0 (no selecion) in STEP is he LM es (Melino, Review of Economic Sudies, 198) Bu all oher -ess are wrong!!! s (XX) -1 is inconsisen So, have o compue correced covariance marix [See, Heckman (1979, Econ), Greene (1981, Econ)] Someimes, correced covariance marix is no compuable (Greene, Econ, 1981) Covariance Marix of he Two-Sep Esimaor: Le Ω= ˆ Cov( ˆ y1 = x1 β1+ σ1λ + v y = x β + σ ˆ λ + [ σ ( ˆ λ λ ) + v ] 1 1 1 1 1 Shor Digression: By Taylor expansion around he rue value of β, ˆ ˆ λ( x β ) λ = λ( x β ) λ( x β ) + ( ˆ β β ) End of Digression β Limied_Basic-4

( ˆ β1 y1 1 ) ˆ ˆ = x λ + h ( β + v = z γ + [ h ( β + v], σ 1 where h = σ [( x β ) λ + λ ] x 1 In marix noaion, y 1 = Zγ + [H( ˆ β β ) + v] ˆ γ ( ) 1 TS = ZZ Zy1 = ZZ Z Zγ + H ˆ β β + v 1 ( ) ( ( ) ) = γ + ( Z Z) ZH ( ˆ β β ) + ( ZZ ) Z v 1 1 Can show ha (βˆ and v are uncorrelaed Then, inuiively, Cov ˆ γ ) = Cov[(ZZ) -1 ZH( ˆ β β ) + (ZZ) -1 Zv] ( TS = Cov[(ZZ) -1 ZH( ˆ β β )] + Cov[(ZZ) -1 Zv] = (ZZ) -1 ZHCov( ˆ β HZ(ZZ) -1 + (ZZ) -1 ZCov(v)Z(ZZ) -1 = (ZZ) -1 ZHΩHZ(ZZ) -1 + (ZZ) -1 ZΠZ(ZZ) -1, where Π = diag( π1,, π T ) (ZZ) -1 Z HˆΩ ˆ H ˆ Z(ZZ) -1 + (ZZ) -1 Z Π Z(ZZ) -1, where esimaed H 1 Π= diag( vˆ,, vˆ ) and Ĥ is an T Limied_Basic-5

MLE (which is more efficien han wo-sep esimaor) Condiional on ( x 1, x ) Pr(y 1 is no observed) = Pr(y < 0) = Pr( y < 0) = 1 Φ ( x β ) Pr(y 1 is observed) = Pr( y > 0) =Φ ( x f(y 1 y 1 is observed) = f(y 1 y 0) = 1 ( y1 x 1β1) exp πσ σ 1 1 1 1 1 1 1 1 Φ σ1 σ1 σ x β + ( σ / σ )( y x β ) Φ( x β ) l T = y 1 observed ln[ f ( y y is observed) Pr( y is observed) 1 1 1 + ln Pr( y is no observed ) y 1 is no observed 1 Limied_Basic-6