ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ. β = =.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ. β = =."

Transcript

1 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 6 79 ΑΘΗΝΑ Τηλ Fax: 65 wwwhmsgr GREEK MATHEMATICAL SOCIETY, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: 65 wwwhmsgr ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ 6 Ιανουαρίου 6 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα Δίνονται οι δεκαδικοί περιοδικοί αριθμοί α =, και β =, (α) Να γράψετε τους αριθμούς α και β σε κλασματική μορφή (β) Να βρείτε την τιμή της παράστασης (α) Έχουμε διαδοχικά: 5 ( ) ( ) 6 A = α 5β + 8 α + β Άρα είναι α = 9 Εργαζόμενοι ομοίως, βρίσκουμε ότι: β = = 9 (β) Έχουμε: A = ( α 5β) + ( 8α + β ) = = = ( ) + ( + ) = + = Πρόβλημα Να βρείτε το μικρότερο θετικό ακέραιο με τον οποίο είτε πολλαπλασιάσουμε είτε διαιρέσουμε το 6, προκύπτει ως αποτέλεσμα τέλειο τετράγωνο 5 Αναλύουμε το 6 σε γινόμενο πρώτων παραγόντων Έχουμε ότι 6 = 7 Επομένως, όταν ο αριθμός 6 πολλαπλασιαστεί με κάποιο παράγοντα, για να προκύψει γινόμενο που είναι τέλειο τετράγωνο, θα πρέπει ο παράγοντας αυτός να έχει ως παράγοντες τους αριθμούς και 7 σε περιττό εκθέτη και κάθε άλλο πρώτο παράγοντα σε άρτιο εκθέτη Ο μικρότερος τέτοιος αριθμός είναι ο 7 = Παρατηρούμε ότι και η 6

2 διαίρεση 6 : ( 7) δίνει πηλίκο ίσο με ( ) = =, που είναι τέλειο τετράγωνο Επομένως ο μικρότερος θετικός ακέραιος με τη ζητούμενη ιδιότητα είναι ο Πρόβλημα Στο διπλανό σχήμα, το τρίγωνο ΑΒΓ είναι ισοσκελές ( ΑΒ = ΑΓ ) και ˆ Α = Το τρίγωνο ΒΓΔ είναι ισόπλευρο και το σημείο Ε βρίσκεται στη προέκταση της πλευράς ΒΓ και είναι τέτοιο ώστε ΒΓ = ΓΕ Αν η πλευρά ΑΓ τέμνεται από τη ΔΕ στο σημείο Ζ, τότε: (α) Να υπολογιστούν οι γωνίες ΑΒΔ ˆ και ΑΓΔ ˆ (β) Να αποδειχθεί ότι τα τρίγωνα ΑΔB και ΑΔΓ είναι ισοσκελή (γ) Να αποδειχθεί ότι το τρίγωνο ΒΔΕ είναι ορθογώνιο Σχήμα (α) Το τρίγωνο ΒΓΔ είναι ισόπλευρο άρα ˆ Β ˆ = Γ = 6 Το τρίγωνο ΑΒΓ είναι ισοσκελές με ˆ Α = άρα ˆ Β = ˆ Γ = 75 Αφαιρώντας τις ισότητες κατά μέλη, έχουμε: ˆ Β ˆ Β ˆ ˆ = ˆ Γ ˆ Γ = 75 6 = 5 Β = Γ = 5 β) Επειδή ΑΒ = ΑΓ και ΔΒ = ΔΓ η ΑΔ είναι μεσοκάθετη της ΒΓ, άρα και διχοτόμος της γωνίας Αˆ, οπότε ˆ ˆ = Α = Α 5 Άρα τα τρίγωνα ΑΔΓ και ΑΔΒ είναι ισοσκελή (γ) Το τρίγωνο ΓΔΕ είναι ισοσκελές ( ΓΔ = ΓΕ ) με ˆ = ˆ + ˆ Δ ΕΓ Γ ΖΓΕ = 5 + (8 ˆ ) = Γ

3 Άρα Γ ˆ ΔΕ = ΔΕˆ Γ = = = Επειδή από το ισόπλευρο τρίγωνο ΒΓΔ είναι ˆ ˆ o ΕΒΔ= ΓΒΔ=6, έπεται ότι: ˆ o ( ˆ ˆ o o o o ΒΔΕ = 8 ΕΒΔ+ ΔΕΒ) = 8 ( 6 + ) = 9, οπότε το τρίγωνο ΒΔΕ είναι ορθογώνιο Πρόβλημα Για την εκτέλεση ενός μεγάλου ερευνητικού έργου στο προαπαιτούμενο χρονικό όριο, ξεκίνησαν να εργάζονται συνολικά 5ερευνητές Όταν τελείωσε στην ώρα του το του έργου, αποχώρησαν ερευνητές, οπότε το δεύτερο τέταρτο του έργου ολοκληρώθηκε με καθυστέρηση Αποχώρησαν όμως τότε και άλλοι ερευνητές, οπότε το τρίτο τέταρτο του έργου ολοκληρώθηκε με επιπλέον καθυστέρηση Πόσοι ερευνητές πρέπει να προσληφθούν, ώστε το έργο να τελειώσει στον προγραμματισμένο χρόνο (Υποθέτουμε ότι όλοι οι ερευνητές που εργάστηκαν, αλλά και αυτοί που θα προσληφθούν, δουλεύουν με την ίδια απόδοση) Αφού στο πρώτο τέταρτο δούλευαν όλοι οι ερευνητές, το έργο ολοκληρώθηκε στην ώρα του και υποθέτουμε ότι χρειάστηκαν χρόνο t 5 Στο δεύτερο τέταρτο σε κάθε χρονική μονάδα ολοκληρώνεται το = = από το έργο που θα ολοκληρωνόταν αν δούλευαν όλοι Επομένως, για να ολοκληρωθεί το 5 δεύτερο τέταρτο του έργου χρειάζεται χρόνος t Όμοια για να ολοκληρωθεί το τρίτο τέταρτο του έργου θα χρειαστεί χρόνος 5 t Έστω τέλος ότι με την προσθήκη των ερευνητών στο τελευταίο τέταρτο χρειάζεται χρόνος x Το έργο για να τελειώσει στην ώρα ή νωρίτερα του χρειάζεται χρόνος τετραπλάσιος από το πρώτο τέταρτο που δούλευαν όλοι, δηλαδή χρόνος μικρότερος ή ίσος με t Άρα, έχουμε τη σχέση: (6 5 ) t+ t+ t+ x= t x = t = t = t Επομένως, αν έγινε πρόσληψη y ερευνητών στο τελευταίο τέταρτο δούλεψαν + y επιστήμονες και για το τελευταίο τέταρτο χρειάστηκαν χρόνο 5 οπότε πρέπει t t 6 y 57 y + y = = + = Επομένως πρέπει να προσληφθούν 57 επιστήμονες 5 x = t + y,

4 Πρόβλημα Γ ΓΥΜΝΑΣΙΟΥ Να παραγοντοποιήσετε το πολυώνυμο: P( x) ( x ) ( x ) = και να βρείτε την τιμή της παράστασης A= 6 P( 5) P( ) (α) P( x) = ( x+ ) 8( x+ ) + 8= ( x+ ) 7( x+ ) + ( x x x ) ( x x) x( x ) = = + = + (β) A P( ) P( ) ( ) ( ) = 6 5 = = = 8 = 8 5 Πρόβλημα (α) Να αποδείξετε την ταυτότητα: x( x )( x+ ) + x= x, για κάθε πραγματικό αριθμό x (β) Να αποδείξετε ότι ο αριθμός Α = είναι κύβος ενός ακεραίου αριθμού τον οποίο και να προσδιορίσετε x x x+ + x= x x + x= x x+ x= x (α) ( )( ) ( ) (β) Επειδή οι ακέραιοι και διαφέρουν κατά δύο, μπορούμε να θεωρήσουμε ότι x =, x+ =, οπότε θα είναι x = 6 Για να αντιστοιχήσουμε τον αριθμό Α στην προηγούμενη ταυτότητα, πρέπει να την πολλαπλασιάσουμε με τον ακέραιο 56 6 x = 6, έχουμε: 6x x x+ + 6x= 6x, οπότε θέτοντας 6 = Τότε αυτή γίνεται: ( )( ) ( ) Α = + = = = = Επομένως, ο ζητούμενος αριθμός είναι ο Πρόβλημα Δίνεται ορθογώνιο ΑΒΓΔ με πλευρές ΑΔ = α και ΑΒ= α Με κέντρα τα σημεία Α, Β και ακτίνα α γράφουμε κύκλους Το σημείο Μ είναι το μέσο της πλευράς ΑΒ, η ΜΕ είναι εφαπτόμενη του κύκλου κέντρου Α και η ΜΖ είναι εφαπτόμενη του κύκλου κέντρου Β, όπως φαίνεται στο σχήμα (α) Να υπολογίσετε τη γωνία ΔΑΕ (β) Να υπολογίσετε το εμβαδό του μικτόγραμμου γραμμοσκιασμένου χωρίου ΔΕΜΖΓ που περικλείεται από το τόξο ΔΕ, τα τμήματα ΕΜ, ΜΖ, το τόξο ΖΓ και το τμήμα ΓΔ

5 (α) Επειδή το Μ είναι το μέσον του ΑΒ θα έχουμε ότι ΜΑ = α Από το ορθογώνιο τρίγωνο ΕΑΜ έχουμε ( ˆ ΕΑ α ημ ΕΜΑ ) = = =, οπότε ΕΜΑ ˆ =, ΑΜ α ΕΑΜ ˆ = 9 = 6 και συνεπώς ΕΑΔ= ˆ 9 6 = Σχήμα (β) Το εμβαδό του μικτόγραμμου γραμμοσκιασμένου χωρίου προκύπτει, αν από το εμβαδό του ορθογωνίου παραλληλογράμμου ΑΒΓΔ αφαιρέσουμε το εμβαδό των τριγώνων ΕΑΜ, ΜΖΒ και αφαιρέσουμε και τους κυκλικούς τομείς ΔΑΕ, ΖΒΓ Προφανώς ( ΑΒΓΔ ) = α α = α Από το Πυθαγόρειο Θεώρημα έχουμε ΕΜ = α α = α ΕΜ = α, οπότε α α ( ΕΑΜ ) = ΕΑ ΕΜ =, και όμοια ( ΒΖΜ ) = Επιπλέον, ομοίως με το ερώτημα (α) υπολογίζουμε ότι ΖΒΓ ˆ = o, οπότε έχουμε πα εμβτομ έα ( ΔΑΕ ) = εμβτομ έα ( ΖΒΓ ) = Επομένως, έχουμε: α πα π εμβγραμ χωρίου ( ΔΕΜΖΓ ) = α = α 6 Πρόβλημα Δύο φίλοι, ο Γιάννης και ο Βαγγέλης έχουν μία σακούλα με καραμέλες Ο Γιάννης βάζει το χέρι μέσα παίρνει κάποιες καραμέλες, και από αυτές που πήρε κρατάει τα και τις υπόλοιπες (από αυτές που πήρε) τις δίνει στο Βαγγέλη Στη συνέχεια ο Βαγγέλης παίρνει τις υπόλοιπες που έμειναν στη σακούλα, κρατάει το και δίνει στο Γιάννη τις υπόλοιπες Αν σε κάθε μοιρασιά καθένας παίρνει ακέραιο αριθμό από καραμέλες και τελικά οι καραμέλες του Γιάννη είναι εξαπλάσιες από τις καραμέλες του Βαγγέλη, να βρείτε τον ελάχιστο αριθμό από καραμέλες που μπορεί να περιέχει η σακούλα

6 Έστω α οι καραμέλες που πήρε από τη σακούλα ο Γιάννης και β οι καραμέλες που α πήρε από τη σακούλα ο Βαγγέλης Τότε ο Γιάννης κρατάει και δίνει στο Βαγγέλη α Και αφού σε κάθε μοιρασιά καθένας παίρνει ακέραιο αριθμό από καραμέλες, πρέπει το α να είναι πολλαπλάσιο του () β β Αντίστοιχα, ο Βαγγέλης κρατάει και δίνει στο Γιάννη α β α β Επομένως, ο Γιάννης έχει συνολικά + καραμέλες, ενώ ο Βαγγέλης έχει + Επομένως πρέπει να ισχύει 6 α β α β α 5β + = + = 9α 5β = () Για να ισχύει η (), πρέπει το α να είναι πολλαπλάσιο του 5 () Από τις () και () συνάγουμε ότι το α πρέπει να είναι πολλαπλάσιο του 5 =, οπότε η ελάχιστη τιμή του α είναι Επομένως, από τη σχέση () παίρνουμε β = 6 Επομένως, ο ελάχιστος αριθμός από καραμέλες που μπορεί να περιέχει η σακούλα είναι + 6 = 56 Α ΛΥΚΕΙΟΥ Πρόβλημα Να υπολογισθεί η τιμή της παράστασης 5 x + x + 8 x x Α= x 8 x x x + x, όπου x > και x 7 Θέτουμε:,,, x= x = y > x> x= y x y>, οπότε η Α γράφεται: 5 y+ y + 8y y Α= + y + 8 y y+ 9 y + y 5 y+ y( y + 8) y = ( y )( y y ) y y ( y) ( + y) + y [5 ( y+ ) ] y ( y+ ) ( y y+ ) y = + ( y+ ) ( y y+ ) ( + y) ( y) + y (7 + y)( y) y( y+ )( y y+ ) y = + y+ y y+ + y y + y ( )( )( )( ) y(7 + y) y 7 y+ y + y 7( y+ ) = + = = = 7 + y + y + y y+ Πρόβλημα 6 Να εξετάσετε, αν η εξίσωση 6x + 6 x 6 = έχει ρητή ρίζα

7 Αν η εξίσωση έχει ρητή λύση, τότε η διακρίνουσα πρέπει να είναι τέλειο τετράγωνο 6 ρητού Έχουμε ότι Δ = και ας υποθέσουμε ότι: = κ, όπου κ ρητός Αφού όμως το αριστερό μέλος είναι ακέραιος, θα πρέπει και ο κ να είναι ακέραιος Παρατηρούμε ότι το τελευταίο ψηφίο του αριθμού 6 είναι 6 και το ίδιο ισχύει για το 6 6 τελευταίο ψηφίο του αριθμού 6 6 = 56 6 Επομένως το τελευταίο 6 ψηφίο του αριθμού είναι το, αφού 6+ 6= Όμως, κάθε τέλειο τετράγωνο λήγει σε κάποιο από τα ψηφία,,,5,6, 9, οπότε καταλήγουμε σε άτοπο Επομένως η εξίσωση δεν έχει ρητή ρίζα Πρόβλημα Δίνεται ισοσκελές τρίγωνο ΑΒΓ ( ΑΒ = ΑΓ ) με ˆ Α = και έστω Δ το μέσο της πλευράς ΑΓ Θεωρούμε τα ισόπλευρα τρίγωνα ΑΕΔ, ΔΓΖ των οποίων οι κορυφές Ε, Ζ βρίσκονται στο ίδιο ημιεπίπεδο με ακμή την ΑΓ και στο οποίο ανήκει η κορυφή Β Αν η ΕΔ τέμνει την ΑΒ στο Κ, να αποδείξετε ότι η ΚΖ είναι κάθετη στη ΒΓ Σχήμα Έστω ότι η ΚΖ τέμνει τη ΒΓ στο σημείο Μ Θα αποδείξουμε ότι ˆ Γ ˆ + Ζ = 9 Το τρίγωνο ΓΔΖ είναι ισόπλευρο, οπότε ˆ Γ = 6 Το τρίγωνο ΑΒΓ είναι ισοσκελές ( ˆ Β ˆ = Γ ) με ˆ Α = (οπότε από ˆ ˆ ˆ = Α + Β + Γ 8 ) έχουμε: ˆ Β = ˆ Γ = 7 Άρα ˆ ˆ ˆ Γ = Γ Γ = 7 6 = ( ) Ισχύει ˆ ˆ ˆ = Δ + Δ + Δ 8 και επειδή ˆ Δ ˆ = Δ = 6 (ως γωνίες ισόπλευρων τριγώνων), συμπεραίνουμε ότι: ˆ Δ = 6 Το τρίγωνο ΑΔΖ είναι ισοσκελές (διότι ΑΔ = ΔΓ = ΔΖ ) και ˆ Δ ˆ = Δ = 6 Δηλαδή η ΔΚ είναι διχοτόμος της γωνίας Αˆ ΔΖ, οπότε θα είναι και μεσοκάθετος της βάσης ΑΖ του (ισοσκελούς) τριγώνου ΑΔΖ Εφόσον η ΔΚ είναι μεσοκάθετη της ΑΖ, το τρίγωνο ΑΚΖ είναι ισοσκελές

8 Από το ισοσκελές τρίγωνο ΑΔΖ έχουμε: ˆ Α ˆ = Ζ Από το ισοσκελές τρίγωνο ΑΚΖ έχουμε: ˆ Α ˆ = Ζ Προσθέτοντας τις σχέσεις κατά μέλη έχουμε: ˆ Ζ + ˆ Ζ ˆ ˆ = Α + Α = Από τη ισότητα ˆ ˆ ˆ ˆ = Ζ + Ζ + Ζ + Ζ 8 (με δεδομένο ότι ˆ Ζ = 6 ), καταλήγουμε: ˆ Ζ = 8 ( ) Από τις σχέσεις ( ),( ) έχουμε: ˆ Γ ˆ + Ζ = 9 Πρόβλημα Τρεις φίλοι, ο Γιάννης και ο Βαγγέλης και ο Βασίλης, έχουν μία σακούλα με καραμέλες Ο Γιάννης βάζει το χέρι μέσα στη σακούλα, παίρνει κάποιες καραμέλες, και από αυτές που πήρε κρατάει τα και τις υπόλοιπες (από αυτές που πήρε) τις μοιράζει εξίσου στους άλλους δύο Ο Βαγγέλης παίρνει κάποιες από τις υπόλοιπες που έμειναν στη σακούλα, κρατάει το από αυτές και τις υπόλοιπες από αυτές που έβγαλε τις μοιράζει εξίσου στους άλλους δύο Τέλος ο Βασίλης παίρνει τις υπόλοιπες που είχαν μείνει στη σακούλα κρατάει το 6 από αυτές και τις υπόλοιπες από αυτές που έβγαλε τις μοιράζει εξίσου στους άλλους δύο Αν σε κάθε μοιρασιά καθένας παίρνει θετικό ακέραιο αριθμό από καραμέλες και τελικά οι καραμέλες του Γιάννη είναι τριπλάσιες από τις καραμέλες του Βασίλη και oι καραμέλες του Βαγγέλη είναι διπλάσιες από τις καραμέλες του Βασίλη, να βρείτε τον ελάχιστο αριθμό από καραμέλες που μπορεί να περιέχει η σακούλα Έστω α οι καραμέλες που πήρε από τη σακούλα ο Γιάννης και β οι καραμέλες που πήρε από τη σακούλα ο Βαγγέλης και γ ο Βασίλης Τότε ο Γιάννης κρατάει στο Βαγγέλη και το Βασίλη 8 α α και δίνει β β Αντίστοιχα, ο Βαγγέλης κρατάει και δίνει στο Γιάννη και το Βασίλη Και αφού 8 σε κάθε μοιρασιά καθένας παίρνει ακέραιο αριθμό από καραμέλες, πρέπει το β να είναι πολλαπλάσιο του 8 () γ 5γ Τέλος, ο Βασίλης κρατάει και δίνει στο Γιάννη και το Βαγγέλη από 6 α β 5γ Επομένως ο Γιάννης έχει συνολικά + + καραμέλες, ο Βαγγέλης έχει 8 α β 5γ α β γ + + και ο Βασίλης έχει Επομένως πρέπει να ισχύει α β γ α β 5γ β γ α + + = = 8β + γ = 9α ()

9 α β γ α β 5γ α β γ + + = = α + β = γ () Προσθέτοντας τις (), () κατά μέλη έχουμε ότι : β = 6α 5β = α Οπότε από την () προκύπτει ότι: 7 β = γ Το β αφού είναι πολλαπλάσιο του 8 η ελάχιστη τιμή του είναι 8 Οπότε η ελάχιστη τιμή 7 8 για το α είναι α = 5 8 = και για το γ = = 7 = 8 Δηλαδή η ελάχιστη τιμή από καραμέλες που μπορεί να περιέχει η σακούλα είναι = 56 Β ΛΥΚΕΙΟΥ Πρόβλημα Δίνεται η αριθμητική πρόοδος ( ) α = x, α = + x,, όπου x πραγματικός αριθμός Να προσδιορίσετε: (α) Το άθροισμα των n πρώτων όρων της (β) Την τιμή του n,( n> ), για την οποία ο μέσος όρος των n πρώτων όρων της προόδου ισούται με το τετράγωνο μιας παράστασης του x, για κάθε πραγματικό αριθμό x (α) Η διαφορά της αριθμητικής προόδου είναι: ω = + x ( x) = x Επομένως το άθροισμα των n πρώτων όρων της θα είναι: ( x) + ( n ) x n Sn = = ( x + ( n ) x+ ) n (β) Ο μέσος όρος των n πρώτων όρων της προόδου ισούται με S n ( ) x n x n = + + και είναι τριώνυμο μεταβλητής x Η διακρίνουσα του τριωνύμου είναι ( n ) ( n n ) Δ= 6= Επομένως το τριώνυμο ισούται με τέλειο τετράγωνο μιας πολυωνυμικής παράστασης του x, αν και μόνον, αν Δ= n 6n+ 5= n= ή n= 5 Η τιμή n = απορρίπτεται, γιατί n > Επομένως, για n = 5 είναι S5 = x + x+ = ( x+ ) 5 Αν ζητήσουμε οποιαδήποτε αλγεβρική παράσταση του x, τότε έχουμε S n = x + n x+, για x, εφόσον n 5 n ( ) ( x n x ) n {,,,5} ισχύει: ( ) S n n Δ Τότε, για = + + για κάθε x Πρόβλημα

10 Να λυθεί στο σύνολο των πραγματικών αριθμών η εξίσωση x 6x x 8 = Έχουμε x 6x x 8 = x ( 6x + x+ 8) = Παρατηρούμε ότι η παράσταση που είναι μέσα στην παρένθεση γράφεται: ( ) ( ) 6x + x+ 8= x + 6x + x+ 8 x = x+ x, οπότε η εξίσωση γίνεται: x ( 6x + x+ 8) = x ( x+ ) + x = x = ( x+ ) x = x+ x= Πρόβλημα Δίνεται οξυγώνιο τρίγωνο ΑΒΓ (με ΑΒ<ΑΓ<ΒΓ) και τα μέσα ΜΝ, των πλευρών AB και AΓ αντίστοιχα Ο κύκλος ( c ) έχει διάμετρο την AΜ και τέμνει τις A ΓΜΝ, στα σημεία ΔΕ,, αντίστοιχα Ο κύκλος ( c ) έχει διάμετρο την ΓΝ και τέμνει την ΒΓ στο σημείο Λ Η ΕΛ τέμνει το κύκλο ( c ) στο σημείο Ζ Να αποδείξετε ότι το τετράπλευρο ΖΔΝΛ είναι ισοσκελές τραπέζιο Σχήμα Η γωνία ΑΕΜ ˆ είναι ορθή διότι είναι εγγεγραμμένη (στο κύκλο ( c ) ) και βαίνει στη διάμετρο ΑΜ του κύκλου ( c ), οπότε θα είναι: ΑΕ ΜΝ () Η γωνία ΝΛΓ ˆ είναι ορθή διότι είναι εγγεγραμμένη (στο κύκλο ( c )) και βαίνει στη διάμετρο ΝΓ του κύκλου ( c ), οπότε θα είναι ΝΛ ΒΓ () Τα σημεία Μ, Ν είναι τα μέσα των πλευρών ΑΒ και ΑΓ του τριγώνου ΑΒΓ, οπότε θα είναι:

11 ΒΓ ΜΝ = // () υ Από τις σχέσεις (),(),() συμπεραίνουμε ότι: ΑΕ = ΛΝ = α και ΑΕ// ΛΝ Άρα το τετράπλευρο ΑΕΛΝ είναι παραλληλόγραμμο Το τετράπλευρο ΑΔΕΖ είναι ισοσκελές τραπέζιο, διότι είναι τραπέζιο ΕΖ ΑΔ, εγγεγραμμένο στον κύκλο ( c ) Άρα ΑΕ=ΔΖ οπότε θα είναι και ΔΖ = ΝΛ Δηλαδή το τετράπλευρο ΔΖΛΝ είναι ισοσκελές τραπέζιο Πρόβλημα Να προσδιορίσετε όλα τα ζεύγη θετικών ακεραίων ( a, b) που είναι τέτοια ώστε ο a 7b αριθμός + να είναι ακέραιος b 6a a 7b a Θέλουμε + = κ, όπου κ είναι ένας ακέραιος Θέτουμε = x και τότε η σχέση b 6a b γράφεται ως x + 7 = κ 6x 6κx + 7 = () και ουσιαστικά ψάχνουμε τις ρητές 6x λύσεις της () Για να έχει ρητές λύσεις η () πρέπει η διακρίνουσα να είναι τέλειο τετράγωνο Δηλαδή θέλουμε Δ = (6κ ) 6 7 = ( 6) (9κ 7) να είναι τέλειο τετράγωνο, οπότε θέλουμε 9κ 7 = s για κάποιον θετικό ακέραιο s Τότε (κ ) s = 7 (κ s)(κ + s) = 7 και αφού ο 7 είναι πρώτος και οι κ s = κ, s θετικοί ακέραιοι, έπεται ότι κ =, s = 8 κ + s = 7 7 a 7 Για κ = η παραπάνω εξίσωση έχει λύσεις τις x = και x =, οπότε = 6 6 b 6 a ή =, οπότε έχουμε για λύσεις τις ( a, b) = (7t,6t) ή ( a, b) = ( t,6t) όπου t θετικός b 6 ακέραιος Γ ΛΥΚΕΙΟΥ Πρόβλημα Δίνεται η αριθμητική πρόοδος ( ) b = x, b = x + 6,, όπου x πραγματικός αριθμός Να προσδιορίσετε: (α) Το άθροισμα των n πρώτων όρων της (β) Την τιμή του n,( n> ), για την οποία ο μέσος όρος των n πρώτων όρων της προόδου ισούται με το τετράγωνο μιας παράστασης του x, για κάθε πραγματικό αριθμό x (α) Η διαφορά της αριθμητικής προόδου είναι: ( ) ω = x + 6 x = 8 x Επομένως το άθροισμα των n πρώτων όρων της θα είναι:

12 ( ) + ( ) x 8 n x n Sn = = ( x + ( n ) x+ 6 ) n (β) Ο μέσος όρος των n πρώτων όρων της προόδου ισούται με S n ( ) x n x 6 n = + + και μπορεί να θεωρηθεί ως τριώνυμο μεταβλητής x Η διακρίνουσα του τριωνύμου είναι ( n ) ( n n ) Δ= 6 6 = Επομένως το τριώνυμο ισούται με τέλειο τετράγωνο μιας πολυωνυμικής παράστασης του x, αν και μόνον, αν Δ= n 6n+ 5= n= ή n= 5 Η τιμή n = απορρίπτεται, γιατί n > Επομένως, μόνον για n = 5 είναι S5 = x + 8x+ 6= ( x+ ) 5 Αν ζητήσουμε οποιαδήποτε αλγεβρική παράσταση του x, τότε έχουμε S n = x + n x+, για x, εφόσον n 5 n ( ) 6 ( x n x 6) n {,,,5} ισχύει: ( ) S n n = + + για κάθε x Δ Τότε για Πρόβλημα Να λυθεί στο σύνολο των πραγματικών αριθμών η εξίσωση: x 8x x x 6 = Έχουμε x 8x x x 6 = x ( 8x + x + x+ 6) = Παρατηρούμε ότι η παράσταση που είναι μέσα στην παρένθεση γράφεται: ( ) ( ) 8x + x + x+ 6 = x + 8x + x + x+ 6 x = x+ x, οπότε η εξίσωση γίνεται: x 8x + x + x+ 6 = x x+ + x = x = x+ ( ) ( ) ( ) x = x+ ή x = x x= ή x= + Πρόβλημα Δίνονται οι συναρτήσεις f, g: Α R, όπου Α = (,) (, + ) και f() x g() x για κάθε x Α Αν για κάθε xy Α, ισχύουν οι σχέσεις: ( g( x) ) gx ( ) f f = (), g( y) y Να αποδείξετε ότι: (α) Οι συναρτήσεις f, g είναι - (ένα προς ένα) (β) f( x) f = g( x) g = για κάθε x Α x x ( f( x) ) g f( x) g = f ( y ) y (α) Έστω x, x A με g( x) = g( x) Θα αποδείξουμε ότι x = x, ()

13 Θέτοντας στη σχέση (), όπου x το x και όπου y το x, έχουμε: gx ( ) f ( g( x) ) f ( g( x) ) f = f() = f ( g( x) ) = f() x ( Α ) gx ( ) x x Θέτοντας στη σχέση (), όπου x το x και όπου y το x, έχουμε: g( x) f ( g( x) ) f ( g( x) ) f = f() = f ( g( x) ) = f() x ( Β ) g( x) x x Από την ισότητα g( x) = g( x) έχουμε: f ( g( x)) = f ( g( x)) ( Γ ) Από τις σχέσεις ( Α),( Β),( Γ ) συμπεραίνουμε ότι: x = x Ομοίως, μέσω της σχέσης (), αποδεικνύουμε ότι και η συνάρτηση f είναι - (β) Στις σχέσεις (), () θέτουμε όπου y το x και έχουμε τις σχέσεις: που για ( ( )) ( ( )) gx ( ) f g x f g x f = f() = f ( g( x) ) = f() x gx ( ) x x ( ()) g( f() x ) f() x g f x g = g() = g( f( x) ) = g() x f() x x x f g() f() g f() = g() x =, γίνονται: ( ) = και ( ) Επειδή όμως οι συναρτήσεις f, g είναι -, θα ισχύει: f() = g() = που σε f g( x) = g f ( x) = x συνδυασμό με τις προηγούμενες ισότητες έχουμε: ( ) ( ) gx ( ) x Άρα η ισότητα () γίνεται: f = g( y) y Στην τελευταία ισότητα θέτουμε όπου x το f ( x ) και όπου y το f ( y ) ( ( )) ( ) ( ) Άρα f g f x = f x f x = f x και για x =, έχουμε: g( f( y) ) f( y) y f( y) f () f = f = f( y) f = y f( y) y f( y) y Πρόβλημα Δίνεται τρίγωνο ABC (με AB < AC < BC ) και ο περιγεγραμμένος κύκλος του c( Ο,R ) Ο κύκλος c ( C,AB ) (με κέντρο το σημείο C και ακτίνα AB) τέμνει τον κύκλο ( c ) στα σημεία D και E (το E ανήκει στο τόξο στο οποίο δεν ανήκει το σημείο A) Ο κύκλος c ( B,BD ) (με κέντρο το σημείο B και ακτίνα BD ) τέμνει τον κύκλο ( c ) στο σημείο F Να αποδείξετε ότι η AF περνάει από το μέσο Μ της BC Στο εγγεγραμμένο τετράπλευρο ABCD, ισχύει AB = CD (διότι CD ακτίνα του κύκλου ( c )) Άρα το τετράπλευρο ABCD είναι ισοσκελές τραπέζιο με AB = CD, AD // BC (*) Από τις ίσες διαγώνιες του ισοσκελούς τραπεζίου ABCD έχουμε: AC = BD ()

14 Στο εγγεγραμμένο τετράπλευρο ABEC, ισχύει AB = CD = CE (διότι CD = CE ακτίνες του κύκλου ( c )) Άρα το τετράπλευρο ABEC είναι ισοσκελές τραπέζιο με AB = CE και AC // BE () Σχήμα 5 Στη συνέχεια θα αποδείξουμε ότι τα σημεία B,E, F είναι συνευθειακά (θα αποδείξουμε ότι ΕΒC ˆ = FBC ˆ ) Από το ισοσκελές τραπέζιο ABEC έχουμε: ΕΒC ˆ = ACB ˆ = Cˆ () Η διάκεντρος BC των κύκλων ( c ) και ( c ) είναι μεσοκάθετη της κοινής χορδής τους DF Άρα, από το ισοσκελές τραπέζιο ABCD έχουμε: FΒ ˆ C = CBD ˆ = ACB ˆ = Cˆ () Από τις σχέσεις () και () έχουμε: Ε ˆ ΒC = FBˆ C = Ĉ Από τη σχέση (), έχουμε AC // BE // BF και επειδή AC = BF = BD (από τη σχέση () ), καταλήγουμε ότι τα τμήματα AC, BF είναι ίσα και παράλληλα Δηλαδή το τετράπλευρο ABFC είναι παραλληλόγραμμο, οπότε οι διαγώνιές του θα διχοτομούνται (*) Ισχύει Bˆ = Dˆ (διότι είναι εγγεγραμμένες στον ίδιο κύκλο και βαίνουν σε ίσα τόξα) Οι γωνίες αυτές είναι εντός εναλλάξ στις AD και BC με τέμνουσα την BD Άρα AD// BC, δηλαδή το τετράπλευρο ABCD είναι ισοσκελές τραπέζιο Σχήμα 6

15

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 16 ΙΑΝΟΥΑΡΙΟΥ 2016

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 16 ΙΑΝΟΥΑΡΙΟΥ 2016 ΣΑΒΒΑΤΟ, 16 ΙΑΝΟΥΑΡΙΟΥ 2016 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ 1. Παρακαλούμε να διαβάσετε προσεκτικά τις οδηγίες στους μαθητές.

Διαβάστε περισσότερα

: :

: : ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0.

2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0. Ευκλείδης Γ' Γυμνασίου 1995-1996 1. Να γίνει γινόμενο η παράσταση Α= ν 2 3ν 1 2 1. 2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά,

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 77 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 12 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 77 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 12 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

x , οπότε : Α = = 2.

x , οπότε : Α = = 2. ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 7 ΙΑΝΟΥΑΡΙΟΥ 009 Πρόβλημα Αν ισχύει ότι Γ τάξη Γυμνασίου a+ b=, να βρείτε την τιμή της παράστασης Α= ( 6a+

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 1 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 1 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 36653-367784 - Fax: 36405 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 33 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 27 Φεβρουαρίου 2016

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 33 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης 27 Φεβρουαρίου 2016 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 6 79 ΑΘΗΝΑ Τηλ 665-67784 - Fax: 645 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 4 Panepistimiou (Εleftheriou Venizelou) Street

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 67 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 9 ΕΚΕΜΒΡΙΟΥ Β τάξη Λυκείου

ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 67 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 9 ΕΚΕΜΒΡΙΟΥ Β τάξη Λυκείου ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 106 79 ΑΘΗΝΑ Τηλ. 10 6165-10617784 - Fax: 10 64105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ 18 :

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ 18 : ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 36653-367784 - Fax: 36405 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 30 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 23 Φεβρουαρίου 2013 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Λύση (α) Έχουμε

( ) ( ) ( ) ( ) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 30 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης 23 Φεβρουαρίου 2013 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Λύση (α) Έχουμε ΕΛΛΗΝΙΚΗ ΜΘΗΜΤΙΚΗ ΕΤΙΡΕΙ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 06 79 ΘΗΝ Τηλ 665-6778 - Fax: 605 e-mail : info@hmsgr, wwwhmsgr GREEK MATHEMATICAL SOCIETY, Panepistimiou (Εleftheriou Venizelou) Street GR

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου 2015. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου 2015. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ B ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ B ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 0 66-067784 - Fax: 0 640 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)

Διαβάστε περισσότερα

( 5) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Ενδεικτικές λύσεις

( 5) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Ενδεικτικές λύσεις ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

B τάξη Γυμνασίου ( 2 2) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009

B τάξη Γυμνασίου ( 2 2) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 7 ΙΑΝΟΥΑΡΙΟΥ 009 B τάξη Γυμνασίου Πρόβλημα. Αν ισχύει ότι 4x 5y = 0, να βρείτε την τιμή της παράστασης Η

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 1 Νοεμβρίου 2014. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 1 Νοεμβρίου 2014. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

Θαλής Α' Λυκείου 1995-1996

Θαλής Α' Λυκείου 1995-1996 Θαλής Α' Λυκείου 1995-1996 1. Δυο μαθητές Α και Β παίζουν το ακόλουθο παιχνίδι: Τους δίνεται ένα κανονικό πολύγωνο με άρτιο πλήθος πλευρών, μεγαλύτερο από 6 (π.χ. ένα 100-γωνο). Κάθε παίκτης συνδέει δυο

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 34 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 4 Μαρτίου 2017

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 34 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης 4 Μαρτίου 2017 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 e-mail : ifo@hms.gr, www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Paepistimiou (Εleftheriou Veizelou)

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 34 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 4 Μαρτίου 2017

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 34 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης 4 Μαρτίου 2017 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 6 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 3645 e-mail : ifo@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Paepistimiou (Εleftheriou Veizelou)

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106 79

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 32 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 28 Φεβρουαρίου 2015 Θέματα μικρών τάξεων

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 32 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης 28 Φεβρουαρίου 2015 Θέματα μικρών τάξεων ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)

Διαβάστε περισσότερα

B τάξη Γυμνασίου : : και 4 :

B τάξη Γυμνασίου : : και 4 : Τηλ. 10 6165-10617784 - Fax: 10 64105 Tel. 10 6165-10617784 - Fax: 10 64105 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 014 B τάξη Γυμνασίου Να βρείτε τους αριθμούς 0 4 1 1 77 16 60 19 7 : 000 : και 4 : 4 9

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2012

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης 3 Μαρτίου 2012 ΕΛΛΗΝΙΚΗ ΜΘΗΜΤΙΚΗ ΕΤΙΡΕΙ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 06 79 ΘΗΝ Τηλ 665-677 - F: 605 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY, Panepistimiou (Εleftheriou Venizelou) Street GR 06

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 0 3663-0367784 - Fax: 0 3640 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ B τάξη Γυμνασίου Α= ( 2 2)

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ B τάξη Γυμνασίου Α= ( 2 2) ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 0 665-067784 - Fa: 0 6405 e-mail : ifo@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Paepistimiou (Εleftheriou Veizelou)

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 Β ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens

Διαβάστε περισσότερα

Α τάξη Λυκείου ( ) 2. ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009

Α τάξη Λυκείου ( ) 2. ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 7 ΙΑΝΟΥΑΡΙΟΥ 009 Α τάξη Λυκείου Πρόβλημα Να απλοποιήσετε την αλγεβρική παράσταση όπου mακέραιοι, και, m

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 0 36653-0367784 - Fax: 0 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 9 ΑΘΗΝΑ Τηλ 36653-3684 - Fax: 36405 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 24 ΝΟΕΜΒΡΙΟΥ Α τάξη Λυκείου

ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 24 ΝΟΕΜΒΡΙΟΥ Α τάξη Λυκείου ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 10 361653-103617784 - Fax: 10 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ 68 ου ΘΑΛΗΣ 24 Νοεμβρίου 2007 Β ΓΥΜΝΑΣΙΟΥ

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ 68 ου ΘΑΛΗΣ 24 Νοεμβρίου 2007 Β ΓΥΜΝΑΣΙΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ 68 ου ΘΑΛΗΣ 4 Νοεμβρίου 007 Β ΓΥΜΝΑΣΙΟΥ ( 00 :8 00) 00 : ( 8 ) 76 3 007. Α= + + + + + + ( 5 00) ( 00 :0 76) 5 ( 0 76) = + + + + + = + + = 5 + 78 = 007.. Αν ω είναι ο αριθμός

Διαβάστε περισσότερα

: :

: : ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2012

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης 3 Μαρτίου 2012 ΕΛΛΗΝΙΚΗ ΜΘΗΜΤΙΚΗ ΕΤΙΡΕΙ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 06 79 ΘΗΝ Τηλ. 665-677 - Fax: 605 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY, Panepistimiou (Εleftheriou Venizelou) Street

Διαβάστε περισσότερα

2. Αν ΑΒΓΔ είναι ένα τετράπλευρο περιγεγραμμένο σε κύκλο ακτίνας ρ, να δείξετε ότι ισχύει: ΑΒ + ΓΔ 4ρ.

2. Αν ΑΒΓΔ είναι ένα τετράπλευρο περιγεγραμμένο σε κύκλο ακτίνας ρ, να δείξετε ότι ισχύει: ΑΒ + ΓΔ 4ρ. Θαλής Β' Λυκείου 1995-1996 1. Έστω κύκλος ακτίνας 1, στον οποίο ορίζουμε ένα συγκεκριμένο σημείο Α 0. Στη συνέχεια ορίζουμε τα σημεία Α ν ως εξής: Το μήκος του τόξου Α 0 Α ν (όπου αυτό μπορεί να είναι

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 78 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 11 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 78 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 11 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-361774 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ. α β. β (β) Το μικρότερο από τα κλάσματα που βρήκαμε στο προηγούμενο ερώτημα είναι το

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ. α β. β (β) Το μικρότερο από τα κλάσματα που βρήκαμε στο προηγούμενο ερώτημα είναι το ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 Ο - Α ( απόδειξη θεωρήματος) 1 ) Να αποδειχθεί ότι : «Οι διαγώνιοι ορθογωνίου είναι ίσες». ( 5.3 σελ 100 ) 2 ) Να αποδειχθεί ότι τα εφαπτόμενα τμήματα κύκλου

Διαβάστε περισσότερα

Θέματα μεγάλων τάξεων

Θέματα μεγάλων τάξεων ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 106 79 ΑΘΗΝΑ Τηλ. 6165-617784 - Fax: 64105 e-mail : info@hms.gr www.hms.gr ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης"

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Βασικά θεωρήματα Σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο μιας κάθετης πλευράς του είναι ίσο με το γινόμενο της υποτείνουσας επί την προβολή της

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 22 Φεβρουαρίου 2014

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης 22 Φεβρουαρίου 2014 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr, GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)

Διαβάστε περισσότερα

Ασκήσεις για τις εξετάσεις Μάη Ιούνη στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ

Ασκήσεις για τις εξετάσεις Μάη Ιούνη στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ Ασκήσεις για τις εξετάσεις Μάη Ιούνη 014 στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ Άσκηση 1 η Δίνεται παραλληλόγραμμο ΑΒΓΔ και. Με διάμετρο τη διαγώνιο ΑΓ γράφουμε κύκλο με κέντρο Ο που τέμνει τη ΓΔ στο

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 1 ΝΟΕΜΒΡΙΟΥ 2008 B ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 1 ΝΟΕΜΒΡΙΟΥ 2008 B ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 0 36653-0367784 - Fax: 0 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 015-016 ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΕΠΙΜΕΛΕΙΑ ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 9 Ο : ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΟΡΘΕΣ ΠΡΟΒΟΛΕΣ Το τμήμα ΒΔ λέγεται προβολή του.. πάνω στην Το τμήμα

Διαβάστε περισσότερα

GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 e-mail : info@hms.gr www.hms.

GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 e-mail : info@hms.gr www.hms. Τηλ 361653-3617784 - Fax: 364105 Tel 361653-3617784 - Fax: 364105 17 Ιανουαρίου 015 Β ΓΥΜΝΑΣΙΟΥ 7 49 3 4 3 6 11 Υπολογίστε την τιμή της παράστασης: Α= + + : 3 9 7 3 5 10 Πρόβλημα Μία οικογένεια αγόρασε

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fa: 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του 198 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Στο παρακάτω σχήμα το τρίγωνο ΑΒΓ είναι ορθογώνιο στο Α. Αν ΑΔ ΒΓ, ΕΔ ΑΒ τότε το τρίγωνο

Διαβάστε περισσότερα

Ευκλείδης Β' Λυκείου 1993-1994 ΜΕΡΟΣ Α

Ευκλείδης Β' Λυκείου 1993-1994 ΜΕΡΟΣ Α Ευκλείδης Β' Λυκείου 993-994 ΜΕΡΟΣ Α. Δύο ίσα τετράγωνα ΑΒΓΔ και ΕΖΗΘ πλευράς 0 τοποθετούνται έτσι ώστε η κορυφή Ε να βρίσκεται στο κέντρο του τετραγώνου ΑΒΓΔ. Το εμβαδό του μέρους του επιπέδου που καλύπτεται

Διαβάστε περισσότερα

Α={1,11,111,1111,..., 11...1 }

Α={1,11,111,1111,..., 11...1 } Θαλής Γ' Γυμνασίου 1995-1996 1. Δύο μαθητές Α, Β χρησιμοποιούν ένα πίνακα 3x3, όπως στο σχήμα, για να παίξουν "τρίλιζα". Καθένας γράφει σ' ένα τετραγωνάκι της επιλογής του ένα σταυρό ή έναν κύκλο. (Και

Διαβάστε περισσότερα

Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 113 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΘΕΩΡΙΑ Θα ασχοληθούμε με την εγγραφή μερικών βασικών κανονικών πολυγώνων σε κύκλο και θα υπολογίσουμε

Διαβάστε περισσότερα

Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.

Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες. ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΑ ΓΙΑ ΤΟΝ ΔΙΑΓΩΝΙΣΜΟ «ΘΑΛΗΣ» ΤΑΞΗ Α ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ 1. Μεσοκάθετος ενός ευθύγραμμου τμήματος ΑΒ ονομάζεται η ευθεία που είναι κάθετη

Διαβάστε περισσότερα

: :

: : Τηλ. 361653-3617784 - Fax: 364105 Tel. 361653-3617784 - Fax: 364105 19 Οκτωβρίου 013 Β ΓΥΜΝΑΣΙΟΥ Να υπολογίσετε την τιμή της παράστασης: 16 1 74 3 1 : 4 53 3 4 :. 9 8 9 Πρόβλημα Ένας οικογενειάρχης πήρε

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ 66-67784 - Fax: 640 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 36653-367784 - Fax: 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR 06 79 - Athens

Διαβάστε περισσότερα

ΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ

ΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ ΜΕΡΟΣ Α ο ΚΕΦΑΛΑΙΟ. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών. Ονομάζεται αλγεβρική παράσταση μια παράσταση

Διαβάστε περισσότερα

Ευκλείδης Β' Γυμνασίου 1995-1996. 1. Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26

Ευκλείδης Β' Γυμνασίου 1995-1996. 1. Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26 Ευκλείδης Β' Γυμνασίου 1995-1996 1. Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26 2. Σ' ένα ισόπλευρο τρίγωνο ΑΒΓ παίρνουμε τις διαμέσους ΑΔ, ΒΕ και ΓΖ (που διέρχονται από το ίδιο σημείο Θ). Πόσες γωνίες,

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 36653-367784 - Fax: 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR 06 79 - Athens

Διαβάστε περισσότερα

Β ΓΥΜΝΑΣΙΟΥ. Πρόβλημα 1 Να υπολογίσετε την τιμή των αριθμητικών παραστάσεων: 2 24 : : 2, : και να τις συγκρίνετε.

Β ΓΥΜΝΑΣΙΟΥ. Πρόβλημα 1 Να υπολογίσετε την τιμή των αριθμητικών παραστάσεων: 2 24 : : 2, : και να τις συγκρίνετε. Τηλ. 6165-617784 - Fa: 64105 Tel. 6165-617784 - Fa: 64105 Β ΓΥΜΝΑΣΙΟΥ Να υπολογίσετε την τιμή των αριθμητικών παραστάσεων: 5 5 4 : 6 5 8 8:, 11 : 1 11 7 και να τις συγκρίνετε. Ένα ορθογώνιο έχει μήκος

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ B τάξη Γυμνασίου Α= ( 2 2)

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ B τάξη Γυμνασίου Α= ( 2 2) ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 0 665-067784 - Fa: 0 6405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΜΗΚΟΣ ΚΥΚΛΟΥ ΕΜΒΑΔΟΝ ΚΥΚΛΟΥ

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΜΗΚΟΣ ΚΥΚΛΟΥ ΕΜΒΑΔΟΝ ΚΥΚΛΟΥ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΜΗΚΟΣ ΚΥΚΛΟΥ ΕΜΒΑΔΟΝ ΚΥΚΛΟΥ ΘΕΩΡΙΑ : Μήκος κύκλου: L = Εμβαδόν κύκλου: Ε = ( όπου π = 3,14) Γνωρίζοντας ότι σε γωνία 360 0 αντιστοιχεί κύκλος με μήκος L και εμβαδόν Ε έχουμε : α) ημικύκλιο

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 23 ΙΑΝΟΥΑΡΙΟΥ 2010 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ.

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 23 ΙΑΝΟΥΑΡΙΟΥ 2010 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ. ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 0 665-067784 - Fax: 0 6405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ

ΘΕΜΑΤΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Επιμέλεια: ιώργος Ράπτης ΘΕΤ ΣΤΗΝ ΕΩΕΤΡΙ ΛΥΚΕΙΟΥ ΘΕ 1 ο. Να αποδείξετε ότι το εμβαδό τραπεζίου με βάσεις 1, και ύψος υ δίνεται από τον τύπο: ( 1+ ) υ Ε= ονάδες 1 B. ν φν, λν και αν είναι: η γωνία, η πλευρά

Διαβάστε περισσότερα

Τάξη A Μάθημα: Γεωμετρία

Τάξη A Μάθημα: Γεωμετρία Τάξη A Μάθημα: Γεωμετρία Η Θεωρία σε Ερωτήσεις Ερωτήσεις Κατανόησης Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Τρίγωνα Α. Θεωρία-Αποδείξεις Σελ.2 Β. Θεωρία-Ορισμοί..Σελ.9 Γ. Ερωτήσεις Σωστού

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ Τηλ 361653-3617784 - Fax: 364105 Tel 361653-3617784 - Fax: 364105 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΑΒΒΑΤΟ, 4 ΝΟΕΜΒΡΙΟΥ 007 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ

Διαβάστε περισσότερα

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος Εγγράψιμα και περιγράψιμα τετράπλευρα Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος 1. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι παραλληλόγραμμο.. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ

ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ 1) Από εξωτερικό σημείο Ρ ενός κύκλου (Ο,ρ) φέρνουμε τα εφαπτόμενα τμήματα ΡΑ και ΡΒ. Αν Μ είναι ένα τυχαίο εσωτερικό σημείο του ευθύγραμμου τμήματος ΟΡ, να αποδείξετε ότι: α) τα

Διαβάστε περισσότερα

A

A ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΡΧΙΑΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΝΟΕΜΒΡΙΟΣ 017 Α ΓΥΜΝΑΣΙΟΥ Ημερομηνία: 11/11/017 Ώρα Εξέτασης: 10:00-1:00 ΟΔΗΓΙΕΣ: 1. Να λύσετε όλα τα θέματα, αιτιολογώντας πλήρως τις απαντήσεις σας..

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ

ΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ ΟΜΟΙΟΤΗΤΑ Ορισμός: Δύο ευθύγραμμα σχήματα ονομάζονται όμοια, αν έχουν τις πλευρές τους ανάλογες και τις γωνίες που σχηματίζονται από ομόλογες πλευρές τους ίσες μία προς μία. ΚΡΙΤΗΡΙΑ ΟΜΟΙΟΤΗΤΑΣ ΤΡΙΓΩΝΩΝ

Διαβάστε περισσότερα

ΘΕΩΡΙA 5. Μονάδες 5x2=10 A2. Πότε ένα τετράπλευρο ονομάζεται τραπέζιο;

ΘΕΩΡΙA 5. Μονάδες 5x2=10 A2. Πότε ένα τετράπλευρο ονομάζεται τραπέζιο; 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 14 ΘΕΩΡΙA 5 ΘΕΜΑ A 1. A1. Να μεταφέρετε στην κόλλα απαντήσεων το γράμμα που αντιστοιχεί σε κάθε πρόταση και δίπλα να σημειώσετε το γράμμα Σ αν

Διαβάστε περισσότερα

Ασκήσεις Επανάληψης Τάξη Δ Εν. 1: Διανύσματα

Ασκήσεις Επανάληψης Τάξη Δ Εν. 1: Διανύσματα Ασκήσεις Επανάληψης Τάξη Δ 016-017 Εν. 1: Διανύσματα 1. Να ονομάσετε τα στοιχεία ενός διανύσματος.. Δίνεται το παραλληλόγραμμο ΑΒΓΔ, όπως φαίνεται στο σχήμα. Να χαρακτηρίσετε ΣΩΣΤΟ ή ΛΑΘΟΣ τις πιο κάτω

Διαβάστε περισσότερα

ΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1

ΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1 ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.6 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΕΜΒΑΔΟΥ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.7 ΕΜΒΑΔΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ ΚΑΙ ΚΥΚΛΙΚΟΥ ΤΜΗΜΑΤΟΣ 11.8 ΤΕΤΡΑΓΩΝΙΣΜΟΣ ΚΥΚΛΟΥ ΘΕΩΡΙΑ 1 (Εμβαδόν κυκλικού δίσκου) Θεωρούμε

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ "Ο ΕΥΚΛΕΙΔΗΣ" ΣΑΒΒΑΤΟ, 20 ΙΑΝΟΥΑΡΙΟΥ 2007 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 20 ΙΑΝΟΥΑΡΙΟΥ 2007 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου ενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ 665-67784 - Fax: 6405 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β) ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x. Να λυθούν οι εξισώσεις: α) 3x x 3 3 5x x β) 4 3 x x x 0

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράλληλες Ευθείες και Τετράπλευρα Ορισμός. Δύο ευθείες ονομάζονται παράλληλες όταν ανήκουν στο ίδιο επίπεδο και δεν τέμνονται. Δύο παράλληλες ευθείες ε και ζ συμβολίζονται ε ζ. Γωνίες δύο ευθειών

Διαβάστε περισσότερα

Άλγεβρα ( ) = ( 1)( 3 2) ( 1) 2. i) Να αποδείξετε ότι ( ) ii) Να υπολογίσετε την αριθμητική τιμή του ( ) iii) Να λύσετε την εξίσωση P( x ) = 0

Άλγεβρα ( ) = ( 1)( 3 2) ( 1) 2. i) Να αποδείξετε ότι ( ) ii) Να υπολογίσετε την αριθμητική τιμή του ( ) iii) Να λύσετε την εξίσωση P( x ) = 0 ΤΑΞΗ Γ ΓΥΜΝΑΣΙΟΥ MAΘΗΜΑΤΙΚΑ 016 ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Άλγεβρα 1) Δίνεται το πολυώνυμο ( ) = ( + 1)( 1) ( + 1)( 5 + 7) P x x x x x i) Να αποδείξετε ότι ( ) P x = 7x x 8 Να υπολογίσετε την αριθμητική τιμή

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ B ΓΥΜΝΑΣΙΟΥ

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ B ΓΥΜΝΑΣΙΟΥ ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, ΝΟΕΜΒΡΙΟΥ 008 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ B ΓΥΜΝΑΣΙΟΥ. Να υπολογίσετε την τιμή της παράστασης: 3 Α= 4 5 + 008: 4 + (3

Διαβάστε περισσότερα

Όμοια τρίγωνα. Ορισμός : Δύο τρίγωνα είναι όμοια όταν έχουν τις γωνίες τους ίσες και τις αντίστοιχες πλευρές τους ανάλογες.

Όμοια τρίγωνα. Ορισμός : Δύο τρίγωνα είναι όμοια όταν έχουν τις γωνίες τους ίσες και τις αντίστοιχες πλευρές τους ανάλογες. Όμοια τρίγωνα Ορισμός : Δύο τρίγωνα είναι όμοια όταν έχουν τις γωνίες τους ίσες και τις αντίστοιχες πλευρές τους ανάλογες. Συμβολισμός : Αν τα τρίγωνα ΑΒΓ, ΔΕΖ είναι όμοια γράφουμε Κριτήριο 1 Όταν δύο

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2012

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης 3 Μαρτίου 2012 ΕΛΛΗΝΙΚΗ ΜΘΗΜΤΙΚΗ ΕΤΙΡΕΙ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 06 79 ΘΗΝ Τηλ 665-6778 - F: 605 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY, Panepistimiou (Εleftheriou Venizelou) Street GR 06

Διαβάστε περισσότερα

Ιωάννης Σ. Μιχέλης Μαθηματικός

Ιωάννης Σ. Μιχέλης Μαθηματικός 1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; Το άθροισμα ενός φυσικού αριθμού με το 0 ισούται με τον ίδιο αριθμό. α+0=α Αντιμεταθετική ιδιότητα. Με βάση την οποία

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΑΒΒΑΤΟ,1 ΝΟΕΜΒΡΙΟΥ 016 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ 1. Παρακαλούμε να διαβάσετε προσεκτικά τις οδηγίες στους

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 78 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 11 Νοεμβρίου 2017 Β ΓΥΜΝΑΣΙΟΥ 1 Α=

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 78 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 11 Νοεμβρίου 2017 Β ΓΥΜΝΑΣΙΟΥ 1 Α= Β ΓΥΜΝΑΣΙΟΥ Να υπολογίσετε την τιμή της αριθμητικής παράστασης: 3 3 ( 0) ( 5) 3 ( 8) Α= + 3 3 ( ) +. ( 3) 4 Στο διπλανό σχήμα τα τρίγωνα ΑΒΓ και ΑΒΟ είναι ισοσκελή με βάση την πλευρά ΑΒ. Η προέκταση της

Διαβάστε περισσότερα

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων Γεωμετρία Β Λυκείου Τράπεζα θεμάτων www.askisopolis.gr η έκδοση - - 0 Μεταβολές από την προηγούμενη έκδοση Αφαιρέθηκαν οι ασκήσεις _90, _900 και _907 Αλλαγές: Στην άσκηση _909 άλλαξε το β ερώτημα, στην

Διαβάστε περισσότερα

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο

Διαβάστε περισσότερα

Β τάξη Λυκείου. ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009

Β τάξη Λυκείου. ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009 Β τάξη Λυκείου Πρόβλημα Να προσδιορίσετε τις τιμές του πραγματικού αριθμού a για τις οποίες το σύστημα x + 4y = 4a ax y = a έχει μία μόνο λύση. Για τις τιμές του a που θα βρείτε να λύσετε το σύστημα. Το

Διαβάστε περισσότερα

Αρχιμήδης Μεγάλοι 1996-1997. 1. Έστω μια ακολουθία θετικών αριθμών για την οποία: i) α ν 2 α ν. για κάθε ν φυσικό διαφορετικό του 0.

Αρχιμήδης Μεγάλοι 1996-1997. 1. Έστω μια ακολουθία θετικών αριθμών για την οποία: i) α ν 2 α ν. για κάθε ν φυσικό διαφορετικό του 0. Αρχιμήδης Μεγάλοι 1996-1997 1. Έστω μια ακολουθία θετικών αριθμών για την οποία: i) α ν 2 α ν = 1 4 για κάθε ν φυσικό διαφορετικό του 0. ii) α n 1 α n Να αποδείξετε: α ν 1 =1 για κάθε n - ν 1 α ν α) ότι

Διαβάστε περισσότερα

ΕNΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ. B τάξη Γυμνασίου

ΕNΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ. B τάξη Γυμνασίου ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 06 79 ΑΘΗΝΑ Τηλ 0 665-06778 - Fax: 0 605 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY, Panepistimiou (Εleftheriou Venizelou)

Διαβάστε περισσότερα

Αρχιμήδης Μικροί Θεωρούμε τους αριθμούς. A= : : και B= 2 25 : Ποιος είναι μεγαλύτερος;

Αρχιμήδης Μικροί Θεωρούμε τους αριθμούς. A= : : και B= 2 25 : Ποιος είναι μεγαλύτερος; Αρχιμήδης Μικροί 1994-1995 Θεωρούμε τους αριθμούς Ποιος είναι μεγαλύτερος; A= 2 0 8 21 :16 15 6 27 10 :81 7 63 και B= 2 25 :2 52 1 54 2. Θεωρούμε 6 διαδοχικούς φυσικούς αριθμούς. Έστω α το άθροισμα των

Διαβάστε περισσότερα

Συνοπτική θεωρία. Οι σημαντικότερες αποδείξεις. Ερωτήσεις αντικειμενικού τύπου. Ασκήσεις. Διαγωνίσματα

Συνοπτική θεωρία. Οι σημαντικότερες αποδείξεις. Ερωτήσεις αντικειμενικού τύπου. Ασκήσεις. Διαγωνίσματα Γ Ε Ω Μ Ε Τ Ρ Ι Α Β Λ Υ Κ Ε Ι Ο Υ Συνοπτική θεωρία Οι σημαντικότερες αποδείξεις Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα Μαθηματικός Περιηγητής 1 ΚΕΦΑΙΑΟ 9 ο : ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις : ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν

Διαβάστε περισσότερα

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και Α. Να χαρακτηρίσετε Σωστές (Σ) ή Λάθος (Λ) τις παρακάτω προτάσεις: α. Οι διχοτόμοι δύο διαδοχικών και παραπληρωματικών γωνιών σχηματίζουν ορθή γωνία. β. Οι διαγώνιες κάθε παραλληλογράμμου είναι ίσες μεταξύ

Διαβάστε περισσότερα

: :

: : ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

[ f 1 ] 3 [ f 2 ] 3... [ f ν ] 3 = [ f 1 f 1... f ν ] 2, για κάθε ν N.

[ f 1 ] 3 [ f 2 ] 3... [ f ν ] 3 = [ f 1 f 1... f ν ] 2, για κάθε ν N. Ευκλείδης Γ' Λυκείου 1995-1996 1. Να ορίσετε συνάρτηση με πεδίο ορισμού και σύνολο τιμών το N* και η οποία να ικανοποιεί τη σχέση: [ f 1 ] [ f ]... [ f ν ] = [ f 1 f 1... f ν ], για κάθε ν N.. Ο Α και

Διαβάστε περισσότερα

24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 4 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=ΒΓ. Φέρνουμε το ΑΕ ΒΓ και έστω Ζ,Η τα μέσα των ΔΓ και ΑΒ αντίστοιχα. Ν.δ.ο. α) το ΖΓΒΗ είναι ρόμβος ( 9 μον.) β) ΗΖ=ΗΕ ( 8 μον.) γ)

Διαβάστε περισσότερα

B τάξη Γυμνασίου Πρόβλημα 1 (α) Να συγκρίνετε τους αριθμούς (β) Αν ισχύει ότι: και αβγ 0,

B τάξη Γυμνασίου Πρόβλημα 1 (α) Να συγκρίνετε τους αριθμούς (β) Αν ισχύει ότι: και αβγ 0, 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, ΙΑΝΟΥΑΡΙΟΥ 0 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 0 36653-0367784 - Fax: 0 36405

Διαβάστε περισσότερα

24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 1ο Α. Nα αποδείξετε ότι το άθροισμα των γωνιών κάθε τριγώνου είναι 2 ορθές. Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στο τετράδιό σας τη λέξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 72 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 19 Νοεμβρίου 2011 Β ΓΥΜΝΑΣΙΟΥ 2 : 2.

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 72 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 19 Νοεμβρίου 2011 Β ΓΥΜΝΑΣΙΟΥ 2 : 2. Τηλ. 361653-3617784 - Fax: 364105 Tel. 361653-3617784 - Fax: 364105 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ 19 Νοεμβρίου 011 Β ΓΥΜΝΑΣΙΟΥ Να υπολογίσετε την τιμή της παράστασης: 1 17 1 1 3 7 1 : 5 1 7 14

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 2014

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 2014 Τηλ. 6165-617784 - Fax: 64105 Tel. 6165-617784 - Fax: 64105 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ 1. Παρακαλούμε να διαβάσετε προσεκτικά

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 72 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 21 ΙΑΝΟΥΑΡΙΟΥ 2012

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 72 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 21 ΙΑΝΟΥΑΡΙΟΥ 2012 Τηλ. 361653-3617784 - Fax: 364105 Tel. 361653-3617784 - Fax: 364105 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΑΒΒΑΤΟ, 1 ΙΑΝΟΥΑΡΙΟΥ 01 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ

Διαβάστε περισσότερα