ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ"

Transcript

1 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 10γ: Αλγόριθμοι Γραφημάτων- Διερεύνηση Πρώτα σε Βάθος (DFS)- Τοπολογική Ταξινόμηση Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής

2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Μαρία Σατρατζέμη 2

3 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Μακεδονίας» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Μαρία Σατρατζέμη 3

4 Depth-First Search Πρώτα σε Βάθος διερεύνηση (Depth-First Search) είναι μια άλλη στρατηγική για να εξερευνήσουμε ένα γράφημα Εξερευνούμε βαθύτερα στο γράφημα οποτεδήποτε αυτό είναι δυνατόν Οι ακμές εξερευνώνται με αφετηρία από την πιο πρόσφατα εντοπισμένη κορυφή v από την οποία εκκινούν μη εξερευνημένες ακμές Αφού εξερευνηθούν όλες οι ακμές της v, η διερεύνηση «επιστρέφει» στην κορυφή από την οποία εντοπίστηκε η v 4

5 Depth-First Search Η κορυφή χρωματίζεται λευκή Στη συνέχεια χρωματίζεται γκρι όταν εντοπίζεται Στη συνέχεια μαύρη όταν περατώνεται (όταν ολοκληρώνεται η εξέταση της λίστας γειτνίασης της) 5

6 Αλγόριθμος Depth-First Search DFS(G) 1. for each vertex u G->V 2. color[u] = WHITE; 3. p[u] = null 4. time = 0; 5. for each vertex u G->V 6. if (color[u] == WHITE) 7. DFS_Visit(u); DFS_Visit(u) 1. color[u] = GREY; 2. time = time+1; 3. d[u] = time; 4. for each v Adj[u] 5. if (color[v] == WHITE) 6. p[v] = u; 7. DFS_Visit(v); 8. color[u] = BLACK; 9. time = time+1; 10. f[u] = time; 6

7 Αλγόριθμος Depth-First Search DFS(G) 1. for each vertex u G->V 2. color[u] = WHITE; 3. p[u] = null 4. time = 0; 5. for each vertex u G->V 6. if (color[u] == WHITE) 7. DFS_Visit(u); Η μεταβλητή d[u] καταγράφει τη χρονική στιγμή που εντοπίζεται για πρώτη φορά η κορυφή u (και χρωματίζεται γκρι) DFS_Visit(u) 1. color[u] = GREY; 2. time = time+1; 3. d[u] = time; 4. for each v Adj[u] 5. if (color[v] == WHITE) 6. p[v] = u; 7. DFS_Visit(v); 8. color[u] = BLACK; 9. time = time+1; 10. f[u] = time; 7

8 Αλγόριθμος Depth-First Search DFS(G) 1. for each vertex u G->V 2. color[u] = WHITE; 3. p[u] = null 4. time = 0; 5. for each vertex u G->V 6. if (color[u] == WHITE) 7. DFS_Visit(u); Η μεταβλητή f[u] καταγράφει τη χρονική στιγμή που ολοκληρώνεται η εξέταση της λίστας γειτνίασης της u (και χρωματίζεται μαύρη) DFS_Visit(u) 1. color[u] = GREY; 2. time = time+1; 3. d[u] = time; 4. for each v Adj[u] 5. if (color[v] == WHITE) 6. p[v] = u; 7. DFS_Visit(v); 8. color[u] = BLACK; 9. time = time+1; 10. f[u] = time; 8

9 Αλγόριθμος Depth-First Search DFS(G) 1. for each vertex u G->V 2. color[u] = WHITE; 3. p[u] = null 4. time = 0; 5. for each vertex u G->V 6. if (color[u] == WHITE) 7. DFS_Visit(u); Θα χρωματιστούν όλες οι κορυφές μαύρες? DFS_Visit(u) 1. color[u] = GREY; 2. time = time+1; 3. d[u] = time; 4. for each v Adj[u] 5. if (color[v] == WHITE) 6. p[v] = u; 7. DFS_Visit(v); 8. color[u] = BLACK; 9. time = time+1; 10. f[u] = time; 9

10 DFS Example source vertex 10

11 DFS Example source vertex d f 1 11

12 DFS Example source vertex d f

13 DFS Example source vertex d f

14 DFS Example source vertex d f

15 DFS Example source vertex d f

16 DFS Example source vertex d f

17 DFS Example source vertex d f

18 DFS Example source vertex d f

19 DFS Example source vertex d f Τι εκφράζουν οι γκρι κορυφές? 19

20 DFS Example source vertex d f

21 DFS Example source vertex d f

22 DFS Example source vertex d f

23 DFS Example source vertex d f

24 DFS Example source vertex d f

25 DFS Example source vertex d f

26 DFS Example source vertex d f

27 DFS : Ανάλυση DFS(G) 1. for each vertex u G->V 2. color[u] = WHITE; 3. p[u] = null 4. time = 0; 5. for each vertex u G->V 6. if (color[u] == WHITE) 7. DFS_Visit(u); DFS_Visit(u) 1. color[u] = GREY; 2. time = time+1; 3. d[u] = time; 4. for each v Adj[u] 5. if (color[v] == WHITE) 6. p[v] = u; 7. DFS_Visit(v); 8. color[u] = BLACK; 9. time = time+1; 10. f[u] = time; Ποιος θα είναι ο χρόνος εκτέλεσης? 27

28 DFS : Ανάλυση DFS(G) 1. for each vertex u G->V 2. color[u] = WHITE; 3. p[u] = null 4. time = 0; 5. for each vertex u G->V 6. if (color[u] == WHITE) 7. DFS_Visit(u); χρόνος εκτέλεσης: O(V 2 ) διότι η κλήσης της DFS_Visit για κάθε κορυφή, και η επανάληψη επί των Adj[] εκτελείται V φορές DFS_Visit(u) 1. color[u] = GREY; 2. time = time+1; 3. d[u] = time; 4. for each v Adj[u] 5. if (color[v] == WHITE) 6. p[v] = u; 7. DFS_Visit(v); 8. color[u] = BLACK; 9. time = time+1; 10. f[u] = time; 28

29 DFS : Ανάλυση DFS(G) 1. for each vertex u G->V 2. color[u] = WHITE; 3. p[u] = null 4. time = 0; 5. for each vertex u G->V 6. if (color[u] == WHITE) 7. DFS_Visit(u); Αλλά υπάρχει ένα αυστηρότερο φράγμα. Πόσες φορές θα κληθεί η DFS_Visit()? DFS_Visit(u) 1. color[u] = GREY; 2. time = time+1; 3. d[u] = time; 4. for each v Adj[u] 5. if (color[v] == WHITE) 6. p[v] = u; 7. DFS_Visit(v); 8. color[u] = BLACK; 9. time = time+1; 10. f[u] = time; 29

30 DFS : Ανάλυση Στην DFS(G) οι βρόχοι στις γραμμές 1-3 και στις γραμμές 5-7 απαιτούν χρόνο Θ(V) πέραν του χρόνου εκτέλεσης των κλήσεων της DFS_Visit. Η διαδικασία της DFS_Visit καλείται ακριβώς μια φορά για κάθε κορυφή v V, δεδομένου ότι εκτελείται μόνο για λευκές κορυφές και το πρώτο πράγμα που κάνει είναι να χρωματίσει την κορυφή εισόδου σε γκρι. Κατά τη διάρκεια μιας μεμονωμένης εκτέλεσης της DFS_Visit(v), ο βρόχος στις γραμμές 4-7 εκτελείται Adj[v] φορές. Δεδομένου ότι ισχύει: Adj v E το συνολικό κόστος εκτέλεσης των v V γραμμών 4-7 της DFS_Visit είναι Θ(Ε). Επομένως, ο χρόνος εκτέλεσης της DFS είναι Θ(V + Ε). 30

31 DFS: Είδη ακμών DFS εισάγει μια σημαντική διάκριση μεταξύ των ακμών του γραφήματος : δενδρικές ακμές (Tree edge): συναντά μια (νέα) λευκή κορυφή Οι δενδρικές ακμές ανήκουν στο καθοδικό δάσος G Η ακμή (u, v) είναι δενδρική αν η v εντοπίζεται κατά την εξερεύνηση της (u, v). Είναι δυνατόν οι δενδρικές ακμές να σχηματίζουν κύκλους? Ναι ή όχι και γιατί? 31

32 DFS Example source vertex d f Δενδρικές ακμές (Tree edges) 32

33 DFS: Είδη ακμών DFS εισάγει μια σημαντική διάκριση μεταξύ των ακμών του αρχικού γραφήματος : Δενδρικές ακμές (Tree edge): όταν συναντά μια νέα (λευκή) κορυφή Ανιούσες ακμές (Back edge): από απόγονο σε πρόγονο Συναντά μια γκρι κορυφή (γκρι σε γκρι) 33

34 DFS Example source vertex d f Δενδρικές ακμές (Tree edges) Ανιούσες ακμές (Back edges) 34

35 DFS: Είδη ακμών DFS εισάγει μια σημαντική διάκριση μεταξύ των ακμών του αρχικού γραφήματος : Δενδρικές ακμές (Tree edge): όταν συναντά μια νέα (λευκή) κορυφή Ανιούσες ακμές (Back edge): από απόγονο σε πρόγονο Κατιούσες ακμές (Forward edge): από πρόγονο σε from απόγονο Όχι ακμή δένδρου Από γκρι κορυφή σε μαύρη 35

36 DFS Example source vertex d f Δενδρικές ακμές (Tree edges) Ανιούσες ακμές (Back edges) Κατιούσες ακμές Forward edges 36

37 DFS: Είδη ακμών DFS εισάγει μια σημαντική διάκριση μεταξύ των ακμών του αρχικού γραφήματος : Δενδρικές ακμές (Tree edge): όταν συναντά μια νέα (λευκή) κορυφή Ανιούσες ακμές (Back edge): από απόγονο σε πρόγονο Κατιούσες ακμές (Forward edge): από πρόγονο σε απόγονο Εγκάρσιες ακμές (Cross edge) : συνδέουν κορυφές στο ίδιο καθοδικό δένδρο εφόσον οι κορυφές δεν συνδέονται με σχέση προγόνου-απογόνου ή διαφορετικά καθοδικά δένδρα Από γκρι σε μαύρη ακμή 37

38 DFS Example source vertex d f Δενδρικές ακμές (Tree edges) Ανιούσες ακμές (Back edges) Κατιούσες ακμές Forward edges Εγκάρσιες ακμές Cross edges 38

39 DFS: Είδη ακμών DFS εισάγει μια σημαντική διάκριση μεταξύ των ακμών του αρχικού γραφήματος : Δενδρικές ακμές (Tree edge): όταν συναντά μια νέα (λευκή) κορυφή Ανιούσες ακμές (Back edge): από απόγονο σε πρόγονο Κατιούσες ακμές (Forward edge): από πρόγονο σε απόγονο Εγκάρσιες ακμές (Cross edge) : μεταξύ δένδρου ή υποδένδρων Σημείωση: δενδρικές & ανιούσες ακμές είναι σημαντικές; Οι περισσότεροι αλγόριθμοι δεν διακρίνουν τις κατιούσες και εγκάρσιες ακμές 39

40 DFS: Είδη ακμών Αν το G είναι μη προσανατολισμένο, ο DFS παράγει μόνο δενδρικές και ανιούσες ακμές F source 40

41 DFS: Είδη ακμών Θεώρημα : Σε μια σε βάθος διερεύνηση ενός μη προσανατολισμένου γραφήματος G, κάθε ακμή του G είναι είτε δενδρική είτε ανιούσα Απόδειξη: Εστω (u, v) μια τυχούσα ακμή του G, και ας υποθέσουμε ότι d[u] < d[v]. Σ αυτή την περίπτωση η v θα πρέπει να εντοπίζεται και να περατώνεται πριν να περατωθεί η u (ενόσω η u είναι γκρι), αφού ανήκει στη λίστα γειτνίασης τη u. Αν η ακμή (u, v) εξερευνάται πρώτα κατά τη κατεύθυνση από την u προς την v, τότε μέχρι εκείνη τη χρονική στιγμή η v είναι μη εντοπισμένη (λευκή) διότι διαφορετικά η συγκεκριμένη ακμή θα είχε ήδη εξερευνηθεί κατά την κατεύθυνση από την v προς την u. Επομένως η ακμή καθίσταται δενδρική. Αν η ακμή (u, v) εξερευνάται πρώτα κατά τη κατεύθυνση από την v προς την u, τότε είναι ανιούσα, δεδομένου ότι η u είναι ακόμη γκρι τη στιγμή που ακμή εξερευνάται για πρώτη φορά. 41

42 DFS και Κύκλοι Γραφήματος Θεώρημα: Ένα προσανατολισμένο γράφημα είναι άκυκλο (acyclic) αν και μόνο αν η DFS διερεύνηση του G δε δημιουργεί ανιούσες ακμές Αν είναι άκυκλο, δε υπάρχουν ανιούσες ακμές (ανιούσα ακμή συνεπάγεται κύκλο) Αν δεν υπάρχουν ανιούσες ακμές τότε είναι άκυκλο Όχι ανιούσες ακμές συνεπάγεται μόνο δενδρικές ακμές Μόνο δενδρικές ακμές συνεπάγεται ότι έχουμε δένδρο ή δάσος το οποίο είναι εξ ορισμού άκυκλο Άρα εφαρμόζοντας DFS διερεύνηση προσδιορίζουμε αν ένα γράφημα έχει κύκλο 42

43 DFS και Κύκλοι Γραφήματος DFS(G) 1. for each vertex u G->V 2. color[u] = WHITE; 3. p[u] = null 4. time = 0; 5. for each vertex u G->V 6. if (color[u] == WHITE) 7. DFS_Visit(u); Πως μπορεί να τροποποιηθεί ο παραπάνω αλγόριθμος ώστε να προσδιορίζει κύκλο? DFS_Visit(u) 1. color[u] = GREY; 2. time = time+1; 3. d[u] = time; 4. for each v Adj[u] 5. if (color[v] == WHITE) 6. p[v] = u; 7. DFS_Visit(v); 8. color[u] = BLACK; 9. time = time+1; 10. f[u] = time; 43

44 DFS και Κύκλοι Γραφήματος DFS(G) 1. for each vertex u G->V 2. color[u] = WHITE; 3. p[u] = null 4. time = 0; 5. for each vertex u G->V 6. if (color[u] == WHITE) 7. DFS_Visit(u); Προσθήκη «μπλε» εντολών στον DFS αλγόριθμο ώστε να προσδιορίζει κύκλο DFS_Visit(u) 1. color[u] = GREY; 2. time = time+1; 3. d[u] = time; 4. for each v Adj[u] 5. if (color[v]==grey and p[u] v) 6. return the cycle (u, p[u]), (p[u], p[p[u]], (v, u) 7. if (color[v] == WHITE) 8. p[v] = u; 9. DFS_Visit(v); 10. color[u] = BLACK; 11. time = time+1; 12. f[u] = time; 44

45 Προσανατολισμένο Ακυκλο Γράφημα Ένα προσανατολισμένο άκυκλο γράφημα (directed acyclic graph) ή DAG είναι ένα προσανατολισμένο γράφημα χωρίς προσανατολισμένους κύκλους. Ένα προσανατολισμένο γράφημα G είναι άκυκλο αν και μόνο η DFS του G δε δημιουργεί ανιούσες ακμές. 45

46 Τοπολογική Ταξινόμηση Τοπολογική ταξινόμηση (Topological sort) ενός DAG: Γραμμική διάταξη όλων των κορυφών του γραφήματος G έτσι ώστε η κορυφή u να εμφανίζεται πριν από την κορυφή αν η ακμή (u, v) G Τα προσανατολισμένα άκυκλα γραφήματα χρησιμοποιούνται σε πολλές εφαρμογές που απαιτούν να υποδειχθεί μια σειρά προτεραιότητας σε ορισμένα γεγονότα. Παράδειγμα από την καθημερινή ζωή: ντύσιμο 46

47 Πρωινό ντύσιμο εσώρουχα παντελόνι ζώνη πουκάμισο γραβάτα Κάλτσες παπούτσια ρολόι σακάκι 47

48 Αλγόριθμος Τοπολογικής Ταξινόμησης Topological-Sort() { 1. Καλούμε την DFS(G) για τον υπολογισμό του χρόνου περάτωσης f[v] για κάθε κόμβο v 2. Μετά την περάτωση κάθε κόμβου, τον τοποθετούμε επικεφαλής μιας αλυσίδας (λίστας) 3. Επιστροφή η αλυσίδα κόμβων } Χρόνος: Θ(V+E) δεδομένου ότι η DFS διερεύνηση απαιτεί χρόνο Θ(V+E) ενώ η εισαγωγή καθεμιάς από τις V κορυφές στην κορυφή της αλυσίδας απαιτεί χρόνο Ο(1). 48

49 Πρωινό ντύσιμο τοπολογική ταξινόμηση 11/16 εσώρουχα Κάλτσες 17/18 ρολόι 9/10 12/15 παντελόνι πουκάμισο 1/8 παπούτσια 13/14 6/7 ζώνη γραβάτα 2/5 σακάκι 3/4 κάλτσες εσώρουχα Παντελόνι Παπούτσια ρολόι Πουκάμισο ζώνη γραβάτα σακάκι 17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5 3/4 49

50 Τέλος Ενότητας

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 10β: Αλγόριθμοι Γραφημάτων-Γραφήματα- Αναπαράσταση Γραφημάτων- Διερεύνηση Πρώτα σε Πλάτος (BFS) Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το

Διαβάστε περισσότερα

Αναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Αναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Αναζήτηση Κατά Βάθος ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναζήτηση Κατά Βάθος (DFS) Εξερεύνηση

Διαβάστε περισσότερα

Ενότητα 10 Γράφοι (ή Γραφήµατα)

Ενότητα 10 Γράφοι (ή Γραφήµατα) Ενότητα 10 Γράφοι (ή γραφήµατα) ΗΥ240 - Παναγιώτα Φατούρου 1 Γράφοι (ή Γραφήµατα) Ένας γράφος αποτελείται από ένα σύνολο από σηµεία (που λέγονται κόµβοι) και ένα σύνολο από γραµµές (που λέγονται ακµές)

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #2: Πολυωνυμικοί Αλγόριθμοι, Εισαγωγή στα Γραφήματα, Αναζήτηση κατά Βάθος, Τοπολογική Ταξινόμηση

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 2: Γραφήματα Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης

Διαβάστε περισσότερα

Κεφάλαιο 3. Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 3. Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 3 Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισµοί και Εφαρµογές γραφήµατα γράφηµα G: ένας τρόπος κωδικοποίησης των σχέσεων

Διαβάστε περισσότερα

Διεθνείς Επενδύσεις & Διεθνές Εμπόριο

Διεθνείς Επενδύσεις & Διεθνές Εμπόριο Διεθνείς Επενδύσεις & Διεθνές Εμπόριο Ενότητα 3: Θεωρία του Διεθνούς Εμπορίου Θεωρητικές προσεγγίσεις Γεώργιος Μιχαλόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 18 Dijkstra s Shortest Path Algorithm 1 / 12 Ο αλγόριθμος εύρεσης της συντομότερης διαδρομής του Dijkstra

Διαβάστε περισσότερα

Αρχιτεκτονική Υπολογιστών Εργαστήριο

Αρχιτεκτονική Υπολογιστών Εργαστήριο Αρχιτεκτονική Υπολογιστών Εργαστήριο Ενότητα: ΠΑΡΑΔΕΙΓΜΑ ΑΠΟΣΦΑΛΜΑΤΩΣΗΣ Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι;

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; ΘΕΜΑΤΑ ΔΕΝΔΡΩΝ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΠΛΗ0 ΑΣΚΗΣΗ Για τις ερωτήσεις - θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; Β Ε Α 6 Δ 5 9 8 0 Γ 7 Ζ Η. Σ/Λ Δυο από τα συνδετικά

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ 1 (Εργαστήριο)

Προγραμματισμός Η/Υ 1 (Εργαστήριο) Προγραμματισμός Η/Υ 1 (Εργαστήριο) Ενότητα 1: Εισαγωγή στη C - Αλγόριθμοι Καθηγήτρια Εφαρμογών: Τσαγκαλίδου Ροδή Τμήμα: Ηλεκτρολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026

Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026 Δρομολόγηση Και Πολύχρωματισμός Μονοπατιών Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026 Εισαγωγή. Το πρόβλημα με το οποίο θα ασχοληθούμε εδώ είναι γνωστό σαν: Δρομολόγηση και Πολύ-χρωματισμός Διαδρομών (Routing

Διαβάστε περισσότερα

Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου

Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ No 05 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων και

Διαβάστε περισσότερα

Διοίκηση ανθρωπίνων Πόρων. Ενότητα 2: Προγραμματισμός Ανθρώπινου Δυναμικού Δρ. Καταραχιά Ανδρονίκη Τμήμα Λογιστικής και Χρηματοοικονομικής

Διοίκηση ανθρωπίνων Πόρων. Ενότητα 2: Προγραμματισμός Ανθρώπινου Δυναμικού Δρ. Καταραχιά Ανδρονίκη Τμήμα Λογιστικής και Χρηματοοικονομικής Διοίκηση ανθρωπίνων Πόρων Ενότητα 2: Προγραμματισμός Ανθρώπινου Δυναμικού Δρ. Καταραχιά Ανδρονίκη Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου

Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Νο 07 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων και

Διαβάστε περισσότερα

Οδηγίες Οργάνωσης Μαθήματος στην Ιδρυματική πλατφόρμα του open e class. Σύνταξη: MY-AOC

Οδηγίες Οργάνωσης Μαθήματος στην Ιδρυματική πλατφόρμα του open e class. Σύνταξη: MY-AOC Οδηγίες Οργάνωσης Μαθήματος στην Ιδρυματική πλατφόρμα του open e class Σύνταξη: MY-AOC Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative Commons. Οργάνωση Μαθήματος 3 Η πλήρης οργάνωση ενός

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #7: Ελάχιστα Επικαλυπτικά Δένδρα, Αλγόριθμος Kruskal, Δομές Union-Find Άσκηση # 0 5 0 0 0

Διαβάστε περισσότερα

Διοίκηση ανθρωπίνων Πόρων. Ενότητα 4: Εντοπισμός και προσέλκυση προσωπικού Δρ. Καταραχιά Ανδρονίκη Τμήμα Λογιστικής και Χρηματοοικονομικής

Διοίκηση ανθρωπίνων Πόρων. Ενότητα 4: Εντοπισμός και προσέλκυση προσωπικού Δρ. Καταραχιά Ανδρονίκη Τμήμα Λογιστικής και Χρηματοοικονομικής Διοίκηση ανθρωπίνων Πόρων Ενότητα 4: Εντοπισμός και προσέλκυση προσωπικού Δρ. Καταραχιά Ανδρονίκη Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Αρχιτεκτονική υπολογιστών

Αρχιτεκτονική υπολογιστών 1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αρχιτεκτονική υπολογιστών Ενότητα 12 : Δομή και Λειτουργία της CPU 2/2 Φώτης Βαρζιώτης 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Τμήμα Μηχανικών Πληροφορικής

Διαβάστε περισσότερα

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Πρόβλημα 1 Το πρώτο πρόβλημα λύνεται με τη μέθοδο του Δυναμικού Προγραμματισμού. Για να το λύσουμε με Δυναμικό Προγραμματισμό

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εισαγωγή στην Επιστήμη και Τεχνολογία των Υπηρεσιών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εισαγωγή στην Επιστήμη και Τεχνολογία των Υπηρεσιών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εισαγωγή στην Επιστήμη και Τεχνολογία των Υπηρεσιών Εργαστήριο: XQuery - 2 Όνομα Καθηγητή: Χρήστος Νικολάου Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Υπολογιστικά Συστήματα

Υπολογιστικά Συστήματα Υπολογιστικά Συστήματα Ενότητα 6: Ασκήσεις στη Visual Basic for Applications (VBA) Σαπρίκης Ευάγγελος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Φωτοτεχνία

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Φωτοτεχνία ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Φωτοτεχνία Ενότητα 3: Μελέτες Φωτισμού Εσωτερικών Χώρων Mέθοδος Favie-Οικονομόπουλος Γεώργιος Χ. Ιωαννίδης Τμήμα Ηλεκτρολόγων

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 6: Εφαρμογές Γραμμικού Προγραμματισμού (2 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

Κινητές και Δορυφορικές Επικοινωνίες

Κινητές και Δορυφορικές Επικοινωνίες Πανεπιστήμιο Αιγαίου Κινητές και Δορυφορικές Επικοινωνίες Πρόγραμμα Μεταπτυχιακών Σπουδών Κατεύθυνση: «Τεχνολογίες Δικτύων Επικοινωνιών & Υπολογιστών» Βασικές Αρχές Κυψελωτών Συστημάτων Δημοσθένης Βουγιούκας

Διαβάστε περισσότερα

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 4 η : ΕΥΣΤΑΘΕΙΑ ΤΩΝ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Επ. Καθηγητής Γαύρος Κωνσταντίνος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ Άδειες Χρήσης

Διαβάστε περισσότερα

Μέθοδοι Βελτιστοποίησης

Μέθοδοι Βελτιστοποίησης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μέθοδοι Βελτιστοποίησης Ενότητα # 5: Ασκήσεις Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Αρχιτεκτονική Υπολογιστών

Αρχιτεκτονική Υπολογιστών Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Αρχιτεκτονική Υπολογιστών Ενότητα 10: Πέρασμα Παραμέτρων σε Διαδικασίες. Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής

Διαβάστε περισσότερα

Αλληλεπίδραση Ανθρώπου- Υπολογιστή & Ευχρηστία

Αλληλεπίδραση Ανθρώπου- Υπολογιστή & Ευχρηστία Αλληλεπίδραση Ανθρώπου- Υπολογιστή & Ευχρηστία Ενότητα 3: Ο Υπολογιστής Σαπρίκης Ευάγγελος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων Βασικές Έννοιες Θεωρίας Γραφημάτων ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση

Διαβάστε περισσότερα

Διαφήμιση και Δημόσιες Σχέσεις Ενότητα 9: Σχέσεις διαφημιστή-διαφημιζόμενου

Διαφήμιση και Δημόσιες Σχέσεις Ενότητα 9: Σχέσεις διαφημιστή-διαφημιζόμενου Διαφήμιση και Δημόσιες Σχέσεις Ενότητα 9: Σχέσεις διαφημιστή-διαφημιζόμενου Θεοδωρίδης Προκόπης Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.)

Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.) Ενότητα 5: Γεωθερμία Σπύρος Τσιώλης Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΜΗΧΑΝΟΓΡΑΦΗΜΕΝΗ ΛΟΓΙΣΤΙΚΗ Ι

ΜΗΧΑΝΟΓΡΑΦΗΜΕΝΗ ΛΟΓΙΣΤΙΚΗ Ι ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΤΕ ΜΗΧΑΝΟΓΡΑΦΗΜΕΝΗ ΛΟΓΙΣΤΙΚΗ Ι ΚΑΘΗΓΗΤΗΣ ΔΑΠΗΣ ΔΗΜΗΤΡΙΟΣ ΣΕΡΡΕΣ, ΣΕΠΤΕΜΒΡΙΟΣ 2015 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Υψηλές Τάσεις. Ενότητα 4: Υγρά Μονωτικά Υλικά. Κωνσταντίνος Ψωμόπουλος Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ

Υψηλές Τάσεις. Ενότητα 4: Υγρά Μονωτικά Υλικά. Κωνσταντίνος Ψωμόπουλος Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Υψηλές Τάσεις Ενότητα 4: Υγρά Μονωτικά Υλικά Κωνσταντίνος Ψωμόπουλος Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Μικροοικονομική. Ενότητα 10: Μονοπωλιακός Ανταγωνισμός. Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μικροοικονομική. Ενότητα 10: Μονοπωλιακός Ανταγωνισμός. Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μικροοικονομική Ενότητα 10: Μονοπωλιακός Ανταγωνισμός Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Τεχνολογία και Καινοτομία - Οικονομική Επιστήμη και Επιχειρηματικότητα

Τεχνολογία και Καινοτομία - Οικονομική Επιστήμη και Επιχειρηματικότητα Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Τεχνολογία και Καινοτομία - Οικονομική Επιστήμη και Επιχειρηματικότητα Ενότητα: Παραχώρηση (Franchising) Αν. Καθηγητής Μπακούρος Ιωάννης e-mail: ylb@uowm.gr,

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Μακροοικονομική. Ενότητα : Εισαγωγή βασικές οικονομικές έννοιες. Καραμάνης Κωνσταντίνος

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Μακροοικονομική. Ενότητα : Εισαγωγή βασικές οικονομικές έννοιες. Καραμάνης Κωνσταντίνος Μακροοικονομική, Χρηματοοικονομική Ενότητα των Επιχειρήσεων, :Εισαγωγή Ενότητα βασικές : έννοιες, Βέλτιστη ΤΜΗΜΑ Κεφαλαιακή ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Δομή, ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΉΣ ΚΑΙ ΛΟΓΙΣΤΙΚΗΣ, ΤΕΙ ΗΠΕΙΡΟΥ-Ανοικτά

Διαβάστε περισσότερα

Ηλεκτρονικό Εμπόριο. Ενότητα 1: Εισαγωγικές Έννοιες. Σαπρίκης Ευάγγελος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

Ηλεκτρονικό Εμπόριο. Ενότητα 1: Εισαγωγικές Έννοιες. Σαπρίκης Ευάγγελος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Ηλεκτρονικό Εμπόριο Ενότητα 1: Εισαγωγικές Έννοιες Σαπρίκης Ευάγγελος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Εισαγωγή στα Λειτουργικά

Εισαγωγή στα Λειτουργικά Εισαγωγή στα Λειτουργικά Συστήματα Ενότητα 9: Αρχεία ΙΙ Γεώργιος Φ. Φραγκούλης Τμήμα Ηλεκτρολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σεάδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Υδραυλικά & Πνευματικά ΣΑΕ Εργαστηριακό μέρος του μαθήματος

Υδραυλικά & Πνευματικά ΣΑΕ Εργαστηριακό μέρος του μαθήματος ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Υδραυλικά & Πνευματικά ΣΑΕ Εργαστηριακό μέρος του μαθήματος Ενότητα: Σημειώσεις Εργαστηρίου Μιχαήλ Παπουτσιδάκης Τμήμα Αυτοματισμού

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #: Εύρεση Ελαχίστων Μονοπατιών σε Γραφήματα που Περιλαμβάνουν και Αρνητικά Βάρη: Αλγόριθμος

Διαβάστε περισσότερα

Δίκτυα Υπολογιστών Ενότητα 10: Ethernet και ARP

Δίκτυα Υπολογιστών Ενότητα 10: Ethernet και ARP Δίκτυα Υπολογιστών Ενότητα 10: Ethernet και ARP Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

Διοίκηση Τουριστικών Μονάδων

Διοίκηση Τουριστικών Μονάδων Διοίκηση Τουριστικών Μονάδων Ενότητα 4: Ξενοδοχειακή Βιομηχανία. Γιανναράκης Γρηγόρης ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (ΓΡΕΒΕΝΑ) ΔΙΟΙΚΗΣΗ ΤΟΥΡΙΣΤΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΕΠΙΧΕΙΡΗΣΕΩΝ ΦΙΛΟΞΕΝΙΑΣ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Πλήρης οδηγός δημιουργίας ενός Ανοικτού Ακαδημαϊκού Μαθήματος. Μονάδα Υλοποίησης Ανοικτών Ακαδημαϊκών Μαθημάτων ΕΜΠ

Πλήρης οδηγός δημιουργίας ενός Ανοικτού Ακαδημαϊκού Μαθήματος. Μονάδα Υλοποίησης Ανοικτών Ακαδημαϊκών Μαθημάτων ΕΜΠ Πλήρης οδηγός δημιουργίας ενός Ανοικτού Ακαδημαϊκού Μαθήματος AO Μονάδα Υλοποίησης Ανοικτών Ακαδημαϊκών Μαθημάτων ΕΜΠ Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative Commons και δημιουργήθηκε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Ιστορία Κατασκευών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Ιστορία Κατασκευών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ιστορία Κατασκευών Ενότητα 4.3: Αρχιτεκτονικές - οικοδομικές λεπτομέρειες αστικών κτιρίων 19 ου αιώνα στην Ελλάδα. Μελέτη περίπτωσης:

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 8: ΤΟΠΟΣ ΕΓΚΑΤΑΣΤΑΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Επίπεδα Γραφήματα (planar graphs)

Επίπεδα Γραφήματα (planar graphs) Επίπεδα Γραφήματα (planar graphs) Μπορούν να σχεδιαστούν στο επίπεδο χωρίς να τέμνονται οι ακμές τους 1 2 1 2 3 4 3 4 Άρα αυτό το γράφημα είναι επίπεδο Επίπεδα Γραφήματα (planar graphs) Μπορούν να σχεδιαστούν

Διαβάστε περισσότερα

Εισαγωγή στην πληροφορική

Εισαγωγή στην πληροφορική Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 2: Βασικές αρχές λειτουργίας και χρήσης του υπολογιστή Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Τεχνολογία Πολυμέσων Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το

Διαβάστε περισσότερα

Ηγεσία. Ενότητα 6: Ηγεσία - Οργανωσιακή μάθηση - Αλλαγές. Δρ. Καταραχιά Ανδρονίκη Τμήμα Λογιστικής και Χρηματοοικονομικής

Ηγεσία. Ενότητα 6: Ηγεσία - Οργανωσιακή μάθηση - Αλλαγές. Δρ. Καταραχιά Ανδρονίκη Τμήμα Λογιστικής και Χρηματοοικονομικής Ηγεσία Ενότητα 6: Ηγεσία - Οργανωσιακή μάθηση - Αλλαγές Δρ. Καταραχιά Ανδρονίκη Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Μικροοικονομία. Ενότητα 1: Εισαγωγικές έννοιες. Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής

Μικροοικονομία. Ενότητα 1: Εισαγωγικές έννοιες. Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής Μικροοικονομία Ενότητα 1: Εισαγωγικές έννοιες Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Βιοϊατρική τεχνολογία

Βιοϊατρική τεχνολογία Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Βιοϊατρική τεχνολογία Ενότητα: Συσκευές Τηλεμετρίας Αν. καθηγητής Αγγελίδης Παντελής e-mail: paggelidis@uowm.gr ΕΕΔΙΠ Μπέλλου Σοφία e-mail: sbellou@uowm.gr

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Περιεχόμενα. 1. Εισαγωγή: Κάποια αντιπροσωπευτικά προβλήματα... 25. 2. Βασικά στοιχεία ανάλυσης αλγορίθμων... 57. 3. Γραφήματα...

Περιεχόμενα. 1. Εισαγωγή: Κάποια αντιπροσωπευτικά προβλήματα... 25. 2. Βασικά στοιχεία ανάλυσης αλγορίθμων... 57. 3. Γραφήματα... Περιεχόμενα Σχετικά με τους συγγραφείς...3 Πρόλογος... 11 Πρόλογος της ελληνικής έκδοσης... 23 1. Εισαγωγή: Κάποια αντιπροσωπευτικά προβλήματα... 25 1.1 Ένα πρώτο πρόβλημα: Ευσταθές Ταίριασμα...25 1.2

Διαβάστε περισσότερα

Ιστορία του Αραβοϊσλαμικού Πολιτισμού

Ιστορία του Αραβοϊσλαμικού Πολιτισμού Ιστορία του Αραβοϊσλαμικού Πολιτισμού Ενότητα 3: Ιστορική Ανασκόπηση των Ισλαμικών Αυτοκρατοριών Δημήτριος Σταματόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Μικροοικονομική. Ενότητα 2:Οικονομική σκέψη Καραμάνης Κωνσταντίνος

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Μικροοικονομική. Ενότητα 2:Οικονομική σκέψη Καραμάνης Κωνσταντίνος Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Μικροοικονομική Ενότητα 2:Οικονομική σκέψη Καραμάνης Κωνσταντίνος 1 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Λογιστικής και χρηματοοικονομικής

Διαβάστε περισσότερα

Ηλεκτρονική Επιχειρηματικότητα

Ηλεκτρονική Επιχειρηματικότητα Πανεπιστήμιο Αιγαίου Ηλεκτρονική Επιχειρηματικότητα Επανάληψη ΔΡ. ΔΗΜΗΤΡΗΣ ΔΡΟΣΟΣ ddrosos@aegean.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Βιοϊατρική τεχνολογία

Βιοϊατρική τεχνολογία Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Βιοϊατρική τεχνολογία Ενότητα 1: Εισαγωγή στη Βιοϊατρική Τεχνολογία Αν. καθηγητής Αγγελίδης Παντελής e-mail: paggelidis@uowm.gr ΕΕΔΙΠ Μπέλλου Σοφία e-mail:

Διαβάστε περισσότερα

Ταιριάσματα. Γράφημα. Ταίριασμα (matching) τέτοιο ώστε κάθε κορυφή να εμφανίζεται σε το πολύ μια ακμή του

Ταιριάσματα. Γράφημα. Ταίριασμα (matching) τέτοιο ώστε κάθε κορυφή να εμφανίζεται σε το πολύ μια ακμή του Ταιριάσματα Γράφημα Ταίριασμα (matching) Σύνολο ακμών τέτοιο ώστε κάθε κορυφή να εμφανίζεται σε το πολύ μια ακμή του Θέλουμε να βρούμε ένα μέγιστο ταίριασμα (δηλαδή με μέγιστο αριθμό ακμών) Ταιριάσματα

Διαβάστε περισσότερα

Επιχειρησιακές Επικοινωνίες

Επιχειρησιακές Επικοινωνίες ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακές Επικοινωνίες Ενότητα # 4: Ακροατήρια-Κοινά-Στόχοι Πρόδρομος Γιαννάς Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες

Διαβάστε περισσότερα

Ηλεκτρονικό Εμπόριο. Ενότητα 8: Διαδικτυακή Διαφήμιση Σαπρίκης Ευάγγελος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

Ηλεκτρονικό Εμπόριο. Ενότητα 8: Διαδικτυακή Διαφήμιση Σαπρίκης Ευάγγελος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Ηλεκτρονικό Εμπόριο Ενότητα 8: Διαδικτυακή Διαφήμιση Σαπρίκης Ευάγγελος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Ενότητα 3 (μέρος 1 ο )

Ενότητα 3 (μέρος 1 ο ) Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού Ενότητα 3 (μέρος 1 ο ) Σιέττος Κωνσταντίνος Άδεια Χρήσης Το παρόν

Διαβάστε περισσότερα

Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem)

Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem) Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem) Τι είναι το Πρόβλημα της Πινακοθήκης; Σας ανήκει μια πινακοθήκη και επιθυμείτε να τοποθετήσετε κάμερες ασφαλείας έτσι ώστε όλη η γκαλερί να είναι προστατευμένη

Διαβάστε περισσότερα

Διοίκηση Επιχειρήσεων. Ενότητα 2: Προσεγγίσεις της Διοίκησης Επιχειρήσεων από τις διάφορες Σχολές Πουλιόπουλος Λεωνίδας Τμήμα Διεθνούς Εμπορίου

Διοίκηση Επιχειρήσεων. Ενότητα 2: Προσεγγίσεις της Διοίκησης Επιχειρήσεων από τις διάφορες Σχολές Πουλιόπουλος Λεωνίδας Τμήμα Διεθνούς Εμπορίου Διοίκηση Επιχειρήσεων Ενότητα 2: Προσεγγίσεις της Διοίκησης Επιχειρήσεων από τις διάφορες Σχολές Πουλιόπουλος Λεωνίδας Τμήμα Διεθνούς Εμπορίου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Δορυφορική βαθυμετρία

Δορυφορική βαθυμετρία Πανεπιστήμιο Αιγαίου Δορυφορική βαθυμετρία Διάλεξη 12 Γεωπληροφορική και εφαρμογές στο παράκτιο και θαλάσσιο περιβάλλον Γεωπληροφορική και εφαρμογές στο παράκτιο και θαλάσσιο περιβάλλον ΔΙΑΛΕΞΗ 12 Δορυφορική

Διαβάστε περισσότερα

Επιδημιολογία καρκίνου του πνεύμονα Ενότητα 1: Ογκολογία Πνεύμονα. Κυριάκος Καρκούλιας, Επίκουρος Καθηγητής Σχολή Επιστημών Υγείας Τμήμα Ιατρικής

Επιδημιολογία καρκίνου του πνεύμονα Ενότητα 1: Ογκολογία Πνεύμονα. Κυριάκος Καρκούλιας, Επίκουρος Καθηγητής Σχολή Επιστημών Υγείας Τμήμα Ιατρικής Επιδημιολογία καρκίνου του πνεύμονα Ενότητα 1: Ογκολογία Πνεύμονα Κυριάκος Καρκούλιας, Επίκουρος Καθηγητής Σχολή Επιστημών Υγείας Τμήμα Ιατρικής Επιδημιολογικά στοιχεία καρκίνου του πνεύμονα Ο καρκίνος

Διαβάστε περισσότερα

Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα

Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αντιμετώπιση NP- υσκολίας Αν P NP, όχι αλγόριθμος

Διαβάστε περισσότερα

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Ενότητα 8: Εισαγωγή στα Δίκτυα Δρ. Φραγκούλης Γεώργιος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 3 : Αποκατάσταση εικόνας (Image Restoration) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Βιοϊατρική τεχνολογία

Βιοϊατρική τεχνολογία Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Βιοϊατρική τεχνολογία Ενότητα 5: Οξύμετρο (OxyPro Project) Αν. καθηγητής Αγγελίδης Παντελής e-mail: paggelidis@uowm.gr ΕΕΔΙΠ Μπέλλου Σοφία e-mail: sbellou@uowm.gr

Διαβάστε περισσότερα

Ηλεκτροτεχνικές Εφαρμογές

Ηλεκτροτεχνικές Εφαρμογές ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ηλεκτροτεχνικές Εφαρμογές Ενότητα 1: Εξαρτήματα Ηλεκτρικών Συσκευών Γεώργιος Χ. Ιωαννίδης Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

Χριστιανική Γραμματεία Ι

Χριστιανική Γραμματεία Ι Χριστιανική Γραμματεία Ι Ενότητα 1-A3-4: Εκκλησιαστικές διατάξεις και ποίηση Αναστάσιος Γ. Μαράς, Δρ Θ. Πρόγραμμα Ιερατικών Σπουδών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Ηγεσία. Ενότητα 5: Τα συστατικά στοιχεία του ηγέτη. Δρ. Καταραχιά Ανδρονίκη Τμήμα Λογιστικής και Χρηματοοικονομικής

Ηγεσία. Ενότητα 5: Τα συστατικά στοιχεία του ηγέτη. Δρ. Καταραχιά Ανδρονίκη Τμήμα Λογιστικής και Χρηματοοικονομικής Ηγεσία Ενότητα 5: Τα συστατικά στοιχεία του ηγέτη Δρ. Καταραχιά Ανδρονίκη Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ

ΘΕΜΑ 1 ο ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 1 ο ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 27 MAΪΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ

Διαβάστε περισσότερα

Χρονικά Γραφήματα Π Π Δ Ε. Συγγραφέας: Ελένη Ακρίδα. Επιβλέπων: Παύλος Σπυράκης, Κ

Χρονικά Γραφήματα Π Π Δ Ε. Συγγραφέας: Ελένη Ακρίδα. Επιβλέπων: Παύλος Σπυράκης, Κ . Π Π Δ Ε Χρονικά Γραφήματα Συγγραφέας: Ελένη Ακρίδα Επιβλέπων: Παύλος Σπυράκης, Κ Υποβάλλεται προς εκπλήρωση των απαιτήσεων για το Μεταπτυχιακό Δίπλωμα Ειδίκευσης στο Τμήμα Μαθηματικών 4 Ιουνίου 2013

Διαβάστε περισσότερα

Μάρκετινγκ Χρηματοοικονομικών Υπηρεσιών

Μάρκετινγκ Χρηματοοικονομικών Υπηρεσιών Μάρκετινγκ Χρηματοοικονομικών Υπηρεσιών Ενότητα 11: Τα επιπλέον στοιχεία του μίγματος μάρκετινγκ υπηρεσιών Δρ. Καταραχιά Ανδρονίκη Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Παράδειγμα. Στις χρονοσειρές σημαντικό ρόλο παίζει η αυτοσυσχέτιση: η αυτοσυσχέτιση. (lag k) ισούται με όπου γ

Παράδειγμα. Στις χρονοσειρές σημαντικό ρόλο παίζει η αυτοσυσχέτιση: η αυτοσυσχέτιση. (lag k) ισούται με όπου γ MCMC Η Monte Carlo μεθοδολογία για την δημιουργία αριθμητικών προσεγγίσεων διαφόρων τιμών της εκ των υστέρων κατανομής, όπως του μέσου και της τυπικής απόκλισης, στηρίζεται στους Ασθενείς Νόμους των Μεγάλων

Διαβάστε περισσότερα

Εσωτερικές Ηλεκτρικές Εγκαταστάσεις Ι

Εσωτερικές Ηλεκτρικές Εγκαταστάσεις Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εσωτερικές Ηλεκτρικές Εγκαταστάσεις Ι Ενότητα 1: Εισαγωγή Βασικές Έννοιες για τις Ε.Η.Ε. Σταύρος Καμινάρης Τμήμα Ηλεκτρολόγων

Διαβάστε περισσότερα

Μάρκετινγκ Επιχειρήσεων Λιανικής Πώλησης

Μάρκετινγκ Επιχειρήσεων Λιανικής Πώλησης Μάρκετινγκ Επιχειρήσεων Λιανικής Πώλησης Ενότητα 4: Συλλογή Εμπορευμάτων Θεοδωρίδης Προκόπης Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

Αρχιτεκτονική Υπολογιστών

Αρχιτεκτονική Υπολογιστών Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Αρχιτεκτονική Υπολογιστών Ενότητα 13: (Μέρος Α ) Ενσωματωμένα Συστήματα Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής

Διαβάστε περισσότερα

Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου

Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Νο 11 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων και

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Μακροοικονομική. Ενότητα :Δημοσιονομική πολιτική. Καραμάνης Κωνσταντίνος

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Μακροοικονομική. Ενότητα :Δημοσιονομική πολιτική. Καραμάνης Κωνσταντίνος Μακροοικονομική Χρηματοοικονομική των,δημοσιονομική Επιχειρήσεων, πολιτική, Ενότητα : Βέλτιστη ΤΜΗΜΑ Κεφαλαιακή ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Δομή, ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΉΣ ΚΑΙ ΛΟΓΙΣΤΙΚΗΣ, ΤΕΙ ΚΑΙ ΗΠΕΙΡΟΥ- ΛΟΓΙΣΤΙΚΗΣ,

Διαβάστε περισσότερα

Διοικητική των επιχειρήσεων

Διοικητική των επιχειρήσεων Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Διοικητική των επιχειρήσεων Ενότητα 13 :Ιστορία της Διοικητικής Σκέψης Καραμάνης Κωνσταντίνος 1 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Λογιστικής

Διαβάστε περισσότερα

Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών

Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Υλοποίηση ΑΤΔ με Συνδεδεμένες Λίστες -

Διαβάστε περισσότερα

Οργάνωση και Διοίκηση Επιχειρήσεων

Οργάνωση και Διοίκηση Επιχειρήσεων Οργάνωση και Διοίκηση Επιχειρήσεων 3 ο εξάμηνο Χημικών Μηχανικών ΕΙΣΑΓΩΓΗ Γιάννης Καλογήρου, Καθηγητής ΕΜΠ y.caloghirou@ntua.gr Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΑΣΦΑΛΕΙΑ ΥΓΙΕΙΝΗ - ΔΙΚΑΙΟ Τομέας Μεταλλευτικής Τμήμα Μηχανικών Μεταλλείων Μεταλλουργών

ΑΣΦΑΛΕΙΑ ΥΓΙΕΙΝΗ - ΔΙΚΑΙΟ Τομέας Μεταλλευτικής Τμήμα Μηχανικών Μεταλλείων Μεταλλουργών ΑΣΦΑΛΕΙΑ ΥΓΙΕΙΝΗ - ΔΙΚΑΙΟ Τομέας Μεταλλευτικής Τμήμα Μηχανικών Μεταλλείων Μεταλλουργών ΕΝΟΤΗΤΑ 6. ΕΚΤΙΜΗΣΗ ΕΠΑΓΓΕΛΜΑΤΙΚΟΥ ΚΙΝΔΥΝΟΥ Ιωάννης Πασπαλιάρης, Καθηγητής, Τομέας Μεταλλουργίας Γεώργιος Ν. Παναγιώτου,

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 8η Δια λεξη

Θεωρι α Γραφημα των 8η Δια λεξη Θεωρι α Γραφημα των 8η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 8η Δια λεξη Φεβρουα ριος 2015 168 / 182 Χρωματισμοι Γραφημα των Χρωματισμο ς Κορυφω

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 (Α) Σημειώστε δίπλα σε κάθε πρόταση «Σ» ή «Λ» εφόσον είναι σωστή ή λανθασμένη αντίστοιχα. 1. Τα συντακτικά λάθη ενός προγράμματος

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 9 ΕΝΩΣΗ ΞΕΝΩΝ ΣΥΝΟΛΩΝ ( ΟΜΕΣ UNION-FIND)

ΕΝΟΤΗΤΑ 9 ΕΝΩΣΗ ΞΕΝΩΝ ΣΥΝΟΛΩΝ ( ΟΜΕΣ UNION-FIND) ΕΝΟΤΗΤΑ 9 ΕΝΩΣΗ ΞΕΝΩΝ ΣΥΝΟΛΩΝ ( ΟΜΕΣ UNION-FIND) Ένωση Ξένων Συνόλων (Disjoint Sets with Union) S 1,, S k : ξένα υποσύνολα ενός συνόλου U δηλ., S i S j =, αν i j, και S 1 S k = U. Λειτουργίες που θέλουµε

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Δέντρα Αναζήτησης Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Αναζήτηση Θέλουμε να διατηρήσουμε αντικείμενα με κλειδιά και να μπορούμε εκτός από

Διαβάστε περισσότερα

Η Τουρκία στον 20 ο αιώνα

Η Τουρκία στον 20 ο αιώνα Η Τουρκία στον 20 ο αιώνα Ενότητα 5: Δημήτριος Σταματόπουλος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Έκδοση: 1.0. με το. Ασημίνα

Έκδοση: 1.0. με το. Ασημίνα Έκδοση: 1.0 Σύντομες οδηγίες για τη δημιουργία προσβάσιμων εγγράφων με το MS-Word 20100 Ασημίνα Σπανίδου και Γεώργιος Κουρουπέτρογλου aspanidou@di.uoa.gr koupe@di.uoa.gr Έργο «Κεντρικό Μητρώο Ελληνικών

Διαβάστε περισσότερα

Δορυφορική Γεωδαισία (GPS)

Δορυφορική Γεωδαισία (GPS) Τίτλος Μαθήματος ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ Πολιτικών Μηχανικών ΤΕ και Μηχανικών Τοπογραφίας & Γεωπληροφορικής ΤΕ Δορυφορική Γεωδαισία (GPS)

Διαβάστε περισσότερα

Άσκηση στις αναπτυξιακές ηλικίες

Άσκηση στις αναπτυξιακές ηλικίες ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Άσκηση στις αναπτυξιακές ηλικίες Ενότητα 6: Σχεδιασμός, εφαρμογή και καθοδήγηση προπόνησης ταχύτητας Γεροδήμος Βασίλειος, Καρατράντου Κωνσταντίνα Τμήμα Επιστήμης Φυσικής Αγωγής και

Διαβάστε περισσότερα

ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ. 2 η θεματική ενότητα: Χημικοί δεσμοί και μοριακές ιδιότητες

ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ. 2 η θεματική ενότητα: Χημικοί δεσμοί και μοριακές ιδιότητες ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ 2 η θεματική ενότητα: Χημικοί δεσμοί και μοριακές ιδιότητες Σχολή: Περιβάλλοντος Τμήμα: Επιστήμης Τροφίμων και Διατροφής Εκπαιδευτής: Χαράλαμπος Καραντώνης Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Γραφικά Υπολογιστών: Μέθοδοι Ανίχνευσης Επιφανειών (Surface Detection Methods)

Γραφικά Υπολογιστών: Μέθοδοι Ανίχνευσης Επιφανειών (Surface Detection Methods) 1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Μέθοδοι Ανίχνευσης Επιφανειών (Surface Detection Methods) Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Περιεχόμενα

Διαβάστε περισσότερα

Ενότητα 1 Διάλεξη 1. Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού. Σιέττος Κωνσταντίνος

Ενότητα 1 Διάλεξη 1. Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού. Σιέττος Κωνσταντίνος Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού Ενότητα 1 Διάλεξη 1 Σιέττος Κωνσταντίνος Άδεια Χρήσης Το παρόν

Διαβάστε περισσότερα