ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου,

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου,"

Transcript

1 Γράφοι Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Γράφοι - ορισµοί και υλοποίηση Τοπολογική Ταξινόµηση ιάσχιση Γράφων ΕΠΛ 23 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 26 -

2 Γράφοι Ηπιο γενική µορφή δοµής δεδοµένων, µε την έννοια ότι όλες οι προηγούµενες δοµές µπορούν να θεωρηθούν ως περιπτώσεις γράφων. Ένα γράφος αποτελείται από ένα σύνολο V κορυφών (vertices), ή σηµείων, ή κόµβων, και ένα σύνολο Ε ακµών (edges), ή τόξων, ή γραµµών. Μια ακµή είναι ένα ζεύγος (u,v) από κορυφές. Παράδειγµα γράφου: ΕΠΛ 23 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 26-2

3 Γράφοι Οι γράφοι προσφέρουν µια χρήσιµη µέθοδο για τη διατύπωση και λύση πολλών προβληµάτων, σε δίκτυα και συστήµατα τηλεπικοινωνιών (π.χ. το Internet), χάρτες - επιλογή δροµολογίων, προγραµµατισµό εργασιών (scheduling), ανάλυση προγραµµάτων (flow charts). Η θεωρία των γράφων θεωρείται ότι ξεκίνησε από τον Euler στις αρχές του 8ου αιώνα (736). ΕΠΛ 23 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 26-3

4 Ορισµοί Ένας γράφος ονοµάζεται κατευθυνόµενος (directed graph, digraph) αν κάθε µια από τις ακµές του είναι προσανατολισµένη προς µία κατεύθυνση. Ένας γράφος ονοµάζεται µη-κατευθυνόµενος (undirected) αν οι ακµές του δεν είναι προσανατολισµένες. Αν (u,v) είναι ακµή τότε λέµε ότι οι κορυφές u και v είναι γειτονικές (adjacent) ή ότι γειτνιάζουν. Μονοπάτι ή διαδροµή (path) ενός γράφου µήκους n, είναι µια ακολουθία κόµβων v, v,, v n, όπου για κάθε i, i < n, (v i, v i+ ) είναι ακµή του γράφου. Μήκος ενός µονοπατιού είναι ο αριθµός ακµών που περιέχει. Μια διαδροµή ενός γράφου ονοµάζεται απλή (simple) αν όλες οι κορυφές της είναι διαφορετικές µεταξύ τους, εκτός από την πρώτη και την τελευταία οι οποίες µπορούν να είναι οι ίδιες. Κύκλος (cycle) ονοµάζεται µια διαδροµή µε µήκος > που ικανοποιεί v = v n. ΕΠΛ 23 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 26-4

5 Ορισµοί Ένας γράφος που δεν περιέχει κύκλους ονοµάζεται άκυκλος (acyclic) Έστω G=(V,E) και G = (V, E ) γράφοι, όπου V V και E E. Tότε ο γράφος G είναι υπογράφος (subgraph) του γράφου G. Η απόσταση δύο κορυφών είναι το µήκος της συντοµότερης διαδροµής που οδηγεί από τη µια κορυφή στην άλλη. Ένας µη κατευθυνόµενος γράφος λέγεται συνεκτικός (connected) αν για κάθε ζευγάρι κορυφών υπάρχει διαδροµή που τις συνδέει. Ένας κατευθυνόµενος γράφος που ικανοποιεί την ίδια ιδιότητα ονοµάζεται ισχυρά συνεκτικός (strongly connected). Αν ο µηκατευθυνόµενος γράφος στον οποίο αντιστοιχεί είναι συνεκτικός, τότε ο γράφος ονοµάζεται ελαφρά συνεκτικός (weakly connected). ΕΠΛ 23 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 26-5

6 Ορισµοί Πόσες ακµές µπορεί να έχει ένας γράφος µε n κορυφές; Ένας γράφος λέγεται αραιός (sparse) αν ο αριθµός των ακµών του είναι της τάξης Ο(n), όπου n είναι ο αριθµός κορυφών του, διαφορετικά λέγεται πυκνός (dense). Συχνά συσχετίζουµε κάθε ακµή ενός γράφου µε κάποιο βάρος (weight). Τότε ο γράφος ονοµάζεται γράφος µε βάρη (weighted graph). Ποιες ιδιότητες ικανοποιούν οι πιο κάτω γράφοι; ΕΠΛ 23 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 26-6

7 Αναπαράσταση γράφων Αναπαράσταση γράφων µε πίνακες γειτνίασης (adjacency matrix) Ένας γράφος G=(V,E) µε n κορυφές µπορεί να αναπαρασταθεί ως ένας n n πίνακας που περιέχει τις τιµές και, και όπου αν η (i,j) είναι ακµή τότε A[(i,j)]=, διαφορετικά A[(i,j)]=. Αν ο γράφος είναι γράφος µε βάρη, και το βάρος κάθε ακµής είναι τύπου t, τότε για την αναπαράσταση του γράφου µπορεί να χρησιµοποιηθεί πίνακας τύπου t µε Α[(i,j)] = βάρος(i,j), αν υπάρχει ακµή (i,j) A[(i,j)] =, αν δεν υπάρχει ακµή (i,j) Αυτή η αναπαράσταση απαιτεί χώρο Ο(n 2 ), όπου n= V. Αν ο γράφος είναι αραιός η µέθοδος οδηγεί σε σπάταλη χώρου. ΕΠΛ 23 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 26-7

8 Αναπαράσταση γράφων Αναπαράσταση γράφων µε λίστες γειτνίασης (adjacency lists) Ένας γράφος G=(V,E) αναπαρίσταται ως ένας µονοδιάστατος πίνακας Α. Για κάθε κορυφή ω, Α[ω] είναι ένας δείκτης σε µια συνδεδεµένη λίστα στην οποία αποθηκεύονται οι κορυφές που γειτνιάζουν µε την ω. Η µέθοδος απαιτεί χώρο Ο( V + Ε ). Επιτυγχάνεται εξοικονόµηση χώρου για αραιούς γράφους. Στην περίπτωση γράφων µε βάρη στη λίστα γειτνίασης αποθηκεύουµε επίσης το βάρος κάθε ακµής. ΕΠΛ 23 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 26-8

9 οµές Υλοποίησης Πίνακας Γειτνίασης struct graph{ int int } matrix[max][max]; size; Λίστα Γειτνίασης struct node{ struct graph2{ int vertex; struct node *head[max]; struct node *next ; int size; } } ΕΠΛ 23 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 26-9

10 Αναπαράσταση γράφων Γράφος Λίστα Γειτνίασης Πίνακας Γειτνίασης ΕΠΛ 23 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 26 -

11 ιάσχιση Γράφων Αν θέλουµε να επισκεφτούµε όλους τους κόµβους ενός γράφου µπορούµε να χρησιµοποιήσουµε έναν από πολλούς τρόπους, οι οποίοι διαφέρουν στη σειρά µε την οποία εξετάζουν τους κόµβους. ιαδικασίες διάσχισης χρησιµοποιούνται για τη διακρίβωση ύπαρξης µονοπατιού µεταξύ δύο κόµβων κ.α. Έχουν πολλές εφαρµογές. Depth-First Search Γενίκευση της προθεµατικής διάσχισης δένδρων: Ξεκινώντας από ένα κόµβο v, επισκεπτόµαστε πρώτα τον v και ύστερα καλούµε αναδροµικά τη διαδικασία στο καθένα από τα παιδιά του. Πως επηρεάζει η ύπαρξη κύκλων την πιο πάνω ιδέα; Θα διατηρήσουµε ένα πίνακα Visited ο οποίος θα κρατά πληροφορίες ως προς το ποιους κόµβους έχουµε επισκεφθεί ανά πάσα στιγµή. ΕΠΛ 23 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 26 -

12 ιαδικασία Προθεµατικής ιάσχισης DepthFirstSearch(graph G,vertex v){ for each vertex w in G visited[w] = False; DFS(v); } DFS(vertex v){ visited[v] = True; for each w adjacent to v if (visited[w]==false) DFS(w) } ΕΠΛ 23 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 26-2

13 Εξειδίκευση DFS για πίνακες γειτνίασης DepthFirstSearch(struct graph *G, int v){ for (w=; w <= G->size; w++) visited[w] = ; DFS(G, visited, v); } DFS(struct graph *G, int *visited[max], int v){ visited[v] = ; for (w=; w <= G->size; w++) if (G->matrix[v,w] == && visited[w]==) DFS(G, visited, w) } Χρόνος Εκτέλεσης: O( V 2 ) ΕΠΛ 23 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 26-3

14 Εξειδίκευση DFS για λίστες γειτνίασης DepthFirstSearch(struct graph2 *G, int v){ for (w=; w <= G->size; w++) visited[w] = ; DFS(G, visited, v); } DFS(struct graph2 *G, int *visited[max], int v){ visited[v] = ; for (p = G->head[v]; p!= NULL; p = p->next) w = p->vertex; if (Visited[w]==) DFS(G, visited, w) } Χρόνος Εκτέλεσης: O( V + E ) ΕΠΛ 23 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 26-4

15 Προθεµατική ιάσχιση Αν ο γράφος δεν είναι συνεκτικός αυτή η στρατηγική πιθανό να αγνοήσει µερικούς κόµβους. Αν ο στόχος µας είναι να επισκεφθούµε όλους τους κόµβους τότε µετά το τέλος της εκτέλεσης του DFS(v) θα πρέπει να ελέγξουµε τον πίνακα Visited να βρούµε τους κόµβους που δεν έχουµε επισκεφθεί και να καλέσουµε σε αυτούς τη διαδικασία DFS: DepthFirstSearch(graph G,vertex v){ for each vertex w in G Visited[w] = False; DFS(v); for each vertex w in G if (Visited[w]== False) DFS(w); } ΕΠΛ 23 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 26-5

16 ΕΠΛ 23 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 26-6 Παράδειγµα Depth-First-Search DepthFirstSearch(G, A) A B Γ Ζ Ε A B Γ Ζ Ε Α Β Γ Ε Ζ Α Β Γ Ε Ζ

17 ΕΠΛ 23 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 26-7 Παράδειγµα Depth-First-Search 2 DepthFirstSearch(G, A) 2 A B Ε Γ A B Ε Γ Ζ Ζ Α Β Γ Ε Ζ Α Β Γ Ε Ζ

18 Μερικά Σχόλια Ηδιαδικασία καλείται σε κάθε κόµβο το πολύ µια φορά. Χρόνος Εκτέλεσης: Ο( V + E ), δηλαδή γραµµικός ως προς τον αριθµό των ακµών και κορυφών. Αρίθµηση DFS των κορυφών ενός γράφου ονοµάζεται η σειρά µε την οποία επισκέπτεται η διαδικασία DepthFirstSearch τις κορυφές του γράφου. Η διαδικασία µπορεί να κληθεί και για µη-κατευθυνόµενους και για κατευθυνόµενους γράφους. Αντί µε αναδροµή η διαδικασία µπορεί να υλοποιηθεί, ως συνήθως, µε τη χρήση στοιβών. ΕΠΛ 23 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 26-8

19 Breadth-First Search Ξεκινώντας από ένα κόµβο v, επισκεπτόµαστε πρώτα το v, ύστερα τους κόµβους που γειτνιάζουν µετονv, ύστερα τους κόµβους που βρίσκονται σε απόσταση 2 από τον v, και ούτω καθεξής. Ε B A Α Β Γ Ε Θ Ζ Ζ Γ Θ Output: Α Β Γ Ε Θ Ζ ΕΠΛ 23 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 26-9

20 ιαδικασία Breadth-First Search BFSearch(graph G, vertex v){ Q=MakeEmptyQueue(); for each w in G Visited[w]=False; Visited[v]= True; Enqueue(v,Q); Χρόνος Εκτέλεσης: while (!IsEmpty(Q)){ w = Dequeue(Q); Visit(w); for each u adjacent to w if (Visited[u]=False) Visited[u]=True; Enqueue(u,Q); } ΕΠΛ 23 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 26-2

21 Τοπολογική Ταξινόµηση (Topological Sort) ίνεται ένα σύνολο εργασιών και θέλουµε να ορίσουµε τη σειρά µε την οποία πρέπει να εκτελέσει τις εργασίες ένας επεξεργαστής, δεδοµένης της ύπαρξης περιορισµών ως προς την προτεραιότητά τους. Κάθε εργασία έχει ένα σύνολο προαπαιτούµενων εργασιών, δηλαδή δεν µπορεί να εκτελεσθεί προτού συµπληρωθεί κάθε µια από τις προαπαιτούµενες. Μπορούµε να παραστήσουµε το πρόβληµα ως έναν κατευθυνόµενο γράφο: Οι κορυφές του γράφου αντιστοιχούν σε κάθε µια από τις εργασίες, και η ύπαρξη ακµής από την κορυφή Α στην κορυφή Β δηλώνει ότι η εργασία Α πρέπει να εκτελεστεί πριν από τη Β. Τοπολογική ταξινόµηση του γράφου είναι µια σειρά των κορυφών του,v,, v n,, ώστε αν (v i, v j ) είναι ακµή του γράφου τότε i<j. ΕΠΛ 23 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 26-2

22 Παράδειγµα V Τοπολογικές Ταξινοµήσεις του γράφου: V2 V3 V, V2, V4, V3, V5, V6, V7 V, V2, V3, V5, V6, V7, V4 V4 V5 V, V3, V2, V5, V6, V4, V7 V6 V7 ΕΠΛ 23 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 26-22

23 Αλγόριθµος για Τοπολογική Ταξινόµηση Ο βαθµός εισόδου (in-degree) ενός κόµβου είναι ο αριθµός των ακµών που καταλήγουν στον κόµβο. (Στο πρόβληµα µας, ο αριθµός των προαπαιτούµενων εργασιών) Για κάθε κορυφή u έστω I[u] ο βαθµός εισόδου της u. Επαναλαµβάνουµε τα εξής βήµατα:. διαλέγουµε κορυφή Α µε Ι[Α]=, 2. τυπώνουµε την Α, 3. για όλες τις κορυφές Β, µε (Α,Β) µειώνουµε την τιµή Ι[Β] κατά. Πως µπορούµε να διακρίνουµε την ύπαρξη κύκλων; ΕΠΛ 23 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 26-23

24 topsort( graph G ){ int I[ V ]; Προσπάθεια for each vertex u I[u]=; for each vertex u for each edge (u,v) I[v]++; Χρόνος Εκτέλεσης: for (i=; i <= V ; i++){ v = FindVertexOfIndegree; if (v == Not_a_Vertex) Error( Graph has a cycle ); return; output v; for each edge (v,w) I[w]--; }} ΕΠΛ 23 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 26-24

25 Προσπάθεια 2 (µε χρήση βοηθητικής δοµής) topologicalsort( graph G ){ queue Q; int I[ V ]; for each vertex u I[u]=; Χρόνος Εκτέλεσης: for each vertex u for each edge (u,v) I[v]++; for each vertex u if (I[u]==) Enqueue(u, Q); while (! IsEmpty(Q)){ u = Dequeue(Q); output u; for each (u,v) I[v]--; if (I[v]==) Enqueue (v, Q); }} ΕΠΛ 23 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 26-25

Ενότητα 10 Γράφοι (ή Γραφήµατα)

Ενότητα 10 Γράφοι (ή Γραφήµατα) Ενότητα 10 Γράφοι (ή γραφήµατα) ΗΥ240 - Παναγιώτα Φατούρου 1 Γράφοι (ή Γραφήµατα) Ένας γράφος αποτελείται από ένα σύνολο από σηµεία (που λέγονται κόµβοι) και ένα σύνολο από γραµµές (που λέγονται ακµές)

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 10β: Αλγόριθμοι Γραφημάτων-Γραφήματα- Αναπαράσταση Γραφημάτων- Διερεύνηση Πρώτα σε Πλάτος (BFS) Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το

Διαβάστε περισσότερα

Κεφάλαιο 3. Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 3. Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 3 Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισµοί και Εφαρµογές γραφήµατα γράφηµα G: ένας τρόπος κωδικοποίησης των σχέσεων

Διαβάστε περισσότερα

Θεωρία Γράφων - Εισαγωγή

Θεωρία Γράφων - Εισαγωγή Θεωρία Γράφων - Εισαγωγή Τοπολογιές απειονίσεις Τοπολογία Κλάδος των μαθηματιών που μελετά ανάμεσα σε άλλα τις ιδιότητες εείνες των γεωμετριών σχημάτων οι οποίες παραμένουν αναλλοίωτες ατά τις τοπολογιές

Διαβάστε περισσότερα

Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25)

Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25) Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25) Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ο αλγόριθµος των BellmanFord Ο αλγόριθµος του Dijkstra ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 61

Διαβάστε περισσότερα

Αναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Αναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Αναζήτηση Κατά Βάθος ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναζήτηση Κατά Βάθος (DFS) Εξερεύνηση

Διαβάστε περισσότερα

Στοίβες με Δυναμική Δέσμευση Μνήμης

Στοίβες με Δυναμική Δέσμευση Μνήμης ΕΠΛ 231 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ 10/02/10 Παύλος Αντωνίου Στοίβες με Δυναμική Δέσμευση Μνήμης Στοίβα: Στοίβα είναι μια λίστα που έχει ένα επιπλέον περιορισμό. Ο περιορισμός είναι ότι οι εισαγωγές

Διαβάστε περισσότερα

Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών

Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Υλοποίηση ΑΤΔ με Συνδεδεμένες Λίστες -

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 2: Γραφήματα Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης

Διαβάστε περισσότερα

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Πρόβλημα 1 Το πρώτο πρόβλημα λύνεται με τη μέθοδο του Δυναμικού Προγραμματισμού. Για να το λύσουμε με Δυναμικό Προγραμματισμό

Διαβάστε περισσότερα

Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα:

Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: υναµικός Προγραµµατισµός Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Σχεδιασµός αλγορίθµων µε υναµικό Προγραµµατισµό Το πρόβληµα του πολλαπλασιασµού πινάκων ΕΠΛ 3 Αλγόριθµοι και Πολυπλοκότητα 3- υναµικός

Διαβάστε περισσότερα

Κεφάλαιο 14. οµές Ευρετηρίων για Αρχεία. ιαφάνεια 14-1

Κεφάλαιο 14. οµές Ευρετηρίων για Αρχεία. ιαφάνεια 14-1 ιαφάνεια 14-1 Κεφάλαιο 14 οµές Ευρετηρίων για Αρχεία Copyright 2007 Ramez Elmasri and Shamkant B. NavatheΕλληνικήΈκδοση, ιαβλος, Επιµέλεια Μ.Χατζόπουλος 1 Θα µιλήσουµε για Τύποι Ταξινοµηµένων Ευρετηρίων

Διαβάστε περισσότερα

Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026

Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026 Δρομολόγηση Και Πολύχρωματισμός Μονοπατιών Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026 Εισαγωγή. Το πρόβλημα με το οποίο θα ασχοληθούμε εδώ είναι γνωστό σαν: Δρομολόγηση και Πολύ-χρωματισμός Διαδρομών (Routing

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές

Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ευθύγραμμες Απλά Συνδεδεμένες Λίστες (εισαγωγή, εύρεση, διαγραφή) Ευθύγραμμες Διπλά Συνδεδεμένες Λίστες

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 18 Dijkstra s Shortest Path Algorithm 1 / 12 Ο αλγόριθμος εύρεσης της συντομότερης διαδρομής του Dijkstra

Διαβάστε περισσότερα

Διάλεξη 15: Αναδρομή (Recursion) Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 15: Αναδρομή (Recursion) Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 15: Αναδρομή (Recursion) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Η έννοια της αναδρομής Μη αναδρομικός / Αναδρομικός Ορισμός Συναρτήσεων Παραδείγματα Ανάδρομης Αφαίρεση της Αναδρομής

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Οργάνωση εδομένων Κεφάλαιο 11ο ομές εδομένων

Εισαγωγή στην επιστήμη των υπολογιστών. Οργάνωση εδομένων Κεφάλαιο 11ο ομές εδομένων Εισαγωγή στην επιστήμη των υπολογιστών Οργάνωση εδομένων Κεφάλαιο 11ο ομές εδομένων 1 ομή εδομένων Μια δομή δεδομένων (data structure) χρησιμοποιεί μια συλλογή από σχετικές μεταξύ τους μεταβλητές, οι οποίες

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι;

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; ΘΕΜΑΤΑ ΔΕΝΔΡΩΝ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΠΛΗ0 ΑΣΚΗΣΗ Για τις ερωτήσεις - θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; Β Ε Α 6 Δ 5 9 8 0 Γ 7 Ζ Η. Σ/Λ Δυο από τα συνδετικά

Διαβάστε περισσότερα

Διάλεξη 10: Δομές Δεδομένων Ι (Στοίβες & Ουρές)

Διάλεξη 10: Δομές Δεδομένων Ι (Στοίβες & Ουρές) Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου ΕΠΛ132 Αρχές Προγραμματισμού II Διάλεξη 10: Δομές Δεδομένων Ι (Στοίβες & Ουρές) Δημήτρης Ζεϊναλιπούρ http://www.cs.ucy.ac.cy/courses/epl132 10-1 Περιεχόμενο Διάλεξης

Διαβάστε περισσότερα

ιαδίκτυα & Ενδοδίκτυα Η/Υ

ιαδίκτυα & Ενδοδίκτυα Η/Υ ιαδίκτυα & Ενδοδίκτυα Η/Υ ΙΑ ΙΚΤΥΑΚΗ ΛΕΙΤΟΥΡΓΙΑ (Kεφ. 16) ΠΡΩΤΟΚΟΛΛΑ ΡΟΜΟΛΟΓΗΣΗΣ Αυτόνοµα Συστήµατα Πρωτόκολλο Συνοριακών Πυλών OSPF ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΟΛΟΚΛΗΡΩΜΕΝΩΝ ΥΠΗΡΕΣΙΩΝ (ISA) Κίνηση ιαδικτύου Προσέγγιση

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #2: Πολυωνυμικοί Αλγόριθμοι, Εισαγωγή στα Γραφήματα, Αναζήτηση κατά Βάθος, Τοπολογική Ταξινόμηση

Διαβάστε περισσότερα

Κεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 3 Αλγόριθµοι Τυφλής Αναζήτησης Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Τυφλής Αναζήτησης Οι αλγόριθµοι τυφλής αναζήτησης (blind

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Πρόβληµα, Στιγµιότυπο, Αλγόριθµος Εργαλεία εκτίµησης πολυπλοκότητας: οι τάξεις Ο(n), Ω(n), Θ(n) Ανάλυση Πολυπλοκότητας Αλγορίθµων

Διαβάστε περισσότερα

υαδικό έντρο Αναζήτησης (BSTree)

υαδικό έντρο Αναζήτησης (BSTree) Εργαστήριο 6 υαδικό έντρο Αναζήτησης (BSTree) Εισαγωγή Οι περισσότερες δοµές δεδοµένων, που εξετάσαµε µέχρι τώρα (λίστες, στοίβες, ουρές) ήταν γραµ- µικές (ή δοµές δεδοµένων µιας διάστασης). Στην παράγραφο

Διαβάστε περισσότερα

242 -ΕισαγωγήστουςΗ/Υ

242 -ΕισαγωγήστουςΗ/Υ 1 242 -ΕισαγωγήστουςΗ/Υ ΤµήµαΜαθηµατικών, Πανεπιστήµιο Ιωαννίνων Άρτια Α.Μ. (0-2-4-6-8) 2 ήλωση: Πίνακες στην ΕΑΓ δηλωση ( [1 : 1, 1 : 2,..., 1: ν ] ) παραταξη ; Π.χ.: δηλωση

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 9 ΕΝΩΣΗ ΞΕΝΩΝ ΣΥΝΟΛΩΝ ( ΟΜΕΣ UNION-FIND)

ΕΝΟΤΗΤΑ 9 ΕΝΩΣΗ ΞΕΝΩΝ ΣΥΝΟΛΩΝ ( ΟΜΕΣ UNION-FIND) ΕΝΟΤΗΤΑ 9 ΕΝΩΣΗ ΞΕΝΩΝ ΣΥΝΟΛΩΝ ( ΟΜΕΣ UNION-FIND) Ένωση Ξένων Συνόλων (Disjoint Sets with Union) S 1,, S k : ξένα υποσύνολα ενός συνόλου U δηλ., S i S j =, αν i j, και S 1 S k = U. Λειτουργίες που θέλουµε

Διαβάστε περισσότερα

Συλλογές, Στοίβες και Ουρές

Συλλογές, Στοίβες και Ουρές Συλλογές, Στοίβες και Ουρές Σε πολλές εφαρμογές μας αρκεί η αναπαράσταση ενός δυναμικού συνόλου με μια δομή δεδομένων η οποία δεν υποστηρίζει την αναζήτηση οποιουδήποτε στοιχείου. Συλλογή (bag) : Επιστρέφει

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 2η

ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 2η ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ0 Ε ρ γ α σ ί α η Ε ρ ω τ ή µ α τ α Ερώτηµα 1. (1) Να διατυπώστε αλγόριθµο που θα υπολογίζει το ν-οστό όρο της ακολουθίας a ν : ν = 1,,3,..., όπου a 1 = 1, a

Διαβάστε περισσότερα

Αναδρομικοί Αλγόριθμοι

Αναδρομικοί Αλγόριθμοι Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας ένα ή περισσότερα στιγμιότυπα του ίδιου προβλήματος. Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας

Διαβάστε περισσότερα

Κεφάλαιο 8.6. Πίνακες ΙI ( ιάλεξη 16) ιδάσκων: ηµήτρης Ζεϊναλιπούρ

Κεφάλαιο 8.6. Πίνακες ΙI ( ιάλεξη 16) ιδάσκων: ηµήτρης Ζεϊναλιπούρ Κεφάλαιο 8.6 Πίνακες ΙI ( ιάλεξη 16) ιδάσκων: ηµήτρης Ζεϊναλιπούρ 16-1 Πίνακες - Επανάληψη Στην προηγούµενη διάλεξη κάναµε µια εισαγωγή στην δοµή δεδοµένων Πίνακας Σε ένα πίνακα ένα σύνολο αντικειµένων

Διαβάστε περισσότερα

Ευφυείς Τεχνολογίες Πράκτορες

Ευφυείς Τεχνολογίες Πράκτορες Ευφυείς Τεχνολογίες Πράκτορες Ενότητα 2: Αναπαράσταση Γνώσης και Επίλυση Προβλημάτων Δημοσθένης Σταμάτης mos@it.tith.gr www.it.tith.gr/~mos Μαθησιακοί Στόχοι της ενότητας 2 Πως ορίζεται ένα πρόβλημα στα

Διαβάστε περισσότερα

ΕΝ ΕΙΚΤΙΚΑ ΣΧΕ ΙΑ ΛΥΣΕΩΝ - ΥΠΟ ΕΙΞΕΙΣ

ΕΝ ΕΙΚΤΙΚΑ ΣΧΕ ΙΑ ΛΥΣΕΩΝ - ΥΠΟ ΕΙΞΕΙΣ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΛΗ42 - ΕΙ ΙΚΑ ΘΕΜΑΤΑ ΤΕΧΝΟΛΟΓΙΑΣ ΛΟΓΙΣΜΙΚΟΥ 2η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΑΚΑ ΗΜΑΪΚΟΥ ΕΤΟΥΣ 2009-2010 2 oς Τόµος ΕΝ ΕΙΚΤΙΚΑ ΣΧΕ ΙΑ ΛΥΣΕΩΝ - ΥΠΟ ΕΙΞΕΙΣ ΕΡΓΑΣΙΑ 2 i. υναµική τεχνική επικύρωσης:

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 4 ΣΥΝΟΛΑ - ΛΕΞΙΚΑ

ΕΝΟΤΗΤΑ 4 ΣΥΝΟΛΑ - ΛΕΞΙΚΑ ΕΝΟΤΗΤΑ 4 ΣΥΝΟΛΑ - ΛΕΞΙΚΑ ΗΥ240 - Παναγιώτα Φατούρου Σύνολα (Sets) Τα µέλη ενός συνόλου προέρχονται από κάποιο χώρο U αντικειµένων/στοιχείων (π.χ., σύνολα αριθµών, λέξεων, ζευγών αποτελούµενων από έναν

Διαβάστε περισσότερα

Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Λεξικό, Union Find ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαχείριση ιαμερίσεων Συνόλου Στοιχεία

Διαβάστε περισσότερα

Διάλεξη 13: Δομές Δεδομένων ΙΙ (Ταξινομημένες Λίστες)

Διάλεξη 13: Δομές Δεδομένων ΙΙ (Ταξινομημένες Λίστες) Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου ΕΠΛ132 Αρχές Προγραμματισμού II Διάλεξη 13: Δομές Δεδομένων ΙΙ (Ταξινομημένες Λίστες) Δημήτρης Ζεϊναλιπούρ http://www.cs.ucy.ac.cy/courses/epl132 13-1 Περιεχόμενο

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων Βασικές Έννοιες Θεωρίας Γραφημάτων ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση

Διαβάστε περισσότερα

Κεφάλαιο 5ο: Εντολές Επανάληψης

Κεφάλαιο 5ο: Εντολές Επανάληψης Χρήστος Τσαγγάρης ΕΕ ΙΠ Τµήµατος Μαθηµατικών, Πανεπιστηµίου Αιγαίου Κεφάλαιο 5ο: Εντολές Επανάληψης Η διαδικασία της επανάληψης είναι ιδιαίτερη συχνή, αφού πλήθος προβληµάτων µπορούν να επιλυθούν µε κατάλληλες

Διαβάστε περισσότερα

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 4η Θεωρία Γραφηµάτων

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 4η Θεωρία Γραφηµάτων ικριτά Μηµτικά κι Μηµτική Λογική ΠΛΗ Ε ρ γ σ ί 4η Θεωρί Γρφηµάτων Α π ν τ ή σ ε ι ς Ε ρ ω τ η µ ά τ ω ν Ερώτηµ. ίετι το ένρο του πρκάτω σχήµτος. e d f b l i a k m p c g h n o Θεωρώντς σν ρίζ του ένρου

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Εισαγωγή. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Εισαγωγή. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Εισαγωγή Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Βιβλιογραφία Robert Sedgewick, Αλγόριθμοι σε C, Μέρη 1-4 (Θεμελιώδεις Έννοιες, Δομές Δεδομένων, Ταξινόμηση,

Διαβάστε περισσότερα

Χρονικά Γραφήματα Π Π Δ Ε. Συγγραφέας: Ελένη Ακρίδα. Επιβλέπων: Παύλος Σπυράκης, Κ

Χρονικά Γραφήματα Π Π Δ Ε. Συγγραφέας: Ελένη Ακρίδα. Επιβλέπων: Παύλος Σπυράκης, Κ . Π Π Δ Ε Χρονικά Γραφήματα Συγγραφέας: Ελένη Ακρίδα Επιβλέπων: Παύλος Σπυράκης, Κ Υποβάλλεται προς εκπλήρωση των απαιτήσεων για το Μεταπτυχιακό Δίπλωμα Ειδίκευσης στο Τμήμα Μαθηματικών 4 Ιουνίου 2013

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ. Τι είναι αλγόριθμος

ΑΛΓΟΡΙΘΜΟΙ. Τι είναι αλγόριθμος ΑΛΓΟΡΙΘΜΟΙ Στο σηµείωµα αυτό αρχικά εξηγείται η έννοια αλγόριθµος και παραθέτονται τα σπουδαιότερα κριτήρια που πρέπει να πληρεί κάθε αλγόριθµος. Στη συνέχεια, η σπουδαιότητα των αλγορίθµων συνδυάζεται

Διαβάστε περισσότερα

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος.

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος. 1. Δώστε τον ορισμό του προβλήματος. 2. Σι εννοούμε με τον όρο επίλυση ενός προβλήματος; 3. Σο πρόβλημα του 2000. 4. Σι εννοούμε με τον όρο κατανόηση προβλήματος; 5. Σι ονομάζουμε χώρο προβλήματος; 6.

Διαβάστε περισσότερα

Υλοποίηση αλγορίθμων ελέγχου ισοζύγισης προσημασμένων γράφων

Υλοποίηση αλγορίθμων ελέγχου ισοζύγισης προσημασμένων γράφων Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής Υλοποίηση αλγορίθμων ελέγχου ισοζύγισης προσημασμένων γράφων Πτυχιακή εργασία Καργάκης Μιχαήλ (ΑΜ: 2687) Εισηγητής: Ξεζωνάκης Ιωάννης ΗΡΑΚΛΕΙΟ

Διαβάστε περισσότερα

Κεφάλαιο 7. Τρισδιάστατα Μοντέλα

Κεφάλαιο 7. Τρισδιάστατα Μοντέλα Κεφάλαιο 7. 7.1 ομές εδομένων για Γραφικά Υπολογιστών. Οι δομές δεδομένων αποτελούν αντικείμενο της επιστήμης υπολογιστών. Κατά συνέπεια πρέπει να γνωρίζουμε πώς οργανώνονται τα γεωμετρικά δεδομένα, προκειμένου

Διαβάστε περισσότερα

Αλγόριθµοι Brute-Force και Διεξοδική Αναζήτηση

Αλγόριθµοι Brute-Force και Διεξοδική Αναζήτηση Αλγόριθµοι Brute-Force και Διεξοδική Αναζήτηση Περίληψη Αλγόριθµοι τύπου Brute-Force Παραδείγµατα Αναζήτησης Ταξινόµησης Πλησιέστερα σηµεία Convex hull Βελτιστοποίηση Knapsack problem Προβλήµατα Ανάθεσης

Διαβάστε περισσότερα

Διάλεξη 14: Δομές Δεδομένων ΙΙI (Λίστες και Παραδείγματα)

Διάλεξη 14: Δομές Δεδομένων ΙΙI (Λίστες και Παραδείγματα) Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου ΕΠΛ132 Αρχές Προγραμματισμού II Διάλεξη 14: Δομές Δεδομένων ΙΙI (Λίστες και Παραδείγματα) Δημήτρης Ζεϊναλιπούρ http://www.cs.ucy.ac.cy/courses/epl132 14-1 Περιεχόμενο

Διαβάστε περισσότερα

1. ΓΛΩΣΣΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ C++

1. ΓΛΩΣΣΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ C++ Email: liliadis@fmenr.duth.gr 1. ΓΛΩΣΣΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ C++ Τα προγράµµατα αποτελούνται από εντολές οι οποίες γράφονται σε έναν απλό επεξεργαστή που προσφέρει και το Περιβάλλον της Visual C++. Οι εντολές

Διαβάστε περισσότερα

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει;

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει; ΜΑΘΗΜΑ 7 Κλήση αλγορίθμου από αλγόριθμο Αναδρομή Σ χ ο λ ι κ ο Β ι β λ ι ο ΥΠΟΚΕΦΑΛΑΙΟ 2.2.7: ΕΝΤΟΛΕΣ ΚΑΙ ΔΟΜΕΣ ΑΛΓΟΡΙΘΜΟΥ ΠΑΡΑΓΡΑΦΟI 2.2.7.5: Κλήση αλγορίθμου από αλγόριθμο 2.2.7.6: Αναδρομή εισαγωγη

Διαβάστε περισσότερα

Αλγόριθμοι Τυφλής Αναζήτησης

Αλγόριθμοι Τυφλής Αναζήτησης Τεχνητή Νοημοσύνη 04 Αλγόριθμοι Τυφλής Αναζήτησης Αλγόριθμοι Τυφλής Αναζήτησης (Blind Search Algorithms) Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει αξιολόγηση των καταστάσεων.

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1. Structural Programming

ΑΣΚΗΣΗ 1. Structural Programming ΑΣΚΗΣΗ 1 Structural Programming Στην άσκηση αυτή θα υλοποιήσετε σε C ένα απλό πρόγραµµα Βάσης εδοµένων το οποίο θα µπορούσε να χρησιµοποιηθεί από την γραµµατεία ενός πανεπιστηµίου για την αποθήκευση και

Διαβάστε περισσότερα

Επίπεδα Γραφήματα (planar graphs)

Επίπεδα Γραφήματα (planar graphs) Επίπεδα Γραφήματα (planar graphs) Μπορούν να σχεδιαστούν στο επίπεδο χωρίς να τέμνονται οι ακμές τους 1 2 1 2 3 4 3 4 Άρα αυτό το γράφημα είναι επίπεδο Επίπεδα Γραφήματα (planar graphs) Μπορούν να σχεδιαστούν

Διαβάστε περισσότερα

Δομές Δεδομένων (Data Structures)

Δομές Δεδομένων (Data Structures) Δομές Δεδομένων (Data Structures) Ανάλυση - Απόδοση Αλγορίθμων Έλεγχος Αλγορίθμων. Απόδοση Προγραμμάτων. Χωρική/Χρονική Πολυπλοκότητα. Ασυμπτωτικός Συμβολισμός. Παραδείγματα. Αλγόριθμοι: Βασικές Έννοιες

Διαβάστε περισσότερα

υναμικός Προγραμματισμός

υναμικός Προγραμματισμός υναμικός Προγραμματισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιωνυμικοί Συντελεστές ιωνυμικοί

Διαβάστε περισσότερα

Η Γλώσσα Προγραµµατισµού C++ (The C++ Programming Language) Ιστοσελίδα του µαθήµατος. Περιεχόµενα. ηµήτριος Κατσαρός, Ph.D. Κλάσεις.

Η Γλώσσα Προγραµµατισµού C++ (The C++ Programming Language) Ιστοσελίδα του µαθήµατος. Περιεχόµενα. ηµήτριος Κατσαρός, Ph.D. Κλάσεις. 1 Η Γλώσσα Προγραµµατισµού C++ (The C++ Programming Language) ηµήτριος Κατσαρός, Ph.D. Χειµώνας 2005 ιάλεξη 5η Ιστοσελίδα του µαθήµατος 2 http://skyblue.csd.auth.gr/~dimitris/courses/cpp_fall05.htm Θα

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Δέντρα Αναζήτησης Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Αναζήτηση Θέλουμε να διατηρήσουμε αντικείμενα με κλειδιά και να μπορούμε εκτός από

Διαβάστε περισσότερα

ΥΛΟΠΟΙΗΣΗ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΔΡΟΜΟΛΟΓΗΣΗ ΚΑΙ ΠΟΛΥ-ΧΡΩΜΑΤΙΣΜΟ ΜΟΝΟΠΑΤΙΩΝ ΣΕ ΓΡΑΦΗΜΑΤΑ

ΥΛΟΠΟΙΗΣΗ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΔΡΟΜΟΛΟΓΗΣΗ ΚΑΙ ΠΟΛΥ-ΧΡΩΜΑΤΙΣΜΟ ΜΟΝΟΠΑΤΙΩΝ ΣΕ ΓΡΑΦΗΜΑΤΑ ΤΕΙ ΗΠΕΙΡΟΥ ΤΜΗΜΑ ΤΗΛΕΠΛΗΡΟΦΟΡΙΚΗΣ & ΔΙΟΙΚΗΣΗΣ ΥΛΟΠΟΙΗΣΗ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΔΡΟΜΟΛΟΓΗΣΗ ΚΑΙ ΠΟΛΥ-ΧΡΩΜΑΤΙΣΜΟ ΜΟΝΟΠΑΤΙΩΝ ΣΕ ΓΡΑΦΗΜΑΤΑ ΕΙΣΗΓΗΤΗΣ ΚΑΘΗΓΗΤΗΣ ΧΑΡΙΛΟΓΗΣ ΒΑΣΙΛΕΙΟΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΟΥ ΚΑΡΑΓΕΩΡΓΟΥ

Διαβάστε περισσότερα

Αδιέξοδα (Deadlocks)

Αδιέξοδα (Deadlocks) Αδιέξοδα (Deadlocks) Περίληψη Αδιέξοδα (deadlocks) Τύποι πόρων (preemptable non preemptable) Μοντελοποίηση αδιεξόδων Στρατηγικές Στρουθοκαµηλισµός (ostrich algorithm) Ανίχνευση και αποκατάσταση (detection

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

P. Chretienne, E. Coffman, J. Lenstra, Z. Liu Scheduling Theory and its Applications John Wiley & Sons, New York, (1995)

P. Chretienne, E. Coffman, J. Lenstra, Z. Liu Scheduling Theory and its Applications John Wiley & Sons, New York, (1995) ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΟΥ 8ο Εξάμηνο ΕΡΓΑΣΙΑ P. Chretienne, E. Coffman, J. Lenstra, Z. Liu Scheduling Theory and its Applications John Wiley & Sons, New York, (995) CHAPTER (μέχρι και..) Scheduling with Communication

Διαβάστε περισσότερα

Dr. Garmpis Aristogiannis - EPDO TEI Messolonghi

Dr. Garmpis Aristogiannis - EPDO TEI Messolonghi Προϋποθέσεις για Αµοιβαίο Αποκλεισµό Μόνο µία διεργασία σε κρίσιµο τµήµασεκοινό πόρο Μία διεργασία που σταµατά σε µη κρίσιµο σηµείο δεν πρέπει να επιρεάζει τις υπόλοιπες διεργασίες εν πρέπει να υπάρχει

Διαβάστε περισσότερα

Εργαστήριο 2: Πίνακες

Εργαστήριο 2: Πίνακες Εργαστήριο 2: Πίνακες Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Επεξεργασία Πινάκων - Υλοποίηση της Δυαδικής Αναζήτησης σε πίνακες - Υλοποίηση της Ταξινόμησης με Επιλογής σε πίνακες ΕΠΛ035

Διαβάστε περισσότερα

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΙΣΑΓΩΓΗ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ. ΤΙ ΕΙΝΑΙ ΤΑ ΜΑΘΗΜΑΤΙΚΑ; Η επιστήμη των αριθμών Βασανιστήριο για τους μαθητές και φοιτητές Τέχνη για τους μαθηματικούς ΜΑΘΗΜΑΤΙΚΑ Α Εξάμηνο ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ. Επίπεδα Αφαίρεσης Σ Β. Αποθήκευση Εγγραφών - Ευρετήρια. ρ. Βαγγελιώ Καβακλή ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ, Επίπεδο Όψεων.

ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ. Επίπεδα Αφαίρεσης Σ Β. Αποθήκευση Εγγραφών - Ευρετήρια. ρ. Βαγγελιώ Καβακλή ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ, Επίπεδο Όψεων. ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ Χειµερινό Εξάµηνο 2002 Αποθήκευση Εγγραφών - Ευρετήρια ρ Βαγγελιώ Καβακλή ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ, ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ Επίπεδα Αφαίρεσης Σ Β Επίπεδο Όψεων Όψη Όψη

Διαβάστε περισσότερα

Προγραµµατιστική Εργασία 1 ο Μέρος

Προγραµµατιστική Εργασία 1 ο Μέρος Πανεπιστήµιο Κρήτης, Τµήµα Επιστήµης Υπολογιστών 4 Νοεµβρίου 2011 ΗΥ240: οµές εδοµένων Χειµερινό Εξάµηνο Ακαδηµαϊκό Έτος 2011-12 ιδάσκουσα: Παναγιώτα Φατούρου Προγραµµατιστική Εργασία 1 ο Μέρος Ηµεροµηνία

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Ενότητα 6 Πίνακες Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Τύπος πίνακα (array) Σύνθετος τύπος δεδομένων Αναπαριστά ένα σύνολο ομοειδών

Διαβάστε περισσότερα

Κεφάλαιο 5.4-5.11: Επαναλήψεις (oι βρόγχοιfor, do-while) (Διάλεξη 10) Εντολές Επανάληψης που θα καλυφθούν σήμερα

Κεφάλαιο 5.4-5.11: Επαναλήψεις (oι βρόγχοιfor, do-while) (Διάλεξη 10) Εντολές Επανάληψης που θα καλυφθούν σήμερα Κεφάλαιο 5.4-5.11: Επαναλήψεις (oι βρόγχοιfor, do-while) (Διάλεξη 10) 10-1 Εντολές Επανάληψης που θα καλυφθούν σήμερα Διάλεξη 9 - Δευτέρα while() τελεστές postfix/prefix (++, --,...) και σύνθετοι τελεστές

Διαβάστε περισσότερα

Εισαγωγή στις Βάσεις εδοµένων και την Access

Εισαγωγή στις Βάσεις εδοµένων και την Access Μάθηµα 1 Εισαγωγή στις Βάσεις εδοµένων και την Access Τι είναι οι βάσεις δεδοµένων Μία βάση δεδοµένων (Β..) είναι µία οργανωµένη συλλογή πληροφοριών, οι οποίες είναι αποθηκευµένες σε κάποιο αποθηκευτικό

Διαβάστε περισσότερα

δηµιουργία ιστοσελίδων

δηµιουργία ιστοσελίδων ιδακτικό υλικό µαθητή δηµιουργία ιστοσελίδων Για να εµφανισθεί µια ιστοσελίδα στην οθόνη, πρέπει ο φυλλοµετρητής να εκτελεί τις εντολές ενός προγράµµατος που είναι γραµµένο µε ειδικό λογισµικό Οι ιστοσελίδες

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #: Εύρεση Ελαχίστων Μονοπατιών σε Γραφήματα που Περιλαμβάνουν και Αρνητικά Βάρη: Αλγόριθμος

Διαβάστε περισσότερα

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Πιθανοτική Συλλογιστική Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Αβεβαιότητα πεποιθήσεων πράκτορας θεωρίας

Διαβάστε περισσότερα

Chapter 9: NP-Complete Problems

Chapter 9: NP-Complete Problems Θεωρητική Πληροφορική Ι: Αλγόριθμοι και Πολυπλοκότητα Chapter 9: NP-Complete Problems 9.3 Graph-Theoretic Problems (Συνέχεια) 9.4 Sets and Numbers Γιώργος Αλεξανδρίδης gealexan@mail.ntua.gr Κεφάλαιο 9:

Διαβάστε περισσότερα

ΠΛΑΙΣΙΑ. Τα πλαίσια έχουν:

ΠΛΑΙΣΙΑ. Τα πλαίσια έχουν: ΠΛΑΙΣΙΑ Ορίστηκαν από τον Minsky σαν "δοµές δεδοµένων για την αναπαράσταση στερεότυπων καταστάσεων". Ονοµάζονται και σχήµατα (schemata). Κατά µία έννοια αποτελούν εξέλιξη των σηµαντικών δικτύων (ή δικτύων

Διαβάστε περισσότερα

Στοιχεία εξεταζόµενου Αριθµός Απάντησης Βαθµολογία. Σύνολο (Θέµα 4 ο )

Στοιχεία εξεταζόµενου Αριθµός Απάντησης Βαθµολογία. Σύνολο (Θέµα 4 ο ) Οικονοµικό Πανεπιστήµιο Αθηνών Τµήµα Πληροφορικής Εισαγωγή στον Προγραµµατισµό των Υπολογιστών Καθηγητής Ι. Κάβουρας Εξεταστική περίοδος Φεβρουαρίου 2004 Τετάρτη 10/3/2004, ώρα 8.00 Στοιχεία εξεταζόµενου

Διαβάστε περισσότερα

21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου

21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ A Ε B Ζ Η Γ K Θ Δ Ι Ορισμός Ένα (μη κατευθυνόμενο) γράφημα (non directed graph) Γ, είναι μία δυάδα από σύνολα Ε και V και συμβολίζεται με Γ=(Ε,V). Το σύνολο

Διαβάστε περισσότερα

ιδάσκων: ηµήτρης Ζεϊναλιπούρ

ιδάσκων: ηµήτρης Ζεϊναλιπούρ Κεφάλαιο 1.3-1.4: Εισαγωγή Στον Προγραµµατισµό ( ιάλεξη 2) ιδάσκων: ηµήτρης Ζεϊναλιπούρ Περιεχόµενα Εισαγωγικές Έννοιες - Ορισµοί Ο κύκλος ανάπτυξης προγράµµατος Παραδείγµατα Πότε χρησιµοποιούµε υπολογιστή?

Διαβάστε περισσότερα

Η πολυνηματική γλώσσα προγραμματισμού Cilk

Η πολυνηματική γλώσσα προγραμματισμού Cilk Η πολυνηματική γλώσσα προγραμματισμού Cilk Β Καρακάσης Ερευνητικά Θέματα Υλοποίησης Γλωσσών Προγραμματισμού Μεταπτυχιακό Μάθημα (688), ΣΗΜΜΥ Νοέμβριος 2009 Β Καρακάσης (CSLab, NTUA) ΣΗΜΜΥ, Μετ/κό 688 9/2009

Διαβάστε περισσότερα

Μια Επισκόπηση της Ύλης & Μερικές Οδηγίες

Μια Επισκόπηση της Ύλης & Μερικές Οδηγίες Μια Επισκόπηση της Ύλης & Μερικές Οδηγίες Βαγγέλης ούρος douros@aueb.gr 1 11/6/2012 Αλγόριθμοι, Εαρινό Εξάμηνο 2012, Φροντιστήριο #14 Γενικά Σχόλια (1) 2 Για το τελικό διαγώνισμα θα χρειαστείτε: Φοιτητική

Διαβάστε περισσότερα

Ορισµός Νήµα (thread) είναι µια ακολουθιακή ροή ελέγχου (δηλ. κάτι που έχει αρχή, ακολουθία εντολών και τέλος) σ ένα

Ορισµός Νήµα (thread) είναι µια ακολουθιακή ροή ελέγχου (δηλ. κάτι που έχει αρχή, ακολουθία εντολών και τέλος) σ ένα ΝΗΜΑΤΑ ΣΤΗ JAVA (1) Ορισµός Νήµα (thread) είναι µια ακολουθιακή ροή ελέγχου (δηλ. κάτι που έχει αρχή, ακολουθία εντολών και τέλος) σ ένα πρόγραµµα. Αιτία Η δυνατότητα αποµόνωσης (ή αυτονόµησης) κάποιων

Διαβάστε περισσότερα

2.1. Εντολές. 2.2. Σχόλια. 2.3. Τύποι Δεδομένων

2.1. Εντολές. 2.2. Σχόλια. 2.3. Τύποι Δεδομένων 2 Βασικές Εντολές 2.1. Εντολές Οι στην Java ακολουθούν το πρότυπο της γλώσσας C. Έτσι, κάθε εντολή που γράφουμε στη Java θα πρέπει να τελειώνει με το ερωτηματικό (;). Όπως και η C έτσι και η Java επιτρέπει

Διαβάστε περισσότερα

Αναπαράσταση & Απλοποίηση Μοντέλων

Αναπαράσταση & Απλοποίηση Μοντέλων Γραφικά & Οπτικοποίηση Κεφάλαιο 6 Αναπαράσταση & Απλοποίηση Μοντέλων Εισαγωγή Οι 3Δ εικόνες στα Γραφικά αποτελούνται από διάφορα σχήματα & δομές: Γεωμετρικά σχήματα (π.χ. σφαίρες) Μαθηματικές επιφάνειες

Διαβάστε περισσότερα

Διαχείριση Εφοδιαστικής Αλυσίδας

Διαχείριση Εφοδιαστικής Αλυσίδας Διαχείριση Εφοδιαστικής Αλυσίδας 7 η Διάλεξη: Δρομολόγηση & Προγραμματισμός (Routing & Scheduling) 015 Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών Ατζέντα Εισαγωγή στις έννοιες Βασικές

Διαβάστε περισσότερα

4.6 Critical Path Analysis (Μέθοδος του κρίσιμου μονοπατιού)

4.6 Critical Path Analysis (Μέθοδος του κρίσιμου μονοπατιού) . Critical Path Analysis (Μέθοδος του κρίσιμου μονοπατιού) Η πετυχημένη διοίκηση των μεγάλων έργων χρειάζεται προσεχτικό προγραμματισμό, σχεδιασμό και συντονισμό αλληλοσυνδεόμενων δραστηριοτήτων (εργσιών).

Διαβάστε περισσότερα

ΗΥ240 - Παναγιώτα Φατούρου 2

ΗΥ240 - Παναγιώτα Φατούρου 2 ΕΝΟΤΗΤΑ ΥΛΟΠΟΙΗΣΗ ΛΕΞΙΚΩΝ ΜΕ ΙΣΟΖΥΓΙΣΜΕΝΑ ΕΝ ΡΑ ΗΥ24 - Παναγιώτα Φατούρου 1 Ισοζυγισµένα ένδρα Χρονική Πολυπλοκότητα αναζήτησης σε δοµές που έχουν ήδη διδάχθει: Στατική Μη-Ταξινοµηµένη Λίστα -> Ο(n), όπου

Διαβάστε περισσότερα

Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem)

Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem) Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem) Τι είναι το Πρόβλημα της Πινακοθήκης; Σας ανήκει μια πινακοθήκη και επιθυμείτε να τοποθετήσετε κάμερες ασφαλείας έτσι ώστε όλη η γκαλερί να είναι προστατευμένη

Διαβάστε περισσότερα

Combined Bus and Driver Scheduling

Combined Bus and Driver Scheduling Combined Bus and Driver Scheduling C Valouxis, E Housos Computers and Operation Research Journal Vol 29/3, pp 243-259, March 22 AMORE Patra, 2 Problem Definition () Shift: a set of routes that will be

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 5 ΥΝΑΜΙΚΑ ΛΕΞΙΚΑ ΙΣΟΖΥΓΙΣΜΕΝΑ ΕΝ ΡΑ

ΕΝΟΤΗΤΑ 5 ΥΝΑΜΙΚΑ ΛΕΞΙΚΑ ΙΣΟΖΥΓΙΣΜΕΝΑ ΕΝ ΡΑ ΕΝΟΤΗΤΑ 5 ΥΝΑΜΙΚΑ ΛΕΞΙΚΑ ΙΣΟΖΥΓΙΣΜΕΝΑ ΕΝ ΡΑ ενδρικές οµές για Υλοποίηση υναµικών Λεξικών υναµικά λεξικά λειτουργίες LookUp( ), Insert( ) και Delete( ) Αναζητούµε δένδρα για την αποτελεσµατική υλοποίηση

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήµη των Η/Υ

Εισαγωγή στην Επιστήµη των Η/Υ Εισαγωγή στην Επιστήµη των Η/Υ Εισαγωγή στην Επιστήµη των Η/Υ Εισαγωγή Καθ. Κ. Κουρκουµπέτης Σηµείωση: Οι διαφάνειες βασίζονται σε µεγάλο βαθµό σε αυτές που συνοδεύονται µε το προτεινόµενο σύγγραµµα. 1

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 9 ο 9.1 ηµιουργία µοντέλων πρόβλεψης 9.2 Απλή Γραµµική Παλινδρόµηση 9.3 Αναλυτικά για το ιάγραµµα ιασποράς

Διαβάστε περισσότερα

Πληρουορική Γ Γσμμασίοσ

Πληρουορική Γ Γσμμασίοσ Πληρουορική Γ Γσμμασίοσ Προγραμματισμός και Αλγόριθμοι Από το και τημ Χελώμα στημ Ευριπίδης Βραχνός http://evripides.mysch.gr/ 2014 2015 1 Προγραμματισμός Ζάννειο Πρότυπο Πειραματικό Γυμνάσιο Πειραιά Ενότητα:

Διαβάστε περισσότερα

Λογισµικό µε γλώσσα προγραµµατισµού. Logo. Εισαγωγή στη Γεωµετρία της Χελώνας ΧΕΛΩΝΟΚΟΣΜΟΣ

Λογισµικό µε γλώσσα προγραµµατισµού. Logo. Εισαγωγή στη Γεωµετρία της Χελώνας ΧΕΛΩΝΟΚΟΣΜΟΣ Λογισµικό µε γλώσσα προγραµµατισµού Logo Εισαγωγή στη Γεωµετρία της Χελώνας ΧΕΛΩΝΟΚΟΣΜΟΣ «Μαθαίνουµε καλύτερα κάνοντας... αλλά µαθαίνουµεακόµακαλύτερααν συνδυάσουµετηδράσηµετηνοµιλία και το στοχασµόπάνωσ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο 3ο. ΚΕΦΑΛΑΙΟ 5ο 6ο. ΚΕΦΑΛΑΙΟ 7ο. Δομημένος Προγραμματισμός - Γενικές Ασκήσεις Επανάληψης

ΚΕΦΑΛΑΙΟ 1ο 3ο. ΚΕΦΑΛΑΙΟ 5ο 6ο. ΚΕΦΑΛΑΙΟ 7ο. Δομημένος Προγραμματισμός - Γενικές Ασκήσεις Επανάληψης ΚΕΦΑΛΑΙΟ 1ο 3ο 1. Συμπληρώστε τα κενά με τη λέξη που λείπει. α. Ένα πρόβλημα το χωρίζουμε σε άλλα απλούστερα, όταν είναι ή όταν έχει τρόπο επίλυσης. β. Η επίλυση ενός προβλήματος προϋποθέτει την του. γ.

Διαβάστε περισσότερα

Εισαγωγή στο Moodle- Εργασία 2

Εισαγωγή στο Moodle- Εργασία 2 Εισαγωγή στο Moodle- Εργασία 2 Μωυσίδης Σάββας 6028 Δ η μ ο κ ρ ί τ ε ι ο Π α ν ε π ι σ τ η μ ι ο Θ ρ ά κ η ς Τ μ ή μ α Η λ ε κ τ ρ ο λ ό γ ω ν Μ η χ α ν ι κ ώ ν κ α ι Μ η χ α ν ι κ ώ ν Υ π ο λ ο γ ι σ

Διαβάστε περισσότερα

Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις

Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις Άσκηση 1 Αποδείξτε τη µεταβατική και τη συµµετρική ιδιότητα του Θ. Λύση Μεταβατική Ιδιότητα (ορισµός): Αν f(n) = Θ(g(n)) και g(n) = Θ(h(n)) τότε f(n)=θ(h(n)). Για

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 2007 ιδάσκων : Ηλίας Κουτσουπιάς

ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 2007 ιδάσκων : Ηλίας Κουτσουπιάς ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 007 ιδάσκων : Ηλίας Κουτσουπιάς Μάθηµα : Overview Of The Algorithmic Game Theory Ηµεροµηνία : 007/04/19 Σηµειώσεις : Ελενα Χατζηγιωργάκη,

Διαβάστε περισσότερα

ο χάρτης το γράφημα Σχήμα 5.3

ο χάρτης το γράφημα Σχήμα 5.3 KΕΦΑΛΑΙΟ 5 ΓΡΑΦΗΜΑΤΑ 5.1. Ανακάλυψη Ο W. Leibniz, σε επιστολή του το 1679 προς τον C. Huygens, παρατήρησε ότι "μας χρειάζεται ένα άλλο είδος ανάλυσης, γεωμετρικής ή γραμμικής, που να ασχολείται απ' ευθείας

Διαβάστε περισσότερα

ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ

ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Η τεχνική του τµη- µατικού προγραµµατισµού αποτελεί κύριο Είναι η τεχνική σχεδίασης σύµφωνα µε την οποία η ανάπτυξη ε- νός προγράµµατος επιτυγχάνεται αναπτύσσοντας απλούστερα

Διαβάστε περισσότερα

1ο. Η αριθµητική του υπολογιστή

1ο. Η αριθµητική του υπολογιστή 1ο. Η αριθµητική του υπολογιστή 1.1 Τί είναι Αριθµητική Ανάλυση Υπάρχουν πολλά προβλήµατα στη µαθηµατική επιστήµη για τα οποία δεν υπάρχουν αναλυτικές εκφράσεις λύσεων. Στις περιπτώσεις αυτές έχουν αναπτυχθεί

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Πίνακες Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ακ. Έτος 2012-2013 Πίνακες Πολλές φορές θέλουμε να κρατήσουμε στην μνήμη πολλά αντικείμενα

Διαβάστε περισσότερα

Οδηγίες Χρήσης Εφαρµογής Web Ecopoint

Οδηγίες Χρήσης Εφαρµογής Web Ecopoint Οδηγίες Χρήσης Εφαρµογής Web Ecopoint ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ Γενικά... 2 ηµιουργία Λογαριασµού... 2 Αίτηση Συλλογής... 4 Επιβεβαίωση Συλλογής... 5 Τελευταίες Αιτήσεις... 6 Ανάκτηση κωδικού πρόσβασης... 7

Διαβάστε περισσότερα