Τάξη A Μάθημα: Γεωμετρία

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Τάξη A Μάθημα: Γεωμετρία"

Transcript

1 Τάξη A Μάθημα: Γεωμετρία Η Θεωρία σε Ερωτήσεις Ερωτήσεις Κατανόησης Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα

2 Περιεχόμενα Τρίγωνα Α. Θεωρία-Αποδείξεις Σελ.2 Β. Θεωρία-Ορισμοί..Σελ.9 Γ. Ερωτήσεις Σωστού Λάθους... Σελ.12 Παράλληλες Ευθείες Α. Θεωρία-Αποδείξεις Σελ.14 Β. Θεωρία-Ορισμοί..Σελ.16 Γ. Ερωτήσεις Σωστού Λάθους....Σελ.17 Παραλληλόγραμμα Τραπέζια Α. Θεωρία-Αποδείξεις Σελ.19 Β. Θεωρία-Ορισμοί..Σελ.26 Γ. Ερωτήσεις Σωστού Λάθους....Σελ.28 Επαναληπτικά Θέματα Εξετάσεων...Σελ.29 Επαναληπτικά Διαγωνίσματα....Σελ

3 Τρίγωνα Α. Θεωρία-Αποδείξεις 1. Να γράψετε τα κριτήρια ισότητας τριγώνων 2. Σε κάθε ισοσκελές τρίγωνο να αποδείξετε ότι: Οι προσκείμενες στη βάση γωνίες είναι ίσες Η διχοτόμος της γωνίας της κορυφής είναι διάμεσος και ύψος - 2 -

4 3. Να αποδείξετε ότι κάθε σημείο της μεσοκαθέτου ενός ευθύγραμμου τμήματος ισαπέχει από τα άκρα του και αντιστρόφως, κάθε σημείο που ισαπέχει από τα άκρα ενός τμήματος ανήκει στη μεσοκάθετό του

5 4. Να αποδείξετε ότι, αν δυο τόξα ενός κύκλου είναι ίσα, τότε και οι χορδές τους είναι ίσες 5. Να αποδείξετε ότι η διάμεσος ισοσκελούς τριγώνου, που αντιστοιχεί στη βάση του, είναι διχοτόμος και ύψος. 6. Να αποδείξετε ότι,αν οι χορδές δυο τόξων ενός κύκλου, μικρότερων του ημικυκλίου, είναι ίσες τότε τα τόξα είναι ίσα

6 7. Να γράψετε τα κριτήρια ισότητας των ορθογώνιων τριγώνων - 5 -

7 8. Να αποδείξετε η κάθετος που φέρεται από το κέντρο ενός κύκλου προς μια χορδή του διχοτομεί τη χορδή και το αντίστοιχο τόξο της. 9. Να αποδείξετε ότι δυο χορδές ενός κύκλου είναι ίσες αν και μόνο αν τα αποστήματά τους είναι ίσα

8 10. Να αποδείξετε ότι κάθε σημείο της διχοτόμου μιας γωνίας ισαπέχει από τις πλευρές της και αντίστροφα κάθε εσωτερικό σημείο της γωνίας που ισαπέχει από τις πλευρές είναι σημείο της διχοτόμου. 11. Να αποδείξετε ότι σε κάθε τρίγωνο απέναντι από άνισες πλευρές βρίσκονται όμοια άνισες γωνίες και αντίστροφα

9 12. Να αποδείξετε ότι τα εφαπτόμενα τμήματα κύκλου που άγονται από σημείο εκτός αυτού είναι ίσα μεταξύ τους. 13. Να αποδείξετε ότι η διάκεντρος δυο τεμνόμενων κύκλων είναι μεσοκάθετος της κοινής χορδής τους

10 Β. Θεωρία - Ορισμοί 1. Πότε ένα τρίγωνο λέγεται σκαληνό,πότε ισοσκελές και πότε ισόπλευρο; 2. Πότε ένα τρίγωνο λέγεται οξυγώνιο,πότε ορθογώνιο και πότε αμβλυγώνιο; 3. Τι λέγεται διάμεσος ενός τριγώνου; 4. Τι λέγεται διχοτόμος μιας γωνίας ενός τριγώνου; - 9 -

11 5. Τι λέγεται ύψος ενός τριγώνου; 6. Πότε δυο τρίγωνα λέγονται ίσα; 7. Τι λέγεται διάκεντρος δυο κύκλων; 8.Πότε μια ευθεία και ένας κύκλος δεν έχουν κοινά σημεία, πότε έχουν ένα μόνο κοινό σημείο, και πότε έχουν δυο κοινά σημεία; 9. Πότε ο κύκλος (Λ, ρ) βρίσκεται στο εσωτερικό του κύκλου (Κ, R) και πότε οι κύκλοι (Κ, R) και (Λ, ρ) βρίσκονται ο ένας στο εξωτερικό του άλλου;

12 10. Πότε δυο κύκλοι εφάπτονται εσωτερικά και πότε εφάπτονται εξωτερικά; 11. Πότε δυο κύκλοι τέμνονται; Τι λέγεται κοινή χορδή; 12. Τι λέγεται γεωμετρικός τόπος; Ποιος είναι ο γεωμετρικός τόπος των σημείων που απέχουν ίση απόσταση από ένα σταθερό σημείο; Ποιος είναι ο γεωμετρικός τόπος των σημείων που ισαπέχουν από τα άκρα ενός τμήματος; Ποιος είναι ο γεωμετρικός τόπος των σημείων που ισαπέχουν από τις πλευρές μιας γωνίας;

13 Γ. Ερωτήσεις Σωστού Λάθους Να χαρακτηρίσετε με Σωστό ή Λάθος τις παρακάτω προτάσεις: 1. Οι γωνίες ισόπλευρου τριγώνου είναι ίσες. 2. Από σημείο εκτός ευθείας διέρχεται μοναδική κάθετος στην ευθεία 3. Το ύψος ισοσκελούς τριγώνου που αντιστοιχεί στη βάση είναι διάμεσος και διχοτόμος της γωνίας της κορυφής. 4. Κάθε εξωτερική γωνία τριγώνου είναι μικρότερη από καθεμιά από τις απέναντι γωνίες του τριγώνου. 5. Το άθροισμα δυο γωνιών κάθε τριγώνου είναι μικρότερο των Κάθε τρίγωνο έχει το πολύ μια γωνία ορθή ή αμβλεία 7. Κάθε πλευρά τριγώνου είναι μεγαλύτερη από το άθροισμα των δυο άλλων και μικρότερη από τη διαφορά τους. 8. Αν ένα τρίγωνο έχει δυο γωνίες ίσες, τότε είναι ισοσκελές. 9. Κάθε χορδή κύκλου είναι μεγαλύτερη ή ίση της διαμέτρου. 10. Αν δυο πλάγια τμήματα είναι ίσα,τότε τα ίχνη τους ισαπέχουν από το ίχνος της καθέτου και αντίστροφα. 11. Αν από ένα σημείο εκτός ευθείας φέρουμε το κάθετο και δυο πλάγια τμήματα τότε το κάθετο τμήμα είναι μεγαλύτερο από κάθε πλάγιο. 12. Αν Ρ είναι είναι ένα εξωτερικό σημείο ενός κύκλου τότε η διακεντρική ευθεία του είναι μεσοκάθετος της χορδής του κύκλου με άκρα τα σημεία επαφής. 13. Αν Ρ είναι είναι ένα εξωτερικό σημείο ενός κύκλου τότε η διακεντρική ευθεία διχοτομεί τη γωνία των εφαπτομένων τμημάτων και τη γωνία των

14 ακτίνων που καταλήγουν στα σημεία επαφής 14. Όταν δυο τεμνόμενοι κύκλοι είναι ίσοι, τότε η κοινή χορδή είναι μεσοκάθετος της διακέντρου. 15. Το σημείο επαφής δυο εφαπτόμενων κύκλων είναι σημείο της διακέντρου

15 Παράλληλες Ευθείες Α. Θεωρία- Αποδείξεις 1. Να αποδείξετε ότι αν δυο ευθείες τεμνόμενες από τρίτη σχηματίζουν δυο εντός εναλλάξ γωνίες ίσες,τότε είναι παράλληλες. 2. Να αποδείξετε ότι, αν δυο παράλληλες ευθείες τέμνονται από τρίτη σχηματίζουν τις εντός εναλλάξ γωνίες ίσες. 3. Να αποδείξετε ότι οι τρείς μεσοκάθετοι ενός τριγώνου διέρχονται από το ίδιο σημείο,το οποίο είναι κέντρο κύκλου που διέρχεται από τις κορυφές του τριγώνου

16 4. Να αποδείξετε ότι οι διχοτόμοι των γωνιών ενός τριγώνου διέρχονται από το ίδιο σημείο, το οποίο είναι κέντρο κύκλου που εφάπτεται και στις τρεις πλευρές του τριγώνου. 5. Να αποδείξετε ότι το άθροισμα των γωνιών κάθε τριγώνου είναι 2 ορθές. 6. Να αποδείξετε ότι δυο οξείες γωνίες που έχουν τις πλευρές τους κάθετες είναι ίσες

17 Β. Θεωρία - Ορισμοί 1. Πότε δυο ευθείες ε 1 και ε 2 λέγονται παράλληλες; 2. Τι λέγεται περιγεγραμμένος κύκλος; Πως βρίσκουμε το κέντρο του και πως λέγεται; 3. Τι λέγεται εγγεγραμμένος κύκλος; Πως βρίσκουμε το κέντρο του και πως λέγεται;

18 Γ. Ερωτήσεις Σωστού Λάθους Να χαρακτηρίσετε με Σωστό ή Λάθος τις παρακάτω προτάσεις: 1. Από σημείο εκτός ευθείας άγεται μια μόνο παράλληλη προς αυτή. 2. Αν δυο ευθείες ε 1 και ε 2 είναι παράλληλες και μια τρίτη ευθεία ε τέμνει τη μια από αυτές, τότε θα τέμνει και την άλλη. 3.Αν δυο παράλληλες ευθείες τέμνονται από τρίτη σχηματίζουν τις εντός και επί τα αυτά μέρη γωνίες ίσες 4. Δυο γωνίες που έχουν τις πλευρές τους παράλληλες,μια προς μια,είναι ίσες αν είναι και οι δυο οξείες ή αμβλείες,ενώ είναι παραπληρωματικές αν η μία γωνία είναι οξεία και η άλλη αμβλεία. 5. Κάθε εξωτερική γωνία τριγώνου είναι ίση με το άθροισμα των δυο απέναντι εσωτερικών γωνιών του τριγώνου. 6. Οι οξείες γωνίες ενός ορθογωνίου τριγώνου είναι παραπληρωματικές 7.Δυο οξείες γωνίες που έχουν τις πλευρές τους κάθετες είναι παραπληρωματικές. 8. Δυο αμβλείες γωνίες που έχουν τις πλευρές τους κάθετες είναι είναι ίσες. 9. Δυο γωνίες που έχουν τις πλευρές τους κάθετες αλλά η μια είναι οξεία και η άλλη αμβλεία είναι παραπληρωματικές. 10. Κάθε γωνία ισόπλευρου τριγώνου είναι Αν δυο ευθείες τεμνόμενες από τρίτη σχηματίζουν τις εντός και επί τα αυτά μέρη γωνίες με άθροισμα μικρότερο από 2 ορθές, τότε οι ευθείες τέμνονται προς το μέρος της τέμνουσας που βρίσκονται οι γωνίες. 12.Το άθροισμα των γωνιών κυρτού ν-γώνου είναι 2ν-4 ορθές

19 13. Το άθροισμα των εξωτερικών γωνιών κυρτού ν-γώνου είναι 2 ορθές. 14. Αν ένα ισοσκελές τρίγωνο έχει μια γωνία 60 0 είναι ισόπλευρο. 15. Αν δυο τρίγωνα έχουν δυο γωνίες ίσες, μία προς μία, τότε έχουν και τις τρίτες γωνίες τους ίσες. 16. Στο διπλανό σχήμα η γωνία ω είναι ω= Οι διχοτόμοι δυο εντός εναλλάξ γωνιών είναι παράλληλες. ω 18. Οι διχοτόμοι δυο εντός και επί τα αυτά μέρη γωνιών είναι κάθετες. 19.Δυο ευθείες κάθετες στην ίδια ευθεία, σε διαφορετικά σημεία της, είναι μεταξύ τους παράλληλες. 20. Η γωνία δυο εσωτερικών διχοτόμων ενός τριγώνου είναι ίση με A

20 Παραλληλόγραμμα - Τραπέζια Α. Θεωρία- Αποδείξεις 1. Σε κάθε παραλληλόγραμμο να αποδείξετε ότι: α. Οι απέναντι πλευρές του είναι ίσες β. Οι απέναντι γωνίες του είναι ίσες γ. Οι διαγώνιοί του διχοτομούνται. 2. Να αποδείξετε ότι ένα τετράπλευρο είναι παραλληλόγραμμο αν ισχύει μια από τις παρακάτω προτάσεις: α. Οι απέναντι πλευρές ανά δυο είναι ίσες β. Δυο απέναντι πλευρές του είναι ίσες και παράλληλες γ. Οι απέναντι γωνίες ανά δυο είναι ίσες

21 δ. Οι διαγώνιοι του διχοτομούνται. 3. Να αποδείξετε ότι οι διαγώνιοι του ορθογωνίου είναι ίσες

22 4. Να αποδείξετε ότι ένα τετράπλευρο είναι ορθογώνιο, αν είναι παραλληλόγραμμο και οι διαγώνιοι του είναι ίσες. 5. Να αποδείξετε ότι α. Οι διαγώνιοι του ρόμβου τέμνονται κάθετα. β. Οι διαγώνιοι του ρόμβου διχοτομούν τις γωνίες του

23 6. Να αποδείξετε ότι το ευθύγραμμο τμήμα που ενώνει τα μέσα των δυο πλευρών τριγώνου είναι παράλληλο προς την τρίτη πλευρά και ίσο με το μισό της. 7. Να αποδείξετε ότι, αν από το μέσο μιας πλευράς ενός τριγώνου φέρουμε ευθεία παράλληλη προς μια άλλη πλευρά του, τότε η ευθεία αυτή διέρχεται από το μέσο της τρίτης πλευράς του

24 8. Να αποδείξετε ότι, αν σε ορθογώνιο τρίγωνο μια γωνία του ισούται με 30 0, τότε η απέναντι πλευρά του είναι το μισό της υποτείνουσας και αντίστροφα. Αντίστροφα:

25 9. Να αποδείξετε ότι, η διάμεσος του τραπεζίου είναι παράλληλη προς τις βάσεις του και ίση με το ημιάθροισμά τους. 10. Να αποδείξετε ότι η διάμεσος ΕΖ τραπεζίου ΑΒΓΔ διέρχεται από τα μέσα Κ και Λ των διαγωνίων του και το τμήμα ΚΛ είναι παράλληλο με τις βάσεις του και ίσο με την ημιδιαφορά των βάσεων του

26 11. Να αποδείξετε ότι, αν ένα τραπέζιο είναι ισοσκελές, τότε: α. Οι γωνίες που πρόσκεινται σε μια βάση του είναι ίσες. β. Οι διαγώνιοι του είναι ίσες. 12. Εφαρμογή: Να αποδείξετε ότι,σε κάθε ισοσκελές τραπέζιο, α. αν προεκτείνουμε τις μη παράλληλες πλευρές του σχηματίζονται δυο ισοσκελή τρίγωνα. β. Η ευθεία που διέρχεται από τα μέσα των βάσεων είναι μεσοκάθετος της κάθε βάσης

27 Β. Θεωρία - Ορισμοί 1. Να δώσετε τον ορισμό του παραλληλογράμμου. 2. Να δώσετε τον ορισμό του ορθογωνίου παραλληλογράμμου. 3. Να δώσετε τον ορισμό του ρόμβου. 4. Να δώσετε τον ορισμό του τετραγώνου. 5. Να δώσετε τον ορισμό του τραπεζίου

28 6. Να δώσετε τον ορισμό του ισοσκελούς τραπεζίου. 7. Τι λέγεται διάμεσος τραπεζίου; 8. Τι λέγεται ορθόκεντρο τριγώνου; 9. Τι λέγεται βαρύκεντρο τριγώνου; 10. Τι λέγεται έγκεντρο τριγώνου; Τι λέγεται εγγεγραμμένος κύκλος; 11. Τι λέγεται περίκεντρο τριγώνου; Τι λέγεται περιγεγραμμένος κύκλος;

29 Γ. Ερωτήσεις Σωστού Λάθους 1. Ένα τετράπλευρο είναι παραλληλόγραμμο αν οι διαγώνιοί του διχοτομούνται. 2. Το σημείο τομής των διαγωνίων παραλληλογράμμου είναι κέντρο συμμετρίας του. 3. Παράλληλα τμήματα που έχουν τα άκρα τους σε δυο παράλληλες ευθείες είναι ίσα. 4. Οι διαγώνιοι του ορθογωνίου τέμνονται κάθετα. 5. Ένα τετράπλευρο είναι ορθογώνιο αν είναι παραλληλόγραμμο και έχει όλες τις γωνίες του ίσες. 6.Οι διαγώνιοι του ρόμβου είναι ίσες. 7. Όλες οι γωνίες του ρόμβου είναι ίσες. 8. Ένας ρόμβος με μια ορθή γωνία είναι τετράγωνο. 9. Κάθε τετράγωνο είναι ρόμβος. 10. Ένα παραλληλόγραμμο είναι τετράγωνο αν οι διαγώνιοί του είναι ίσες και κάθετες 11. Ένα τετράπλευρο είναι ρόμβος αν οι διαγώνιοί του είναι ίσες. 12. Η απόσταση της κάθε κορυφής τριγώνου από το βαρύκεντρο είναι το 1/3 της αντίστοιχης διαμέσου. 13. Στο ισοσκελές τραπέζιο οι διαγώνιοι τέμνονται κάθετα. 14. Η διάμεσος τραπεζίου είναι παράλληλη προς τις βάσεις του και ίση με την ημιδιαφορά τους

30 Επαναληπτικά Θέματα Εξετάσεων 1. A. Να αποδειχθεί ότι η διάμεσος ορθογωνίου τριγώνου που φέρουμε από την κορυφή της ορθής γωνίας είναι ίση με το μισό της υποτείνουσας. Β. Κυκλώστε την σωστή απάντηση: Σε κάθε τρίγωνο ΑΒΓ η εξωτερική γωνία της Αείναι ίση με: 1 1. Β Γ 2. Β Γ 3. 2( Β Γ ) 4. ( Β Γ ) 5. Κανένα από τα προηγούμενα 2 Γ. Χαρακτηρίσετε τις προτάσεις που ακολουθούν επιλέγοντας την κατάλληλη ένδειξη Σ για το σωστό Λ για το λάθος: α) Οι διαγώνιοι ενός ορθογωνίου είναι ίσες β) Οι απέναντι γωνίες ενός εγγεγραμμένου τετραπλεύρου είναι ίσες. γ) Το βαρύκεντρο ενός τριγώνου είναι το σημείο τομής των υψών του. δ) Το ευθύγραμμο τμήμα που ενώνει τα μέσα των διαγωνίων ενός τραπεζίου είναι ίσο με την ημιδιαφορά των βάσεών του. ε) Οι διαγώνιοι ενός ισοσκελούς τραπεζίου είναι ίσες. 2. Δίνεται παραλληλόγραμμο ΑΒΓΔ. Αν Ε, Ζ είναι οι προβολές των κορυφών Α, Γ στην διαγώνιο ΒΔ αντίστοιχα, να δειχθεί ότι: α) ΑΕ=ΓΖ β) Η διαγώνιος ΑΓ διχοτομεί το ευθύγραμμο τμήμα ΕΖ. 3. Δίνεται κύκλος (Ο,R) μία διάμετρός του ΑΒ και χορδή ΒΓ=R. Αν η εφαπτομένη του κύκλου στο σημείο Γ τέμνει την ευθεία ΑΒ στο Δ: α) Να υπολογισθούν οι γωνίες του τριγώνου ΑΒΓ. β) Να δειχθεί ότι το τρίγωνο ΑΓΔ είναι ισοσκελές. 4. Δίνεται ισοσκελές τραπέζιο ΑΒΓΔ (ΑΔ=ΒΓ) με Γ Δ 45. Έστω ΕΖ η διάμεσος του και ΑΗ το ύψος του. Από το Ζ φέρνουμε παράλληλη στην ΑΔ που τέμνει την ΓΔ στο Θ. Να δειχθεί ότι ΘΖΓ ΗΕΔ

31 5. Δίνεται ο κύκλος (Ο,ρ), ένα τόξο ΑΒ=120 0 και ένα εσωτερικό σημείο Ρ A του τόξου αυτού. Οι εφαπτομένες του κύκλου στα Ζ σημεία Α και Β τέμνονται στο Γ. Αν η ημιευθεία ΑΡ P Γ O τέμνει την ΒΓ στο Ε και η ημιευθεία ΒΡ τέμνει την Ε ΑΓ στο Ζ, να αποδείξετε ότι: α) Το τρίγωνο ΑΒΓ είναι ισόπλευρο. B β) Τα τρίγωνα ΑΕΒ και ΒΖΓ είναι ίσα. 6. Στo διπλανό σχήμα είναι ΒΕ=ΓΔ, Β 1 Γ1 και Δ 2 Ε2 Να δείξετε ότι: α) Δ 1 Ε1 β) Τριγ. ΑΒΕ=Τριγ. ΑΔΓ γ) Το τρίγωνο είναι ισοσκελές. B 1 Δ 2 1 A 1 2 Ε 1 Γ 7. Σε τρίγωνο ΑΒΓ με Μ μέσο της ΑΒ, προεκτείνουμε την ΑΒ προς το μέρος ΑΒ του Β κατά τμήμα ΒΔ=. Αν Ε είναι το μέσον της ΑΓ και η ΒΓ τέμνει την 2 ΔΕ στο Κ, να δείξετε ότι: ΒΓ α) Το Κ είναι μέσον της ΔΕ. β) ΒΚ= A. Να αποδείξετε ότι οι απέναντι πλευρές παραλληλογράμμου είναι ίσες. Β.. Να απαντήσετε αν είναι σωστές ή λάθος οι παρακάτω προτάσεις. 1. Τα εφαπτόμενα τμήματα κύκλου που άγονται από σημείο εκτός αυτού είναι ίσα. 2. Δυο γωνίες με πλευρές παράλληλες είναι πάντα ίσες. 3. Το τετράγωνο είναι ρόμβος. 4. Δυο ισόπλευρα τρίγωνα με ίσες περιμέτρους είναι ίσα. 5. Η γωνία που σχηματίζεται από μια χορδή και μια εφαπτομένη στο άκρο της χορδής είναι ίση με την επίκεντρη που βαίνει στο τόξο της χορδής. Γ. Στην παρακάτω ερώτηση επιλέξτε τη σωστή απάντηση. Το σημείο τομής των διαμέσων τριγώνου λέγεται: α. Ορθόκεντρο β. Βαρύκεντρο γ. Έκκεντρο δ. Περίκεντρο

32 9. Δίνεται ισοσκελές τρίγωνο ΑΒΓ με ΒΕ, ΓΖ ύψη που τέμνονται στο Η. α. Να δείξετε ότι ΑΖ=ΑΕ. β. Να δείξετε ότι η ΑΗ είναι διχοτόμος της γωνίας Α. γ. Αν Μ μέσο της ΑΓ να δείξετε ότι το τρίγωνο ΑΜΖ είναι ισοσκελές. 10. Αν το ΑΒΓΔ είναι παραλληλόγραμμο με ΑΒ=2ΒΓκαι Μ μέσο της ΓΔ. α. Να δείξετε ότι οι ΑΜ και ΒΜ είναι οι διχοτόμοι των γωνιών Α και Β του παραλληλογράμμου. β. Να δείξετε ότι η γωνία ΑΜΒ είναι ορθή. Δ A Γ B 11. Α. Δίνεται κύκλος (Ο,R), μια διάμετρος ΑΒ και χορδή ΑΓ=R. Φέρνουμε Γ Δ ΟΚ κάθετη στη ΒΓ που η προέκταση της τέμνει τον κύκλο στο Δ. Κ α. Να βρείτε το μέτρο της γωνίαςαβγ. Α Ο Β β. Να δείξετε ότι ΑΓ=2ΟΚ γ. Να δείξετε ότι το τετράπλευρο ΑΟΔΓ είναι ρόμβος. 12. Σε ισοσκελές τρίγωνο ΑΒΓ προεκτείνουμε την βάση ΒΓ κατά ίσα τμήματα ΒΕ = ΓΖ. Να αποδειχθεί ότι: α. ΑΕ= ΑΖ β. ΤΑ σημεία Β, Γ ισαπέχουν από τις πλευρές ΑΕ και ΑΖ αντίστοιχα. 13. Θεωρούμε ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και Ι το σημείο τομής των διχοτόμων των γωνιών Β και Γ. Να αποδείξετε ότι: α) Tο τρίγωνο ΙΒΓ είναι ισοσκελές. β) H ΑΙ είναι διχοτόμος της γωνίας Α. γ) H ευθεία ΑΙ είναι μεσοκάθετος της πλευράς ΒΓ. 14. Α. Σε τρίγωνο ΑΒΓ προεκτείνουμε την διάμεσο ΑΜ κατά ίσο τμήμα ΜΔ Να αποδειχθεί ότι τα τρίγωνα ΜΓΔ και ΑΒΜ είναι ίσα. Β. Σε ένα ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) η εξωτερική γωνία της Β

33 είναι Β εξ = 115 ο. Να βρεθεί η γωνία Α. 15.Σε ορθογώνιο παραλληλόγραμμο ΑΒΓΔ παίρνουμε τα μέσα των πλευρών του ΑΒ, ΒΓ, ΓΔ και ΔΑ τα σημεία Κ, Λ, Μ και Ν αντίστοιχα. Να αποδειχθεί ότι: α) ΚΛ=ΜΝ β) Tο τετράπλευρο ΚΛΜΝ είναι ρόμβος. 16. Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=2ΒΓ και Μ το μέσο της ΑΒ. Οι προεκτάσεις των ΓΜ και ΔΑ τέμνονται στο σημείο Ε. Να δείξετε ότι: α) ΑΔ=ΑΕ β) ΔΜ ΕΓ 17. Στις προεκτάσεις των ίσων πλευρών ΑΒ και ΑΓ ισοσκελούς τριγώνου ΑΒΓ, θεωρούμε σημεία Δ και Ε αντίστοιχα ώστε ΒΔ=ΓΕ. Να αποδείξετε ότι ΒΕ=ΔΓ. 18. Δίνεται τρίγωνο ΑΒΓ και η διχοτόμος του ΑΔ. Η παράλληλη από το Δ προς την ΑΒ τέμνει την ΑΓ στο Ε. Να αποδείξετε ότι το τρίγωνο ΑΕΔ είναι ισοσκελές. 19. Δίνεται τρίγωνο ΑΒΓ με ΑΒ<ΑΓ, η διχοτόμος του ΑΔ και Μ το μέσο της ΒΓ. Φέρνουμε την ΒΕ κάθετη στην ΑΔ που η προέκταση της τέμνει την ΑΓ στο Ζ. Να αποδείξετε ότι: α) Το τρίγωνο ΑΒΖ είναι ισοσκελές. Β Γ β) ΖΒΓ. 2 γ) ΕΜ//ΑΓ. ΑΓ ΑΒ δ) ΕΜ=. 2 Α Ζ Ε Β Δ Μ Γ 20. Σε σκαληνό τρίγωνο ΑΒΓ με ΑΒ<ΑΓ φέρουμε τη διάμεσο ΑΔ και την προεκτείνουμε προς το μέρος του Δ κατά τμήμα ΔΕ=ΑΔ. Στη συνέχεια φέρουμε το ύψος ΑΗ και το προεκτείνουμε προς το μέρος του Η κατά τμήμα ΗΖ=ΑΗ. Να αποδείξετε ότι:

34 α) ΑΓΒ ΒΓΖ β) Τα τρίγωνα ΒΔΕ και ΑΔΓ είναι ίσα. γ) Αν Ο είναι το σημείο τομής των ΒΕ και ΓΖ, τότε το τρίγωνο ΒΟΓ είναι ισοσκελές. 21. Σε παραλληλόγραμμο ΑΒΓΔ είναι Β=60 0 και ΒΚ η διχοτόμος της γωνίας Βτου παραλληλογράμμου, όπου Κ το σημείο τομής της διχοτόμου με την πλευρά ΑΔ. α) Να υπολογίσετε τις γωνίες Α, Γ και Δ του παραλληλογράμμου. β) Αν Μ το μέσο της ΒΚ, να δείξετε ότι η ΑΜ είναι διχοτόμος της γωνίας Ατου παραλληλογράμμου. ΓΔ γ) Να δείξετε ότι AM

35 Επαναληπτικά Διαγωνίσματα 1 0 Διαγώνισμα ΘΕΜΑ 1 0 Α. Να δείξετε ότι σε κάθε παραλληλόγραμμο ισχύουν οι παρακάτω ιδιότητες: i) Oι απέναντι πλευρές του είναι ίσες. ii) Oι απέναντι γωνίες του είναι ίσες. 10 μον B. Ποιες είναι οι σχετικές θέσεις δύο διαφορετικών ευθειών στο επίπεδο; 5 μον Γ. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στην κόλλα σας την ένδειξη Σωστό ή Λάθος δίπλα στον αριθμό που αντιστοιχεί σε κάθε πρόταση. 1.Αν δύο τρίγωνα έχουν τις γωνίες τους μία προς μία ίσες τότε είναι ίσα. 2. Σε ένα ισοσκελές τρίγωνο κάθε διχοτόμος του είναι και διάμεσός του. 3. Ένα σημείο Μ ανήκει στη μεσοκάθετη ενός ευθυγράμμου τμήματος ΑΒ, αν και μόνο αν ΜΑ=ΜΒ. 4. Σε ένα ορθογώνιο τρίγωνο οι οξείες γωνίες του είναι παραπληρωματικές. 5. Κάθε εγγεγραμμένη γωνία ισούται με το μισό της επίκεντρης που βαίνει στο ίδιο τόξο 5 2= 10 μον

36 ΘΕΜΑ 2 0 Δίνεται ισοσκελές τρίγωνο ΑΒΓ με ΑΒ=ΑΓ. Προεκτείνετε τις πλευρές του ΒΑ και ΓΑ κατά τμήματα ΑΔ και ΑΕ αντίστοιχα με ΑΔ=ΑΕ και ΑΔ< ΑΒ. Να δείξετε ότι: α) Τα τρίγωνα ΑΒΕ και ΑΓΔ είναι ίσα. 8 μον Ν Ε Μ Α Δ Λ β) Το τετράπλευρο ΒΓΔΕ είναι ισοσκελές τραπέζιο. 8 μον Β K Γ γ) Αν Κ,Λ,Μ,Ν είναι τα μέσα των ΒΓ, ΓΔ, ΔΕ και ΕΒ αντίστοιχα τότε το τετράπλευρο ΚΛΜΝ είναι ρόμβος. 9 μον ΘΕΜΑ 3 0 Δίνεται τρίγωνο ΑΒΓ όπου ΑΜ είναι η διάμεσός του και Δ είναι το μέσο του ΑΜ Φέρνουμε την ΒΔ που τέμνει την ΑΓ στο Ε και Ζ είναι το μέσο του ΕΓ. Α Δ Ε Ζ α) Να δείξετε ότι: ΑΕ=ΕΖ Β Μ Γ 12 μον β) Να δείξετε ότι: ΔΕ = 1 ΒΕ. 13 μον

37 ΘΕΜΑ 4 0 Δίνεται κύκλος (Ο,ρ) και δύο κάθετες διάμετροί του ΑΒ και ΓΔ. Αν Μ είναι σημείο του κύκλου τέτοιο ώστε ABM=30 ο και η ΑΜ τέμνει την προέκταση της ΓΔ στο Ε, ενώ Ζ είναι το σημείο τομής των ΓΔ και ΒΜ, να δείξετε ότι: Α Μ Ε Δ Ο Ζ 30 Β α) Η γωνία ΒΑΜ είναι 60 ο 7 μον β) Το τρίγωνο ΑΕΒ είναι ισόπλευρο. 9 μον Γ γ) ΟΖ= 1 3 ΜΒ 9 μον

38 ΘΕΜΑ Διαγώνισμα Α. Να δείξετε ότι η διάμεσος ορθογωνίου τριγώνου που φέρουμε από την κορυφή της ορθής γωνίας είναι ίση με το μισό της υποτείνουσας. 2,5 μον B. α) Δώστε τον ορισμό του ρόμβου. 2,5 μον β) Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στην κόλα σας την ένδειξη Σωστό ή Λάθος δίπλα στον αριθμό που αντιστοιχεί σε κάθε πρόταση. 1. Αν δύο τρίγωνα έχουν τις γωνίες τους μία προς μία ίσες τότε είναι ίσα 2. Δύο γωνίες που έχουν τις πλευρές τους παράλληλες είναι πάντα ίσες. 3. Το περίκεντρο ενός τριγώνου είναι το σημείο τομής των μεσοκαθέτων των πλευρών του. 4. Η διάμεσος του τραπεζίου διέρχεται από τα μέσα των διαγωνίων του. 4Χ2,5= 10 μον ΘΕΜΑ 2 0 Δίνεται τρίγωνο ΑΒΓ με ΑΒ<ΑΓ. Προεκτείνετε τη διάμεσο ΑΜ του τριγώνου προς το μέρος του Μ κατά τμήμα ΜΔ=ΑΜ. Να δείξετε ότι: α) ΑΒ=ΓΔ 10 μον β) τα Α και Δ ισαπέχουν από την ΒΓ. 15 μον

39 ΘΕΜΑ 3 0 Δίνεται παραλληλόγραμμο ΑΒΓΔ του διπλανού σχήματος και Ε,Ζ τα μέσα των πλευρών του ΑΒ και ΓΔ αντίστοιχα. α) Δείξτε ότι το τετράπλευρο ΑΕΓΖ είναι παραλληλόγραμμο. 8 μον β) Να δείξετε ότι η ΑΖ διέρχεται από το μέσο Η της ΔΕ. 8 μον γ) Αν η ΑΖ τέμνει την διαγώνιο ΒΔ Δ A Η Θ Ζ Ε Γ B στο Θ δείξτε ότι ΔΘ = 1 2 ΘΒ 9 μον ΘΕΜΑ 4 0 Οι κύκλοι με κέντρα Κ και Λ του διπλανού σχήματος τέμνονται στα σημεία Α και Β και ΑΓ, ΑΔ είναι διάμετροι των κύκλων από το Α. α) Να δείξετε ότι τα σημεία Γ, Β, Δ είναι συνευθειακά. 8 μον β) Αν Μ, Ν είναι τα μέσα των ΓΒ και ΒΔ να αποδείξετε ότι το τετράπλευρο ΚΛΝΜ είναι ορθογώνιο. 8 μον γ) Αν επιπλέον Ρ, Σ είναι τα μέσα των ακτίνων ΚΓ και ΛΔ να Γ Ρ Κ Μ Α Β Ν Λ Σ Δ αποδείξετε ότι ΡΣ= 3 2 ΚΛ. 9 μον

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ ΑΝΑΛΟΓΙΕΣ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ Βασικά θεωρήματα Αν τρεις τουλάχιστον παράλληλες ευθείες τέμνουν δύο άλλες ευθείες, ορίζουν σε αυτές τμήματα ανάλογα. (αντίστροφο Θεωρήματος Θαλή) Θεωρούμε δύο ευθείες δ και

Διαβάστε περισσότερα

2ηέκδοση 20Ιανουαρίου2015

2ηέκδοση 20Ιανουαρίου2015 ηέκδοση 0Ιανουαρίου015 ΦΡΟΝΤΙΣΤΗΡΙΟ Μ.Ε. ΣΥΓΧΡΟΝΗ ΜΑΘΗΣΗ (β-πακέτο ασκήσεων) 1 89 Δίνεται τρίγωνο ΑΒΓ και Δ εσωτερικό σημείο του ΒΓ. Φέρουμε από το Δ παράλληλες στις πλευρές ΑΒ και ΑΓ. Η παράλληλη στην

Διαβάστε περισσότερα

Κεφάλαιο 9 Ο κύκλος Ορισμός. Ο κύκλος (Κ, r) με κέντρο Κ και ακτίνα r είναι το σχήμα που αποτελείται από όλα τα σημεία του επιπέδου που απέχουν απόσταση r από το σημείο Κ. Σχήμα 9.1: Στοιχεία ενός κύκλου.

Διαβάστε περισσότερα

ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ,

ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ, ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 7 Ο - ΑΝΑΛΟΓΙΕΣ ΘΕΜΑ Ο Άσκηση (_8975) Θεωρούμε τρίγωνο ΑΒΓ ΑΒ=9 και ΑΓ=5. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις ΑΒ και ΑΓ

Διαβάστε περισσότερα

ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ. 2ο ΘΕΜΑ

ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ. 2ο ΘΕΜΑ ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ 5029 Έστω κυρτό τετράπλευρο ΑΒΓΔ με και α) β) Το τρίγωνο ΑΔΓ είναι ισοσκελές μ 10 γ) Η ευθεία ΒΔ είναι μεσοκάθετος του τμήματος ΑΓ μ 7 5619 Δίνεται γωνία χαy και

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

Το τµήµα που ενώνει τα µέσα δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο µε το µισό της.

Το τµήµα που ενώνει τα µέσα δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο µε το µισό της. 5.3 Εφαρµογές των παραλληλογράµµων 155 5.3 Εφαρµογές των παραλληλογράµµων Α Εφαρµογές στα τρίγωνα Α1 Θεώρηµα 1 Το τµήµα που ενώνει τα µέσα δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και

Διαβάστε περισσότερα

Λ υ μ ε ν ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ o γ ρ α μ μ α ) 1

Λ υ μ ε ν ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ o γ ρ α μ μ α ) 1 υ μ ε ν ε ς σ κ η σ ε ι ς ( Π α ρ α λ λ η λ o γ ρ α μ μ α ) 1 Προεκτεινουµε τις πλευρες και παραλληλογραμμου κατα τμηματα = και = αντιστοιχως. Να αποδειξετε οτι τα σημεια, και ειναι συνευθειακα. = παραλληλογραμμο

Διαβάστε περισσότερα

1 Εγγεγραµµένα σχήµατα

1 Εγγεγραµµένα σχήµατα Εγγεγραµµένα σχήµατα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Σκοπός του µαθήµατος είναι να δώσει στους µαθητές συνοπτικά τις απαραίτητες γνώσεις από τη διδακτέα ύλη της Α λυκείου που δεν διδάχθηκε ή διδάχθηκε περιληπτικά.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 113 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΘΕΩΡΙΑ Θα ασχοληθούμε με την εγγραφή μερικών βασικών κανονικών πολυγώνων σε κύκλο και θα υπολογίσουμε

Διαβάστε περισσότερα

Θεωρούμε τρίγωνο ΑΒΓ και τα μέσα Δ, Ε των ΑΒ, ΑΓ αντίστοιχα.θα αποδείξουμε ότι:

Θεωρούμε τρίγωνο ΑΒΓ και τα μέσα Δ, Ε των ΑΒ, ΑΓ αντίστοιχα.θα αποδείξουμε ότι: 7o Γενικό Λύκειο Αθηνών Σχολικό Έτος 04-5 Τάξη: A' Λυκείου Αθήνα -6-05 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Θέμα ο Α. Να αποδείξετε ότι: Το ευθύγραμμο τμήμα που ενώνει

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.4 ΑΛΛΟΙ ΤΥΠΟΙ ΓΙΑ ΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.4 ΑΛΛΟΙ ΤΥΠΟΙ ΓΙΑ ΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.4 ΑΛΛΟΙ ΤΥΠΟΙ ΓΙΑ ΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ ΘΕΩΡΙΑ 1 Έστω ΑΒΓ ένα τρίγωνο με πλευρές α, β και γ. Συμβολίζουμε με τα την ημιπερίμετρο α + β + γ του ΑΒΓ, δηλαδή: τ =. 2 Το εμβαδόν Ε του

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΙΑΝΥΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ. Να σηµειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισµούς:. Αν ΑΒ + ΒΓ = ΑΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά.. Αν α = β, τότε

Διαβάστε περισσότερα

. Ασκήσεις για εξάσκηση

. Ασκήσεις για εξάσκηση . Ασκήσεις για εξάσκηση Βασικές ασκήσεις Εφαρµογές 1.76 ίνεται ένα τρίγωνο ΑΒΓ µε AB= 8 και AΓ= 1. Ένας κύκλος διέρχεται από τα σηµεία Β και Γ και τέµνει τις πλευρές ΑΒ και ΑΓ στα σηµεία και Ε αντίστοιχα.

Διαβάστε περισσότερα

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Επιμέλεια: Σακαρίκος Ευάγγελος 08 Θέματα - 4//05 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσαν. Κεφάλαιο

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

ΘΕΜΑ 2 Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=2ΒΓ. Προεκτείνουμε την πλευρά ΑΔ (προς το μέρος του Δ) κατά τμήμα ΔΕ=ΑΔ και φέρουμε την ΒΕ που τέμνει τη ΔΓ

ΘΕΜΑ 2 Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=2ΒΓ. Προεκτείνουμε την πλευρά ΑΔ (προς το μέρος του Δ) κατά τμήμα ΔΕ=ΑΔ και φέρουμε την ΒΕ που τέμνει τη ΔΓ Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=2ΒΓ. Προεκτείνουμε την πλευρά ΑΔ (προς το μέρος του Δ) κατά τμήμα ΔΕ=ΑΔ και φέρουμε την ΒΕ που τέμνει τη ΔΓ στο σημείο Η. Να αποδείξετε ότι: α) το τρίγωνο ΒΑΕ είναι ισοσκελές.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 2013 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ Βαγγέλης Α Νικολακάκης Μαθηματικός http://cutemaths.wordpress.com/ ΛΙΓΑ ΛΟΓΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 20,

Διαβάστε περισσότερα

5.6 5.9. 1. Θεώρηµα, Ε µέσα των ΑΒ, ΑΓ Ε = //

5.6 5.9. 1. Θεώρηµα, Ε µέσα των ΑΒ, ΑΓ Ε = // 1 5.6 5.9 ΘΩΡΙ 1., µέσα των, = //. µέσο της και // µέσο της 3. = και ////Ζ = Ζ Ζ. Ο γ. τόπος της µεσοπαράλληλης Έστω ε η µεσοπαράλληλη των ε 1, ε. Τότε ισχύουν : i) άθε σηµείο της ε ισαπέχει από τις ε

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ Α και Β Γενικού Λυκείου ε 3 Γ ε 2 Κ Ε ε 1 Ι Ο Θ Η Ζ Α μ α Ψ ε 4 Β Β ( Σελ. 63 120 ) Τόμος 2ος ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

Διαβάστε περισσότερα

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις Γεωµετρία Α Γυµνασίου Ορισµοί Ιδιότητες Εξηγήσεις Ευθεία γραµµή Ορισµός δεν υπάρχει. Η απλούστερη από όλες τις γραµµές. Κατασκευάζεται µε τον χάρακα (κανόνα) πάνω σε επίπεδο. 1. ύο σηµεία ορίζουν την θέση

Διαβάστε περισσότερα

6. Εγγεγραμμένα Σχήματα. Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr

6. Εγγεγραμμένα Σχήματα. Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr 6. Εγγεγραμμένα Σχήματα Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr 1 Επίκεντρη γωνία Μια γωνία λέγεται επίκεντρη γωνία ενός κύκλου αν η κορυφή της είναι το κέντρο του κύκλου. Το τόξο ΑΓΒ που

Διαβάστε περισσότερα

Ευκλείδης Β' Γυμνασίου 1995-1996. 1. Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26

Ευκλείδης Β' Γυμνασίου 1995-1996. 1. Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26 Ευκλείδης Β' Γυμνασίου 1995-1996 1. Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26 2. Σ' ένα ισόπλευρο τρίγωνο ΑΒΓ παίρνουμε τις διαμέσους ΑΔ, ΒΕ και ΓΖ (που διέρχονται από το ίδιο σημείο Θ). Πόσες γωνίες,

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ: 011-01 ΝΟΜΟΣ ΔΩΔΕΚΑΝΗΣΟΥ ΕΠΙΜΕΛΕΙΑ: ΚΑΡΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ-ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΡΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΣ 01 Θέματα προαγωγικών και απολυτηρίων εξετάσεων

Διαβάστε περισσότερα

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Φώτης Κουνάδης Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ ΕΚ ΟΤΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΛΙΒΑΝΗ ΑΘΗΝΑ 2007 Σειρά:

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ. Κανονικά Πολύγωνα. Ένα πολύγωνο λέγεται κανονικό, όταν έχει όλες τις πλευρές του ίσες και όλες τις γωνίες του ίσες.

ΚΕΦΑΛΑΙΟ 11ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ. Κανονικά Πολύγωνα. Ένα πολύγωνο λέγεται κανονικό, όταν έχει όλες τις πλευρές του ίσες και όλες τις γωνίες του ίσες. ΚΕΦΛΙΟ ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ Κανονικά Πολύγωνα. Να δοθεί ο ορισμός του κανονικού πολυγώνου. Ένα πολύγωνο λέγεται κανονικό, όταν έχει όλες τις πλευρές του ίσες και όλες τις γωνίες του ίσες.. Να βρεθεί η γωνία

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ «άµιλλα»

ΦΡΟΝΤΙΣΤΗΡΙΑ «άµιλλα» 1 ΜΕΤΡΙΚΕ ΧΕΕΙ ΘΕΩΡΙΑ Μετρικές σχέσεις στο ορθογώνιο τρίγωνο το ορθογώνιο τρίγωνο το τετράγωνο κάθε κάθετης πλευράς είναι ίσο µε το γινόµενο της υποτείνουσας επί την προβολή της κάθετης στην υποτείνουσα.

Διαβάστε περισσότερα

Θαλής Α' Λυκείου 1995-1996

Θαλής Α' Λυκείου 1995-1996 Θαλής Α' Λυκείου 1995-1996 1. Δυο μαθητές Α και Β παίζουν το ακόλουθο παιχνίδι: Τους δίνεται ένα κανονικό πολύγωνο με άρτιο πλήθος πλευρών, μεγαλύτερο από 6 (π.χ. ένα 100-γωνο). Κάθε παίκτης συνδέει δυο

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

8.1 8.2. Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 177 179

8.1 8.2. Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 177 179 8. 8. σκήσεις σχολικού βιβλίου σελίδας 77 79 ρωτήσεις Κατανόησης. i) ν δύο τρίγωνα είναι ίσα τότε είναι όµοια; ii) ν δύο τρίγωνα είναι όµοια προς τρίτο τότε είναι µεταξύ τους όµοια πάντηση i) Προφανώς

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4.

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4. ΠΑΡΑΡΤΗΜΑ Α Γεωμετρικές κατασκευές Σκοπός των σημειώσεων αυτών είναι να υπενθυμίζουν γεωμετρικές κατασκευές, που θα φανούν ιδιαίτερα χρήσιμες στο μάθημα της παραστατικής γεωμετρίας, της προοπτικής, αξονομετρίας

Διαβάστε περισσότερα

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ και ΝΙΚΟΥ ΛΥΚΙΟΥ ΥΚΛΙΙ ΩΤΡΙ ΛΥΣΙΣ ΤΩΝ ΣΚΗΣΩΝ ΥΠΟΥΡΙΟ ΠΙΙΣ ΚΙ ΘΡΗΣΚΥΤΩΝ Κωδικός βιβλίου: 0--007 ΠΟΛΙΤΙΣΟΥ ΚΙ ΘΛΗΤΙΣΟΥ ΥΚΛΙΙ ΩΤΡΙ ΛΥΣΙΣ ΤΩΝ ΣΚΗΣΩΝ ε Κ ε Ψ Ζ Ο Ι Θ ε Η μα ε4 και ΝΙΚΟΥ ΛΥΚΙΟΥ ISBN 978-960-06--6

Διαβάστε περισσότερα

β φυσικοί αριθμοί. Δίνεται ότι η Ευκλείδεια διαίρεση με διαιρετέο τον α και

β φυσικοί αριθμοί. Δίνεται ότι η Ευκλείδεια διαίρεση με διαιρετέο τον α και 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 GR. 06 79 - Athens - HELLAS Tel. 36653-367784 - Fax: 36405 ΣΑΒΒΑΤΟ, 30 ΟΚΤΩΒΡΙΟΥ 00 B Γυμνασίου 3. Έστω x = 3 4 :4+ 5 και y = 45 4 3 + 73. (α) Να βρεθούν οι αριθμοί

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11. ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΘΕΩΡΙΑ 1 (Ορισμός κανονικού πολυγώνου) Ένα πολύγωνο λέγεται κανονικό, όταν έχει όλες τις πλευρές

Διαβάστε περισσότερα

Ενδεικτικά θέματα Μαθηματικών για την εισαγωγή στα Πρότυπα Πειραματικά Λύκεια

Ενδεικτικά θέματα Μαθηματικών για την εισαγωγή στα Πρότυπα Πειραματικά Λύκεια ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΛΥΚΕΙΑ 6 η Δοκιμασία ο Θέμα Στις ερωτήσεις έως και 4 να επιλέξτε τη σωστή απάντηση αιτιολογώντας την απάντησή σας. Ερώτηση

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B 151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.

Διαβάστε περισσότερα

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Εισαγωγή Η ιδέα της χρησιμοποίησης ενός συστήματος συντεταγμένων για τον προσδιορισμό της θέσης ενός σημείου πάνω σε μια επιφάνεια προέρχεται από την Γεωγραφία και ήταν γνωστή στους

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 2014

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 2014 Τηλ. 6165-617784 - Fax: 64105 Tel. 6165-617784 - Fax: 64105 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ 1. Παρακαλούμε να διαβάσετε προσεκτικά

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β. Προηγούµενες και απαραίτητες γνώσεις

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β. Προηγούµενες και απαραίτητες γνώσεις Μαρτάκης Μάρτης Μαθηµατικός του 1 ου ΓΕΛ Ρόδου 1 ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β Προηγούµενες και απαραίτητες γνώσεις 1. σε ορθογώνιο τρίγωνο µε 30 ο, η απέναντι 30 ο κάθετη είναι το µισό της υποτείνουσας α και αντίστροφα.

Διαβάστε περισσότερα

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ορισμός : αν λ πραγματικός αριθμός με 0 και μη μηδενικό διάνυσμα τότε σαν γινόμενο του λ με το ορίζουμε ένα διάνυσμα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΟΥ Β ΛΥΚΕΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ 1. ΘΕΜΑ ΚΩΔΙΚΟΣ_18556 Δίνονται τα διανύσματα α και β με ^, και,. α Να

Διαβάστε περισσότερα

Γυμνάσιο Μαθηματικά Τάξη Γ

Γυμνάσιο Μαθηματικά Τάξη Γ 1 Θέματα εξετάσεων περιόδου Μαΐου-Ιουνίου στα Μαθηματικά Τάξη Γ ΘΕΜΑ 1 0 Η εξίσωση αχ + βχ +γ = 0 είναι βαθμού εξίσωση και λύνεται χρησιμοποιώντας τους τύπους Δ =.. χ 1 =. χ =.. Η διακρίνουσα Δ της εξίσωσης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 013 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΥΜΝΑΣΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ αγγέλης Α Νικολακάκης Μαθηματικός ΛΙΑ ΛΟΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 0, δηλαδή το σύνολο των μονάδων των απολυτήριων

Διαβάστε περισσότερα

ΘΕΜΑ 2 Σε ισοσκελές τρίγωνο ΑΒΓ με ΑΒ=ΑΓ είναι =80. Παίρνουμε τυχαίο σημείο Ε στην πλευρά ΒΓ και κατόπιν τα σημεία Δ και Ζ στις πλευρές ΑΒ και ΑΓ

ΘΕΜΑ 2 Σε ισοσκελές τρίγωνο ΑΒΓ με ΑΒ=ΑΓ είναι =80. Παίρνουμε τυχαίο σημείο Ε στην πλευρά ΒΓ και κατόπιν τα σημεία Δ και Ζ στις πλευρές ΑΒ και ΑΓ ΘΕΜΑ 2 Σε ισοσκελές τρίγωνο ΑΒΓ με ΑΒ=ΑΓ είναι =80. Παίρνουμε τυχαίο σημείο Ε στην πλευρά ΒΓ και κατόπιν τα σημεία Δ και Ζ στις πλευρές ΑΒ και ΑΓ αντίστοιχα έτσι ώστε ΒΔ=ΒΕ και ΓΕ=ΓΖ. α) Να υπολογίσετε

Διαβάστε περισσότερα

Q k = ec5 ΚΟΛ. e-c.o 0 apex

Q k = ec5 ΚΟΛ. e-c.o 0 apex ΘΕΜΑ 2 Θεωρούμε ισοσκελές τραπέζιο ΑΒΓΔ (ΑΒ//ΓΔ) με Γ = Δ = 60, ΑΔ=12 και ΓΔ=20. Φέρουμε τα ύψη του ΑΕ και ΒΖ. α) Να αποδείξετε ότι ΔΕ=ΓΖ και ΑΒ=ΕΖ. (Μονάδες 12) β) Να υπολογίσετε την περίμετρο του τραπεζίου.

Διαβάστε περισσότερα

3.6 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ

3.6 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ 1 3.6 ΕΜΝ ΚΥΚΛΙΚΥ ΤΜΕ ΘΕΩΡΙ 1. Εµβαδόν κυκλικού τοµέα γωνίας µ ο : Ε = πρ. µ, όπου ρ η ακτίνα του κύκλου και π ο γνωστός αριθµός. Εµβαδόν κυκλικού τοµέα γωνίας α rad: Ε = 1 αρ, όπου ρ η ακτίνα του κύκλου

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή

Διαβάστε περισσότερα

( ) ( ) ( ) ( )( ) ( )( ) ( ) ν περνά από σταθερό σημείο. ν περνά από το σταθερό μέσο του επίσης σταθερού ΚΛ. Το διανυσματικό άθροισμα f Μ γράφεται:

( ) ( ) ( ) ( )( ) ( )( ) ( ) ν περνά από σταθερό σημείο. ν περνά από το σταθερό μέσο του επίσης σταθερού ΚΛ. Το διανυσματικό άθροισμα f Μ γράφεται: Το διανυσματικό άθροισμα f Μ γράφεται: f Μ = x ΜΑ+ x ΜΑ+ΑΒ + x ΜΑ+ΑΓ = ΜΑ + ΜΑ + ΜΑ + ΑΒ + ΑΓ ( x) ( x) ( x ) ( x) ( x ) = ( x + x + x ) ΜΑ + ( x) ΑΒ + ( x ) ΑΓ = ( x 4x+ ) ΜΑ+ ( x) ΑΒ+ ( x ) Α Γ f Μ είναι

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠ.ΔΒΜ ΚΑΙ ΘΡΗ. ΠΕΡ/ΚΗ Δ/ΝΣΗ Π & Δ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ Δ/ΝΣΗ Β/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Ν. ΛΕΣΒΟΥ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠ.ΔΒΜ ΚΑΙ ΘΡΗ. ΠΕΡ/ΚΗ Δ/ΝΣΗ Π & Δ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ Δ/ΝΣΗ Β/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Ν. ΛΕΣΒΟΥ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠ.ΔΒΜ ΚΑΙ ΘΡΗ. ΠΕΡ/ΚΗ Δ/ΝΣΗ Π & Δ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ Δ/ΝΣΗ Β/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Ν. ΛΕΣΒΟΥ 4 ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΜΥΤΙΛΗΝΗΣ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 01 ΜΑΘΗΜΑ : ΓΕΩΜΕΤΡΙΑ

Διαβάστε περισσότερα

Σειρά: Τράπεζα Θεμάτων Γυμνασίου

Σειρά: Τράπεζα Θεμάτων Γυμνασίου Σειρά: Τράπεζα Θεμάτων Γυμνασίου Θέματα Προαγωγικών και Απολυτηρίων εξετάσεων Γυμνασίων του Νομού Δωδεκανήσου Σχολικό Έτος: 01-013 Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών Ν. Δωδεκανήσου

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015. ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:...

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015. ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:... ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΒΑΘΜΟΣ ΗΜΕΡΟΜΗΝΙΑ: 5/06/2015 ΤΑΞΗ: A Αριθμητικά... ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:... Ολογράφως:...

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΑ ΕΡΓΑΛΕΙΑ Για να κάνουμε Γεωμετρία χρειαζόμαστε εργαλεία κατασκευής, εργαλεία μετρήσεων και εργαλεία μετασχηματισμών.

Διαβάστε περισσότερα

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ.. ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Αν είναι δυο μη μηδενικά διανύσματα τότε ονομάζουμε εσωτερικό γινόμενο των και τον αριθμό : όπου φ είναι η γωνία των

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ

ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ. Δίνεται η συνάρτηση f (). Να βρείτε για ποιες τιμές του δεν ορίζεται η συνάρτηση f. Να βρείτε τον αριθμό f ( ). Να δείξετε ότι f () I. Δίνεται η εξίσωση με η οποία έχει ρίζες

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου Θέμα 1 Α. Να αποδείξετε ότι αν α,β τότε α //β α λβ, λ. είναι δύο διανύσματα, με β 0, Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ. Ένα σημείο Μ(x,y) ανήκει σε μια γραμμή C αν και μόνο αν επαληθεύει την εξίσωσή της. Π.χ. :

Διαβάστε περισσότερα

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης:

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: παρόμοιο με του Cabri με αρκετές όμως διαφορές στην αρχιτεκτονική

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΓΥΜΝΑΣΙΩΝ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΓΥΜΝΑΣΙΩΝ ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΓΥΜΝΑΣΙΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ: 011-01 ΝΟΜΟΣ: ΔΩΔΕΚΑΝΗΣΟΥ ΕΠΙΜΕΛΕΙΑ: ΚΑΡΑΓΙΑΝΝΗΣ Β. ΙΩΑΝΝΗΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΠΕ03 ΡΟΔΟΣ, ΣΕΠΤΕΒΡΙΟΣ 01 Θέματα προαγωγικών και απολυτηρίων

Διαβάστε περισσότερα

α) Να αποδείξετε ότι = και = 2 (Μονάδες 15) β) Να υπολογίσετε τα μήκη των τμημάτων ΑΔ και ΓΕ. (Μονάδες 10)

α) Να αποδείξετε ότι = και = 2 (Μονάδες 15) β) Να υπολογίσετε τα μήκη των τμημάτων ΑΔ και ΓΕ. (Μονάδες 10) Θεωρούμε τρίγωνο ΑΒΓ με ΑΒ=9 και ΑΓ=15. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις ΑΒ και ΑΓ στα σημεία Δ και Ε αντίστοιχα. ΑΔ 2 ΑΕ α) Να αποδείξετε ότι

Διαβάστε περισσότερα

Ευκλείδεια Γεωμετρία. ΓΕΩΜΕΤΡΙΚΟΙ ΤΟΠΟΙ και ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ

Ευκλείδεια Γεωμετρία. ΓΕΩΜΕΤΡΙΚΟΙ ΤΟΠΟΙ και ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΓΕΩΜΕΤΡΙΚΟΙ ΤΟΠΟΙ και ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ 1 Σωτήρης Ε. Λουρίδας 1. ΓΕΝΙΚΑ: 1.1 Θεωρούμε ότι κάθε Μαθηματικό πρόβλημα είναι της μορφής «αν p τότε q», συμβολικά p q. 1.2. Λύση ενός Μαθηματικού προβλήματος

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε

Διαβάστε περισσότερα

ΔΗΜΗΤΡΙΟΣ ΣΠΑΘΑΡΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ www.pe03.gr. didefth.gr

ΔΗΜΗΤΡΙΟΣ ΣΠΑΘΑΡΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ www.pe03.gr. didefth.gr . ΔΗΜΗΤΡΙΟΣ ΣΠΑΘΑΡΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ www.pe03.gr. Δημήτριος Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών, Φθιώτιδας και Ευρυτανίας www.pe03.gr ΠΡΟΛΟΓΟΣ Ο οδηγός αυτός απευθύνεται στους εκπαιδευτικούς

Διαβάστε περισσότερα

Α ΓΥΜΝΑΣΙΟΥ. 1. Nα υπολογισθεί το άθροισμα - 207 206 205 204 -.+ 196 + 197 + 198 + 199 + 200

Α ΓΥΜΝΑΣΙΟΥ. 1. Nα υπολογισθεί το άθροισμα - 207 206 205 204 -.+ 196 + 197 + 198 + 199 + 200 Α ΓΥΜΝΑΣΙΟΥ 1. Nα υπολογισθεί το άθροισμα - 207 206 205 204 -.+ 196 + 197 + 198 + 199 + 200 2. Να υπολογισθούν οι τιμές των παραστάσεων Α = (4 2 3 2 ) : 7 + (6,4 5) 20 4 1 3 2 Β = 15 1 : 1 1 2 4 5. και

Διαβάστε περισσότερα

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙ 3 ο : KΩΝΙΚΕΣ ΤΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΥ ( 3.) ΚΥΚΛΣ Γνωρίζουµε ότι ένας κύκλος (, ρ) είναι ο γεωµετρικός τόπος των σηµείων του επιπέδου τα οποία απέχουν µια ορισµένη απόσταση ρ από ένα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία

Διαβάστε περισσότερα

6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ

6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ 6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ ΘΕΩΡΙΑ. Λόγος οµοειδών µεγεθών : Ονοµάζουµε λόγο δύο οµοιειδών µεγεθών, που εκφράζονται µε την ίδια µονάδα µέτρησης, το πηλίκο των µέτρων τους. 2. Αναλογία: Η ισότητα δύο

Διαβάστε περισσότερα

ΣΧΕΣΗ ΘΕΩΡΗΜΑΤΩΝ ΘΑΛΗ ΚΑΙ ΠΥΘΑΓΟΡΑ

ΣΧΕΣΗ ΘΕΩΡΗΜΑΤΩΝ ΘΑΛΗ ΚΑΙ ΠΥΘΑΓΟΡΑ ΣΧΣΗ ΘΩΡΗΜΤΩΝ ΘΛΗ ΚΙ ΠΥΘΟΡ ισαγωγή ηµήτρης Ι Μπουνάκης dimitrmp@schgr Οι δυο µεγάλοι Έλληνες προσωκρατικοί φιλόσοφοι, Θαλής (περίπου 630-543 πχ) και Πυθαγόρας (580-500 πχ) άφησαν, εκτός των άλλων, στην

Διαβάστε περισσότερα

2.4-2.5 ΣΥΜΜΕΤΡΙΑ ΩΣ ΠΡΟΣ ΣΗΜΕΙΟ

2.4-2.5 ΣΥΜΜΕΤΡΙΑ ΩΣ ΠΡΟΣ ΣΗΜΕΙΟ 1 4-5 ΣΥΜΜΤΡΙ ΩΣ ΠΡΣ ΣΗΜΙ ΚΝΤΡ ΣΥΜΜΤΡΙΣ ΘΩΡΙ Το συµµετρικό σηµείου ως προς κέντρο σηµείο νοµάζουµε συµµετρικό του ως προς κέντρο το σηµείο µε το οποίο συµπίπτει το περιστρεφόµενο περί το κατά γωνία 180

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 7. 2.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑ 7. 2.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑ 7.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων. Να βρείτε το γεωµετρικό τόπο των µιγαδικών z, για τους οποίους οι εικόνες των µιγαδικών z, i, iz είναι συνευθειακά σηµεία. Έστω z = x + i,

Διαβάστε περισσότερα

Η ΠΑΡΟΥΣΙΑ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ

Η ΠΑΡΟΥΣΙΑ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ Η ΠΑΡΟΥΣΙΑ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ 4 Η Ευκλείδεια Γεωμετρία στην εκπαίδευση και στην κοινωνία. Κώστας Μαλλιάκας, Καθηγητής Δ.Ε., 1 ο ΓΕΛ Ρόδου, kmath@otenet.gr

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

2.4 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ 30 Ο 45 Ο 60 Ο

2.4 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ 30 Ο 45 Ο 60 Ο .4 ΤΡΙΩΝΟΜΕΤΡΙΚΟΙ ΡΙΘΜΟΙ 0 Ο 45 Ο 60 Ο ΘΕΩΡΙ. Τριγωνοµετρικοί αριθµοί 0 ο, 45 ο, 60 ο : ηµίτονο συνηµίτονο εφαπτοµένη 0 ο 45 ο 60 ο ΣΚΗΣΕΙΣ. Στο διπλανό πίνακα, σε κάθε πληροφορία της στήλης, να επιλέξετε

Διαβάστε περισσότερα

Από το επίπεδο στο χώρο (Στερεομετρία)

Από το επίπεδο στο χώρο (Στερεομετρία) Από το επίπεδο στο χώρο (Στερεομετρία) (Διεπιστημονική προσέγγιση αριθμητικού και οπτικού γραμματισμού) Εκπαιδευτικοί: Αθανασοπούλου Ζαφειρία (οπτικός γραμματισμός) Σαρακινίδου Σοφία (αριθμητικός γραμματισμός)

Διαβάστε περισσότερα

Τριγωνομετρία ΓΙΩΡΓΟΣ ΚΑΡΙΠΙΔΗΣ 2 ΑΝΘΟΥΛΑ ΣΟΦΙΑΝΟΠΟΥΛΟΥ

Τριγωνομετρία ΓΙΩΡΓΟΣ ΚΑΡΙΠΙΔΗΣ 2 ΑΝΘΟΥΛΑ ΣΟΦΙΑΝΟΠΟΥΛΟΥ ΕΥΚΛΕΙΔΗΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ ΤΟ ΒΑΣΙΚΟ ΘΕΩΡΗΜΑ: ημ χ+συν χ= ημ χ=-συν χ συν χ=- ημ χ εφχ + σφ χ = εφχ ημχ συνχ = σφχ = ημ χ εφχσφχ σφχ = = συνχ ημχ + εφ χ = συν χ Γωνία χ Τριγωνομετρικοί Αριθμοί

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Δημήτρης Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών. Λαμία, 19 Απριλίου 2013 Αριθ. Πρωτ.: 317. Προς:

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Δημήτρης Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών. Λαμία, 19 Απριλίου 2013 Αριθ. Πρωτ.: 317. Προς: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΝΟΜΟΥ ΦΘΙΩΤΙΔΑΣ

Διαβάστε περισσότερα

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012.

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ B ----- Να διατηρηθεί μέχρι... Βαθμός

Διαβάστε περισσότερα

Ε - ΣΤ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012

Ε - ΣΤ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012 1. Πόσες ώρες έχουν περάσει από τις 6:45 πμ μέχρι τις 11:45 μμ της ίδιας μέρας; Α. 5 Β. 17 Γ. 24 Δ. 29 Ε. 41 1 1 2. Αν το χ είναι μεταξύ 1 και 1 +, τότε το χ μπορεί να είναι ίσο με τον κάθε 5 5 αριθμό

Διαβάστε περισσότερα

ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΚΥΚΛΟΣ

ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΚΥΚΛΟΣ [7] ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΚΥΚΛΟΣ ΟΡΙΣΜΟΣ Κύκλος µε κέντρο Κ και ακτίνα ρ λέγεται ο γεωµετρικός τόπος των σηµείων του επιπέδου τα οποία απέχουν από το Κ απόσταση ίση µε ρ. ΕΞΙΣΩΣΗ ΚΥΚΛΟΥ Αν ο κύκλος έχει κέντρο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο Α) Συµπληρώστε τα κενά στις παρακάτω προτάσεις: 1) Ο κύκλος µε κέντρο Κ(α, β) και ακτίνα ρ > έχει εξίσωση... ) Η εξίσωση του κύκλου µε κέντρο στην αρχή

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014. ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014. ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 013-014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου Χρόνος: ώρες Βαθμός: Ημερομηνία: Παρασκευή, 13 Ιουνίου 014 Υπογραφή καθηγητή: Ονοματεπώνυμο:

Διαβάστε περισσότερα

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ 1. ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στόχος Να γνωρίζουν οι μαθητές: να αξιοποιούν το σύμβολο της συνεπαγωγής και της ισοδυναμίας να αξιοποιούν τους συνδέσμους «ή», «και» ΕΙΣΑΓΩΓΗ Η συννενόηση μεταξύ των ανθρώπων

Διαβάστε περισσότερα

ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ. (α + β) 2 = α 2 + 2αβ + β 2. αx 2 + βx + γ = 0, α 0. x = Γ ΓΥΜΝΑΣΙΟΥ

ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ. (α + β) 2 = α 2 + 2αβ + β 2. αx 2 + βx + γ = 0, α 0. x = Γ ΓΥΜΝΑΣΙΟΥ ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ (α + β) = α + αβ + β α + β + γ = 0, α 0 = β ± β 4αγ α Γ ΓΥΜΝΑΣΙΟΥ Πράξεις με Πραγματικούς αριθμούς. Μονώνυμα - Πράξεις με μονώνυμα Πολυώνυμα - Πρόσθεση και Αφαίρεση πολυωνύμων Πολλαπλασιασμός

Διαβάστε περισσότερα

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Κάνε τα πράγματα με μεγαλοπρέπεια, σωστά και με στυλ. ΦΡΕΝΤ ΑΣΤΕΡ Θέμα Σε ένα σύστημα αξόνων οι

Διαβάστε περισσότερα

, y 1. y y y y = x ( )

, y 1. y y y y = x ( ) ΚΕΦΑΛΑΙΟ Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕ Ο ΠΑΡΑΓΡΑΦΟΣ. ΕΞΙΣΩΣΗ ΓΡΑΜΜΗΣ Μία εξίσωση µε αγνώστους x, y λέγεται εξίσωση µίας γραµµής C, όταν οι συντεταγµένες των σηµείων της C και µόνο αυτές την επαληθεύουν. Αν έχουµε

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

8 Σίσκας Χρήστος Φακόπουλος Επαμεινώνδας. Η έννοια του Διανύσματος

8 Σίσκας Χρήστος Φακόπουλος Επαμεινώνδας. Η έννοια του Διανύσματος ο ΚΕΦΑΛΑΙΟ. ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ. ΠΡΟΣΘΕΣΗ - ΑΦΑΙΡΕΣΗ ΔΙΑΝΥΣΜΑΤΩΝ.3 ΓΙΝΟΜΕΝΟ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΔΙΑΝΥΣΜΑΤΟΣ.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ 8 Σίσκας Χρήστος Φακόπουλος Επαμεινώνδας Η έννοια

Διαβάστε περισσότερα

Τριγωνομετρικός κύκλος Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜAΤΙΚΟΣ

Τριγωνομετρικός κύκλος Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜAΤΙΚΟΣ Τριγωνομετρικός κύκλος Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜAΤΙΚΟΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΣ ΚΥΚΛΟΣ Β ημφ, εφφ σφφ Μ Δ συνφ Α www.commonmaths.weebly.com Σελίδα 1 N Β, 90 ο Α, ο H O 1ο 3ο E Σ Δ, 180 ο 360 ο Ν, 70 ο 4ο 1 ο Τεταρτημόριο

Διαβάστε περισσότερα

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010.

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010. Β Τάξη Ηµερήσιου Γενικού Λυκείου Μ α θ ή µ α τ α Γ ε ν ι κ ή ς Π α ι δ ε ί α ς Άλγεβρα Γενικής Παιδείας I. ιδακτέα ύλη A) Από το βιβλίο «Άλγεβρα Α Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ.

Διαβάστε περισσότερα

Κωνικές τομές. Πηγή έμπνευσης για την κατασκευή προβλημάτων της Ευκλείδειας Γεωμετρίας.

Κωνικές τομές. Πηγή έμπνευσης για την κατασκευή προβλημάτων της Ευκλείδειας Γεωμετρίας. Κωνικές τομές. Πηγή έμπνευσης για την κατασκευή προβλημάτων της Ευκλείδειας Γεωμετρίας. Σπύρος Παναγιωτόπουλος Καθηγητής Μαθηματικών ΓΕΛ Σπερχειάδας 351 00 Λαμία spegepana@gmail.com Μιχαήλ Τζούμας Σχ.

Διαβάστε περισσότερα

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( )

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( ) ΑΣΚΗΣΗ ίνονται οι µιγαδικοί αριθµοί z + 0i για τους οποίους ισχύει: z 4 =. z i. Να δείξετε ότι z =. ii. Αν επιπλέον ισχύει Re( z) Im( z) iii. = να υπολογίσετε τους παραπάνω µιγαδικούς αριθµούς. Για τους

Διαβάστε περισσότερα

3.5 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΙΣΚΟΥ

3.5 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΙΣΚΟΥ 1 3.5 ΕΜΒ Ν ΚΥΚΛΙΚΥ ΙΣΚΥ ΘΕΩΡΙ Εµβαδόν κυκλικού δίσκου ακτίνας ρ : Ε = πρ Σηµείωση : Tο εµβαδόν του κυκλικού δίσκου, χάριν ευκολίας αναφέρεται σαν εµβαδόν του κύκλου. ΣΧΛΙ Για το εµβαδόν του κυκλικού δίσκου

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ

ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ . ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 4 α. Να βρείτε τον γεωμετρικό τόπο των εικόνων του. β. Αν Re ( ) 0, τότε: 4 i. Να αποδείξετε ότι ο μιγαδικός w = + είναι πραγματικός και ισχύει 4 w 4. ii. Να βρείτε τον

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ. Ορισµός τριγωνοµετρικών αριθµών οξείας γωνίας ορθογωνίου τριγώνου

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ. Ορισµός τριγωνοµετρικών αριθµών οξείας γωνίας ορθογωνίου τριγώνου 70 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ Ορισµός τριγωνοµετρικών αριθµών οξείας γωνίας ορθογωνίου τριγώνου Σχέσεις µεταξύ τριγωνοµετρικών αριθµών 71 Εφαρµογές 72 73 74 75 76 ΕΦΑΡΜΟΓΕΣ ΑΣΚΗΣΕΙΣ 5.

Διαβάστε περισσότερα

ΟΙ ΑΠΟΛΛΩΝΙΕΣ ΚΑΤΑΣΚΕΥΕΣ ΩΣ ΤΟΜΕΣ ΚΩΝΙΚΩΝ ΜΕ ΠΡΟΓΡΑΜΜΑ ΔΥΝΑΜΙΚΗΣ ΓΕΩΜΕΤΡΙΑΣ

ΟΙ ΑΠΟΛΛΩΝΙΕΣ ΚΑΤΑΣΚΕΥΕΣ ΩΣ ΤΟΜΕΣ ΚΩΝΙΚΩΝ ΜΕ ΠΡΟΓΡΑΜΜΑ ΔΥΝΑΜΙΚΗΣ ΓΕΩΜΕΤΡΙΑΣ ΟΙ ΑΠΟΛΛΩΝΙΕ ΚΑΤΑΚΕΥΕ Ω ΤΟΜΕ ΚΩΝΙΚΩΝ ΜΕ ΠΡΟΓΡΑΜΜΑ ΔΥΝΑΜΙΚΗ ΓΕΩΜΕΤΡΙΑ ΠΕΡΙΛΗΨΗ την παρούσα εργασία ασχολούμαστε με προβλήματα του Απολλώνιου. Χωρίζεται σε τρία μέρη. το πρώτο γίνεται μια απλή προσέγγιση

Διαβάστε περισσότερα

Κεφάλαιο 5. Θεμελιώδη προβλήματα της Τοπογραφίας

Κεφάλαιο 5. Θεμελιώδη προβλήματα της Τοπογραφίας Κεφάλαιο 5 Θεμελιώδη προβλήματα της Τοπογραφίας ΚΕΦΑΛΑΙΟ 5. 5 Θεμελιώδη προβλήματα της Τοπογραφίας. Στο Κεφάλαιο αυτό περιέχονται: 5.1 Γωνία διεύθυνσης. 5. Πρώτο θεμελιώδες πρόβλημα. 5.3 εύτερο θεμελιώδες

Διαβάστε περισσότερα