Ηλεκτρονικοί Υπολογιστές I
|
|
- Θεοφάνια Λειβαδάς
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές I Ο τέλειος ανταγωνισμός, υπολογισμοί με το Maxima Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης
2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς.
3 Λειτουργία της επιχείρησης στον τέλειο ανταγωνισμό Υπολογισμοί με το Maxima ΜΗ ΕΙΝΑΙ ΒΑΣΙΛΙΚΗΝ ΑΤΡΑΠΟΝ ΕΠΙ ΓΕΩΜΕΤΡΙΑΝ Αθανάσιος Σταυρακούδης 9 Δεκεμβρίου / 34
4 Επισκόπηση 1 1 Νεκρό σημείο 2 Μεγιστοποίηση 3 Τιμή και οριακό έσοδο 4 Τιμή άνω του κόστους 5 Τιμή κάτω του κόστους 2 / 34
5 Ανάλυση νεκρού σημείου 3 / 34
6 Παράδειγμα νεκρού σημείου Ολικό έσοδο Ας υποθέσουμε πως η επιχείρηση πουλά τον προϊόν της προς 8 χρηματικές μονάδες. Τότε το ολικό έσοδο (Total Revenue) της επιχείρησης είναι: TR(q) = p q = 8 q όπου q είναι η ποσότητα του παραγόμενου προϊόντος. Συνάρτηση ολικού κόστους Εστω πως η συνάρτηση ολικού κόστους παραγωγής είναι: TC(q) = q 0.01 q q 3 4 / 34
7 Επίλυση νεκρού σημείου 1 TC(q) := *q *q^ *q^3; 2 TR(q) := 8*q; 3 solve(tc(q)=tr(q), q); 4 realroots(tc(q)=tr(q)); 5 plot2d([tc(q), TR(q)], 6 [q, 0, 60], [y, 0, 600], 7 [xlabel, "q"], [ylabel, "Cost"], 8 [style, [lines, 2,1], [lines, 8,2]], 9 [legend, "TC", "TR"], 10 [gnuplot_preamble, "set grid; set key bottom;"]); 5 / 34
8 Επισκόπηση 2 1 Νεκρό σημείο 2 Μεγιστοποίηση 3 Τιμή και οριακό έσοδο 4 Τιμή άνω του κόστους 5 Τιμή κάτω του κόστους 6 / 34
9 Η καμπύλη κέρδους 7 / 34
10 Η συνάρτηση κέρδους π Η συνάρτηση κέρδους TR(q) = p q = 8 q TC(q) = q 0.01 q q 3 Μεγιστοποίηση κέρδους π(q) = TR(q) TC(q) = q q q 3 Στο σημείο όπου TR(q) = TC(q) ισχύει π = 0, το κέρδος είναι μηδενικό. Σε ποιο σημείο μεγιστοποιείται το κέρδος; 8 / 34
11 Επίλυση μεγιστοποίησης κέρδους 1 TC(q) := *q *q^ *q^3; 2 TR(q) := 8*q; 3 pi(q) := (TR(q) - TC(q)); 4 pi1(p) := (diff(pi(q), q)); 5 sol : solve(pi1(q)=0, q); 6 if rhs(sol[1])>0 then 7 q0 : rhs(sol[1]) 8 else 9 q0 : rhs(sol[2]); 10 pi2(q) := (diff(pi(q), q, 2)); 11 mpr : pi2(q0), numer; 12 if (mpr<0) then "maximum found"; 9 / 34
12 Επισκόπηση 3 1 Νεκρό σημείο 2 Μεγιστοποίηση 3 Τιμή και οριακό έσοδο 4 Τιμή άνω του κόστους 5 Τιμή κάτω του κόστους 10 / 34
13 Οριακό έσοδο Το οριακό έσοδο είναι η μεταβολή του ολικού εσόδου ως προς τη μεταβολή του προϊόντος: MR(q) = dtr(q) dq (1) Επειδή στον τέλειο ανταγωνισμό η επιχείρηση είναι λήπτης τιμών από την αγορά, η συνάρτηση ολικού εσόδου είναι συνήθως γραμμική ως προς την ποσότητα με συντελεστή την τιμή: TR(q) = p q (2) όποτε το οριακό έσοδο είναι η τιμή της αγοράς: MR(q) = dtr(q) dq = p (3) Δηλαδή το οριακό έσοδο είναι ίσο με την τιμή της αγοράς. 11 / 34
14 Οριακό έσοδο και καμπύλη κέρδους 12 / 34
15 Τομή των καμπυλών οριακού κόστους και οριακού κέρδους 1 TC(q) := *q *q^ *q^3; 2 TR(q) := 8*q; 3 pi(q) := (TR(q) - TC(q)); 4 MR(q) := (diff(tr(q), q)); 5 MC(q) := (diff(tc(q), q)); 6 sol : solve(mc(q)=mr(q), q); 7 if rhs(sol[1])>0 then q0 : rhs(sol[1]) 8 else q0 : rhs(sol[2]); 9 plot2d([mc(q), MR(q), pi], 10 [q, 0, 60], [y, -20, 80], 11 [xlabel, "q"], [ylabel, "Cost or Revenue"], 12 [style, [lines, 2,1], [lines, 4,2], [lines, 8,3]], 13 [legend, "MC ", "MR ", "pi "], 14 [gnuplot_preamble, "set grid; set key left;"]); 13 / 34
16 Επισκόπηση 4 1 Νεκρό σημείο 2 Μεγιστοποίηση 3 Τιμή και οριακό έσοδο 4 Τιμή άνω του κόστους 5 Τιμή κάτω του κόστους 14 / 34
17 Τιμή και μέσο ολικό κόστος Το κέρδος ισούται με το ολικό έσοδο μείον το ολικό κόστος: π(q) = TR(q) TC(q) Πολλαπλασιάζοντας και διαιρώντας με την ποσότητα q: ( TR(q) π(q) = TC(q) ) q q q Ισχύει: Επομένως: TR(q) q = p TC(q) q = ATC(q) π(q) = (p ATC(q)) q 15 / 34
18 Τιμή και καμπύλες κόστους 16 / 34
19 Ορισμοί των συναρτήσεων στο Maxima (1) Βήμα 1: Συναρτήσεις σταθερού, μεταβλητού και ολικού κόστους FC = 40 VC = 3 q 0.01 q q 3 TC = FC + VC 17 / 34
20 Ορισμοί των συναρτήσεων στο Maxima (1) Βήμα 1: Συναρτήσεις σταθερού, μεταβλητού και ολικού κόστους FC = 40 VC = 3 q 0.01 q q 3 TC = FC + VC 1 FC(q) : 40; 2 VC(q) := 3*q *q^ *q^3; 3 TC(q) := (FC(q) +VC(q)); 18 / 34
21 Ορισμοί των συναρτήσεων στο Maxima (2) Βήμα 2: συναρτήσεις μέσου μεταβλητού, μέσου ολικού και οριακού κόστους ATC = TC q AVC = VC q MC = dtc dq 19 / 34
22 Ορισμοί των συναρτήσεων στο Maxima (2) Βήμα 2: συναρτήσεις μέσου μεταβλητού, μέσου ολικού και οριακού κόστους ATC = TC q AVC = VC q MC = dtc dq 1 ATC(q) := (TC(q)/q); 2 AVC(q) := (VC(q)/q); 3 MC(q) := (diff(tc(q), q)); 20 / 34
23 Ορισμοί των συναρτήσεων στο Maxima (3) Βήμα 3: συναρτήσεις ολικού και οριακού κέρδους TR = p 0 q MR = dtr dq 21 / 34
24 Ορισμοί των συναρτήσεων στο Maxima (3) Βήμα 3: συναρτήσεις ολικού και οριακού κέρδους TR = p 0 q MR = dtr dq 1 TR(q) := (p0*q); 2 MR(q) := (diff(tr(q), q)); 22 / 34
25 Υπολογισμός της λύσης Βήμα 4: Υπολογισμός της λύσης Λύνουμε την εξίσωση: MC = MR q q + 3 = 8 23 / 34
26 Υπολογισμός της λύσης Βήμα 4: Υπολογισμός της λύσης Λύνουμε την εξίσωση: MC = MR q q + 3 = 8 1 sol : solve(mc(q)=mr(q), q); 2 if rhs(sol[1])>0 then 3 q0 : rhs(sol[1]) 4 else 5 q0 : rhs(sol[2]); 24 / 34
27 Μέσο κόστος και ποσοστό κέρδους Maxima (5) Βήμα 5: Μέσο κόστος και ποσοστό κέρδους ανά μονάδα προϊόντος ATC(q 0 ) μέσο κόστος στο σημείο q = q 0 p 0 ATC(q 0 ) 100 p 0 ποσοστό κέρδους στο σημείο q = q 0 1 p1 : ATC(q0); 2 (p0-atc(q0))/p0 * 100; 3 (p0-p1))/p0 * 100; 25 / 34
28 Το γράφημα 1 pp: [[0,0],[q0,p0], [q0,0], [0, p0], [0,ATC(q0)], 2 [q0, ATC(q0)]]; 3 plot2d([atc(q), AVC(q), MC(q), MR(q), [discrete, pp]], 4 [q, 0, 60], [y, 0, 15], [legend, ""], 5 [xlabel, "q"], [ylabel, "Cost or Revenue"], 6 [style, [lines, 2,1], [lines, 4,2], [lines, 8,3], 7 [lines, 2, 4], [points, 3,-1,1]], 8 [gnuplot_preamble, "set key bottom; 9 set label ATC at 53, 10; 10 set label AVC at 50, 7; 11 set label MC at 44, 13; 12 set label MR at 43, 8.5; 13 set label A at 1,6.3; set label O at 1, 0.5;"]); 26 / 34
29 Επισκόπηση 5 1 Νεκρό σημείο 2 Μεγιστοποίηση 3 Τιμή και οριακό έσοδο 4 Τιμή άνω του κόστους 5 Τιμή κάτω του κόστους 27 / 34
30 Λειτουργία της επιχείρησης με ζημία Μερικές παρατηρήσεις Μια επιχείρηση μπορεί να επιλέξει να λειτουργεί με ζημία κάποιο διάστημα (βραχυχρόνια) όταν περιμένει να κάνει κέρδη στο μέλλον (μακροχρόνια). Ενα εστιατόριο δεν κλείνει ως επιχείρηση επειδή μία μέρα λειτούργησε με ζημία. Μια αεροπορική εταιρεία δεν κλείνει επειδή για ένα μήνα εμφάνισε ζημία. Ενα παραλιακό ξενοδοχείο κλείνει προσωρινά τη χειμερινή περίοδο. Ενα θέατρο παραμένει κλειστό κάποιες μέρες της εβδομάδας. 28 / 34
31 Τιμή κάτω του κόστους; Εστω πως ισχύει: Τότε: p 0 = 5 FC(q) = 40 VC(q) = 3 q 0.01 q q 3 TC(q) = FC(q) + VC(q) Σε ποια ποσότητα προϊόντος ελαχιστοποιείται η ζημία της επιχείρησης; 29 / 34
32 Γράφημα αρνητικού κέρδους 30 / 34
33 Η τιμή της αγοράς είναι κάτω από το μέσο ολικό κόστος 31 / 34
34 Σταδιακή λύση στο Maxima Βήμα 1: Δεδομένα του προβλήματος 1 q0 : 5; 2 FC(q) : 40; 3 VC(q) := 3*q *q^ *q^3; Βήμα 2: Παράγωγες συναρτήσεις 1 TC(q) := (FC(q) +VC(q)); 2 TR(q) := (p0*q); 3 ATC(q) := (TC(q)/q); 4 AVC(q) := (VC(q)/q); Βήμα 3: Συναρτήσεις κέρδους και οριακού εσόδου 1 pi(q) := (TR(q) - TC(q)); 32 / 34
35 Υπολογισμός της λύσης ελαχιστοποίησης ζημίας Βήμα 4: Υπολογισμός της λύσης 1 sol : solve(mc(q)=mr(q), q); 2 if rhs(sol[1])>0 then 3 q0 : rhs(sol[1]) 4 else 5 q0 : rhs(sol[2]); Βήμα 5: Διαφορά τιμής 1 p1 : ATC(q0); 2 pi(q0); 3 p0-p1; 33 / 34
36 Το γράφημα 1 pp: [[0,0],[q0,p0], [q0,0], [0, p0], [0,ATC(q0)], 2 [q0, ATC(q0)]]; 3 plot2d([atc(q), AVC(q), MC(q), MR(q), 4 [discrete, pp]], 5 [q, 0, 60], [y, 0, 15], 6 [xlabel, "q"], [ylabel, "Loss or Revenue"], 7 [style, 8 [lines, 2,1], [lines, 4,2], [lines, 8,3], 9 [lines, 2, 4],[points, 3,-1,1]], 10 [legend, ""], 11 [gnuplot_preamble, "set key bottom; 12 set label ATC at 53, 10; 13 set label AVC at 50, 7; 14 set label MC at 44, 13; set label O at 1, 0.5;"]); 34 / 34
37 Τέλος Ενότητας
38 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Ιωαννίνων» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.
39 Σημειώματα
40 Σημείωμα Ιστορικού Εκδόσεων Έργου Το παρόν έργο αποτελεί την έκδοση 1.0. Έχουν προηγηθεί οι κάτωθι εκδόσεις: Έκδοση 1.0 διαθέσιμη εδώ.
41 Σημείωμα Αναφοράς Copyright Πανεπιστήμιο Ιωαννίνων, Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης. «Ηλεκτρονικοί Υπολογιστές IV. Ο τέλειος ανταγωνισμός, υπολογισμοί με το Maxima». Έκδοση: 1.0. Ιωάννινα Διαθέσιμο από τη δικτυακή διεύθυνση:
42 Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά Δημιουργού - Παρόμοια Διανομή, Διεθνής Έκδοση 4.0 [1] ή μεταγενέστερη. [1]
Λειτουργία της επιχείρησης στον τέλειο ανταγωνισμό Υπολογισμοί με το Maxima ΜΗ ΕΙΝΑΙ ΒΑΣΙΛΙΚΗΝ ΑΤΡΑΠΟΝ ΕΠΙ ΓΕΩΜΕΤΡΙΑΝ Αθανάσιος Σταυρακούδης http://stavrakoudis.econ.uoi.gr 9 Δεκεμβρίου 2013 1 / 34 Επισκόπηση
Ηλεκτρονικοί Υπολογιστές I
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές I Η μονοπωλιακή αγορά, υπολογισμοί με το Maxima Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό
Η Μονοπωλιακή Αγορά Υπολογισμοί με το Maxima ΜΗ ΕΙΝΑΙ ΒΑΣΙΛΙΚΗΝ ΑΤΡΑΠΟΝ ΕΠΙ ΓΕΩΜΕΤΡΙΑΝ Αθανάσιος Σταυρακούδης http://stavrakoudis.econ.uoi.gr 1 / 33 Οι τσίχλες δίπλα από το ταμείο Ερώτημα Γιατί σε όλα
Ηλεκτρονικοί Υπολογιστές I
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές I Ισορροπία της αγοράς Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Ηλεκτρονικοί Υπολογιστές I
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές I Παραγώγιση και ολοκλήρωση συναρτήσεων με το Maxima Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν
Ηλεκτρονικοί Υπολογιστές I
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές I Ελαστικότητα και εφαρμογές Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Ηλεκτρονικοί Υπολογιστές I
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές I Γραφικές παραστάσεις με το Maxima Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό
Μικροοινομική Ανάλυση Ι
Μικροοινομική Ανάλυση Ι Δομή της αγοράς Τέλειος Ανταγωνισμός και Ισορροπία της επιχείρησης στη βραχυχρόνια περίοδο Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι
Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής
Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Διάλεξη 14: Προσφορά επιχείρησης Ανδρέας Παπανδρέου Σχολή Οικονομικών και Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Προσφορά επιχείρησης
ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ 2 Ενότητα #4: Επιχειρήσεις σε ανταγωνιστικές αγορές
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ 2 Ενότητα #4: Επιχειρήσεις σε ανταγωνιστικές αγορές Διδάσκων: Μανασάκης Κωνσταντίνος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Τα κείμενα και τα διαγράμματα της
Μικροοινομική Ανάλυση Ι
Μικροοινομική Ανάλυση Ι Δομή της αγοράς Βραχυχρόνια καμπύλη προσφοράς, πλεόνασμα παραγωγού και μακροχρόνια ισορροπία στον Τέλειο Ανταγωνισμό Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης
Ηλεκτρονικοί Υπολογιστές IV
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Απλό παράδειγμα προσομοίωσης χρηματιστηρίου Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό
Ηλεκτρονικοί Υπολογιστές I
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές I Ανάλυση δεδομένων με συναρτήσεις βάσης δεδομένων και συναρτήσεις αναζήτησης και αναφοράς με το Excel/Calc Διδάσκων: Επίκουρος
Σχεδιασμός συγκοινωνιακών έργωνοικονομικά
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Αγρονό ων Το ογράφων Μηχανικών ΕΜΠ Εργαστήριο Συγκοινωνιακής Τεχνικής Σχεδιασμός συγκοινωνιακών έργωνοικονομικά στοιχεία ΠΡΟΣΦΟΡΑ ΚΑΙ ΚΟΣΤΟΣ Κωνσταντίνος Αντωνίου Ανα
Μικροβιολογία & Υγιεινή Τροφίμων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μικροβιολογία & Υγιεινή Τροφίμων Μικροοργανισμοί που ελέγχονται ανά είδος τροφίμου Διδάσκοντες: Καθ. Χρυσάνθη Παπαδοπούλου, Λέκτορας Ηρακλής Σακκάς Άδειες
Μικροοινομική Ανάλυση Ι
Μικροοινομική Ανάλυση Ι Δομή της αγοράς Σκοπός της επιχείρησης, Δομή της Αγοράς, Μεγιστοποίηση Κερδών Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Μικροοικονομική. Ενότητα 11 : Κόστος παραγωγής Καραμάνης Κωνσταντίνος
1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Μικροοικονομική Ενότητα 11 : Κόστος παραγωγής Καραμάνης Κωνσταντίνος 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Λογιστικής και χρηματοοικονομικής
ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ «ΤΕΛΕΙΟΣ ΑΝΤΑΓΩΝΙΣΜΟΣ» Ακαδημαϊκό Έτος
ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ «ΤΕΛΕΙΟΣ ΑΝΤΑΓΩΝΙΣΜΟΣ» Δρ.Αριστέα Γκάγκα Ακαδημαϊκό Έτος 2017 2018 ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΜΟΡΦΕΣ ΑΓΟΡΑΣ: Τέλειος Ανταγωνισμός 2 Μορφές
Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής
Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Διάλεξη 13: Καμπύλες κόστους Ανδρέας Παπανδρέου Σχολή Οικονομικών και Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Μορφές καμπυλών κόστους Καμπύλη
Τέλειος Ανταγωνισµός
Τέλειος Ανταγωνισµός Χαρακτηριστικά του τέλειου ανταγωνισµού: Πολλές µικρές επιχειρήσεις, καθεµία ασήµαντη σε σχέση µε τον κλάδο ως σύνολο Οµοιογενή προϊόντα Οι καταναλωτές έχουν τέλεια πληροφόρηση. Ελευθερία
Οικονομία των ΜΜΕ. Ενότητα 7: Μορφές αγοράς και συγκέντρωση των ΜΜΕ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Οικονομία των ΜΜΕ Ενότητα 7: Μορφές αγοράς και συγκέντρωση των ΜΜΕ Γιώργος Τσουρβάκας, Αναπληρωτής Καθηγητής Τμήμα Δημοσιογραφίας και
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνδυαστική Ανάλυση Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Πιθανότητες Συνδυαστική Ανάλυση Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ. Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης
Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ Ενότητα: Παράγωγοι και ολοκληρώματα Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Τμήμα: Οικονομικών Επιστημών Ολοκληρώματα με το πρόγραμμα Maima Αθανάσιος
Μικροοικονομική Ανάλυση Ι
Μικροοικονομική Ανάλυση Ι Δομή της αγοράς Ισορροπία της Μονοπωλιακής επιχείρησης Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση της βραχυχρόνιας
Ηλεκτρονικοί Υπολογιστές I
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές I Λογικές συναρτήσεις και λογικοί έλεγχοι με το Excel/Calc Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης
Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 3: Κλασικά Υποδείγματα της Διεθνούς Οικονομικής Θεωρίας (Heckscher-Ohlin model) Γρηγόριος
Παραγώγιση συναρτήσεων με το πρόγραμμα Maxima ΜΗ ΕΙΝΑΙ ΒΑΣΙΛΙΚΗΝ ΑΤΡΑΠΟΝ ΕΠΙ ΓΕΩΜΕΤΡΙΑΝ Αθανάσιος Σταυρακούδης http://stavrakoudis.econ.uoi.gr 14 Νοεμβρίου 2013 1 / 27 Συνέχεια συνάρτησης f (x) f (x) =
Ηλεκτρονικοί Υπολογιστές I
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές I Χρησιμότητα και εφαρμογές, μεγιστοποίηση χρησιμότητας με τη μέθοδο Lagrange Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης
Οικονομικά της Ενέργειας
Οικονομικά της Ενέργειας Ενότητα 2: Εισαγωγική διάλεξη για μηοικονομολόγους ΙΙ Κωνσταντίνος Κουνετάς Διοίκησης Επιχειρήσεων Τμήμα Οικονομικών Επιστημών 1 Σκοποί ενότητας Κατανόηση βασικών οικονομικών εννοιών
Μικροοικονομική. Ενότητα 7: Κόστος Παραγωγής. Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)
Μικροοικονομική Ενότητα 7: Κόστος Παραγωγής Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Εισαγωγή στην Οικονομική Επιστήμη Ι. Επιχειρήσεις σε ανταγωνιστικές αγορές. Αρ. Διάλεξης: 09
Εισαγωγή στην Οικονομική Επιστήμη Ι Επιχειρήσεις σε ανταγωνιστικές αγορές Αρ. Διάλεξης: 09 Τι είναι ανταγωνιστική αγορά; Η ανταγωνιστική αγορά έχει πολλούς αγοραστές/καταναλωτές και πολλούς παραγωγούς/επιχειρήσεις
ΤΙ ΕΙΝΑΙ ΑΝΤΑΓΩΝΙΣΤΙΚΗ ΑΓΟΡΑ
14 EΠΙΧΕΙΡΗΣΕΙΣ ΣΕ ΑΝΤΑΓΩΝΙΣΤΙΚΕΣ ΑΓΟΡΕΣ ΤΙ ΕΙΝΑΙ ΑΝΤΑΓΩΝΙΣΤΙΚΗ ΑΓΟΡΑ Μια ανταγωνιστική αγορά έχει τα ακόλουθα χαρακτηριστικά : Υπάρχουν πολλοί αγοραστές και πολλοί πωλητές στην αγορά. Τααγαθάπουπροσφέρονταιαπότους
Ηλεκτρονικοί Υπολογιστές IV
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Στο καζίνο με Κεφαλή ή Γράμματα Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ
ΜΑΘΗΜΑ / ΤΑΞΗ : ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Ομάδα Α Α1. Αύξηση της ζήτησης και μείωση της προσφοράς, είναι δυνατό να μη μεταβάλλει την τιμή ισορροπίας. Α2. Η αβεβαιότητα
Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής
Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Διάλεξη 11: Μεγιστοποίηση κέρδους Ανδρέας Παπανδρέου Σχολή Οικονομικών και Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Οικονομικό κέρδος Μια
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 7: ΑΣΚΗΣΕΙΣ ΜΕΓΕΘΟΥΣ ΕΠΙΧΕΙΡΗΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Μικροοικονομία. Ενότητα 7: Μορφές Αγοράς Συμπεριφορά Επιχείρησης στον Πλήρη Ανταγωνισμό. Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής
Μικροοικονομία Ενότητα 7: Μορφές Αγοράς Συμπεριφορά Επιχείρησης στον Πλήρη Ανταγωνισμό Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Οικονομετρία. Εξειδίκευση του υποδείγματος. Μορφή της συνάρτησης: Πολυωνυμική, αντίστροφη και αλληλεπίδραση μεταβλητών
Οικονομετρία Εξειδίκευση του υποδείγματος Μορφή της συνάρτησης: Πολυωνυμική, αντίστροφη και αλληλεπίδραση μεταβλητών Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι
Ηλεκτρισμός & Μαγνητισμός
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρισμός & Μαγνητισμός Αυτεπαγωγή Διδάσκων : Επίκ. Καθ. Ν. Νικολής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Ιστορία της μετάφρασης
ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Μεταφραστές και πρωτότυπα. Ελένη Κασάπη ΤΜΗΜΑ ΑΓΓΛΙΚΗΣ ΓΛΩΣΣΑΣ ΚΑΙ ΦΙΛΟΛΟΓΙΑΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 3: Μη γραμμικές συναρτήσεις (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 3: Μη γραμμικές συναρτήσεις (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων
Μικροοικονομική. Ενότητα 8: Τέλειος Ανταγωνισμός. Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)
Μικροοικονομική Ενότητα 8: Τέλειος Ανταγωνισμός Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Μικροοικονομική Ανάλυση Ι
Μικροοικονομική Ανάλυση Ι Θεωρία της Παραγωγής Παραγωγή στη βραχυχρόνια περίοδο Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση της έννοιας
ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ 2
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ 2 Ενότητα #5: Επιχειρήσεις σε ανταγωνιστικές αγορές (2) Διδάσκων: Μανασάκης Κωνσταντίνος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Τα κείμενα και τα διαγράμματα
Ηλεκτρονικοί Υπολογιστές IV
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Εισαγωγή στη βελτιστοποίηση Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Εφαρμοσμένη Στατιστική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Διαστήματα εμπιστοσύνης Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Η ακόλουθη συνάρτηση συνδέει συνολικό κόστος TC και παραγόμενη ποσότητα Q: TC = Q + 3Q 2
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΔΕΟ13 ΑΣΚΗΣΗ 1 [Μέρος Α] Η ακόλουθη συνάρτηση συνδέει συνολικό κόστος TC και παραγόμενη ποσότητα : TC = 000 +10 + 3 (A)Γράψτε τις συναρτήσεις του Οριακού Κόστους (Marginal Cost
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Εισαγωγή Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Πιθανότητες Εισαγωγή Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Μικροοικονομία. Ενότητα 6: Θεωρία Κόστους Παραγωγής. Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής
Μικροοικονομία Ενότητα 6: Θεωρία Κόστους Παραγωγής Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους
Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Ηλεκτρονικοί Υπολογιστές IV
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Εισαγωγή στα δυναμικά συστήματα Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Επιχειρησιακή Έρευνα
Επιχειρησιακή Έρευνα Ενότητα 8: Επίλυση με τη μέθοδο Simplex (2 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)
Ηλεκτρονικοί Υπολογιστές I
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές I Κατανομές και έλεγχοι υποθέσεων με τη γλώσσα R Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν
Οικονομία των ΜΜΕ. Ενότητα 9: Εταιρική διασπορά και στρατηγικές τιμολόγησης
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Εταιρική διασπορά και στρατηγικές τιμολόγησης Γιώργος Τσουρβάκας, Αναπληρωτής Καθηγητής Τμήμα Δημοσιογραφίας και ΜΜΕ Σχολή
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 11: Διανύσματα (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων &
Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1)
Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Μικροοικονομική Ανάλυση Ι
Μικροοικονομική Ανάλυση Ι Δομή της αγοράς Μονοπώλιο και Διάκριση Τιμών Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση της έννοιας της διάκρισης
Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1
Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας Ενότητα 7η: Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Εφαρμοσμένη Στατιστική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Περιγραφική Στατιστική Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Προσφορά επιχείρησης
Προσφορά επιχείρησης Πώς αποφασίζει μια επιχείρηση για το πόσο θα παράγει; Αυτό εξαρτάται από: Την τεχνολογία της επιχείρησης Το περιβάλλον της αγοράς Τις επιδιώξεις της Τη συμπεριφορά των ανταγωνιστών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 10: Συστήματα γραμμικών εξισώσεων (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση Συγχώνευση & απαρίθμηση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης
ΟΙΚΟΝΟΜΙΚΗ ΤΗΣ ΕΠΙΚΟΙΝΩΝΙΑΣ
ΟΙΚΟΝΟΜΙΚΗ ΤΗΣ ΕΠΙΚΟΙΝΩΝΙΑΣ v.1.0 Τα βασικότερα εργαλεία της Οικονομικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο "Ανοικτά Ακαδημαϊκά
Βέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 7: Βέλτιστος έλεγχος συστημάτων διακριτού χρόνου Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα
Μικροοικονομική Ανάλυση Ι
Μικροοικονομική Ανάλυση Ι Θεωρία του κόστους Συνάρτηση και καμπύλες κόστους στη μακροχρόνια περίοδο Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση
Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Κριτήρια Σύγκλισης Σειρών Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΑΝΑΠΤΥΓΜΑ ΑΝΑΛΥΤΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΣΕ ΣΕΙΡΕΣ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης
Εκκλησιαστικό Δίκαιο
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 11η: Οργανισμοί της Εκκλησίας της Ελλάδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ
ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ Ενότητα 3: «ΑΝΑΛΥΣΗ ΝΕΚΡΟΥ ΣΗΜΕΙΟΥ» ΚΥΡΙΑΖΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ Τμήμα ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Γενικά Μαθηματικά Ι. Ενότητα 7: Σειρές Taylor, Maclaurin. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 7: Σειρές Taylor, Maclaurin Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συναρτήσεις πολλών μεταβλητών Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Πιθανότητες Συναρτήσεις πολλών μεταβλητών Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2005 ΟΜΑΔΑ Δ Δίνεται ο παρακάτω πίνακας που αναφέρεται στην παραγωγή και στο κόστος παραγωγής ενός αγαθού που παράγεται από την επιχείρηση
Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας Ενότητα 10η: Απεσταλμένοι του Ρωμαίου Ποντίφικα και Ρωμαϊκή Κουρία Κυριάκος Κυριαζόπουλος
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Μικροοικονομική. Ενότητα 9:Παραγωγική διαδικασία Καραμάνης Κωνσταντίνος
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Μικροοικονομική Ενότητα 9:Παραγωγική διαδικασία Καραμάνης Κωνσταντίνος 1 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Λογιστικής και χρηματοοικονομικής
Οικονομετρία. Πολλαπλή Παλινδρόμηση. Στατιστικός έλεγχος γραμμικού συνδυασμού συντελεστών. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης
Οικονομετρία Πολλαπλή Παλινδρόμηση Στατιστικός έλεγχος γραμμικού συνδυασμού συντελεστών Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση της
Εφαρμοσμένη Στατιστική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Περιγραφική Στατιστική Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.4: Ολοκλήρωση με Αντικατάσταση Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής
Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Διάλεξη 12: Ελαχιστοποίηση κόστους Ανδρέας Παπανδρέου Σχολή Οικονομικών και Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Ελαχιστοποίηση κόστους
Γενικά Μαθηματικά Ι. Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης. Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση - Συγχώνευση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν
Ηλεκτρονικοί Υπολογιστές I
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές I Ανάλυση δεδομένων με συναρτήσεις βάσης δεδομένων και συναρτήσεις αναζήτησης και αναφοράς με το Excel/Calc Διδάσκων: Επίκουρος
Εργαστήριο Χημείας Ενώσεων Συναρμογής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εργαστήριο Χημείας Ενώσεων Συναρμογής Ενότητα 9: Μέτρηση Αγωγιμότητας Διαλυμάτων Περικλής Ακρίβος Άδειες Χρήσης Το παρόν εκπαιδευτικό
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 7: Παράγωγος, ελαστικότητα, παραγώγιση συναρτήσεων (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης
Εκκλησιαστικό Δίκαιο
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8η: Ο νέος αντιρατσιστικός νόμος και ο ν.4301/2014 Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διάλεξη 14. Προσφορά επιχείρησης
Προσφορά επιχείρησης Διάλεξη 14 Προσφορά επιχείρησης Πώς αποφασίζει µια επιχείρηση για το πόσο θα παραγάγει; Αυτό εξαρτάται από: Την τεχνολογία της επιχείρησης Το περιβάλλον της αγοράς Τις επιδιώξεις της
Οικονομετρία. Συστήματα συναληθευουσών εξισώσεων Το πρόβλημα της ταυτοποίησης. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης. Διδάσκων: Λαζαρίδης Παναγιώτης
Οικονομετρία Συστήματα συναληθευουσών εξισώσεων Το πρόβλημα της ταυτοποίησης Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση του προβλήματος
Εργαστήριο Χημείας Ενώσεων Συναρμογής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εργαστήριο Χημείας Ενώσεων Συναρμογής Ενότητα 4: Τοποθέτηση d ηλεκτρονίων σε οκτάεδρα Σύμπλοκα Περικλής Ακρίβος Άδειες Χρήσης Το παρόν
Ηλεκτρισμός & Μαγνητισμός
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρισμός & Μαγνητισμός Επίλυση κυκλωμάτων εναλλασομένου ρεύματος Διδάσκων : Επίκ. Καθ. Ν. Νικολής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Οικονομικά για Μη Οικονομολόγους Ενότητα 3: Θεωρία Παραγωγής και Κόστους
Οικονομικά για Μη Οικονομολόγους Ενότητα 3: Καθηγητής: Κώστας Τσεκούρας Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Οικονομικών Επιστημών Σκοποί ενότητας Στην ενότητα αυτή παρουσιάζονται βασικά στοιχεία
Ηλεκτρονικοί Υπολογιστές IV
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Το μοντέλο Cobweb για την δυναμική των τιμών Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ Ενότητα # 17: Ταχύτητα Αντιδράσεων Ακρίβος Περικλής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε