ΑΠΑΝΤΗΣΕΙΣ ΕΡΩΤΗΣΕΩΝ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΑΠΑΝΤΗΣΕΙΣ ΕΡΩΤΗΣΕΩΝ"

Transcript

1 ΑΠΑΝΤΗΣΕΙΣ ΕΡΩΤΗΣΕΩΝ

2 η Ερώτηση Γνωρίζουµε πως η κυµατοσυνάρτηση είναι η λύσης της κυµατικής εξίσωσης, που περιγράφει το µέγεθος της ιαταραχής, ( rt, ) r. Ψ= σε κάθε χρονική στιγµή, t, και σε κάθε θέση του µέσου ιάοσης µε ιάνυσµα θέσης Από την εκφώνησης της ερώτησης ίνεται ( xt) x t Ψ, = Asinπ + λ Με αντικατάσταση των τιµών του t (από τα εοµένα της ερώτησης) η κυµατοσυνάρτηση παίρνει τις παρακάτω µορφές: Για t = τότε x π x Ψ xt, = Asin π = Asin λ λ Για Για Για Για 4 t = τότε t t 4 = = τότε 3 4 t = τότε 4 t t 4 = = τότε Ψ xt, x x = Asinπ + = Asinπ + = λ 4 λ 4 π x π πx π Asin + = Asin + λ 4 λ x π x Ψ xt, = Asinπ + = Asin + π λ λ x 3 x 6 x 3 xt, Asin π π π π π Ψ = + = Asin + = Asin + λ 4 λ 4 λ x x π x Ψ xt, = Asinπ + = Asinπ + = Asin + π λ λ λ Χρησιµοποιώντας τις τιµές της κυµατοσυνάρτησης που προέκυψαν µετά την αντικατάσταση έχουµε την παρακάτω γραφική παράσταση, σαν στιγµιότυπο του κύµατος που παριστάνει γραφικά η Ψ (σε κοινό σύστηµα αξόνων), ως συνάρτηση της θέσης x για την κάθε εοµένη χρονική στιγµή t. y(x) Α x για t = για t = t = 4 για t = 4 για 3 t = 4 -Α το εξιό τµήµα του ιαγράµµατος, για x> εν χρειάζεται.

3 3 Παρατηρούµε πως µετά από χρόνο µιας περιόου t = το κύµα θα έχει προχωρήσει κατά λ (µήκος κύµατος) ηλαή θα είναι x = λ. Η κυµατοσυνάρτηση είναι της µορφής ( x, t) Asin( kx ωt) Ψ = + που χαρακτηρίζει αρµονικό κύµα, το οποίοι οεύει προς τα αρνητικά του άξονα των x. Συνεπώς έχουµε κίνηση προς τα αριστερά. η Ερώτηση Για το κλειστό σύστηµα [ π, + π ] οι συναρτήσεις y( x) = 5sin( x), y( x) 5sin( x,5) y( x) = 5sin( x,5) παίρνουν τη µορφή: = για x = έχω y = i) y( x) 5sin( x) ii) y( x) 5sin( x,5) = + για iii) y( x) 5sin( x,5) = για y = 5sin +,5 = 5sin,5,4 x = έχω = + και y = 5sin,5 = 5sin,5,4 x = έχω y(x) 5,4 -π + π x -,4-5 = 5sin( x) y x = 5sin( x+,5) y x = 5sin( x,5) y x () (3) Σχόλιο () µετατοπισµένη προς τα αριστερά (αρνητική φορά του άξονα x) κατά.5 (3) µετατοπισµένη προς τα εξιά (θετική φορά του άξονα x) κατά.5

4 4 3 η Ερώτηση π ίνεται η κυµατοσυνάρτηση: ψ = 5, sin x + 3t cm α) Αρµονικό κύµα που ιαίεται προς τη θετική φορά του άξονα των x, ηλαή από αριστερά προς τα x t εξιά, έχει κυµατοσυνάρτηση της µορφής Ψ ( xt, ) = Asinπ λ στην περίπτωση της ερώτησης η κετεύθυνση της ιάοσης είναι από εξιά προς τα αριστερά,σύµφωνα και µε τα σχόλια της προηγούµενης ερωτήσεως, ηλαή προς την αρνητική φορά του άξονα των x, γιατί στο π όρισµα έχω ( + ) 3t, ενώ η κατεύθυνση ιάοσης είναι ο άξονας x, γιατί το x (ως µεταβλητή) βρίσκεται µέσα στο όρισµα της κυµατοσυνάρτησης. β) Η σταθερά A στην κυµατοσυνάρτηση, είναι γνωστή ως πλάτος του κύµατος και είναι ίση µε τη µέγιστη µετατόπιση της Ψ. Έτσι για την περίπτωση της ερώτησης η µέγιστη µετατόπιση είναι 5cm. π γ) Η κυκλική συχνότητα ορίζεται από τη σχέση ω = = πν και η κυµατοσυνάρτηση, γράφεται Ψ x, t = Asin kx ωt. ισούναµα π ω 3 Εναλλακτικά: βλέπουµε ότι k=. Άρα λ = = π, u = = m k k s Ως κυκλική συχνότητα λαµβάνεται ο συντελεστής του χρόνου µέσα στο όρισµα της κυµατοσυνάρτησης, άρα για την εν λόγω περίπτωση έχουµε ω = 3. ) Αν παρατηρήσουµε ιαοχικά στιγµιότυπα ενός αρµονικού κύµατος, ανά ίσα προς 4 χρονικά ιαστήµατα, βλέπουµε πως στο τέλος του χρονικού ιαστήµατος t = η ιαταραχή είναι ακριβώς ίια, όπως όταν t = για όλες τις θέσεις x. Επιπλέον βλέπουµε ότι σε χρονικό ιάστηµα t = η ιαταραχή έχει λ προχωρήσει κατά x = λ. Άρα η ταχύτητα ιάοσης,υ, της ιαταραχής θα ισούται µε: υ =. Για να προσιορίσουµε τα λ και θα πρέπει η κυµατοσυνάρτηση να έχει τη µορφή της, ηλαή x t Ψ ( xt, ) = Asinπ ± λ () Άρα η οσµένη κυµατοσυνάρτηση της ερώτησης γράφεται: π x 3t π x 3t y = 5sin x+ 3t y = 5sinπ + y= 5sinπ + π π 4π π π 4 Άρα συγκριτικά µε τους όρους της κυµατοσυνάρτησης () έχουµε: λ = π και 3 π = Τ= π 3

5 5 λ π 3 Έτσι µε αντικατάσταση έχουµε υ = υ = υ = / m s π 3 ε) Ως µήκος κύµατος ονοµάζεται η απόσταση µεταξύ ύο ιαοχικών µεγίστων η ύο ιαοχικών ελαχίστων της Ψ. Από το () ερώτηµα έχουµε: λ = π. π στ) Ως φάση λαµβάνεται το όρισµα του ηµιτόνου της κυµατοσυνάρτησης, έτσι είναι: φ = x+ 3t ζ) Φασική ταχύτητα ονοµάζεται η σταθερή ταχύτητα υ φ η οποία εκφράζει την ταχύτητα µε την οποία κινείται η φάση φ. Με άλλα λόγια ως φασική ταχύτητα λαµβάνεται η ταχύτητα µε την οποία κινούνται τα µέτωπα του κύµατος, είναι ίια µε την ταχύτητα ιαόσεως και η φάση ιατηρείται σταθερή. Έτσι έχουµε: φ=σταθ. άρα η πρώτη παράγωγος της εξίσωσης της φάσης ως προς το χρόνο θα πρέπει να είναι µηέν. π x+ 3t φ x x 3 = = + 3= = t t t t το αρνητικό πρόσηµο ηλώνει πως η ιάοση του κύµατος γίνεται από εξιά προς αριστερά, ηλαή προς την αρνητική φορά του άξονα x. 4 η Ερώτηση Από την θεωρία της σύνθεσης πολλών ταλαντώσεων που έχουν την ίια συχνότητα έχουµε για το πλάτος της συνισταµένης ταλάντωσης τη σχέση: n sin B= A sin όπου A : τα πλάτη των συνιστωσών ταλαντώσεων B : το πλάτος της συνισταµένης ταλάντωσης Εάν υιοθετήσουµε τη συνηµιτονοειή περιγραφή των αρµονικών ταλαντώσεων, η επαλληλία αυτών των αρµονικών ταλαντώσεων θα ίνεται από τα άθροισµα: y = Acos( t) + Acos( t+ ) + Acos( t+ ) + Acos( t+ 3 ) Acos t+ ( n ) λόγω της οποίας έχουµε τελ = ( ) ω ω ω ω ω n Στη συνέχεια εξετάζουµε τις παρακάτω περιπτώσεις: Για = τότε από της σχέση προκύπτει sin B = ηλαή απροσιοριστία, οπότε εφαρµόζουµε το

6 6 θεώρηµα De L Hospital: cos lim B = A = A = na n n n cos nπ ( ) π sin nπ Για = π τότε από της σχέση προκύπτει B= A B= Asin sin ιακρίνουµε τις παρακάτω επιµέρους περιπτώσεις: για την οποία Για n =,5,9,... τότε B =+ A και η γραφική παράσταση γίνεται: Β na A π π Για n = 3,7,,... τότε B = A και η γραφική παράσταση γίνεται: Β na -A π π Για n = άρτιος (,4,6, ) τότε B = και η γραφική παράσταση γίνεται: Β na π π

7 7 Για = π τότε από της σχέση προκύπτει π ( ) π ( π ) ( π ) n sin sin n sin n B= A B= A B= A sin sinπ ηλαή καταλήγουµε σε απροσιοριστία, οπότε εφαρµόζουµε το θεώρηµα De L Hospital: π π ( nπ) ( nπ) n n n n n n cos cos cos cos lim B = A = A = A = A = Ancos n π cos cos cosπ ( π ) για n = άρτιο τότε το B = na για n = περιττό τότε το B = na 5 η Ερώτηση Κατά τη φθίνουσα ταλάντωση η εξίσωση κίνησης µε την εισαγωγή της ύναµης τριβής µε b (όπου b ο συντελεστής τριβής) γράφεται: dx F = bυ = b dt τριβ d x dx + + = m b Dx dt dt Λύνοντας αυτή τη ιαφορική εξίσωση βρίσκουµε τη συµπεριφορά της αποµάκρυνσης x από τη θέση ισορροπίας σαν συνάρτηση του χρόνου. Η Εξίσωση είναι µια οµογενής ιαφορική εξίσωση ευτέρας τάξεως µε σταθερούς συντελεστές. Η t εξίσωση αυτή έχεται πάνα λύσεις της µορφής x( t) = e ρ, οι οποίες µε αντικατάσταση στην οηγούν στην εύρεση των ριζών της ευτεροβάθµιας αλγεβρικής εξίσωσης: mρ bρ D + + = Για την περίπτωση όπου b 4mD έχουµε την µοναική περίπτωση που υπάρχει κάποιο είος κίνησης (η ύναµη τριβής εν είναι µεγαλύτερη από τη ύναµη επαναφοράς) Από γενική λύση της ιαφορικής έχουµε: ρ x( t) = e cos sin rt ρt + ρt i i () όπου ρr και ρi είναι το πραγµατικό και το φανταστικό µέρος αντίστοιχα των ύο συζυγών µιγαικών ριζών: b 4mD b b 4mD b ρ = + i και ρ = i όπου b m m m m m = γ και 4mD b ω γ = m οι οποίες έχουν και οι ύο ιαστάσεις αντιστρόφου χρόνου (ηλαή συχνότητας). Τώρα το πραγµατικό και το φανταστικό µέρος τω ύο συζυγών ριζών γράφεται γ ρ r = και ρi = ωγ.

8 γ t Έτσι η λύση της () γίνεται x() t = e ccos( ωγt) + csin ( ωγt) 8 Όταν για t = έχουµε x =, ο συντελεστής c πρέπει να είναι µηέν και η λύση τότε είναι: γ t () sin ( ω γ ) x t = c e t (3) Από την εξίσωση (3) βλέπουµε πως το πλάτος A γ = Ae γ t b = o, όπου, µεταβάλλεται µε ρυθµό που m γ καθορίζεται από τον συντελεστή. Κατά συνέπεια σε µια φθίνουσα ταλάντωση µε µικρή απόσβεση, θα ιαγράφει σε κάθε κύκλο περιστροφής, περιµέτρους κύκλων µε ακτίνες όλο και µικρότερες της αρχικής (µε γ ρυθµό που θα καθορίζεται από τον συντελεστή. Αυτό θα έχει σαν αποτέλεσµα να ιαγράφεται µια σπειροειής τροχιά µε κέντρο το µηέν του πλάτους ταλάντωσης: y(x) x 6 η Ερώτηση Το ιατοµικό µόριο πυριτίου άνθρακα ταλαντώνεται όπως ύο µάζες m και m οι οποίες είναι συνεεµένες µεταξύ τους µε ελατήριο σταθεράς D. Si -wwww- m Si m

9 Η κίνηση είναι επαλληλία µιας σχετικής κίνησης (ταλάντωσης) της «ανηγµένης» µάζας msim µ = m + m Si 9 D µε συχνότητα ω = και µιας (µεταφορικής) κίνησης του κέντρου µάζας, ηλαή της συνολικής µάζας µ m = ολ m + m. Si Από τις σχέσεις: ω = πν () και D ω = (3) µ και τα εοµένα της εκφώνησης κάνουνε αντικαταστάσεις και πράξεις για =4A.M.M. & =A.M.M. Όταν στο µόριο υπάρχει έχουµε: µ msim ,4... m m µ ΑΜΜ ΑΜΜ = = 8... µ = ΑΜΜ 4 µ = ΑΜΜ + + ΑΜΜ Si Από τη σχέση () έχουµε µε αντικατάσταση: ω = πν ω = 3,4,5 ω = 9,45 και από τη σχέση (3) έχουµε: D D = = D = µ µ ω ω ω µ D= 9,45 8,4 ΑΜΜ... D= 7,46 ΑΜΜ... = 46,6 Kg ΑΜΜ = 7 αφού ίνεται ότι...,67 Kg Εάν ο αντικατασταθεί από το ισότοπό του 4 η συχνότητα του µορίου θα αλλάξει ως ακολούθως, τώρα η ανηγµένη µάζα θα είναι ίση µε: µ m ' Sim4 ' ' ' 9,33... m m µ ΑΜΜ ΑΜΜ = = µ = ΑΜΜ 4 µ = ΑΜΜ + + ΑΜΜ Si 4 από τη σχέση (3) έχουµε µε αντικατάσταση: D 7,46 ΑΜΜ... ω ω ω µ 9,33 ΑΜΜ... 3 ' ' ' 4 = = = 8,94 ' ' 4 ω 8,94 ηλαή = =,95 4 ω 9,45

10 ή από τη σχέση () έχουµε: ηλαή ν ν,4 =, 5 ' 4 4 ω 8,94 ω = πν ν = ν = ν =,4 π 3,4,95 ' 4 ' ' ' ' ' 4 7 η Ερώτηση Στην περίπτωση της συνεχούς χορής θεωρούµε ότι οι µάζες στο νήµα ή στα ελατήρια είναι κατανεµηµένα µε συνεχή και οµοιογενή τρόπο. Η εξίσωση κίνησης νιοστής µάζας θα είναι σύµφωνα µε την θεωρία: d y yn y( ) y n ( n ) y + n dy y x dy m = o + o b = o b dt a a dt x n+ y dt n n n n dy όπου b n είναι ο όρος τριβής, ανάλογος της ταχύτητας, ο οποίος αντιστέκεται στην κίνηση. dt b=mγ Στην παραπάνω εξίσωση έχουµε θέσει a = x. Θεωρώντας το όριο x, µπορούµε να αναγνωρίσουµε τις ποσότητες µέσα στις αγκύλες του τελευταίου µέρους της σαν τις παραγώγους της αποµάκρυνσης y στις θέσεις x + dx και x αντίστοιχα. Εποµένως η απειροστή ιαφορά τους ιαιρεµένη µε την µεταβολή x ισούται µε τη εύτερη παράγωγο πολλαπλασιάζοντας και ιαιρώντας µε x d y dx, στη µορφή:. Μπορούµε λοιπόν να ξαναγράψουµε την, y y y m = o x m γ t x t n, m= ρ x Εισάγοντας ρητά την εξάρτηση της συνεχούς (εξαρτηµένης) µεταβλητής y από τη θέση και το χρόνο και αναγνωρίζοντας τη σταθερή (λόγω της οµοιογενούς προσέγγισης) ποσότητα m = m = ρ ως τη γραµµική dx x πυκνότητα βρίσκουµε την τελική εξίσωση: (, ) ρ (, ) (, ) y x t y x t y x t γ = x t t o () Η µορφή της τελικής εξίσωσης (5.8) είναι: (, ) ρ y( x, t) y x t = x t o (3) Συγκρίνοντας τις σχέσεις () και (3) παρατηρούµε πως έχουµε επιπλέον τον όρο: ηλαή την πρώτη παράγωγο της αποµάκρυνσης ως προς τον χρόνο. (, ) y x t γ = t

11 8 η Ερώτηση Γνωρίζουµε πως το ιακρότηµα είναι το φαινόµενο της συµβολής, που λαµβάνει χώρα όταν ύο ιαφορετικά κύµατα ίσου πλάτους αλλά µε ελαφρά ιαφορετική συχνότητα, συναντώνται στην ίια περιοχή του χώρου. Το συνιστάµενο κύµα που προκύπτει ίνεται από τη σχέση: ( ω ) cos( ω ) y = y + y = Acos k x t + A k x t Χρησιµοποιώντας τη τριγωνοµετρική ταυτότητα cos a+ cosb= cos a b cos a+ b βρίσκουµε ότι: Ανάπτυξη ενός περιοικού κύµατος σε σειρά Fourier σηµαίνει να το γράψουµε ως κατάλληλο άθροισµα (άπειρο γενικά) αρµονικών κυµάτων. Όταν το κύµα είναι ήη άθροισµα ύο αρµονικών κυµάτων, είναι προφανές ότι το «φάσµα Fourier» θα αποτελείτε από τις ύο αυτές συχνότητες (µε ίσα πλάτη). k+ k ω+ ω y = Acos {( k k) x ( ω ω) t} cos x t ή αφού κάνουµε τις πράξεις: ( ω ) cos( ω ) y = Acos t k x + A t k x Από τη σχέση για t = έχουµε: y = Acos kx+ Acos kx () Γνωρίζουµε πως η «Γενική Σειρά Fourier» έχει τη µορφή του αναπτύγµατος: n n (3) n= n= f = B + A cos nkx + B sin nkx x στο οποίο υπάρχει ο σταθερός όρος B Από τις () και (3) ιαπιστώνουµε ότι B = και B = οπότε προκύπτει η συνηµιτονοειής Σειρά Fourier: f = An cos nkx x n= και «επιζούν» µόνο εκείνα τα συνηµίτονα για τα οποία nk = k και nk = k n Γνωρίζουµε επίσης πως το φάσµα Fourier προσφέρει µία γρήγορη, συνοπτική και ακριβή απεικόνιση της ανάλυσης Fourier. Συνέοντας όλα τα παραπάνω, το φάσµα θα αποίεται από το σχήµα: A A + =A - ω ο+ ω ο- ω (ω ) (ω )

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ η ΕΡΓΑΣΙΑ. Προθεσµία παράδοσης 16/11/10

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ η ΕΡΓΑΣΙΑ. Προθεσµία παράδοσης 16/11/10 9// ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ 3 - η ΕΡΓΑΣΙΑ Προθεσµία παράδοσης 6// Άσκηση A) Θεωρούµε x την απόσταση της µάζας m από το σηµείο ισορροπίας της και x, x3 τις αποστάσεις των µαζών m και m3 από το

Διαβάστε περισσότερα

Μερικές ερωτήσεις στις φθίνουσες και στις εξαναγκασμένες

Μερικές ερωτήσεις στις φθίνουσες και στις εξαναγκασμένες Μερικές ερωτήσεις στις φθίνουσες και στις εξαναγκασμένες Α) Φθίνουσα Ταλάντωση λόγω ύναµης ίστασης F =-bυ Θεωρούµε ότι ο ταλωτής εκτελεί φθίνουσα ταλάντωση υπό την επίραση ύναµης επαναφοράς F επ =- Dx

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 «Κυμάνσεις» Μαρία Κατσικίνη users.auth.gr/~katsiki

ΚΕΦΑΛΑΙΟ 9 «Κυμάνσεις» Μαρία Κατσικίνη users.auth.gr/~katsiki ΚΕΦΑΛΑΙΟ 9 «Κυμάνσεις» Μαρία Κατσικίνη katsiki@auth.gr users.auth.gr/~katsiki Σχέση δύναμης - κίνησης Δύναμη σταθερή εφαρμόζεται σε σώμα Δύναμη ανάλογη της απομάκρυνσης (F-kx) εφαρμόζεται σε σώμα Το σώμα

Διαβάστε περισσότερα

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑΤΑ Α

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑΤΑ Α ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 0 ΘΕΜΑΤΑ Α Θέµα ο. Να βρεθεί (α) η γενική λύση yy() της διαφορικής εξίσωσης y' y + καθώς και (β) η µερική λύση που διέρχεται από το σηµείο y(/). (γ) Από ποια σηµεία του επιπέδου

Διαβάστε περισσότερα

ΦΥΕ34 Λύσεις 5 ης Εργασίας

ΦΥΕ34 Λύσεις 5 ης Εργασίας ΦΥΕ3 Λύσεις 5 ης Εργασίας ) Έστω αρµονικό κύµα της (εκθετικής) µορφής: F( x, t) i( kx ωt+ ϕ ) = Ae. Παραγωγίζοντας βρίσκουµε: = iωf( x, t) t = ikf( x, t) x Παραγωγίζοντας αυτές τις δύο σχέσεις µία ακόµη

Διαβάστε περισσότερα

Α = 0,6 m A = 0,3 m ω - ω t = 4π t ω ω = 8π rad/s () και ω + ω t = 500π t ω + ω = 000π rad/s () () + () ω = 008π ω = 504π rad/s και ω = 000π 504π = 49

Α = 0,6 m A = 0,3 m ω - ω t = 4π t ω ω = 8π rad/s () και ω + ω t = 500π t ω + ω = 000π rad/s () () + () ω = 008π ω = 504π rad/s και ω = 000π 504π = 49 ΑΠΑΝΤΗΣΕΕΙΙΣ ΣΤΟ ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΕΕΥΥΘΥΥΝΣΗΣ Σ ΓΓ ΛΥΥΚΚΕΕΙΙΟΥΥ Θέµα ο. δ. γ 3. α 4. γ 5. β ΚΚυυρρι ιιαακκήή 33 ΙΙααννοουυααρρί ίίοουυ 0033 Θέµα ο. Α) Σωστή απάντηση: (β) Αφού ο τροχός κυλίεται

Διαβάστε περισσότερα

α. φ Α < φ Β, u A < 0 και u Β < 0. β. φ Α > φ Β, u A > 0 και u Β > 0. γ. φ Α < φ Β, u A > 0 και u Β < 0. δ. φ Α > φ Β, u A < 0 και u Β > 0.

α. φ Α < φ Β, u A < 0 και u Β < 0. β. φ Α > φ Β, u A > 0 και u Β > 0. γ. φ Α < φ Β, u A > 0 και u Β < 0. δ. φ Α > φ Β, u A < 0 και u Β > 0. ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΤΕΕΥΥΘΥΥΝΣΗΣ ΓΓ ΛΛΥΥΚΚΕΕΙΙΟΥΥ ΚΚυυρρι ιιαακκήή 1133 ΙΙααννοουυααρρί ίίοουυ 001133 Θέμα 1 ο (Μονάδες 5) 1. Στο σχήμα φαίνεται το στιγμιότυπο ενός εγκάρσιου αρμονικού κύματος

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Α ΦΑΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Α ΦΑΣΗ ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Ηµεροµηνία: Τρίτη 5 Ιανουαρίου 016 ιάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις από 1-4 να γράψετε στο τετράδιο σας

Διαβάστε περισσότερα

Εξαναγκασµένες φθίνουσες ταλαντώσεις

Εξαναγκασµένες φθίνουσες ταλαντώσεις ΦΥΣ 131 - Διαλ.32 1 Εξαναγκασµένες φθίνουσες ταλαντώσεις q Στην περίπτωση αυτή µελετάµε την δεδοµένη οδηγό δύναµη: F d (t) = F cos! d t η οποία δρα επιπλέον των άλλων δυνάµεων:!kx! b x Ø H συχνότητα µπορεί

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΧΕΙΜΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 30/12/11 ΑΠΑΝΤΗΣΕΙΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΧΕΙΜΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 30/12/11 ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 0-0 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΧΕΙΜΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 30// ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό κάθε µίας από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

α) Η γενική εξίσωση του αρµονικού κύµατος είναι. Συγκρίνοντάς την µε µία από τις δύο εξισώσεις των τρεχόντων κυµάτων, έστω την εξίσωση

α) Η γενική εξίσωση του αρµονικού κύµατος είναι. Συγκρίνοντάς την µε µία από τις δύο εξισώσεις των τρεχόντων κυµάτων, έστω την εξίσωση Λύση ΑΣΚΗΣΗ 1 α) Η γενική εξίσωση του αρµονικού κύµατος είναι. Συγκρίνοντάς την µε µία από τις δύο εξισώσεις των τρεχόντων κυµάτων, έστω την εξίσωση, προκύπτει: και Με αντικατάσταση στη θεµελιώδη εξίσωση

Διαβάστε περισσότερα

Β3. ΣΣωσσττήή ααππάάννττηησσηη εεί ίίννααι ιι ηη ββ.. Το πλάτος του (Σ) µετά τη συµβολή των κυµάτων ισούται µε: r 1 - r u t 1 - u t Α Σ = Α συνπ = Α σ

Β3. ΣΣωσσττήή ααππάάννττηησσηη εεί ίίννααι ιι ηη ββ.. Το πλάτος του (Σ) µετά τη συµβολή των κυµάτων ισούται µε: r 1 - r u t 1 - u t Α Σ = Α συνπ = Α σ ΑΠΑΝΤΗΣΕΙΣ ΣΤΟ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥΓ ΛΥΚΕΙΟΥ Κυριακή 13 Νοεµβρίου 016 Θέµα Α Α1. δ Α. γ Α3. γ Α4. δ Α5. α) Σ β) Λ γ) Λ δ) Σ ε) Λ Θέµα Β Β1. Σωστή είναι η απάντηση (β). Εφόσον παρατηρούνται

Διαβάστε περισσότερα

Η απόσταση του σημείου Ρ από τη δεύτερη πηγή είναι: β) Από την εξίσωση απομάκρυνσης των πηγών y = 0,2.ημ10πt (S.I.) έχουμε:

Η απόσταση του σημείου Ρ από τη δεύτερη πηγή είναι: β) Από την εξίσωση απομάκρυνσης των πηγών y = 0,2.ημ10πt (S.I.) έχουμε: Γενική άσκηση στη συμβολή κυμάτων (Λύση) α) Η χρονική στιγμή t 1 που το κύμα από την πρώτη πηγή φτάνει στο σημείο Ρ είναι: r1 r1 6 u = => t1 = => t1 = s => t1 = 0, 6s t u 10 1 Τα κύματα φτάνουν στο σημείο

Διαβάστε περισσότερα

Αρµονικοί ταλαντωτές

Αρµονικοί ταλαντωτές Αρµονικοί ταλαντωτές ΦΥΣ 131 - Διαλ. 31 Εκκρεµή - Απλό εκκρεµές θ l T mg r F Αυτή η εξίσωση είναι δύσκολο να λυθεί. Δεν µοιάζει µε τη γνωστή εξίσωση Για µικρές γωνίες θ µπορούµε όµως να γράψουµε Εποµένως

Διαβάστε περισσότερα

υ Β = υ cm - υ στρ(β) = υ cm - ω R 2 = υ cm cm - υ2 υ υcm Β = 2. ιαιρώντας κατά µέλη παίρνουµε ότι: Β3. ΣΣωσσττήή ααππάάννττηησσηη εεί ίίννααι ιι ηη β

υ Β = υ cm - υ στρ(β) = υ cm - ω R 2 = υ cm cm - υ2 υ υcm Β = 2. ιαιρώντας κατά µέλη παίρνουµε ότι: Β3. ΣΣωσσττήή ααππάάννττηησσηη εεί ίίννααι ιι ηη β ΑΠΑΝΤΗΣΕΙΙΣ ΣΤΟ ΙΙΑΓΓΩ ΩΝΙΙΣΜΑ ΦΥΣΙΙΚΗΣ ΠΡΡΟΣΑΝΑΤΟΛΙΙΣ ΣΜΟΥ ΓΓ ΛΥΚΕΙΙΟΥ 1133 1122 -- 22001155 Θέµα Α Α1. δ Α2. β Α3. β Α4. δ Α5. α) Σ β) Λ γ) Σ δ) Σ ε) Λ Θέµα Β Β1. Σωστή απάντηση η (β). Εφόσον παρατηρούνται

Διαβάστε περισσότερα

Είδη κυµάτων. Ηλεκτροµαγνητικά κύµατα. Σε κάποιο φυσικό µέσο προκαλείται µια διαταραχή. Το κύµα είναι η διάδοση της διαταραχής µέσα στο µέσο.

Είδη κυµάτων. Ηλεκτροµαγνητικά κύµατα. Σε κάποιο φυσικό µέσο προκαλείται µια διαταραχή. Το κύµα είναι η διάδοση της διαταραχής µέσα στο µέσο. Κεφάλαιο T2 Κύµατα Είδη κυµάτων Παραδείγµατα Ένα βότσαλο πέφτει στην επιφάνεια του νερού. Κυκλικά κύµατα ξεκινούν από το σηµείο που έπεσε το βότσαλο και αποµακρύνονται από αυτό. Ένα σώµα που επιπλέει στην

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Θέµα ο κ ΙΑΓΩΝΙΣΜΑ Α Α. Να επιλέξετε τη σωστή πρόταση σε κάθε µία από τις παρακάτω ερωτήσεις πολλαπλής επιλογής.. Σώµα µάζας m εκτελεί απλή αρµονική ταλάντωση πλάτους Α και

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 10 ΙΟΥΝΙΟΥ 2014 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 10 ΙΟΥΝΙΟΥ 2014 ΕΚΦΩΝΗΣΕΙΣ Θέµα Α ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 10 ΙΟΥΝΙΟΥ 2014 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και, δίπλα, το γράµµα που αντιστοιχεί στη φράση η οποία

Διαβάστε περισσότερα

7. Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας

7. Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας 7 Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας Συζευγµένες ταλαντώσεις Βιβλιογραφία F S Crawford Jr Κυµατική (Σειρά Μαθηµάτων Φυσικής Berkeley, Τόµος 3 Αθήνα 979) Κεφ H J Pai Φυσική των ταλαντώσεων

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 19 Ταλαντώσεις Απλή αρμονική κίνηση ΦΥΣ102 1 Ταλαντώσεις Ελατηρίου Όταν ένα αντικείμενο

Διαβάστε περισσότερα

Υπολογισμός της σταθεράς ελατηρίου

Υπολογισμός της σταθεράς ελατηρίου Εργαστηριακή Άσκηση 6 Υπολογισμός της σταθεράς ελατηρίου Βαρσάμης Χρήστος Στόχος: Υπολογισμός της σταθεράς ελατηρίου, k. Πειραματική διάταξη: Κατακόρυφο ελατήριο, σειρά πλακιδίων μάζας m. Μέθοδος: α) Εφαρμογή

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά

Διαβάστε περισσότερα

2.1 Τρέχοντα Κύµατα. Οµάδα.

2.1 Τρέχοντα Κύµατα. Οµάδα. 2.1 Τρέχοντα Κύµατα. Οµάδα. 2.1.41. Κάποια ερωτήµατα πάνω σε µια κυµατοµορφή. Ένα εγκάρσιο αρµονικό κύµα, πλάτους 0,2m, διαδίδεται κατά µήκος ενός ελαστικού γραµµικού µέσου, από αριστερά προς τα δεξιά

Διαβάστε περισσότερα

ΘΕΜΑ Β Β.1 Ένα σύστημα ξεκινά φθίνουσες ταλαντώσεις με αρχική ενέργεια 100J και αρχικό πλάτος A o. Το έργο της δύναμης αντίστασης μετά από N ταλαντώσε

ΘΕΜΑ Β Β.1 Ένα σύστημα ξεκινά φθίνουσες ταλαντώσεις με αρχική ενέργεια 100J και αρχικό πλάτος A o. Το έργο της δύναμης αντίστασης μετά από N ταλαντώσε ΘΕΜΑ A A.1 Το διάγραμμα του σχήματος παριστάνει την ταχύτητα ενός σώματος που εκτελεί απλή αρμονική ταλάντωση σε συνάρτηση με το χρόνο. Το σημείο που αντιστοιχεί σε απομάκρυνση x=-a είναι: a) το σημείο

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 02 ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διάρκεια: 3ώρες ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5)

ΔΙΑΓΩΝΙΣΜΑ 02 ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διάρκεια: 3ώρες ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) Σελίδα 1 από 5 ΔΙΑΓΩΝΙΣΜΑ 02 ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διάρκεια: 3ώρες ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ A Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1- Α4 και

Διαβάστε περισσότερα

Ελληνικό Ανοικτό Πανεπιστήµιο Ενδεικτικές Λύσεις Θεµάτων Τελικών εξετάσεων στη Θεµατική Ενότητα ΦΥΕ34. Ιούλιος 2008 KYMATIKH. ιάρκεια: 210 λεπτά

Ελληνικό Ανοικτό Πανεπιστήµιο Ενδεικτικές Λύσεις Θεµάτων Τελικών εξετάσεων στη Θεµατική Ενότητα ΦΥΕ34. Ιούλιος 2008 KYMATIKH. ιάρκεια: 210 λεπτά Κυµατική ΦΥΕ4 5/7/8 Ελληνικό Ανοικτό Πανεπιστήµιο Ενδεικτικές Λύσεις Θεµάτων Τελικών εξετάσεων στη Θεµατική Ενότητα ΦΥΕ4 Ιούλιος 8 KYMATIKH ιάρκεια: λεπτά Θέµα ο (Μονάδες:.5) A) Θεωρούµε τις αποστάσεις

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Φυσικής Γ Λυκείου Κρούσεις-Ταλαντώσεις-Κύματα

Επαναληπτικό Διαγώνισμα Φυσικής Γ Λυκείου Κρούσεις-Ταλαντώσεις-Κύματα Επαναληπτικό Διαγώνισμα Φυσικής Γ Λυκείου Κρούσεις-Ταλαντώσεις-Κύματα Θέμα Α 1) Η ιδιοσυχνότητα ενός συστήματος που εκτελεί εξαναγκασμένη ταλάντωση χωρίς τριβή είναι 20 Hz. Το πλάτος της ταλάντωσης γίνεται

Διαβάστε περισσότερα

Επαναληπτικό πρόβλημα στη συμβολή κυμάτων.

Επαναληπτικό πρόβλημα στη συμβολή κυμάτων. Επαναληπτικό πρόβλημα στη συμβολή κυμάτων. ύο σύγχρονες πηγές Π 1 και Π 2 που απέχουν απόσταση d=8m, παράγουν στην επιφάνεια ενός υγρού αρµονικά κύµατα που έχουν ταχύτητα διάδοσης υ=2m/s. Η εξίσωση της

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Διατήρηση της Ενέργειας Εικόνα: Η μετατροπή της δυναμικής ενέργειας σε κινητική κατά την ολίσθηση ενός παιχνιδιού σε μια πλατφόρμα. Μπορούμε να αναλύσουμε τέτοιες καταστάσεις με τις

Διαβάστε περισσότερα

Κεφάλαιο 15 ΚίνησηΚυµάτων. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 15 ΚίνησηΚυµάτων. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 15 ΚίνησηΚυµάτων ΠεριεχόµεναΚεφαλαίου 15 Χαρακτηριστικά Κυµατικής Είδη κυµάτων: ιαµήκη και Εγκάρσια Μεταφορά ενέργειας µε κύµατα Μαθηµατική Περιγραφή της ιάδοσης κυµάτων ΗΕξίσωσητουΚύµατος Κανόνας

Διαβάστε περισσότερα

ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ 12,

ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ 12, ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ, - Οι παρακάτω λύσεις των ασκήσεων της 6 ης εργασίας που καλύπτει το µεγαλύτερο µέρος της ύλης της θεµατικής ενότητας ΠΛΗ) είναι αρκετά εκτεταµένες καθώς έχει δοθεί αρκετή έµφαση

Διαβάστε περισσότερα

Αρµονικοί ταλαντωτές

Αρµονικοί ταλαντωτές Αρµονικοί ταλαντωτές ΦΥΣ 131 - Διαλ.30 2 Αρµονικοί ταλαντωτές q Μερικά από τα θέµατα που θα καλύψουµε: q Μάζες σε ελατήρια, εκκρεµή q Διαφορικές εξισώσεις: d 2 x dt 2 + K m x = 0 Ø Mε λύση της µορφής:

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Θέµα Α Στις ερωτήσεις -4 να βρείτε τη σωστή απάντηση. Α. Για κάποιο χρονικό διάστηµα t, η πολικότητα του πυκνωτή και

Διαβάστε περισσότερα

ΦΥΣ Διαλ.33 1 KYMATA

ΦΥΣ Διαλ.33 1 KYMATA ΦΥΣ 131 - Διαλ.33 1 KYMATA q Κύµατα εµφανίζονται σε συστήµατα µε καταστάσεις ισορροπίας. Τα κύµατα είναι διαταραχές από τη θέση ισορροπίας. q Τα κύµατα προκαλούν κίνηση σε πολλά διαφορετικά σηµεία σε ένα

Διαβάστε περισσότερα

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 1 Ονοματεπώνυμο.. Υπεύθυνος Καθηγητής: Γκαραγκουνούλης Ιωάννης Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ > Τρίτη 3-1-2012 2 ΘΕΜΑ 1ο Να γράψετε

Διαβάστε περισσότερα

Σχολή E.Μ.Φ.Ε ΦΥΣΙΚΗ ΙΙΙ (ΚΥΜΑΤΙΚΗ) Κανονικές Εξετάσεις Χειµερινού εξαµήνου t (α) Αν το παραπάνω σύστηµα, ( m, s,

Σχολή E.Μ.Φ.Ε ΦΥΣΙΚΗ ΙΙΙ (ΚΥΜΑΤΙΚΗ) Κανονικές Εξετάσεις Χειµερινού εξαµήνου t (α) Αν το παραπάνω σύστηµα, ( m, s, Σχολή E.Μ.Φ.Ε ΦΥΣΙΚΗ ΙΙΙ (ΚΥΜΑΤΙΚΗ) Κανονικές Εξετάσεις Χειµερινού εξαµήνου 9-1 ιάρκεια εξέτασης :3 5//1 Ι. Σ. Ράπτης Ε. Φωκίτης Θέµα 1. Ένας αρµονικός ταλαντωτής µε ασθενή απόσβεση (µάζα m σταθερά ελατηρίου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας ΚΕΦΑΛΑΙΑ,4. Συστήµατα ενός Βαθµού ελευθερίας. Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα ' O για την απωστική δύναµη F, > και για ενέργεια Ε. (α) Είναι V και οι επιτρεπτές περιοχές της κίνησης

Διαβάστε περισσότερα

Επαλληλία Αρµονικών Κυµάτων 5ο Σετ Ασκήσεων - εκέµβρης Επιµέλεια: Μιχάλης Ε. Καραδηµητριου, MSc Φυσικός.

Επαλληλία Αρµονικών Κυµάτων 5ο Σετ Ασκήσεων - εκέµβρης Επιµέλεια: Μιχάλης Ε. Καραδηµητριου, MSc Φυσικός. Επαλληλία Αρµονικών Κυµάτων - εκέµβρης 2012 Επιµέλεια: Μιχάλης Ε. Καραδηµητριου, MSc Φυσικός http://www.perifysikhs.com Α. Ερωτήσεις πολλαπλής επιλογής Α.1. ύο σύγχρονες κυµατικές πηγές Α και Β ταλαντώνονται

Διαβάστε περισσότερα

απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση της

απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση της 1. Ένα σώμα μάζας m =, kg εκτελεί εξαναγκασμένη ταλάντωση μικρής απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ενέργεια Συστήματος Εικόνα: Στη φυσική, η ενέργεια είναι μια ιδιότητα των αντικειμένων που μπορεί να μεταφερθεί σε άλλα αντικείμενα ή να μετατραπεί σε διάφορες μορφές, αλλά δεν μπορεί

Διαβάστε περισσότερα

φ(rad) t (s) α. 4 m β. 5 m α. 2 m β. 1 m

φ(rad) t (s) α. 4 m β. 5 m α. 2 m β. 1 m ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΥ Τετάρτη 4 Φεβρουαρίου 05 ΘΕΜΑ Β Γ Α B φ(rad) 6π 0 0,3 0,5 0,7 t (s) Στα σηµεία Α και Β του παραπάνου σχήµατος βρίσκονται δύο σύγχρονες πηγές Π και Π, που εκπέµπουν στην επιφάνεια

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 12 ΙΟΥΝΙΟΥ 2017 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 12 ΙΟΥΝΙΟΥ 2017 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 1 ΙΟΥΝΙΟΥ 017 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη φράση η οποία συµπληρώνει σωστά την

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση..

Διαβάστε περισσότερα

Ερωτήσεις Πολλαπλής Επιλογής, Σωστό-Λάθος

Ερωτήσεις Πολλαπλής Επιλογής, Σωστό-Λάθος Ερωτήσεις Πολλαπλής Επιλογής, Σωστό-Λάθος 1. Ένα σώµα εκτελεί εξαναγκασµένη ταλάντωση. Ποιες από τις επόµενες προτάσεις είναι σωστές; Να αιτιολογήσετε την απάντησή σας. ί) Η συχνότητα της ταλάντωσης είναι

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου 1ο Επαναληπτικό ιαγώνισµα Ενδεικτικές Λύσεις Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου 1ο Επαναληπτικό ιαγώνισµα Ενδεικτικές Λύσεις Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου 1ο Επαναληπτικό ιαγώνισµα Ενδεικτικές Λύσεις Θέµα Α Α.1. Μικρό σώµα εκτελεί απλή αρµονική ταλάντωση µε περίοδο Τ και πλάτος Α. Μεταξύ δύο διαδοχικών µηδενισµών της κινητικής

Διαβάστε περισσότερα

Προγραμματισμένο διαγώνισμα Φυσικής κατεύθυνσης Γ Λυκείου

Προγραμματισμένο διαγώνισμα Φυσικής κατεύθυνσης Γ Λυκείου Προγραμματισμένο ιαγώνισμα Φυσικής κατεύθυνσης Γ Λυκείου Ονοματεπώνυμο εξεταζόμενου:. Καμιά άλλη σημείωση εν επιτρέπεται στα θέματα τα οποία θα παραώσετε μαζί με το γραπτό σας. Οι απαντήσεις λοιπόν όλων

Διαβάστε περισσότερα

Γ ΤΑΞΗ. 4 ο ΓΕ.Λ. ΡΑΜΑΣ "ΕΞΟΜΟΙΩΤΗΣ ΠΑΝΕΛΛΗΝΙΩΝ 1 ο & 2 ο ΚΕΦΑΛΑΙΟ" ΘΕΜΑ 1ο. γ. λ 1 =λ 2 /2 δ. λ 1 = λ 2 /4 Μονάδες 5. γ. λ=2l/3 δ.

Γ ΤΑΞΗ. 4 ο ΓΕ.Λ. ΡΑΜΑΣ ΕΞΟΜΟΙΩΤΗΣ ΠΑΝΕΛΛΗΝΙΩΝ 1 ο & 2 ο ΚΕΦΑΛΑΙΟ ΘΕΜΑ 1ο. γ. λ 1 =λ 2 /2 δ. λ 1 = λ 2 /4 Μονάδες 5. γ. λ=2l/3 δ. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ 4 ο ΓΕ.Λ. ΡΑΜΑΣ "ΕΞΟΜΟΙΩΤΗΣ ΠΑΝΕΛΛΗΝΙΩΝ 1 ο & 2 ο ΚΕΦΑΛΑΙΟ" ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 21 ΙΑΝΟΥΑΡΙΟΥ 2011 ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΘΕΜΑ

Διαβάστε περισσότερα

Κεφάλαιο 14 Ταλαντώσεις. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 14 Ταλαντώσεις. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 14 Ταλαντώσεις Ταλαντώσεις Ελατηρίου Απλή αρµονική κίνηση Ενέργεια απλού αρµονικού ταλαντωτή Σχέση απλού αρµονικού ταλαντωτή και κυκλικής κίνησης Το απλό εκκρεµές Περιεχόµενα 14 Το φυσικό εκκρεµές

Διαβάστε περισσότερα

Τρίωρο Διαγώνισμα στη Φυσική Κατεύθυνσης Γ Λυκείου

Τρίωρο Διαγώνισμα στη Φυσική Κατεύθυνσης Γ Λυκείου Τρίωρο Διαγώνισμα στη Φυσική Κατεύθυνσης Γ Λυκείου Ύλη: Όλη η εξεταστέα ΘΕΜΑ ο Α. Για να απαντήσετε στις παρακάτω ερωτήσεις πολλαπλής επιλογής, αρκεί να γράψετε στο φύλλο απαντήσεων τον αριθµό της ερώτησης

Διαβάστε περισσότερα

1ο ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ

1ο ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ 1ο ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ Θέμα 1: Α. Στις ερωτήσεις 1-3 να σημειώσετε το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Ένα σώμα μάζας m

Διαβάστε περισσότερα

Ύλη πάνω στις ταλαντώσεις :

Ύλη πάνω στις ταλαντώσεις : Ταλαντώσεις Ταλαντώσεις Ύλη πάνω στις ταλαντώσεις : Απλή αρμονική κίνηση (ΑΑΤ SHO) F και E της απλής αρμονικής κίνησης Η δυναμική της ΑΑΚ (αντίστροφο) Απλό εκκρεμές Φυσικό εκκρεμές (στροφικό εκκρεμές)

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Κύματα Εικόνα: Ναυαγοσώστες στην Αυστραλία εκπαιδεύονται στην αντιμετώπιση μεγάλων κυμάτων. Τα κύματα που κινούνται στην επιφάνεια του νερού αποτελούν ένα παράδειγμα μηχανικών κυμάτων.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004 ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4 ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Σε

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΘΕΜΑ Α Ι. 1. Γ

ΛΥΣΕΙΣ ΘΕΜΑ Α Ι. 1. Γ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΛΥΣΕΙΣ ΘΕΜΑ Α Ι Γ Α dw d dx W = x σνθ = ( x σνθ ) P = σνθ dt dt dt P = σνθ 3 A 4 Δ (στην απάντηση β) πρέπει να προσθέσουμε την αύξηση

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. α.. δ. 3. β. 4. γ. 5. α-λ, β-σ, γ-σ, δ-σ, ε-λ. ΘΕΜΑ B. Σωστή απάντηση είναι η (β). Εφαρμόζουμε την αρχή της διατήρησης

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Α ΦΑΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Α ΦΑΣΗ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 7 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Ηµεροµηνία: Πέµπτη 5 Ιανουαρίου 7 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ηµιτελείς προτάσεις Α Α4

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ ΕΚΦΩΝΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ ΕΚΦΩΝΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 06 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 4 Απριλίου 06 ιάρκεια Εξέτασης: ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις από -4 να γράψετε

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Ταλαντώσεις/Κύµατα/Doppler Ενδεικτικές Λύσεις Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Ταλαντώσεις/Κύµατα/Doppler Ενδεικτικές Λύσεις Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Ταλαντώσεις/Κύµατα/Doppler Ενδεικτικές Λύσεις Θέµα Α Α.1. Σηµειακό αντικείµενο εκτελεί απλή αρµονική ταλάντωση µε την ε- πίδραση κατάλληλης δύναµης. Την χρονική στιγµή

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

Α. Ροπή δύναµης ως προς άξονα περιστροφής

Α. Ροπή δύναµης ως προς άξονα περιστροφής Μηχανική στερεού σώµατος, Ροπή ΡΟΠΗ ΔΥΝΑΜΗΣ Α. Ροπή δύναµης ως προς άξονα περιστροφής Έστω ένα στερεό που δέχεται στο άκρο F Α δύναµη F όπως στο σχήµα. Στο Ο διέρχεται άξονας περιστροφής κάθετος στο στερεό

Διαβάστε περισσότερα

Επαλληλία Αρµονικών Κυµάτων. Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός. http://www.perifysikhs.com

Επαλληλία Αρµονικών Κυµάτων. Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός. http://www.perifysikhs.com Επαλληλία Αρµονικών Κυµάτων - εκέµβρης 2014 Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός http://www.perifysikhs.com 1. Θέµα Α - Ερωτήσεις πολλαπλής επιλογής 1.1. ύο σύγχρονες κυµατικές πηγές Α και

Διαβάστε περισσότερα

KYMATA Ανάκλαση - Μετάδοση

KYMATA Ανάκλαση - Μετάδοση ΦΥΣ 131 - Διαλ.34 1 KYMATA Ανάκλαση - Μετάδοση q Παλµός πάνω σε χορδή: Ένα άκρο της σταθερό (δεµένο) Προσπίπτων Ο παλµός ασκεί µια δύναµη προς τα πάνω στον τοίχο ο οποίος ασκεί µια δύναµη προς τα κάτω

Διαβάστε περισσότερα

β. διαδίδεται προς τα δεξιά γ. είναι στάσιµο δ. µπορεί να διαδίδεται και προς τις δύο κατευθύνσεις (δεξιά ή αριστερά) Μονάδες 5 Α4. Το Σχήµα 2 παριστά

β. διαδίδεται προς τα δεξιά γ. είναι στάσιµο δ. µπορεί να διαδίδεται και προς τις δύο κατευθύνσεις (δεξιά ή αριστερά) Μονάδες 5 Α4. Το Σχήµα 2 παριστά ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και, δίπλα, το γράµµα που αντιστοιχεί στην επιλογή η οποία συµπληρώνει

Διαβάστε περισσότερα

2.2. Συµβολή και στάσιµα κύµατα. Οµάδα Γ.

2.2. Συµβολή και στάσιµα κύµατα. Οµάδα Γ. 2.2. Συµβολή και στάσιµα κύµατα. Οµάδα Γ. 2.2.21. σε γραµµικό ελαστικό µέσο. ύο σύγχρονες πηγές Ο 1 και Ο 2 παράγουν αρµονικά κύµατα που διαδίδονται µε ταχύτητα υ=2m/s κατά µήκος ενός γραµµικού ελαστικού

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: O Carlos Santana εκμεταλλεύεται τα στάσιμα κύματα στις χορδές του. Αλλάζει νότα στην κιθάρα του πιέζοντας τις χορδές σε διαφορετικά σημεία, μεγαλώνοντας ή μικραίνοντας το

Διαβάστε περισσότερα

3ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 21 Σεπτέµβρη 2014 Το σύστηµα Ελατηρίου - Μάζας / Κρούσεις. Ενδεικτικές Λύσεις. Θέµα Α

3ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 21 Σεπτέµβρη 2014 Το σύστηµα Ελατηρίου - Μάζας / Κρούσεις. Ενδεικτικές Λύσεις. Θέµα Α 3ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 2 Σεπτέµβρη 204 Το σύστηµα Ελατηρίου - Μάζας / Κρούσεις Ενδεικτικές Λύσεις Θέµα Α Α.. Σύστηµα ελατηρίου - σώµατος εκτελεί απλή αρµονική ταλάντωση πλάτους Α.

Διαβάστε περισσότερα

διαδίδονται δύο αρμονικά εγκάρσια κύματα πλάτους Α 1 , αντίστοιχα. Αν ισχύει ότι Α 2 1 = α 8 max,1 ii. max,2 ) β. λ 2 (υ 1 /υ 2 > 0, v B > 0, v Γ

διαδίδονται δύο αρμονικά εγκάρσια κύματα πλάτους Α 1 , αντίστοιχα. Αν ισχύει ότι Α 2 1 = α 8 max,1 ii. max,2 ) β. λ 2 (υ 1 /υ 2 > 0, v B > 0, v Γ ΚΕΦΑΛΑΙΟ 2 Κύματα Γενικά θέματα Α ΕΡΩΤΗΣΕΙΣ 1 Αρμονικό κύμα πλάτους Α διαδίδεται κατά μήκος γραμμικού ελαστικού μέσου με θετική φορά Τη χρονική στιγμή t=0 το υλικό σημείο με x=0 ταλαντώνεται με μέγιστη

Διαβάστε περισσότερα

Κεφάλαιο 15 Κίνηση Κυµάτων. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 15 Κίνηση Κυµάτων. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 15 Κίνηση Κυµάτων Περιεχόµενα Κεφαλαίου 15 Χαρακτηριστικά των Κυµάτων Είδη κυµάτων: Διαµήκη και Εγκάρσια Μεταφορά ενέργειας µε κύµατα Μαθηµατική Περιγραφή της Διάδοσης κυµάτων Η Εξίσωση του Κύµατος

Διαβάστε περισσότερα

ΘΕΜΑ 1ο. Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ 1ο. Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΘΕΜΑ 1ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση 1 Ένα σώμα εκτελεί αρμονική ταλάντωση με ακραίες θέσεις που

Διαβάστε περισσότερα

Β. Σωστή απάντηση είναι η γ. Οι θέσεις των δεσµών στον θετικό ηµιάξονα είναι: χ = (κ + 1) λ 4 δεύτερος δεσµός είναι στη θέση που προκύπτει για κ = 1 δ

Β. Σωστή απάντηση είναι η γ. Οι θέσεις των δεσµών στον θετικό ηµιάξονα είναι: χ = (κ + 1) λ 4 δεύτερος δεσµός είναι στη θέση που προκύπτει για κ = 1 δ ΑΠΑΝΤΗΣΕΙΣ ΣΤΟ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Θέµα Α Κυριακή 6 Μαρτίου 016 Α1. β Α. γ Α5. α) Λ β) Σ γ) Σ Α. γ Α4. γ δ) Σ ε) Σ Θέµα Β Β1. Σωστή απάντηση είναι η β. Το έργο της δύναµης για την

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση Ι - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση Ι - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση Ι - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α Α.1. Μια µικρή σφαίρα προσκρούει ελαστικά στην επίπεδη επιφάνεια ενός κατακόρυφου τοίχου. Αν η σφαίρα κτυπήσει

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ η ΕΡΓΑΣΙΑ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ η ΕΡΓΑΣΙΑ 6/11/004 ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ 34 004-05 η ΕΡΓΑΣΙΑ ΑΣΚΗΣΕΙΣ Προθεσμία παράδοσης 0/1/004 1) Εκκρεμές μήκους L και μάζας m 1 εκτελεί μικρές ταλαντώσεις γύρω από τη θέση ισορροπίας, έχοντας συνδεθεί

Διαβάστε περισσότερα

Επαλληλία Αρµονικών Κυµάτων. Επιµέλεια: ρ. Μιχάλης Ε. Καραδηµητρίου, Φυσικός.

Επαλληλία Αρµονικών Κυµάτων. Επιµέλεια: ρ. Μιχάλης Ε. Καραδηµητρίου, Φυσικός. Επαλληλία Αρµονικών Κυµάτων - εκέµβρης 2016 Επιµέλεια: ρ. Μιχάλης Ε. Καραδηµητρίου, Φυσικός http://www.perifysikhs.com 1. Θέµα Α - Ερωτήσεις πολλαπλής επιλογής 1.1. ύο σύγχρονες κυµατικές πηγές Α και Β

Διαβάστε περισσότερα

β. Το πλάτος της σύνθετης ταλάντωσης είναι : Α = (Α 1 ² + Α 2 ² + 2 Α 1 Α 2 συν φ) (φ = π rad) Α = (Α 1 ² + Α 2 ² + 2 Α 1 Α 2 συν π) Α = [Α 1 ² + Α 2

β. Το πλάτος της σύνθετης ταλάντωσης είναι : Α = (Α 1 ² + Α 2 ² + 2 Α 1 Α 2 συν φ) (φ = π rad) Α = (Α 1 ² + Α 2 ² + 2 Α 1 Α 2 συν π) Α = [Α 1 ² + Α 2 1) Ένα κινητό εκτελεί συγχρόνως δύο απλές αρμονικές ταλαντώσεις που γίνονται στην ίδια διεύθυνση και γύρω από την θέση ισορροπίας με εξισώσεις : x 1 = 3 ημ [(2 π) t] και x 2 = 4 ημ [(2 π) t + φ], (S.I.).

Διαβάστε περισσότερα

4ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 21 εκέµβρη ο Κεφάλαιο - Κύµατα. Ενδεικτικές Λύσεις. Θέµα Α

4ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 21 εκέµβρη ο Κεφάλαιο - Κύµατα. Ενδεικτικές Λύσεις. Θέµα Α 4ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 21 εκέµβρη 2014 Α.1. Τα ηλεκτροµαγνητικά κύµατα : 2ο Κεφάλαιο - Κύµατα Ενδεικτικές Λύσεις Θέµα Α (ϐ) υπακούουν στην αρχή της επαλληλίας. Α.2. υο σύγχρονες πηγές

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κύµατα - Φαινόµενο Doppler Ενδεικτικές Λύσεις Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κύµατα - Φαινόµενο Doppler Ενδεικτικές Λύσεις Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κύµατα - Φαινόµενο Doppler Ενδεικτικές Λύσεις Θέµα Α Α.1. Η ταχύτητα µε την οποία διαδίδεται µια διαταραχή σε ένα οµογενές ελαστικό µέσο : (γ) είναι σταθερή και εξαρτάται

Διαβάστε περισσότερα

f( x 1, x ( ) ( ) f x > f x. ( ) ( )

f( x 1, x ( ) ( ) f x > f x. ( ) ( ) MONOTONIA ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ I MONOTONIA ΣΥΝΑΡΤΗΣΕΩΝ ΘΕΩΡΙΑ Στο διπλανό σχήµα δίνεται η γραφική παράσταση µιας συνάρτησης f στο α,β Παρατηρούµε ότι διάστηµα [ ] καθώς αυξάνουν οι τιµές του

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ) Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ) Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ) Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24 ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24 Εκφώνηση άσκησης 6. Ένα σώμα, μάζας m, εκτελεί απλή αρμονική ταλάντωση έχοντας ολική ενέργεια Ε. Χωρίς να αλλάξουμε τα φυσικά χαρακτηριστικά του συστήματος, προσφέρουμε στο σώμα

Διαβάστε περισσότερα

Φυσική (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 2: Θεωρία ταλαντώσεων (Συνοπτική περιγραφή) Αικατερίνη Σκουρολιάκου. Τμήμα Ενεργειακής Τεχνολογίας

Φυσική (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 2: Θεωρία ταλαντώσεων (Συνοπτική περιγραφή) Αικατερίνη Σκουρολιάκου. Τμήμα Ενεργειακής Τεχνολογίας Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Φυσική (Ε) Ενότητα 2: Θεωρία ταλαντώσεων (Συνοπτική περιγραφή) Αικατερίνη Σκουρολιάκου Τμήμα Ενεργειακής Τεχνολογίας Το περιεχόμενο του

Διαβάστε περισσότερα

γ /ω=0.2 γ /ω=1 γ /ω= (ω /g) v. (ω 2 /g)(x-l 0 ) ωt. 2m.

γ /ω=0.2 γ /ω=1 γ /ω= (ω /g) v. (ω 2 /g)(x-l 0 ) ωt. 2m. Μηχανική Ι Εργασία #7 Χειμερινό εξάμηνο 015-016 Ν. Βλαχάκης 1. Σώμα μάζας m και φορτίου q κινείται σε κατακόρυφο άξονα x, δεμένο σε ελατήριο σταθεράς k = mω του οποίου το άλλο άκρο είναι σταθερό. Το σύστημα

Διαβάστε περισσότερα

Λαμβάνοντας επιπλέον και την βαρύτητα, η επιτάχυνση του σώματος έχει συνιστώσες

Λαμβάνοντας επιπλέον και την βαρύτητα, η επιτάχυνση του σώματος έχει συνιστώσες Μικρό σώμα μάζας m κινείται μέσα σε βαρυτικό πεδίο με σταθερά g και επιπλέον κάτω από την επίδραση μιας δύναμης με συνιστώσες F x = 2κm και F y = 12λmt 2 όπου κ και λ είναι θετικές σταθερές σε κατάλληλες

Διαβάστε περισσότερα

Κεφάλαιο 13. Περιοδική Κίνηση

Κεφάλαιο 13. Περιοδική Κίνηση Κεφάλαιο 13 Περιοδική Κίνηση Περιοδική Κίνηση Η ταλαντωτική κίνηση είναι σημαντική Είναι μια πάρα πολύ κοινή κίνηση. Βάση για κατανόηση της κυματικής κίνησης Κάθε σύστημα που βρίσκεται σε ευσταθή ισορροπία

Διαβάστε περισσότερα

Σ Α Β Β Α Ϊ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η

Σ Α Β Β Α Ϊ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η 43 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Σ Α Β Β Α Ϊ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η ΠΑΓΚΡΑΤΙ : Χρ. Σµύρνης 3, Πλ. Νέου Παγκρατίου h:0/76.0.470 0/76.00.79 ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ (ΚΑΤΕΥΘΥΝΣΗΣ) Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α) Για ένα ηλεκτρικό

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ 0 ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α Α4 να γράψετε στο τετράδιό σας τον αριθµό της πρότασης και δίπλα το γράµµα που αντιστοιχεί στη φράση η οποία τη συµπληρώνει σωστά. Α. Σε

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΘΕΩΡΙΑΣ ΣΤΑ ΚΥΜΑΤΑ(μέχρι ΗΜ) Διάρκεια 90 min

ΔΙΑΓΩΝΙΣΜΑ ΘΕΩΡΙΑΣ ΣΤΑ ΚΥΜΑΤΑ(μέχρι ΗΜ) Διάρκεια 90 min ΔΙΑΓΩΝΙΣΜΑ ΘΕΩΡΙΑΣ ΣΤΑ ΚΥΜΑΤΑ(μέχρι ΗΜ) Διάρκεια 90 min Θέμα 1 Ερωτήσεις πολαλπλής επιλογής Σε κάθε ερώτηση υπάρχει μόνο μια σωστή απάντηση 1. Η περίοδος (Τ) του κύµατος είναι ίση µε (ποια πρόταση είναι

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Φυσική Σημασία του Μετασχηματισμού Fourier Ο μετασχηματισμός Fourier

Διαβάστε περισσότερα

ΕΑΠ ΦΥΕ η Εργασία έτους 2004 Ασκήσεις. 1) Τριφασικά ρεύµατα Τα τρία πηνία του

ΕΑΠ ΦΥΕ η Εργασία έτους 2004 Ασκήσεις. 1) Τριφασικά ρεύµατα Τα τρία πηνία του ΕΑΠ ΦΥΕ η Εργασία έτους Ασκήσεις Τριφασικά ρεύµατα Τα τρία πηνία του R B R σχήµατος κείνται σε επίπεδο και σχηµατίζουν διαδοχικά γωνία ο. Μαγνήτης R περιστρεφόµενος στο επίπεδο µε σταθερή γωνιακή ταχύτητα

Διαβάστε περισσότερα

Τηλ./Fax: , Τηλ: Λεωφόρος Μαραθώνος &Χρυσοστόµου Σµύρνης 3, 1

Τηλ./Fax: , Τηλ: Λεωφόρος Μαραθώνος &Χρυσοστόµου Σµύρνης 3, 1 . 1. Η απλή αρµονική ταλάντωση είναι κίνηση: α. ευθύγραµµη οµαλή β. ευθύγραµµη οµαλά µεταβαλλόµενη γ. οµαλή κυκλική δ. ευθύγραµµη περιοδική. Η φάση της αποµάκρυνσης στην απλή αρµονική ταλάντωση: α. αυξάνεται

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ÈÅÌÅËÉÏ

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ÈÅÌÅËÉÏ ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1ο ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004 ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4 ΘΕΜΑ ο ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση..

Διαβάστε περισσότερα

Ο πυκνωτής και το πηνίο

Ο πυκνωτής και το πηνίο Πυκνωτής, ΗΛΕΚΤΡΙΚΗ ΤΑΛΑΝΤΩΣΗ Ο πυκνωτής και το πηνίο Αποτελείται από ύο οπλισµούς, µονωµένους µεταξύ τους, που µπορούν να αλληλεπιρούν. Κατά τη φόρτιση η πηγή µετακινεί φορτίο από τον ένα οπλισµό στον

Διαβάστε περισσότερα

2 ο ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

2 ο ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ δυαδικό ΦΡΟΝΤΙΣΤΗΡΙΑ ο ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΡΚΕΙΑ: 3 ώρες ΒΑΘΜΟΣ:.. ΗΜΕΡΟΜΗΝΙΑ: 3// ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ: Ατρείδης Γιώργος Θ Ε Μ Α

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 3 ΜΑΪOY 016 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και, δίπλα, το γράµµα που αντιστοιχεί στη φράση η οποία συµπληρώνει

Διαβάστε περισσότερα

ΘΕΜΑ Α Στις ερωτήσεις να επιλέξετε το γράμμα που αντιστοιχεί στη σωστή απάντηση χωρίς να αιτιολογήσετε την επιλογή σας.

ΘΕΜΑ Α Στις ερωτήσεις να επιλέξετε το γράμμα που αντιστοιχεί στη σωστή απάντηση χωρίς να αιτιολογήσετε την επιλογή σας. '' Περί Γνώσεως'' Φροντιστήριο Μ.Ε. Φυσική Προσανατολισμού Γ' Λ. ΜΑΘΗΜΑ /Ομάδα Προσανατολισμού Θ.Σπουδών / ΤΑΞΗ : ΑΡΙΘΜΟΣ ΦΥΛΛΟΥ ΕΡΓΑΣΙΑΣ: ΦΥΣΙΚΗ / Προσανατολισμού / Γ ΛΥΚΕΙΟΥ 2 o ΗΜΕΡΟΜΗΝΙΑ: ΤΜΗΜΑ : ΟΝΟΜΑΤΕΠΩΝΥΜΟ

Διαβάστε περισσότερα

A e (t σε sec). Το πλάτος των ταλαντώσεων

A e (t σε sec). Το πλάτος των ταλαντώσεων ΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 Επιλέξτε την σωστή απάντηση. 1. Σηµειακό αντικείµενο εκτελεί φθίνουσες ταλαντώσεις µε πλάτος που µειώνεται εκθετικά µε το χρόνο σύµφωνα µε την 0,01t σχέση

Διαβάστε περισσότερα

Παρατηρήσεις στη δηµιουργία του στάσιµου*

Παρατηρήσεις στη δηµιουργία του στάσιµου* Παρατηρήσεις στη δηµιουργία του στάσιµου* Κατά µήκος γραµµικού ελαστικού µέσου το οποίο ταυτίζεται µε τον άξονα χ χ, διαδίδονται κατά αντίθετη φορά, δύο εγκάρσια αρµονικά κύµατα, ίδιου πλάτους και ίδιας

Διαβάστε περισσότερα

10 ΣΥΝΗΘΕΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

10 ΣΥΝΗΘΕΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ SECTION 0 ΣΥΝΗΘΕΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 0. Ορισµοί Συνήθης διαφορική εξίσωση (Σ Ε) καλείται µια εξίσωση της µορφής f [y (n), y (n ),..., y'', y', y, x] 0 όπου y', y'',..., y (n ), y (n) είναι οι παράγωγοι

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 2 Σεπτεμβρίου 2010

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 2 Σεπτεμβρίου 2010 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I Σεπτεμβρίου 00 Απαντήστε και στα 0 ερωτήματα με σαφήνεια και απλότητα. Οι ολοκληρωμένες απαντήσεις εκτιμώνται ιδιαιτέρως. Καλή σας επιτυχία.. Ένας

Διαβάστε περισσότερα