Εισαγωγή στις Αποθήκες εδομένων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εισαγωγή στις Αποθήκες εδομένων"

Transcript

1 Εισαγωγή στις Αποθήκες εδομένων ιαφάνειες βασισμένες σε σχετικές διαφάνειες του Πάνου Βασιλειάδη Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 1 Εισαγωγή: OLTP Παραδοσιακή ιαχείριση εδομένων με Σ Β Σύστημα Επεξεργασίας οσοληψιών On-Line Transaction Processing (OLTP) Ένα πλήρες σύστημα που περιέχει εργαλεία για προγραμματισμό εφαρμογών, εκτέλεση και διαχείριση των δοσοληψιών Μια τέτοια εφαρμογή πρέπει να δουλεύει συνεχώς, να αντεπεξέρχεται αποτυχιών, εξελίσσεται συνεχώς, είναι συνήθως κατανεμημένη και περιλαμβάνει: Βάση εδομένων ίκτυο Προγράμματα εφαρμογής Εξαιρετικά κρίσιμη για τη λειτουργία κάθε οργανισμού Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 2 Εξόρυξη Δεδομένων

2 Εισαγωγή: OLTP OLTP Αεροπορική Εταιρεία Κράτησε για γιατον κ. κ. Χ την τηνθέση 13Α 13Αγια γιαla! Κράτησε για γιατον κ. κ. Y την τηνθέση 13Α 13Αγια γιαla! 1... DB Πόσοι ταξιδεύουν για γιαla? 100 Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 3 Εισαγωγή: OLTP OLTP Τράπεζα Δάνεια Γκισέ DB Πιστωτικές κάρτες ΑΤΜ Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 4 Εξόρυξη Δεδομένων

3 Εισαγωγή: OLTP OLTP Βασικά Χαρακτηριστικά Ελάχιστος χρόνος διαθέσιμος για την εκτέλεση μιας δοσοληψίας. Λιγότερες από 10 προσβάσεις δίσκου. Περιορισμένος αριθμός υπολογισμών. Κάτω όριο λειτουργικών απαιτήσεων: 100 on-line Transactions Per Second (TPS) σε μια Β της τάξης του 1 GB Άνω όριο λειτουργικών απαιτήσεων: TPS σε μια Β μεγαλύτερη του 1 ΤB. Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 5 Εισαγωγή: OLΑP OLAP Συστήματα Στήριξης Αποφάσεων Decision Support Systems (DSS) Υποβοήθηση λήψης αποφάσεων με πληροφορίες και αναφορές On-Line Analytical Processing (OLAP) Ευέλικτη, υψηλής απόδοσης πρόσβαση και ανάλυση μεγάλου όγκου σύνθετων δεδομένων από διαφορετικές εφαρμογές Ειδικού τύπου ερωτήσεις Οπτικοποίηση/στατιστική ανάλυση/πολυδιάστατη ανάλυση Εξόρυξη Γνώσης (Knowledge Discovery/Data Mining) Εξεύρεση προτύπων σε τεράστιες βάσεις δεδομένων OLAP + Data Mining => On-line Analytical Mining Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 6 Εξόρυξη Δεδομένων

4 Εισαγωγή: OLΑP Παραδείγματα ερωτήσεων OLAP Ποιος ήταν ο όγκος πωλήσεων ανά περιοχή και κατηγορία προϊόντος την περασμένη χρονιά; Πόσο σχετίζονται οι αυξήσεις τιμών των υπολογιστών με τα κέρδη τωνπωλήσεωντα10 τελευταία χρόνια; Ποια ήταν τα δέκα πρώτα καταστήματα σε πωλήσεις CD; Πόσους δίσκους πουλήσαμε στην Πελοπόννησο το τελευταίο τέταρτο της περσινής χρονιάς σε καταστήματα με κατανάλωση μεγαλύτερη από 100 δίσκους μηνιαίως, και ποιο το κέρδος μας από αυτές τις πωλήσεις; Τι ποσοστό από τους πελάτες που αγοράζουν αναψυκτικά αγοράζουν και πατατάκια; Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 7 Εισαγωγή: OLΑP Λειτουργικά Χαρακτηριστικά Απαιτήσεων OLAP Πρόσβαση σε μεγάλο όγκο δεδομένων Συμμετοχή αθροιστικών και ιστορικών δεδομένων σε πολύπλοκες ερωτήσεις Μεταβολή της οπτικής γωνίας ή βαθμού αφαίρεσης παρουσίασης των δεδομένων (π.χ., από πωλήσεις ανά περιοχή -> πωλήσεις ανά τμήμα κλπ.) Συμμετοχή πολύπλοκων υπολογισμών (π.χ. στατιστικές συναρτήσεις) Γρήγορη απάντηση σε οποιαδήποτε χρονική στιγμή τεθεί ένα ερώτημα ( On-Line ). Πως θα το πετύχουμε; Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 8 Εξόρυξη Δεδομένων

5 Εισαγωγή ύο κεντρικά θέματα Απόδοση Αν μια πολύπλοκη OLAP ερώτηση χρειαστεί να κλειδώσει ένα ολόκληρο πίνακα, τότε όλες οι OLTP δοσοληψίες την περιμένουν μέχρι να τελειώσει Εννοιολογική διαφορά και ετερογένεια Αν στην Oracle Β του marketing ο πελάτης είναι EMP(ΑΤ,Name,Surname ) και στην COBOL Β των πωλήσεων είναι ΑΦΜ,FullName, η επερώτηση δεν είναι πάντα εύκολη... Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 9 Εισαγωγή: Αποθήκη εδομένων Αποθήκες εδομένων Μια κεντρικοποιημένη Β με σκοπό: την ολοκλήρωση (integration) ετερογενών πηγών πληροφοριών (data sources) => συνάθροιση όλης της ενδιαφέρουσας πληροφορίας σε μία τοποθεσία την αποφυγή της σύγκρουσης μεταξύ OLTP και OLAP (DSS) συστημάτων => απόδοση εφαρμογών και διαθεσιμότητα του συστήματος Μπορεί να συμπληρώνεται και από εξειδικευμένα θεματικά υποσύνολα (Data Marts) για περαιτέρω απόδοση των OLAP εφαρμογών Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 10 Εξόρυξη Δεδομένων

6 Εισαγωγή: Αποθήκη εδομένων Γενική Αρχιτεκτονική Πηγή Δεδομένων DW Data Marts OLTP συστήματα OLAP εργαλεία Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 11 Εισαγωγή: Αποθήκη εδομένων Αποθήκες εδομένων: ύο ορισμοί Μια Β υποστήριξης αποφάσεων, που διατηρείται χωριστά από την Β παραγωγής (operational database) ενός οργανισμού. S. Chaudhuri, U. Dayal, VLDB 96 tutorial Μια συλλογή δεδομένων που χρησιμοποιείται κυρίως για την λήψη αποφάσεων σε ένα οργανισμό, και είναι θεματικά προσανατολισμένη, έχει ολοκληρωμένα (ενοποιημένα) δεδομένα, τα οποία διατηρούνται σε βάθος χρόνου χωρίς να διαγράφονται. W.H. Inmon, Building the Data Warehouse, 1992 (ο εφευρέτης του όρου) Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 12 Εξόρυξη Δεδομένων

7 Εισαγωγή: Αποθήκη εδομένων Εννοιολογική εναρμόνιση Προτερήματα/Ιδιότητες Οι διαφορετικές πηγές δεδομένων του ίδιου οργανισμού, μοντελοποιούν τις ίδιες οντότητες με διαφορετικούς τρόπους Η Αποθήκη εδομένων περιλαμβάνει το σύνολο αυτών των δεδομένων κάτω από ένα εναρμονισμένο σχήμα βάσης Ποιότητα εδομένων Η ποιότητα των δεδομένων στις πηγές είναι συχνά προβληματική (τα δεδομένα μπορεί να μην είναι πλήρη, να έχουν ασυνέπειες, να είναι παλιά, να παραβιάζουν τους λογικούς και δομικούς κανόνες αξιοπιστίας, κλπ) Έχει βρεθεί ότι τουλάχιστο 10% των δεδομένων είναι προβληματικά στις πηγές, με αποτέλεσμα οικονoμικές απώλειες του 25-40% Πριν την εισαγωγή στις αποθήκες δεδομένων καθαρισμός, επίσης λειτουργεί και ως ένα ενδιάμεσο σύστημα στον οποίο καθαρίζουμε τα δεδομένα Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 13 Source 1: Personnel (Cobol) EMP ID 110 Name Kostas DoB 1/1/72 Salary 1500 Total Income 1200 DeptID 132 Source 2: Accounting (DB2) EMP ID IL_ID Amount EMP INCOME EMP ID Name Age IL_ID Descr 10 Μισθός Kostas Mitsos Roula EMP Επίδομα Τέκνων Φόρος... Income Lookup Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 14 Εξόρυξη Δεδομένων

8 Εισαγωγή: Αποθήκη εδομένων Προτερήματα/Ιδιότητες Απόδοση Οι εφαρμογές OLAP επιταχύνονται αν τα δεδομένα οργανωθούν με μη παραδοσιακούς τρόπους (π.χ., απο-κανονικοποιημένα) Σ Β για OLTP (ευρετήρια, επεξεργασία δοσοληψιών) Οι σύνθετες OLAP ερωτήσεις θα συγκρούονταν με τις παραδοσιακές OLTP δοσοληψίες, με αποτέλεσμα την υπερφόρτωση του συστήματος Θεματικά προσανατολισμένη: ιατήρηση μόνο των σχετικών δεδομένων ιαθεσιμότητα Όσο περισσότερα αντίγραφα των δεδομένων, τόσο πιο πολύ το σύστημα είναι διαθέσιμο*, αφενός στην Αποθήκη εδομένων και αφετέρου στις πηγές * ιαθεσιμότητα: το ποσοστό του χρόνου που το σύστημα είναι σε λειτουργία και προσβάσιμο στις εφαρμογές. 24x7: Οι OLTP εφαρμογές, σε πολλούς οργανισμούς πρέπει να είναι διαθέσιμες 24 ώρες Χ 7 μέρες τη βδομάδα (π.χ., τράπεζες, αεροπορικές εταιρείες,...) Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 15 Εισαγωγή: Αποθήκη εδομένων Προτερήματα/Ιδιότητες Ιστορικά εδομένα Ο χρονικός ορίζοντας μια αποθήκης δεδομένων είναι πολύ μεγαλύτερος από ότι ενός συστήματος σε λειτουργία Η Β έχει τα τωρινά δεδομένα ενώ οι αποθήκες διατηρούν και παλιά δεδομένα (πχ τα προηγούμενα 5-10 χρόνια) Τροποποιήσεις Οι τροποποιήσεις στις πηγές δεδομένων δεν φαίνονται άμεσα στις αποθήκες δεδομένων, συνήθως περιοδικά Μόνο δύο βασικές λειτουργίες: αρχικό φόρτωμα των δεδομένων (loading) και προσπέλαση δεδομένων (access) Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 16 Εξόρυξη Δεδομένων

9 Εισαγωγή: Αποθήκη εδομένων OLTP vs OLAP OLTP OLAP ομή Files/DBMS s RDBMS Πρόσβαση SQL/COBOL/ SQL + επεκτάσεις Ανάγκες που Αυτοματισμός Άντληση και καλύπτουν καθημερινών επεξεργασία πληροφ. εργασιών για χάραξη στρατηγικής Τύπος εδομένων Λεπτομερή Συνοπτικά, Αθροιστικά Λειτουργικά Όγκος εδομένων ~ 100 GB ~ 1 TB Φύση εδομένων υναμικά, Τρέχοντα Στατικά, Ιστορικά Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 17 Εισαγωγή: Αποθήκη εδομένων OLTP vs OLAP OLTP OLAP I/O Τύποι Περιορισμένο I/O Εκτεταμένο I/Os Συχνά disk seeks disk scans Τροποποιήσεις Συνεχείς Περιοδικές Ενημερώσεις Μέτρηση Απόδοσης Throughput Χρόνος Απόκρισης Φόρτος οσοληψίες με Ερωτήσεις που πρόσβαση λίγων σαρώνουν εγγραφών εκατομμύρια εγγραφών Σχεδίαση Β Κατευθυνόμενη Κατευθυνόμενη από Εφαρμογή από Περιεχόμενο Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 18 Εξόρυξη Δεδομένων

10 Εισαγωγή: Αποθήκη εδομένων OLTP vs OLAP OLTP OLAP Τυπικοί Χρήστες Χαμηλόβαθμοι Υπ. Υψηλόβαθμοι Υπ. Χρήση Μέσω Ad-hoc προκατασκευασμένων φορμών Αριθμός Χρηστών Χιλιάδες εκάδες Εστίαση Εισαγωγή Εξαγωγή εδομένων Πληροφοριών Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 19 Εισαγωγή: Αποθήκη εδομένων Σύγκριση με ενοποίηση ετερογενών Σ Β Wrapper/mediators Με βάση την ερώτηση, μεταφράζεται ανάλογα, εκτελείται σε κάθε Σ Β και τα αποτελέσματα ενοποιούνται σε μια ολική απάντηση Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 20 Εξόρυξη Δεδομένων

11 Μοντέλο εδομένων και Λειτουργίες Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 21 Με λίγα λόγια Μια αποθήκη δεδομένων βασίζεται σε ένα πολυδιάστατο μοντέλο δεδομένων (multidimensional data model) που αναπαριστά τα δεδομένα με τη μορφή ενός κύβου δεδομένων (data cube) Ένας κύβος δεδομένων (data cube) επιτρέπει την μοντελοποίηση και την θεώρηση των δεδομένων από πολλές οπτικές γωνίες ιαστάσεις (dimensions)- Για συγκεκριμένες τιμές στις διαστάσεις μια Μέτρηση (Measure) αυτό που μας ενδιαφέρει να μετρήσουμε Item ιαστάσεις Location Time Εισαγωγή Παράδειγμα Κύβος ΠΩΛΗΣΕΙΣ Μέτρηση: Αριθμός Πωλήσεων για τις συγκεκριμένες διαστάσεις (Location, Item, Time) Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 22 Εξόρυξη Δεδομένων

12 Ιεραρχίες ιαστάσεων Εννοιολογική Ιεραρχία Κάθε διάσταση παίρνει τιμές από διαφορετικά επίπεδα, μπορεί να εκφραστεί σε διαφορετικά επίπεδα λεπτομέρειας Διαστάσεις: Product, Region, Date Ιεραρχίες διαστάσεων: Industry Country Year Location Κύβος ΠΩΛΗΣΕΙΣ Category Region Quarter Item Product City Month Week Time Store Day Μέτρηση: Αριθμός Πωλήσεων για τις συγκεκριμένες διαστάσεις (Location, Item, Time) Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 23 Εννοιολογική Ιεραρχία all Παράδειγμα: Εννοιολογική ιεραρχία (Concept Hierarchy) για Location all region Europe... North_America country Germany... Spain Canada... Mexico city Frankfurt... Vancouver... Toronto office Πεδίο Τιμών L. Chan... M. Wind Αντίστοιχες Τιμές Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 24 Εξόρυξη Δεδομένων

13 Εννοιολογικό Μοντέλο Μοντέλο εδομένων (Σχήμα) Σε σχεσιακό μοντέλο Πίνακες ιαστάσεων Πίνακας με πληροφορία σχετικά με κάθε διάσταση Ιtem (item_name, brand, type), Τime(day, week, month, quarter, year) Πίνακας γεγονότων (Fact Table) έχει ως γνωρίσματα: τις μετρήσεις (πχ αριθμός πωλήσεων, τιμή σε δολάρια, κλπ) + το πρωτεύον κλειδί κάθε σχετικού πίνακα διαστάσεων Σχήμα Αστέρι (Star schema) Πίνακας γεγονότων στο κέντρο που συνδέεται με ένα σύνολο από πίνακες διαστάσεων Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 25 Εννοιολογικό Μοντέλο time time_key day day_of_the_week month quarter year branch branch_key branch_name branch_type Παράδειγμα Σχήματος Αστεριού Μετρήσεις Πίνακας Γεγονότων ΠΩΛΗΣΕΙΣ time_key item_key branch_key location_key units_sold dollars_sold avg_sales item item_key item_name brand type supplier_type location location_key street city state_or_province country 4 διαστάσεις (time, item, location, branch) Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 26 Εξόρυξη Δεδομένων

14 Εννοιολογικό Μοντέλο Παράδειγμα Σχήματος Αστεριού Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 27 Εννοιολογικό Μοντέλο Σχήμα Νιφάδας (Snowflake schema) Μια βελτίωση του σχήματος αστέρι όπου η ιεραρχία διαστάσεων κανονικοποιείται σε ένα σύνολο από μικρότερους πίνακες διαστάσεων Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 28 Εξόρυξη Δεδομένων

15 Εννοιολογικό Μοντέλο time time_key day day_of_the_week month quarter year branch branch_key branch_name branch_type Παράδειγμα Σχήματος Νιφάδας Μετρήσεις Πίνακας Γεγονότων ΠΩΛΗΣΕΙΣ time_key item_key branch_key location_key units_sold dollars_sold avg_sales item item_key item_name brand type supplier_key location location_key street city_key supplier supplier_key supplier_type city_key city state_or_province country Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 29 city Εννοιολογικό Μοντέλο Αστερισμοί Γεγονότων (Fact constellations) Πολλαπλοί Πίνακες Γεγονότων που μοιράζονται τους Πίνακες ιαστάσεων, μπορούμε να τους δούμε ως συλλογή από αστέρια και άρα ως Αστερισμό Γεγονότων ή Σχήμα Γαλαξία (galaxy schema) Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 30 Εξόρυξη Δεδομένων

16 Εννοιολογικό Μοντέλο time time_key day day_of_the_week month quarter year branch branch_key branch_name branch_type Παράδειγμα Σχήματος Αστερισμού Γεγονότων Μετρήσεις Πίνακας Γεγονότων ΠΩΛΗΣΕΙΣ time_key item_key branch_key location_key units_sold dollars_sold avg_sales item item_key item_name brand type supplier_type location location_key street city province_or_state country Πίνακας Γεγονότων ΑΠΟΣΤΟΛΗ time_key item_key shipper_key from_location to_location dollars_cost units_shipped shipper shipper_key shipper_name location_key shipper_type Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 31 Κύβος εδομένων Ορολογία Συχνά ο n-d κύβος λέγεται βασικός κυβοειδής (base cuboid). Στο παράδειγμα ο κύβος με τις τέσσερεις διαστάσεις (Item, Time, Branch, Location) O 0-D cuboid που περιέχει τη μεγαλύτερο επίπεδο περίληψης, apex cuboid. Το πλέγμα των κυβοειδών κύβος δεδομένων. Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 32 Εξόρυξη Δεδομένων

17 Πλέγμα Κυβοειδών Κύβος δεδομένων Κύβος εδομένων all time item location supplier 0-D (apex) cuboid 1-D cuboids time, item time, location item, location location, supplier time, supplier item, supplier 2-D cuboids time, item, location time, item, supplier time, location, supplier item, location, supplier 3-D cuboids time, item, location, supplier 4-D (base) cuboid Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 33 Παράδειγμα Ιεραρχιών Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 34 Εξόρυξη Δεδομένων

18 Οπτικοποίηση Κύβου Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 35 Servers & Τεχνολογικές λύσεις DW: Σχεσιακά και επεκτεταμένα σχεσιακά DBMS OLAP: Relational OLAP (ROLAP) Multidimensional OLAP (MOLAP) Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 36 Εξόρυξη Δεδομένων

19 Σχεσιακά Σ Β & Αποθήκες εδομένων Εξειδικευμένες τεχνικές δεικτοδότησης (indexing) Εξειδικευμένες τεχνικές συνένωσης (join) ιαμοίραση των δεδομένων (data partitioning) και χρήση παράλληλων τεχνικών Εξειδικευμένες τεχνικές αποθήκευσης και επεξεργασίας ερωτήσεων για συναθροίσεις δεδομένων (aggregates) Επεκτάσεις της SQL και της επεξεργασίας των σχετικών ερωτήσεων Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 37 ROLAP Servers Βασική ιδέα: χρήση ενός RDBMS ως μέσου αποθήκευσης και επερώτησης (με όλα τα σχετικά πλεονεκτήματα) Επιπλέον λειτουργικότητα των client εργαλείων: υνατότητα επαναχρησιμοποίησης συναθροίσεων Χρήση multi statement SQL Βελτιστοποίηση των ερωτήσεων ανά RDBMS Αργά ως συστήματα (μέχρι στιγμής τουλάχιστον) + υνατότητα υποβολής οποιασδήποτε ερώτησης + Εύκολη χρήση από τους administrators που γνώριζαν τη σχεσιακή τεχνολογία Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 38 Εξόρυξη Δεδομένων

20 Πλάνο και στατιστικά από ένα ROLAP εργαλείο select a3.eksam_foit_code EKSAM_FOIT_CODE, max(a3.descr) DESCR, a2.sex SEX, (SUM(a1.FOO1)) M from FACT1 a1, PERFORMANCE METRICS (Seconds) FOITITIS a2, Loading Parameters: 0,0 EKSAM_FOIT a3 SQL Generation: 0,4 where a2.foititis_code = a1.foititis_code Executing Query: 0,3 and a1.eksam_foit_code = a3.eksam_foit_code Results Processing: 0, and (((((((a2.sex = '1')) Total Machine Time: 1,5 and ((EXISTS (select * Rows returned from Database : 24 from EKSAM_FOIT m1 where m1.eksam_foit_code = a3.eksam_foit_code and m1.category = 'ΕΑΡΙΝΟ')))) or (((a2.sex = '2')) and ((EXISTS (select * from EKSAM_FOIT m1 where m1.eksam_foit_code = a3.eksam_foit_code and m1.category = 'ΕΑΡΙΝΟ'))))) or (((a2.sex = '1')) and ((EXISTS (select * from EKSAM_FOIT m1 where m1.eksam_foit_code = a3.eksam_foit_code and m1.category = 'ΧΕΙΜΕΡΙΝΟ'))))) or (((a2.sex = '2')) and ((EXISTS (select * from EKSAM_FOIT m1 where m1.eksam_foit_code = a3.eksam_foit_code and m1.category = 'ΧΕΙΜΕΡΙΝΟ')))))) group by a3.eksam_foit_code, a2.sex Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 39 Πολυδιάστατοι πίνακες REGION N S W PRODUCT Juice Cola Soap Jan MONTH Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 40 Εξόρυξη Δεδομένων

21 MOLAP Servers Η αποθήκευση γίνεται σε πολυδιάστατους πίνακες (multi-dimensional arrays) «πίνακες» με την έννοια της άλγεβρας / γλωσσών προγραμματισμού /..., και όχι του σχεσιακού μοντέλου Χρήση τεχνικών συμπιέσεως (οι πίνακες είναι αραιοί σε βαθμό ως και 80%) Στις αρχές του 2002 είχαν το 98% τηςαγοράςστοπεδίοτωνclient tools + Πολύ γρήγοροι υπολογισμοί των λειτουργιών OLAP - Κανονικά απαιτούν τον προϋπολογισμό των απαραίτητων συναθροίσεων Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 41 Υλοποίηση πολυδιάστατων πινάκων Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 42 Εξόρυξη Δεδομένων

22 Μετρήσεις - Συναθροίσεις Εκτός από τις λεπτομερείς πληροφορίες των fact tables, μπορεί να υπολογίσουμε και συναθροίσεις των δεδομένων για καλύτερους χρόνους απόκρισης. Για παράδειγμα, αν ο fact table είναι SALES(GeographyCode, ProductCode, TimeCode, AccountCode, Amount, Unit) μπορούμε να υπολογίσουμε AVG(Sales) ανά Region, Product, Quarter MAX(Sales) ανά Brand,Month, με Region = Europe SUM(Sales) ανά City Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 43 Μετρήσεις - Συναθροίσεις Υπάρχουν τρεις κατηγορίες μετρήσεων: Κατανεμημένες (Distributive): αν μπορούμε να διαμερίσουμε τα δεδομένα και να υπολογίσουμε τη συναθροιστική συνάρτηση σε κάθε διαμέριση ξεχωριστά και σχεδόν άμεσα από αυτές τις τιμές να υπολογίσουμε την ολική τιμή Πχ count(), sum(), min(), max() Αλγεβρικές (Algebraic): πάλι μπορούμε να υπολογίσουμε την ολική τιμή της συνάρτησης από τις τιμές της συνάρτησης στις διαμερίσεις χρησιμοποιώντας M γνωρίσματα (όπου M σταθερά), Πχ. avg(), min_n(), standard_deviation() Ολιστικές (Holistic): δεν υπάρχει όριο (πολυπλοκότητα) σταθερής τάξης για το χώρο αποθήκευσης που χρειαζόμαστε για τον υπολογισμό της ολικής τιμής από τις τιμές στις διαμερίσεις, Πχ. median(), mode(), rank() Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 44 Εξόρυξη Δεδομένων

23 Βασικές Πράξεις Παράδειγμα TV PC VCR sum Product Date 1Qtr 2Qtr 3Qtr 4Qtr sum Total annual sales of TV in U.S.A. U.S.A Canada Mexico Country sum Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 45 Συναθροίσεις εδομένων Χωριστός πίνακας/όψη αθροισμάτων Sales table RID City Amount 1 Athens $100 2 N.Y. $300 3 Rome $120 4 Athens $250 5 Rome $180 6 Rome $65 7 N.Y. $450 City-dimension sum table City Amount Athens $350 N.Y. $750 Rome $365 Επέκταση του υπάρχοντος βασικού πίνακα: Ενσωμάτωση των αθροιστικών εγγραφών στον βασικό (base/basic) fact table + μια επιπλέον στήλη που να εξηγεί το επίπεδο συνάθροισης Extended Sales table sum RID City Amount Level 1 Athens $100 NULL 2 N.Y. $300 NULL 3 Rome $120 NULL 4 Athens $250 NULL 5 Rome $180 NULL 6 Rome $65 NULL 7 N.Y. $450 NULL 8 Athens $350 City 9 N.Y. $750 City 10 Rome $365 City Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 46 Εξόρυξη Δεδομένων

24 Βασικές Αλγεβρικές Πράξεις Συναθροιστική Άνοδος (Roll up): συνάθροιση της πληροφορίας = μετάβαση από χαμηλότερο σε υψηλότερο επίπεδο αδρομέρειας (π.χ. από day σε month) Αναλυτική Κάθοδος (Drill down): το αντίστροφο του Roll up (π.χ month σε day) Οριζόντιος Τεμαχισμός (Slice): (σχεσιακή) επιλογή Κάθετος Τεμαχισμός (Dice): (σχεσιακή) προβολή Περιστροφή (Pivot): αναδιάταξη της 2D προβολής του πολυδιάστατου κύβου στην οθόνη Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 47 Βασικές Αλγεβρικές Πράξεις Roll-up Η συναθροιστική άνοδος περιλαμβάνει τον υπολογισμό μίας συνολικής τιμής για μία θέση στην ιεραρχία μίας διάστασης δεδομένων. Για παράδειγμα, με ένα roll-up, οι πωλήσεις σε επίπεδο τοπικών μαγαζιών (Store) παράγουν τις συνολικές πωλήσεις σε επίπεδο πόλης (City) και αυτές με τη σειρά τους με ένα ακόμα roll-up παράγουν τις πωλήσεις σε επίπεδο περιοχής (Region). Industry Category Product Country Year Region Quarter City Month Week Store Day Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 48 Εξόρυξη Δεδομένων

25 Βασικές Αλγεβρικές Πράξεις Roll-up (Παράδειγμα) Industry Country Year Category Region Quarter Q1 Q2 Sales volume Products Electronics Toys Clothing Cosmetics Electronics Toys Clothing Cosmetics Store1 Store2 $5,2 $1,9 $2,3 $1,1 $8,9 $0,75 $4,6 $1,5 $5,6 $1,4 $2,6 $1,1 $7,2 $0,4 $4,6 $0,5 Χρόνος: Επίπεδο Quarter Product Year 1996 City Store Sales volume Products Electronics Toys Clothing Cosmetics Month Week Day Store1 Store2 $14,1 $2,65 $6,9 $2,6 Χρόνος: Επίπεδο Year $12,8 $1,8 $7,2 $1,6 SUM(Sales volumes) Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 49 Βασικές Αλγεβρικές Πράξεις Drill-Down Ο χρήστης περνά από ένα ανώτερο επίπεδο μίας διάστασης που έχει συγκεντρωτικά δεδομένα σε ένα χαμηλότερο επίπεδο με πιο λεπτομερή δεδομένα. Πρόκειται για την αντίστροφη πράξη του roll-up. Για παράδειγμα, κατά το drill down, ξεκινάμε από τις πωλήσεις ανά περιοχή (Region) και παίρνουμε τις αναλυτικές πωλήσεις ανά πόλη (City) και μετά τις πωλήσεις ανά κατάστημα (Store). Industry Category Country Region Year Quarter Product City MonthWeek Store Day Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 50 Εξόρυξη Δεδομένων

26 Βασικές Αλγεβρικές Πράξεις Drill-down (Παράδειγμα) Industry Category Country Region Year Quarter Product City Store Month Week Day Q1 Q2 Sales volume Products Electronics Toys Clothing Cosmetics Electronics Toys Clothing Cosmetics Store1 Store2 $5,2 $1,9 $2,3 $1,1 $8,9 $0,75 $4,6 $1,5 Item: Επίπεδο Industry $5,6 $1,4 $2,6 $1,1 $7,2 $0,4 $4,6 $0,5 Q1 Q2 Sales volume Electronics Store1 Store2 VCR Camcorder TV CD player VCR Camcorder TV CD player $1,4 $0,6 $2,0 $1,2 $2,4 $3,3 $2,2 $1,0 $1,4 $0,6 $2,4 $1,2 $2,4 $1,3 $2,5 $1,0 Item: Επίπεδο Category Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 51 Βασικές Αλγεβρικές Πράξεις Περιστροφή (Pivot) Εναλλαγή των γραμμών και των στηλών του κύβου, όπως αυτός παρουσιάζεται στην οθόνη εν απαιτείται κανένας νέος υπολογισμός στη Β Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 52 Εξόρυξη Δεδομένων

27 Βασικές Αλγεβρικές Πράξεις Pivot (Παράδειγμα) Sales volume Sales volume Q1 Q2 Products Electronics Toys Clothing Cosmetics Electronics Toys Clothing Cosmetics Store1 Store2 $5,2 $1,9 $2,3 $1,1 $8,9 $0,75 $4,6 $1,5 $5,6 $1,4 $2,6 $1,1 $7,2 $0,4 $4,6 $0,5 Store 1 Store 2 Products Q1 Q2 Electronics Toys Clothing Cosmetics Electronics Toys Clothing Cosmetics $5,2 $1,9 $2,3 $1,1 $5,6 $1,4 $2,6 $1,1 $8,9 $0,75 $4,6 $1,5 $7,2 $0,4 $4,6 $0,5 Εναλλαγή γραμμών και στηλών Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 53 Βασικές Αλγεβρικές Πράξεις Οριζόντιος (slice) και Κάθετος (dice) Τεμαχισμός Slice : Επιλογή συγκεκριμένων τιμών σε κάποια διάσταση (select) Π.χ., διώξε το Store 2 από τα καταστήματα και τις βιομηχανίες Clothing και Cosmetics Dicing : Σβήσιμο μιας ολόκληρης διάστασης (project) Π.χ., από ένα κύβο πωλήσεων ανά προϊόν, ημερομηνία και περιοχή, να δειχθεί ο μέσος όρος πωλήσεων ανά προϊόν και ημερομηνία. Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 54 Εξόρυξη Δεδομένων

28 Βασικές Αλγεβρικές Πράξεις Slice&Dice (Παράδειγμα) Q1 Q2 Sales volume Products Electronics Toys Clothing Cosmetics Electronics Toys Clothing Cosmetics Store1 Store2 $5,2 $1,9 $2,3 $1,1 $8,9 $0,75 $4,6 $1,5 $5,6 $1,4 $2,6 $1,1 $7,2 $0,4 $4,6 $0,5 Q1 Q2 Sales volume Products Electronics Toys Electronics Toys Store1 $5,2 $1,9 $8,9 $0,75 Διώξε το Store 2 και τις βιομηχανίες Clothing & Cosmetics Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 55 location (cities) Toronto 395 Vancouver time (quarters) Q1 Q2 605 computer home entertainment item (types) dice for (location = Toronto or Vancouver ) and (time = Q1 or Q2 ) and (item = home entertainment or computer ) location (countries) USA 2000 Canada time (quarters) roll-up on location (from cities to countries) Q Q2 Q3 Q4 computer security home phone entertainment item (types) Fig Typical OLAP Operations location (cities) item (types) Chicago New York Toronto Vancouver home entertainment computer phone computer home entertainment phone item (types) pivot security Chicago 440 New York Toronto Vancouver Q Q2 Q3 Q4 slice computer security for time = Q1 home phone entertainment location (cities) time (quarters) item (types) Vancouver January February March April May June July August September October November Chicago New York Toronto December security 400 computer security New York Vancouver home phone Chicago Toronto entertainment Εξόρυξη Δεδομένων: Ακ. Έτος location (cities) Αποθήκες Δεδομένων item (types) 56 time (months) location (cities) drill-down on time (from quarters to months) Εξόρυξη Δεδομένων

29 Βασικές Αλγεβρικές Πράξεις Τελεστής Rollup group by rollup product, store, city group by product, store, city group by store, city group by city Rollup & Cube Τελεστής Cube για όλους τους δυνατούς συνδυασμούς group by cube product, store, city group by κάθε υποσύνολο του {product, store, city}, ανεξάρτητα από τη σειρά που έδωσα στις στήλες αυτές στην εντολή Το αποτέλεσμα των τελεστών δεν παράγει πολλούς μικρούς πίνακες, αλλά έναν πίνακα με εγγραφές με NULL όπου δεν αντιστοιχεί τιμή Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 57 Τελεστές Rollup και Cube Aggregate Sum RED WHITE BLUE Jim Gray Adam Bosworth Andrew Layman Microsoft Group By (with total) By Color Sum RED WHITE BLUE By Make Hamid Pirahesh IBM Cross Tab Chevy Ford By Color select color, make, year, sum(units) from car_sales where make in { chevy, ford } and year between 1990 and 1994 group by cube color, make, year having sum(units) > 0; Sum By Make & Year By Year FORD CHEVY By Color & Year Sum By Color 1993 By Make RED WHITE BLUE By Make & Color Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 58 Εξόρυξη Δεδομένων

30 Αρχιτεκτονική Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 59 Αρχιτεκτονική Μετασχηματισμοί (Back-End) Front-End DW Πηγή Δεδομένων OLTP συστήματα Data Marts OLAP εργαλεία Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 60 Εξόρυξη Δεδομένων

31 Αρχιτεκτονική Πολλών Επιπέδων Multi-tier Αρχιτεκτονική Άλλες πηγές Metadata Monitor & Integrator OLAP Server ΒΔ σε λειτουργία Extract Transform Load Refresh Αποθήκη Δεδομένων Serve Analysis Query Reports Data mining Data Marts Πηγές εδομένων Αποθήκευση εδομένων Μηχανή OLAP Front-End Εργαλεία Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 61 Αρχιτεκτονική Πολλών Επιπέδων Multi-tier Αρχιτεκτονική Άλλες πηγές Metadata Monitor & Integrator OLAP Server ΒΔ σε λειτουργία Extract Transform Load Refresh DSA Αποθήκη Δεδομένων Serve Analysis Query Reports Data mining Data Marts Πηγές εδομένων Αποθήκευση εδομένων Μηχανή OLAP Front-End Εργαλεία Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 62 Εξόρυξη Δεδομένων

32 Αρχιτεκτονικές Μονάδες Sources (Πηγές): Κάθε πηγή από την οποία η Αποθήκη εδομένων αντλεί δεδομένα. {Data Staging Area (DSA): Μια Β στην οποία εκτελούνται οι μετασχηματισμοί και ο καθαρισμός των δεδομένων πριν την φόρτωση στην Αποθήκη εδομένων} Αποθήκη εδομένων (DW), Συλλογές εδομένων : Τα συστήματα που αποθηκεύονται τα δεδομένα που παρέχονται προς τους χρήστες. Data Marts: υποσύνολα της αποθήκης Βάση Μετα- εδομένων (Metadata Repository): Το υποσύστημα αποθήκευσης πληροφορίας σχετικά με τη δομή και λειτουργία όλου του συστήματος. Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 63 Λεξικό Μεταπληροφορίας Τα μετα-δεδομένα είναι τα δεδομένα που ορίζουν τα αντικείμενα της αποθήκης δεδομένων. Περιέχουν Περιγραφή της δομής της αποθήκης δεδομένων Σχήμα, όψεις, διαστάσεις, ιεραρχίες, την τοποθεσία των data mart και το περιεχόμενο τους, κλπ Λειτουργικά μεταδεδομένα data lineage (την ιστορία των δεδομένων που μεταφέρθηκαν και ποιοι μετασχηματισμοί χρησιμοποιήθηκαν), στοιχεία για το πόσο ενημερωμένα/πρόσφατα είναι, πληροφορία επίβλεψης (monitoring) για τη λειτουργία της αποθήκης (στατιστικά στοιχεία λειτουργίας, error reports, audit trails) Τους αλγορίθμους που χρησιμοποιηθήκαν για τις περιλήψεις Την απεικόνιση του λειτουργικού περιβάλλοντος στην αποθήκη δεδομένων εδομένα σχετικά με την απόδοση του συστήματος Business data Πολιτικές χρέωσης, ιδιοκτησίας δεδομένων, κλπ Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 64 Εξόρυξη Δεδομένων

33 Αρχιτεκτονική: Μετασχηματισμοί Back-End Εργαλεία ETL (Extract-Transform-Load) εφαρμογές: Εφαρμογές που εκτελούν τις διαδικασίες Εξαγωγής, μεταφοράς, μετασχηματισμού, καθαρισμού και φόρτωσης των δεδομένων από τις πηγές στην Αποθήκη εδομένων. Front-End Εργαλεία Εφαρμογές Ανάλυσης: Εφαρμογές παραγωγής αναφορών, OLAP, DSS, Data Mining Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 65 Μετασχηματισμοί Back-End Εργαλεία Data extraction Φέρε δεδομένα από πολλαπλές, ετερογενείς και εξωτερικές πηγές Data cleaning Εντοπισμός λαθών στα δεδομένα και διόρθωση τους όταν είναι δυνατόν Παραδείγματα: εδομένα που παραβιάζουν τους κανόνες της βάσης: διπλοεγγραφές, παραβιάσεις πρωτεύοντος ή ξένου κλειδιού, τιμές εκτός ορίων, παραβιάσεις λογικών κανόνων, κλπ Συνώνυμα και συγκρούσεις Ελλιπή δεδομένα Ομογενοποίηση κλειδιού Data transformation Μετατροπή των δεδομένων από το τοπικό format στο format της αποθήκης Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 66 Εξόρυξη Δεδομένων

34 Μετασχηματισμοί Load Ταξινόμηση, δημιουργία περίληψης, ενοποίηση (consolidate), υπολογισμός όψεων, έλεγχος integrity, δημιουργία ευρετηρίων και διαμερίσεων Η ενημέρωση / εισαγωγή δεδομένων στην πράξη δε γίνεται μέσω SQL, συνήθως μέσω εργαλείων batch loading πουδιαθέτουνόλατασ Β Refresh Back-End Εργαλεία Μετέφερε τις τροποποιήσεις από τις πηγές δεδομένων στην αποθήκη δεδομένων Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 67 Εργαλεία για την Υποστήριξη Αποφάσεων Front-End Εργαλεία Ad hoc ερωτήσεις και αναφορές Π.χ.,: MS Excel, Oracle Forms, OLAP pivot tables, drill down, roll up, slice, dice Data Mining Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 68 Εξόρυξη Δεδομένων

Εισαγωγή στις Αποθήκες εδομένων

Εισαγωγή στις Αποθήκες εδομένων Εξόρυξη Δεδομένων: Ακ. Έτος 2007-2008 Αποθήκες Δεδομένων 1 Εισαγωγή: OLTP Παραδοσιακή ιαχείριση εδομένων με Σ Β Σύστημα Επεξεργασίας οσοληψιών On-Line Transaction Processing (OLTP) Εισαγωγή στις Αποθήκες

Διαβάστε περισσότερα

Data Warehouse Refreshment via ETL tools. Panos Vassiliadis

Data Warehouse Refreshment via ETL tools. Panos Vassiliadis Data Warehouse Refreshment via ETL tools Panos Vassiliadis Data Warehouse Environment 2 Extract-Transform-Load (ETL) Extract Transform & Clean Load Sources DSA DW 3 Importance ETL market has a steady increase

Διαβάστε περισσότερα

Εξόρυξη Γνώσης από εδοµένα (Data Mining)

Εξόρυξη Γνώσης από εδοµένα (Data Mining) ΠΜΣ Πληροφορικής Πανεπιστηµίου Πειραιά Εξόρυξη Γνώσης από εδοµένα (Data Mining) Αποθήκες εδοµένων Γιάννης Θεοδωρίδης Τµήµα Πληροφορικής, Πανεπιστήµιο Πειραιά http://isl.cs.unipi.gr/db/courses/dm "Πυραµίδα"

Διαβάστε περισσότερα

Ολοκληρωµένη λύση επιλεκτικής συγκέντρωσης, αναδιοργάνωσης δεδοµένων και παραγωγής πληροφορίας

Ολοκληρωµένη λύση επιλεκτικής συγκέντρωσης, αναδιοργάνωσης δεδοµένων και παραγωγής πληροφορίας e.nfo Ολοκληρωµένη λύση επιλεκτικής συγκέντρωσης, αναδιοργάνωσης δεδοµένων και παραγωγής πληροφορίας Εξασφάλιση της εξειδικευµένης λύσης business intelligence για κάθε επιχείρηση πελάτης Τράπεζα Πειραιώς

Διαβάστε περισσότερα

«Χωροχρονικές Αποθήκες εδοµένων και η Εφαρµογή τους στην Περίπτωση της Αγοράς Ακινήτων»

«Χωροχρονικές Αποθήκες εδοµένων και η Εφαρµογή τους στην Περίπτωση της Αγοράς Ακινήτων» ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ «Χωροχρονικές Αποθήκες εδοµένων και η Εφαρµογή τους στην Περίπτωση της Αγοράς Ακινήτων» Μιχάλης Βαζιργιάννης Συνεργάτες:. Ξηνταρα, Α. Στέφου, Θ. Ασηµίνα,

Διαβάστε περισσότερα

Orchid: Integrating Schema Mapping and ETL ICDE 2008

Orchid: Integrating Schema Mapping and ETL ICDE 2008 Orchid: Integrating Schema Mapping and ETL ICDE 2008 Δομουχτσίδης Παναγιώτης Γενικά Data warehouse (DW): Είναι μία αποθήκη πληροφοριών οργανωμένη από ένα ενοποιημένο μοντέλο. Τα δεδομένα συλλέγονται από

Διαβάστε περισσότερα

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Λήψη απόφασης, Συστήματα Υποστήριξης Αποφάσεων, OLAP Ανάλυση, Περιβαλλοντική Εκπαίδευση ΕΙΣΑΓΩΓΗ

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Λήψη απόφασης, Συστήματα Υποστήριξης Αποφάσεων, OLAP Ανάλυση, Περιβαλλοντική Εκπαίδευση ΕΙΣΑΓΩΓΗ Η Αναλυτική Επεξεργασία Δεδομένων (On Line Analytical Processing) στην Υποστήριξη Αποφάσεων των Υπευθύνων Περιβαλλοντικής Εκπαίδευσης των Διευθύνσεων Εκπαίδευσης Γιώργος Ραβασόπουλος 1, Ιωάννα Παπαιωάννου

Διαβάστε περισσότερα

11.1. Θεωρητικό υπόβαθρο για τους κύβους δεδομένων και την πολυδιάστατη ανάλυση

11.1. Θεωρητικό υπόβαθρο για τους κύβους δεδομένων και την πολυδιάστατη ανάλυση Κεφάλαιο 11. Αποθήκες και κύβοι δεδομένων Σύνοψη Σ αυτό το κεφάλαιο θα παρουσιάσουμε τη δημιουργία μιας αποθήκης δεδομένων ή, αλλιώς, ενός κύβου δεδομένων. Ο κύβος είναι μια πολυδιάστατη δομή δεδομένων

Διαβάστε περισσότερα

ΑΠΟΘΗΚΕΣ Ε ΟΜΕΝΩΝ Σ. ΛΙΓΟΥ ΙΣΤΙΑΝΟΣ

ΑΠΟΘΗΚΕΣ Ε ΟΜΕΝΩΝ Σ. ΛΙΓΟΥ ΙΣΤΙΑΝΟΣ ΑΠΟΘΗΚΕΣ Ε ΟΜΕΝΩΝ 195 ΑΠΟΘΗΚΕΣ Ε ΟΜΕΝΩΝ Σ. ΛΙΓΟΥ ΙΣΤΙΑΝΟΣ 8.1 ΓΕΝΙΚΑ Από τα µέσα της δεκαετίας του '70, η αλµατώδης παραγωγή πολύ ισχυρών συστηµάτων διαχείρισης βάσεων δεδοµένων βοήθησε στην ανάπτυξη πληροφοριακών

Διαβάστε περισσότερα

Επισκόπηση Μαθήµατος

Επισκόπηση Μαθήµατος Βάσεις εδοµένων 5 ο Εξάµηνο ηµήτρης Λέκκας Επίκουρος Καθηγητής dlekkas@env.aegean.gr Τµήµα Στατιστικής & Αναλογιστικών-Χρηµατοοικονοµικών Μαθηµατικών Επισκόπηση Μαθήµατος Εισαγωγή (Σ Β ) Το µοντέλο σχέσεων

Διαβάστε περισσότερα

1. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΔΕΔΟΜΕΝΩΝ

1. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΔΕΔΟΜΕΝΩΝ 1. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΔΕΔΟΜΕΝΩΝ Τα δεδομένα που θα επεξεργασθούμε στη διάρκεια του εργαστηρίου παραχωρήθηκαν από την εταιρεία ICAP ειδικά για τις ανάγκες του μαθήματος. Τα δεδομένα αυτά αντλήθηκαν από την

Διαβάστε περισσότερα

Business Development, SAP Hellas 01/12/2007

Business Development, SAP Hellas 01/12/2007 Επιχειρηµατική Ευφυΐα Απότηνιδέαστηνπράξη Παναγιώτης Θεοφάνους Business Development, SAP Hellas 01/12/2007 Περιεχόµενα 1. SAP Εταιρικόπροφίλ 2. Επιχειρηµατική Ευφυΐα - Η ανάγκη 3. SAP Business Intelligence

Διαβάστε περισσότερα

PROJECT ΕΡΓΑΣΤΗΡΙΩΝ ΒΑΣΕΩΝ ΔΕΔΟΜΕΝΩΝ Ι. Τμήμα Μηχανικών Πληροφορικής Τ.Ε.

PROJECT ΕΡΓΑΣΤΗΡΙΩΝ ΒΑΣΕΩΝ ΔΕΔΟΜΕΝΩΝ Ι. Τμήμα Μηχανικών Πληροφορικής Τ.Ε. Παραδοτέα 1. Το αρχείο.mdb της βάσης δεδομένων σας σε ACCESS 2. Ένα CD που θα αναγράφει το ονοματεπώνυμο του σπουδαστή και το ΑΕΜ και θα περιέχει το αρχείο.mdb της βάσης δεδομένων καθώς και το εγχειρίδιο

Διαβάστε περισσότερα

Εισαγωγή στα Συστήματα Βάσεων Δεδομένων. Βάσεις Δεδομένων 2014-2015 Ευαγγελία Πιτουρά 1

Εισαγωγή στα Συστήματα Βάσεων Δεδομένων. Βάσεις Δεδομένων 2014-2015 Ευαγγελία Πιτουρά 1 Εισαγωγή στα Συστήματα Βάσεων Δεδομένων Ευαγγελία Πιτουρά 1 Τι θα δούμε σήμερα I. Σύντομη εισαγωγή στις ΒΔ II. Περιγραφή σκοπού και περιεχομένου μαθήματος III. Ιστορία των ΣΔΒΔ IV. Διαδικαστικά θέματα

Διαβάστε περισσότερα

Συνοπτική επισκόπηση αγοράς & εργαλείων ΒΙ

Συνοπτική επισκόπηση αγοράς & εργαλείων ΒΙ Συνοπτική επισκόπηση αγοράς & εργαλείων ΒΙ Μιχάλης Μεταξάς Innovatia ΕΠΕ Agenda Αναφορά σε στοιχεία της µελέτης «Συγκέντρωση, ανάλυση και αξιολόγηση εργαλείων και λογισµικού Επιχειρηµατικής Ευφυΐας» Ορισµοί

Διαβάστε περισσότερα

ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ - ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΣΒΔ - ΕΙΣΑΓΩΓΗ ΣΤΟ ΜΟΝΤΕΛΟ ΟΝΤΟΤΗΤΩΝ ΣΥΣΧΕΤΙΣΕΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ

ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ - ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΣΒΔ - ΕΙΣΑΓΩΓΗ ΣΤΟ ΜΟΝΤΕΛΟ ΟΝΤΟΤΗΤΩΝ ΣΥΣΧΕΤΙΣΕΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Χειμερινό Εξάμηνο 2013 - ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΣΒΔ - ΕΙΣΑΓΩΓΗ ΣΤΟ ΜΟΝΤΕΛΟ ΟΝΤΟΤΗΤΩΝ ΣΥΣΧΕΤΙΣΕΩΝ Δρ. Βαγγελιώ Καβακλή ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ, ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ 1 Αρχιτεκτονική

Διαβάστε περισσότερα

Διαχείριση Δεδομένων

Διαχείριση Δεδομένων Διαχείριση Δεδομένων Βαγγελιώ Καβακλή Τμήμα Πολιτισμικής Τεχνολογίας και Επικοινωνίας Πανεπιστήμιο Αιγαίου 1 Εαρινό Εξάμηνο 2012-13 Περιεχόμενο σημερινής διάλεξης Βάσεις Δεδομένων Ορισμοί Παραδείγματα

Διαβάστε περισσότερα

Certified Data Base Designer (CDBD)

Certified Data Base Designer (CDBD) Certified Data Base Designer (CDBD) Εξεταστέα Ύλη (Syllabus) Πνευµατικά ικαιώµατα Το παρόν είναι πνευµατική ιδιοκτησία της ACTA Α.Ε. και προστατεύεται από την Ελληνική και Ευρωπαϊκή νοµοθεσία που αφορά

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς. Τμήμα Ψηφιακών Συστημάτων Π.Μ.Σ. «Διδακτική της Τεχνολογίας & Ψηφιακά Συστήματα» Κατεύθυνση Ψηφιακών Επικοινωνιών και Δικτύων

Πανεπιστήμιο Πειραιώς. Τμήμα Ψηφιακών Συστημάτων Π.Μ.Σ. «Διδακτική της Τεχνολογίας & Ψηφιακά Συστήματα» Κατεύθυνση Ψηφιακών Επικοινωνιών και Δικτύων Πανεπιστήμιο Πειραιώς Τμήμα Ψηφιακών Συστημάτων Π.Μ.Σ. «Διδακτική της Τεχνολογίας & Ψηφιακά Συστήματα» Κατεύθυνση Ψηφιακών Επικοινωνιών και Δικτύων Διπλωματική Εργασία «Σχεδίαση και Ανάπτυξη Δικτυοκεντρικού

Διαβάστε περισσότερα

SQL Data Manipulation Language

SQL Data Manipulation Language SQL Data Manipulation Language Τελεστής union συνδυάζει subselects τα οποία παράγουν συμβατές σχέσεις γενική μορφή: subselect {union [all] subselect} περιορισμός: τα subselects δεν μπορούν να περιέχουν

Διαβάστε περισσότερα

Information Technology for Business

Information Technology for Business Information Technology for Business! Lecturer: N. Kyritsis, MBA, Ph.D. Candidate!! e-mail: kyritsis@ist.edu.gr Διαχείριση Επιχειρηματικών Δεδομένων - Databases Ορισμός Βάσης Δεδομένων Συλλογή συναφών αρχείων

Διαβάστε περισσότερα

Εισαγωγή στα Συστήµατα Βάσεων Δεδοµένων

Εισαγωγή στα Συστήµατα Βάσεων Δεδοµένων Εισαγωγή στα Συστήµατα Βάσεων Δεδοµένων Βάσεις εδοµένων 2011-2012 Ευαγγελία Πιτουρά 1 Βασικές Έννοιες Τι είναι µια βάση δεδοµένων; Βάση Δεδοµένων: συλλογή από σχετιζόµενα δεδοµένα Ειδικού σκοπού λογισµικό

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων

Τμήμα Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων «Βάσεις Δεδομένων και Ευφυή Πληροφοριακά Συστήματα» «Σημειώσεις για την SQL» ΕΞΑΜΗΝΟ: ΣΤ Δρ. Κωνσταντίνος Χ. Γιωτόπουλος Πάτρα, Νοέμβριος 2010 SQL Create Table Η CREATE TABLE

Διαβάστε περισσότερα

Επίλυση προβλήματος με Access

Επίλυση προβλήματος με Access Δ.1. Το προς επίλυση πρόβλημα Ζητείται να κατασκευάσετε τα αρχεία και τα προγράμματα μιας εφαρμογής καταχώρησης Δαπανών μελών ΔΕΠ (Διδακτικό και Ερευνητικό Προσωπικό) για την παρακολούθηση του απολογισμού

Διαβάστε περισσότερα

Γενικό πλαίσιο. Απαιτήσεις Μοντέλο εδοµένων. MinusXLRequirements. Απόστολος Ζάρρας http://www.cs.uoi.gr/~zarras/se.htm

Γενικό πλαίσιο. Απαιτήσεις Μοντέλο εδοµένων. MinusXLRequirements. Απόστολος Ζάρρας http://www.cs.uoi.gr/~zarras/se.htm MinusXLRequirements Απόστολος Ζάρρας http://www.cs.uoi.gr/~zarras/se.htm Γενικό πλαίσιο Μια από τις πιο γνωστές και ευρέως διαδεδομένες εμπορικές εφαρμογές για τη διαχείριση λογιστικών φύλλων είναι το

Διαβάστε περισσότερα

ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ. Επιλέγει όλες τις πλειάδες, από μια σχέση R, που ικανοποιούν τη συνθήκη επιλογής.

ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ. Επιλέγει όλες τις πλειάδες, από μια σχέση R, που ικανοποιούν τη συνθήκη επιλογής. ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Χειμερινό Εξάμηνο 2012 SQL Structured Query Language Δρ. Βαγγελιώ Καβακλή ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ, ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ 1 Πράξεις της σχεσιακής άλγεβρας ΠΡΑΞΗ ΣΚΟΠΟΣ

Διαβάστε περισσότερα

Εισαγωγή. Τι είναι µια βάση δεδοµένων;

Εισαγωγή. Τι είναι µια βάση δεδοµένων; Ζήτω οι Βάσεις εδοµένων!! Εισαγωγή Αντικείµενο: Θεµελιώδες πρόβληµα της επιστήµης µας εδοµένα Μοντελοποίηση Αποθήκευση Επεξεργασία (εύρεση πληροφορίας σχετικής µε µια συγκεκριµένη ερώτηση) Σωστή Λειτουργία

Διαβάστε περισσότερα

Ιωσηφίδης Ελευθέριος

Ιωσηφίδης Ελευθέριος Διαχείρηση Πολυδιάστατων Δεδομένων: Πειραματική και Συγκριτική Αξιολόγηση της Απόδοσης Εμπορικών και Ανοικτού Κώδικα DBMS Ιωσηφίδης Ελευθέριος ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Επιβλέπων Καθηγητής Ευαγγελίδης Γεώργιος

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ. Παραγωγικές Λειτουργίες Επιχείρησης

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ. Παραγωγικές Λειτουργίες Επιχείρησης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: Οικονοµικές, Εµπορικές και Παραγωγικές Λειτουργίες

Διαβάστε περισσότερα

ΑΠΟΔΟΤΙΚΗ ΑΠΟΤΙΜΗΣΗ ΕΡΩΤΗΣΕΩΝ OLAP Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ. Υποβάλλεται στην

ΑΠΟΔΟΤΙΚΗ ΑΠΟΤΙΜΗΣΗ ΕΡΩΤΗΣΕΩΝ OLAP Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ. Υποβάλλεται στην ΑΠΟΔΟΤΙΚΗ ΑΠΟΤΙΜΗΣΗ ΕΡΩΤΗΣΕΩΝ OLAP Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ Υποβάλλεται στην ορισθείσα από την Γενική Συνέλευση Ειδικής Σύνθεσης του Τμήματος Πληροφορικής Εξεταστική Επιτροπή από την Χαρά Παπαγεωργίου

Διαβάστε περισσότερα

ΕΡΑΤΟΣΘΕΝΗΣ: Ένα Πρωτότυπο Σύστημα για την Άμεση Αναλυτική Επεξεργασία των Δεδομένων

ΕΡΑΤΟΣΘΕΝΗΣ: Ένα Πρωτότυπο Σύστημα για την Άμεση Αναλυτική Επεξεργασία των Δεδομένων ΕΡΑΤΟΣΘΕΝΗΣ: Ένα Πρωτότυπο Σύστημα για την Άμεση Αναλυτική Επεξεργασία των Δεδομένων Ν. ΚΑΡΑΓΙΑΝΝΙΔΗΣ δρ Ηλεκτρολόγος Μηχ/κός & Μηχ/κός Υπολογιστών Ε. Μ. Π. Γ. ΡΟΥΣΣΟΣ Ηλεκτρολόγος Μηχ/κός & Μηχ/κός Υπολογιστών

Διαβάστε περισσότερα

Επερωτήσεις σύζευξης με κατάταξη

Επερωτήσεις σύζευξης με κατάταξη Επερωτήσεις σύζευξης με κατάταξη Επερωτήσεις κατάταξης Top-K queries Οι επερωτήσεις κατάταξης επιστρέφουν τις k απαντήσεις που ταιριάζουν καλύτερα με τις προτιμήσεις του χρήστη. Επερωτήσεις κατάταξης Top-K

Διαβάστε περισσότερα

ΔΙΑΔΙΚΤΥΑΚΟ ΣΥΣΤΗΜΑ ΒΕΛΤΙΣΤΗΣ ΔΙΑΧΕΙΡΙΣΗΣ ΕΝΕΡΓΕΙΑΚΩΝ ΠΟΡΩΝ E.M.I.R. - Energy Management & Intelligent Reporting

ΔΙΑΔΙΚΤΥΑΚΟ ΣΥΣΤΗΜΑ ΒΕΛΤΙΣΤΗΣ ΔΙΑΧΕΙΡΙΣΗΣ ΕΝΕΡΓΕΙΑΚΩΝ ΠΟΡΩΝ E.M.I.R. - Energy Management & Intelligent Reporting ΔΙΑΔΙΚΤΥΑΚΟ ΣΥΣΤΗΜΑ ΒΕΛΤΙΣΤΗΣ ΔΙΑΧΕΙΡΙΣΗΣ ΕΝΕΡΓΕΙΑΚΩΝ ΠΟΡΩΝ E.M.I.R. - Energy Management & Intelligent Reporting Διαδικτυακό OLAP Σύστημα Λήψης Αποφάσεων και δημιουργίας έξυπνων προσαρμοστικών γραφημάτων

Διαβάστε περισσότερα

Βάσεις Δεδομένων και Ευφυή Πληροφοριακά Συστήματα Επιχειρηματικότητας. 3ο Μάθημα: Εισαγωγή στην SQL. Δρ. Κωνσταντίνος Χ.

Βάσεις Δεδομένων και Ευφυή Πληροφοριακά Συστήματα Επιχειρηματικότητας. 3ο Μάθημα: Εισαγωγή στην SQL. Δρ. Κωνσταντίνος Χ. Βάσεις Δεδομένων και Ευφυή Πληροφοριακά Συστήματα Επιχειρηματικότητας 3ο Μάθημα: Εισαγωγή στην SQL Δρ. Κωνσταντίνος Χ. Γιωτόπουλος SQL Background SQL Structured Query Language Standard query γλώσσα για

Διαβάστε περισσότερα

Βάσεις εδομένων ΘΕΜΑ ΕΡΓΑΣΙΑΣ. Μέρμηγκας Αλέξανδρος Α.Μ. 30000. ιαχείρηση Πληροφοριακών Συστηματών

Βάσεις εδομένων ΘΕΜΑ ΕΡΓΑΣΙΑΣ. Μέρμηγκας Αλέξανδρος Α.Μ. 30000. ιαχείρηση Πληροφοριακών Συστηματών TMHMA ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τ.Ε.Ι. ΠΕΙΡΑΙΩΣ ΘΕΜΑ ΕΡΓΑΣΙΑΣ Βάσεις εδομένων Μέρμηγκας Αλέξανδρος Α.Μ. 30000 Βάση εδομένων Βάση δεδομένων είναι μια οργανωμένη συλλογή αλληλοσυσχετιζόμενων

Διαβάστε περισσότερα

Αποθήκες εδοµένων: Προκλήσεις και Ευκαιρίες

Αποθήκες εδοµένων: Προκλήσεις και Ευκαιρίες Αποθήκες εδοµένων: Προκλήσεις και Ευκαιρίες Ιωάννης Βασιλείου Εθνικό Μετσόβιο Πολυτεχνείο 27 Ιουνίου 2001 HELDINET - Αθήνα 1 ΕΠΙΣΚΟΠΗΣΗ ΟΜΙΛΙΑΣ Λίγα Λόγια για Αποθήκες εδοµένων (DW) Πως δηµιουργήθηκαν

Διαβάστε περισσότερα

Κεφάλαιο 5. Δημιουργία φορμών για τη βάση δεδομένων DVDclub

Κεφάλαιο 5. Δημιουργία φορμών για τη βάση δεδομένων DVDclub Κεφάλαιο 5. Δημιουργία φορμών για τη βάση δεδομένων DVDclub Σύνοψη Σ αυτό το κεφάλαιο θα περιγράψουμε τη δημιουργία φορμών, προκειμένου να εισάγουμε δεδομένα και να εμφανίζουμε στοιχεία από τους πίνακες

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος 9. Ευχαριστίες 11. Εισαγωγή 13. 1 Κατανόηση των δεδομένων 23. 2 Βασικές τεχνικές ανάλυσης δεδομένων 41

Περιεχόμενα. Πρόλογος 9. Ευχαριστίες 11. Εισαγωγή 13. 1 Κατανόηση των δεδομένων 23. 2 Βασικές τεχνικές ανάλυσης δεδομένων 41 Περιεχόμενα Πρόλογος 9 Ευχαριστίες 11 Εισαγωγή 13 Σχετικά με το βιβλίο...14 Σε ποιον απευθύνεται το βιβλίο...15 Οργάνωση του βιβλίου...16 Πώς θα προχωρήσετε...18 Στοιχεία του βιβλίου...19 Χρήση του συνοδευτικού

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ενότητα 7: Βάσεις Δεδομένων (Θεωρία) Πασχαλίδης Δημοσθένης Τμήμα Ιερατικών Σπουδών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Εισαγωγή στις βάσεις δεδομένων - Η ανατομία μιας βάσης δεδομένων

Εισαγωγή στις βάσεις δεδομένων - Η ανατομία μιας βάσης δεδομένων ΕΣΔ516 Τεχνολογίες Διαδικτύου Εισαγωγή στις βάσεις δεδομένων - Η ανατομία μιας βάσης δεδομένων Περιεχόμενα - Βιβλιογραφία Ενότητας Περιεχόμενα Ορισμοί Συστατικά στοιχεία εννοιολογικής σχεδίασης Συστατικά

Διαβάστε περισσότερα

Θεωρία Κανονικοποίησης

Θεωρία Κανονικοποίησης Θεωρία Κανονικοποίησης Πρώτη Κανονική Μορφή (1NF) Αποσύνθεση Συναρτησιακές Εξαρτήσεις Δεύτερη (2NF) και Τρίτη Κανονική Μορφή (3NF) Boyce Codd Κανονική Μορφή (BCNF) Καθολική Διαδικασία Σχεδίασης ΒΔ Βασική

Διαβάστε περισσότερα

ÈÛ ÁˆÁ ÛÙÈ μ ÛÂÈ Â ÔÌ ÓˆÓ

ÈÛ ÁˆÁ ÛÙÈ μ ÛÂÈ Â ÔÌ ÓˆÓ ΕΝΟΤΗΤΑ 1.1 ÈÛ ÁˆÁ ÛÙÈ μ ÛÂÈ Â ÔÌ ÓˆÓ ΔΙΔΑΚΤΙΚΟI ΣΤOΧΟΙ Στο τέλος της ενότητας αυτής πρέπει να μπορείτε: να επεξηγείτε τις έννοιες «βάση δεδομένων» και «σύστημα διαχείρισης βάσεων δεδομένων» να αναλύετε

Διαβάστε περισσότερα

Βάσεις Δεδομένων 2010-2011 Ευαγγελία Πιτουρά 2. Εννοιολογικός Σχεδιασμός Βάσεων εδομένων (με χρήση του Μοντέλου Οντοτήτων/Συσχετίσεων)

Βάσεις Δεδομένων 2010-2011 Ευαγγελία Πιτουρά 2. Εννοιολογικός Σχεδιασμός Βάσεων εδομένων (με χρήση του Μοντέλου Οντοτήτων/Συσχετίσεων) Σχεσιακή Άλγεβρα Βάσεις Δεδομένων 2010-2011 Ευαγγελία Πιτουρά 1 Εισαγωγή Στα προηγούμενα μαθήματα: Εννοιολογικός Σχεδιασμός Βάσεων εδομένων (με χρήση του Μοντέλου Οντοτήτων/Συσχετίσεων) Λογικός Σχεδιασμός

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΔΙΟΙΚΗΣΗΣ

ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΔΙΟΙΚΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΔΙΟΙΚΗΣΗΣ ΔΕΔΟΜΕΝΑ ΔΕΔΟΜΕΝΑ ΠΛΗΡΟΦΟΡΙΑ ΑΡΙΘΜΟΙ ΣΥΜΒΟΛΑ - ΛΕΞΕΙΣ ΟΠΟΙΑΔΗΠΟΤΕ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΣΥΜΒΑΙΝΕΙ ΣΕ ΜΙΑ ΟΙΚΟΝΟΜΙΚΗ ΜΟΝΑΔΑ ΠΡΕΠΕΙ ΝΑ ΜΕΤΡΕΙΤΑΙ ΚΑΙ ΝΑ ΚΑΤΑΓΡΑΦΕΤΑΙ ΟΡΓΑΝΩΣΗ ΚΑΤΑΓΡΑΦΗΣ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΔΙΠΛΩΜΑΤΙΚΩΝ ΕΡΓΑΣΙΩΝ Εργ. Συστημάτων Βάσεων Γνώσεων & Δεδομένων CONTEXT AWARE ΣΥΣΤΗΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΒΑΣΕΩΝ ΔΕΔΟΜΕΝΩΝ ΕΙΣΑΓΩΓΙΚΟ ΣΗΜΕΙΩΜΑ

ΘΕΜΑΤΑ ΔΙΠΛΩΜΑΤΙΚΩΝ ΕΡΓΑΣΙΩΝ Εργ. Συστημάτων Βάσεων Γνώσεων & Δεδομένων CONTEXT AWARE ΣΥΣΤΗΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΒΑΣΕΩΝ ΔΕΔΟΜΕΝΩΝ ΕΙΣΑΓΩΓΙΚΟ ΣΗΜΕΙΩΜΑ CONTEXT AWARE ΣΥΣΤΗΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΒΑΣΕΩΝ ΔΕΔΟΜΕΝΩΝ ΕΙΣΑΓΩΓΙΚΟ ΣΗΜΕΙΩΜΑ Με τις συγκεκριμένες διπλωματικές εργασίες, ο στόχος μας είναι να κατασκευάσουμε το πρώτο ερευνητικό Σχεσιακό Σύστημα Διαχείρισης

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Ηλεκτρονικό Εμπόριο

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Ηλεκτρονικό Εμπόριο ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ Ηλεκτρονικό Εμπόριο Αναπτύσσοντας ένα Ηλεκτρονικό Κατάστημα Ηλεκτρονικό Εμπόριο Λειτουργικότητα Εφαρμογής Κατάλογος προϊόντων Καλάθι

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς, Τμήμα Πληροφορικής

Πανεπιστήμιο Πειραιώς, Τμήμα Πληροφορικής Πανεπιστήμιο Πειραιώς, Τμήμα Πληροφορικής Ακαδημαϊκό έτος 2009-10 ΣΥΓΦΡΟΝΑ ΘΔΜΑΤΑ ΒΑΣΔΩΝ ΓΔΓΟΜΔΝΩΝ 1 η ΔΡΓΑΣΙΑ ΔΞΑΜΗΝΟΥ ομάδες των 2-3 ατόμων Εισαγωγή Έστω η βάση δεδομένων μιας επιχείρησης (θα μπορούσε

Διαβάστε περισσότερα

BΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΕΞΕΤΑΣΗ ΦΕΒΡΟΥΑΡΙΟΥ 2005

BΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΕΞΕΤΑΣΗ ΦΕΒΡΟΥΑΡΙΟΥ 2005 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ BΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΕΞΕΤΑΣΗ ΦΕΒΡΟΥΑΡΙΟΥ 2005 ΛΥΣΕΙΣ Ι. Βασιλείου -----------------------------------------------------------------------------------------------------

Διαβάστε περισσότερα

Αποθήκευση εδομένων. ομή ενός Σ Β. Εισαγωγή Το «εσωτερικό» ενός ΜΕΡΟΣ Β : Η (εσωτερική) αρχιτεκτονική ενός Σ Β είναι σε επίπεδα

Αποθήκευση εδομένων. ομή ενός Σ Β. Εισαγωγή Το «εσωτερικό» ενός ΜΕΡΟΣ Β : Η (εσωτερική) αρχιτεκτονική ενός Σ Β είναι σε επίπεδα Αποθήκευση εδομένων Βάσεις Δεδομένων 2009-2010 Ευαγγελία Πιτουρά 1 ΜΕΡΟΣ Β : Εισαγωγή Το «εσωτερικό» ενός Σ Β ομή ενός Σ Β Η (εσωτερική) αρχιτεκτονική ενός Σ Β είναι σε επίπεδα Τυπικά, κάθε σχέση σε ένα

Διαβάστε περισσότερα

INFORMATION MANAGEMENT

INFORMATION MANAGEMENT INFORMATION MANAGEMENT Εισηγητής ΜΙΧΑΛΟΠΟΥΛΟΣ ΒΑΣΙΛΕΙΟΣ ιδάκτορας Πανεπιστηµίου Πειραιώς ΑΘΗΝΑ INFORMATION MANAGEMENT Στόχοι Ποιός είναι ο ρόλος των πληροφοριακών συστηµάτων στο σύγχρονο επιχειρηµατικό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. 1 ο ΣΧΟΛΕΙΟ ΚΩΔΙΚΑ «Βασικά Θέματα Προγραμματισμού στην Ανάπτυξη Δυναμικών Διαδικτυακών Εφαρμογών» (Part 3) Ουρανία Σμυρνάκη

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. 1 ο ΣΧΟΛΕΙΟ ΚΩΔΙΚΑ «Βασικά Θέματα Προγραμματισμού στην Ανάπτυξη Δυναμικών Διαδικτυακών Εφαρμογών» (Part 3) Ουρανία Σμυρνάκη ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 1 ο ΣΧΟΛΕΙΟ ΚΩΔΙΚΑ «Βασικά Θέματα Προγραμματισμού στην Ανάπτυξη Δυναμικών Διαδικτυακών Εφαρμογών» (Part 3) Ουρανία Σμυρνάκη 1 3 η ενότητα: Εισαγωγή στις Βάσεις Δεδομένων και στην MySQL

Διαβάστε περισσότερα

Αναλυτικός Πίνακας Περιεχομένων

Αναλυτικός Πίνακας Περιεχομένων Αναλυτικός Πίνακας Περιεχομένων 9 Αναλυτικός Πίνακας Περιεχομένων ΣΥΝΟΠΤΙΚΑ ΠΕΡΙΕΧΟΜΕΝΑ...7 ΑΝΑΛΥΤΙΚΟΣ ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ...9 ΠΡΟΛΟΓΟΣ...15 1. ΕΙΣΑΓΩΓΗ ΣΤO EXCEL ΤΗΣ MICROSOFT...19 1.1. ΕΙΣΑΓΩΓΗ...20

Διαβάστε περισσότερα

Μοντέλο Οντοτήτων-Συσχετίσεων

Μοντέλο Οντοτήτων-Συσχετίσεων Μοντέλο Οντοτήτων-Συσχετίσεων 1 Εισαγωγή Σχεδιασμός μιας εφαρμογής ΒΔ: Βήματα 1. Συλλογή και Ανάλυση Απαιτήσεων (requirement analysis) Τι δεδομένα θα αποθηκευτούν, ποιες εφαρμογές θα κτιστούν πάνω στα

Διαβάστε περισσότερα

Εισαγωγή στην πληροφορική

Εισαγωγή στην πληροφορική Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 6: Εισαγωγή στις βάσεις δεδομένων (Μέρος Α) Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης

Διαβάστε περισσότερα

Στρατηγικά Πληροφοριακά Συστήµατα. Κεφάλαιο 2. Ο στρατηγικός ρόλος των Πληροφοριακών Συστηµάτων ιοίκησης στην επιχείρηση. Ευαγγελάτος Ανδρέας

Στρατηγικά Πληροφοριακά Συστήµατα. Κεφάλαιο 2. Ο στρατηγικός ρόλος των Πληροφοριακών Συστηµάτων ιοίκησης στην επιχείρηση. Ευαγγελάτος Ανδρέας Κεφάλαιο 2 Στρατηγικά Πληροφοριακά Συστήµατα Ο στρατηγικός ρόλος των Πληροφοριακών Συστηµάτων ιοίκησης στην επιχείρηση Ευαγγελάτος Ανδρέας Εργαστήριο Πολυµέσων Επικοινωνίας 1. Εκπαιδευτικοί στόχοι του

Διαβάστε περισσότερα

Το Σχεσιακό Μοντέλο. Βάσεις Δεδομένων 2014-2015. Ευαγγελία Πιτουρά 1

Το Σχεσιακό Μοντέλο. Βάσεις Δεδομένων 2014-2015. Ευαγγελία Πιτουρά 1 Το Σχεσιακό Μοντέλο Ευαγγελία Πιτουρά 1 Μοντελοποίηση Σχήμα (database schema): η περιγραφή της δομής της πληροφορίας που είναι αποθηκευμένη στη βδ με τη χρήση ενός μοντέλου δεδομένων Μοντέλο Δεδομένων:

Διαβάστε περισσότερα

Βάσεις Δεδομένων και Ευφυή Πληροφοριακά Συστήματα Επιχειρηματικότητας. Πληροφοριακά Συστήματα και Βάσεις Δεδομένων. Δρ. Κωνσταντίνος Χ.

Βάσεις Δεδομένων και Ευφυή Πληροφοριακά Συστήματα Επιχειρηματικότητας. Πληροφοριακά Συστήματα και Βάσεις Δεδομένων. Δρ. Κωνσταντίνος Χ. Βάσεις Δεδομένων και Ευφυή Πληροφοριακά Συστήματα Επιχειρηματικότητας Πληροφοριακά Συστήματα και Βάσεις Δεδομένων Δρ. Κωνσταντίνος Χ. Γιωτόπουλος Ρόλος των Πληροφοριακών Συστημάτων στους Οργανισμούς Οι

Διαβάστε περισσότερα

6. ΑΠΟΘΗΚΕΣ ΔΕΔΟΜΕΝΩΝ

6. ΑΠΟΘΗΚΕΣ ΔΕΔΟΜΕΝΩΝ Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Α Ι Γ Α Ι Ο Υ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Σ Υ Σ Τ Η Μ Α Τ Α Υ Π Ο Σ Τ Η Ρ Ι Ξ Η Σ Α Π Ο Φ Α Σ Ε Ω Ν Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Α Κ Ε Σ Π Α Ρ Α Δ Ο Σ Ε Ι

Διαβάστε περισσότερα

Βάσεις εδοµένων 2002-2003 Ευαγγελία Πιτουρά 2

Βάσεις εδοµένων 2002-2003 Ευαγγελία Πιτουρά 2 Η Γλώσσα SQL Βάσεις εδοµένων 2002-2003 Ευαγγελία Πιτουρά 1 Η γλώσσα SQL What men or gods are these? What maidens loth? What mad pursuit? What struggle to escape? What pipes and timbrels? What wild ectasy?

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης

Πληροφοριακά Συστήματα Διοίκησης : Επιχειρηματική Ευφυΐα, Βάσεις Δεδομένων και Πληροφοριών Επ. Καθ. Ευθύμιος Ταμπούρης tambouris@uom.gr Στόχος Τμήμα Διοίκησης Τεχνολογίας Τι είναι μια σχεσιακή βάση δεδομένων και σε τι διαφέρει από μια

Διαβάστε περισσότερα

Διάλεξη 07: Σχεσιακό Μοντέλο II (Relational Data Model) Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 07: Σχεσιακό Μοντέλο II (Relational Data Model) Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 07: Σχεσιακό Μοντέλο II (Relational Data Model) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στις έννοιες: Περιορισμοί Σχεσιακού Μοντέλου και Σχεσιακά Σχήματα Πράξεις Ενημερώσεων

Διαβάστε περισσότερα

MinusXL. MinusXL (Requirements Definition) Έκδοση <1.0>

MinusXL. MinusXL (Requirements Definition) Έκδοση <1.0> MinusXL MinusXL (Requirements Definition) Έκδοση Ιστορικό Προηγούμενων Εκδόσεων Ημερομηνία Έκδοση Περιγραφή Συγγραφέας 1 η έκδοση της περιγραφής των απαιτήσεων. Α. Ζάρρας Confidential,

Διαβάστε περισσότερα

Copyright 2007 Ramez Elmasri and Shamkant B. Navathe, Ελληνική Έκδοση Δίαυλος Διαφάνεια 2-1

Copyright 2007 Ramez Elmasri and Shamkant B. Navathe, Ελληνική Έκδοση Δίαυλος Διαφάνεια 2-1 Copyright 2007 Ramez Elmasri and Shamkant B. Navathe, Ελληνική Έκδοση Δίαυλος Διαφάνεια 2-1 Κεφάλαιο 2 Έννοιες και Αρχιτεκτονική Συστημάτων Βάσεων δεδομένων Copyright 2007 Ramez Elmasri and Shamkant B.

Διαβάστε περισσότερα

ΤΑΞΙΝΟΜΗΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΕΡΩΤΗΜΑΤΟΣ

ΤΑΞΙΝΟΜΗΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΕΡΩΤΗΜΑΤΟΣ ΤΑΞΙΝΟΜΗΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΕΡΩΤΗΜΑΤΟΣ Η συνθήκη WHERE βάζει περιορισμούς στις εγγραφές που επιστρέφονται. Ο όρος ORDER BY ταξινομεί τις εγγραφές που επιστρέφονται. Παράδειγμα: SELECT * FROM table_name ORDER

Διαβάστε περισσότερα

Information Technology for Business

Information Technology for Business Information Technology for Business Lecturer: N. Kyritsis, MBA, Ph.D. Candidate e-mail: kyritsis@ist.edu.gr Computer System Hardware Υποδομή του Information Technology Υλικό Υπολογιστών (Hardware) Λογισμικό

Διαβάστε περισσότερα

Τμήμα Πληροφορικής ΑΠΘ 2013-2014

Τμήμα Πληροφορικής ΑΠΘ 2013-2014 Βάσεις Δεδομένων Εργαστήριο V Τμήμα Πληροφορικής ΑΠΘ 2013-2014 2 Σκοπός του 5 ου εργαστηρίου Σκοπός αυτού του εργαστηρίου είναι: η μελέτη ερωτημάτων τροποποίησης δομής / δεδομένων η μελέτη σύνθετων ερωτημάτων

Διαβάστε περισσότερα

Πληροφοριακά Συστήµατα

Πληροφοριακά Συστήµατα Nell Dale John Lewis Chapter 12 Πληροφοριακά Συστήµατα Στόχοι Ενότητας Η κατανόηση της έννοιας «Πληροφοριακό Σύστηµα» Επεξήγηση της οργάνωσης λογιστικών φύλλων (spreadsheets) Επεξήγηση της ανάλυσης δεδοµένων

Διαβάστε περισσότερα

Σύβακας Σταύρος ΠΕ19,MSc. IT ΣΥΒΑΚΑΣ ΣΤΑΥΡΟΣ ΕΡΩΤΗΜΑΤΑ

Σύβακας Σταύρος ΠΕ19,MSc. IT ΣΥΒΑΚΑΣ ΣΤΑΥΡΟΣ ΕΡΩΤΗΜΑΤΑ Σύβακας Σταύρος ΠΕ19,MSc. IT Εισαγωγή Τα ερωτήματα (queries) είναι μία από τις πιο σημαντικές δυνατότητες που προφέρει ένα Σ%Β% αφού επιτρέπουν: Ανάκτηση και ανάλυση των δεδομένων στην επιθυμητή μορφή

Διαβάστε περισσότερα

Εφαρμογή ψηφιοποίησης RollMan

Εφαρμογή ψηφιοποίησης RollMan Εφαρμογή ψηφιοποίησης RollMan Η εφαρμογή ψηφιοποίησης των ληξιαρχικών πράξεων RollMan (RollManager) δημιουργήθηκε από την εταιρία ειδικά για το σκοπό αυτό στο πλαίσιο της συνεργασίας με τους Δήμους. Από

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΑ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Εργασία στην Oracle ΔΙΑΧΕΙΡΙΣΗ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΡΑΤΗΣΕΩΝ ΘΕΣΕΩΝ ΜΙΑΣ ΑΕΡΟΠΟΡΙΚΗΣ ΕΤΑΙΡΙΑΣ ΜΑΘΗΜΑ: ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ

Διαβάστε περισσότερα

Οδηγίες Χρήσης της MySQL

Οδηγίες Χρήσης της MySQL ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΗΜΕΙΩΣΕΙΣ ΣΕ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Οδηγίες Χρήσης της MySQL Διδάσκων: Γιάννης Θεοδωρίδης Συντάκτης Κειμένου: Βαγγέλης Κατσικάρος Νοέμβριος 2007 1 Περιεχόμενα Εισαγωγή...2

Διαβάστε περισσότερα

Αποθηκευμένες Διαδικασίες Stored Routines (Procedures & Functions)

Αποθηκευμένες Διαδικασίες Stored Routines (Procedures & Functions) Αποθηκευμένες Διαδικασίες Stored Routines (Procedures & Functions) Αυγερινός Αραμπατζής avi@ee.duth.gr www.aviarampatzis.com Βάσεις Δεδομένων Stored Procedures 1 Stored Routines (1/2) Τμήματα κώδικα τα

Διαβάστε περισσότερα

Department of Computer Science University of Cyprus. EPL342 Databases. Lecture 4: ER I. Data Modeling Using the ER Model

Department of Computer Science University of Cyprus. EPL342 Databases. Lecture 4: ER I. Data Modeling Using the ER Model Department of Computer Science University of Cyprus EPL342 Databases Lecture 4: ER I Data Modeling Using the ER Model (Chapter 3.1-3.3, Elmasri-Navathe 5ED) ιδάσκων: Παναγιώτης Ανδρέου http://www.cs.ucy.ac.cy/courses/epl342

Διαβάστε περισσότερα

Hawai i Health Connector Extended Services Transition Plan

Hawai i Health Connector Extended Services Transition Plan Appendix F Transition Plan Hawai ihealthconnector ExtendedServicesTransitionPlan AUGUST28,2015 201 Merchant Street, Suite 1630, Honolulu HI 96813 Contents ExecutiveSummary...3 Background...5 ExtendedServicesTransitionPlan(Plan)...6

Διαβάστε περισσότερα

Βάσεις Δεδομένων. Εργαστήριο ΙV. Τμήμα Πληροφορικής ΑΠΘ 2014-2015

Βάσεις Δεδομένων. Εργαστήριο ΙV. Τμήμα Πληροφορικής ΑΠΘ 2014-2015 Βάσεις Δεδομένων Εργαστήριο ΙV Τμήμα Πληροφορικής ΑΠΘ 2014-2015 2 Σκοπός του 4 ου εργαστηρίου Σκοπός αυτού του εργαστηρίου είναι: η μελέτη ερωτημάτων σύνδεσης η μελέτη ερωτημάτων συνάθροισης 3 Εκφράσεις

Διαβάστε περισσότερα

ΕΠΕΞΕΡΓΑΣΙΑ ΚΕΙΜΕΝΟΥ

ΕΠΕΞΕΡΓΑΣΙΑ ΚΕΙΜΕΝΟΥ 1. ΔΗΜΙΟΥΡΓΙΑ ΕΓΓΡΑΦΩΝ ΕΠΕΞΕΡΓΑΣΙΑ ΚΕΙΜΕΝΟΥ 1.1. Ορισµός εγγράφου, προτύπου, πρωτεύοντος και δευτερεύοντος εγγράφου 1.2. Πρότυπα 1.2.1. Δηµιουργία, µεταβολή, χρήση και διαγραφή προτύπων εγγράφων 1.2.2.

Διαβάστε περισσότερα

Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α

Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α 1 Windows 8.1 1.1 Βασικές Έννοιες Πληροφορικής και Επικοινωνιών Εισαγωγή 19 Τι είναι ο Ηλεκτρονικός Υπολογιστής 20 Κατηγορίες Υπολογιστών 21 Κύρια μέρη ενός Προσωπικού Υπολογιστή

Διαβάστε περισσότερα

Τεχνολογικής Αριστείας & Καινοτοµίας

Τεχνολογικής Αριστείας & Καινοτοµίας 4ήµερο Τεχνολογικής Αριστείας & Καινοτοµίας Αυτοµατισµός: Από την εγκατάσταση ως το λογισµικό Βαφείδης Γιώργος gvafi@tee.gr gvafidis@panelco.gr Θέµατα Εισαγωγή -Πως έχει εξελιχθεί ο αυτοµατισµός Εγκατάσταση

Διαβάστε περισσότερα

Θεμελιώδεις Αρχές Συστημάτων Βάσεων Δεδομένων

Θεμελιώδεις Αρχές Συστημάτων Βάσεων Δεδομένων Θεμελιώδεις Αρχές Συστημάτων Βάσεων Δεδομένων Β. Μεγαλοοικονόμου Εισαγωγή στην Εξόρυξη Δεδομένων Γενική Επισκόπηση- Σχεσιακό μοντέλο Σχεσιακό Μοντέλο -SQL Συναρτησιακές εξαρτήσεις & Κανονικοποίηση Φυσικός

Διαβάστε περισσότερα

ΘΕΜΑΤΑ. Θέμα 1 ο Σύμφωνα με τους παραπάνω πίνακες και τη θέση που έχουν τα ξένα κλειδιά βρείτε τους

ΘΕΜΑΤΑ. Θέμα 1 ο Σύμφωνα με τους παραπάνω πίνακες και τη θέση που έχουν τα ξένα κλειδιά βρείτε τους ΘΕΜΑΤΑ A Οι παρακάτω πίνακες αποτελούνται από τα εξής πεδία : ΕΡΓΑΖΟΜΕΝΟΣ : ΑΦΜ, ΕΠΙΘΕΤΟ, ΟΝΟΜΑ, ΤΗΛ, ΟΔΟΣ, ΠΟΛΗ,ΜΙΣΘΟΣ, ΚΤ ΤΜΗΜΑ : ΚΤ, ΑΦΜ, ΤΙΤΛΟΣ_ΤΜΗΜΑΤΟΣ, ΤΗΛ ΕΡΓΑ : ΚΕΡ, ΠΕΡΙΓΡΑΦΗ, ΤΟΠΟΘΕΣΙΑ, ΠΡΟΫΠΟΛΟΓΙΣΜΟΣ

Διαβάστε περισσότερα

2 ο Σύνολο Ασκήσεων. Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1

2 ο Σύνολο Ασκήσεων. Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 2 ο Σύνολο Ασκήσεων Οι βαθμοί θα ανακοινωθούν αύριο μαζί με τους βαθμούς της προγραμματιστικής άσκησης Τα αστεράκια δείχνουν τον εκτιμώμενο βαθμό δυσκολίας (*) εύκολο (**) μέτριο (***) δύσκολο Βάσεις Δεδομένων

Διαβάστε περισσότερα

Σχεσιακή Άλγεβρα. Προγράμματα που απαντούν σε επερωτήσεις για τον τρέχον στιγμιότυπο της βάσης δεδομένων (querying)

Σχεσιακή Άλγεβρα. Προγράμματα που απαντούν σε επερωτήσεις για τον τρέχον στιγμιότυπο της βάσης δεδομένων (querying) Εισαγωγή Στα προηγούμενα μαθήματα: Εννοιολογικός Σχεδιασμός Βάσεων εδομένων (με χρήση του Μοντέλου Οντοτήτων/Συσχετίσεων) Λογικός Σχεδιασμός Βάσεων εδομένων (με χρήση του Σχεσιακού Μοντέλου) Μετατροπή

Διαβάστε περισσότερα

Εργαστήριο Βάσεων Δεδομένων

Εργαστήριο Βάσεων Δεδομένων Εργαστήριο Βάσεων Δεδομένων Φροντιστήριο 4/2/2009 Δικαιώματα χρηστών - Προβολές (Views) ΕΠΙΚΟΙΝΩΝΙΑ ΜΕ MYSQL queries results mysql host DB server queries results Client host Β Δ Ηχρήσητηςmysql βασίζεται

Διαβάστε περισσότερα

Data Warehouse Τ χνο χνο ογίες Υπ οστήριξης Λήψης Αριστο Αριστ μένης Μακρής Διοικητικώ τικ ν ώ Απο Απ φάσεων

Data Warehouse Τ χνο χνο ογίες Υπ οστήριξης Λήψης Αριστο Αριστ μένης Μακρής Διοικητικώ τικ ν ώ Απο Απ φάσεων Data Warehouse Ορισμοί Data Warehouse 1. 2. Μια ολοκληρωμένη, διαχρονική και μόνιμη συλλογή δεδομένων οργανωμένη κατά αντικείμενο ανάλυσης με στόχο τη διαδικασία υποστήριξης λήψης αποφάσεων - WH W.H. Inmon

Διαβάστε περισσότερα

Βάσεις Δεδομένων Ι Εξεταστική Περίοδος Φεβρουαρίου 2006

Βάσεις Δεδομένων Ι Εξεταστική Περίοδος Φεβρουαρίου 2006 Βάσεις Δεδομένων Ι Εξεταστική Περίοδος Φεβρουαρίου 2006 A Θέμα 1 ο (30%) 1. (10%) α) Ποια τα πλεονεκτήματα ενός B + -tree ευρετηρίου; β) Αναφέρετε τις διαφορές ανάμεσα στα αραιά και τα πυκνά ευρετήρια.

Διαβάστε περισσότερα

Το σχεσιακό μοντέλο βάσεων δεδομένων

Το σχεσιακό μοντέλο βάσεων δεδομένων ΕΣΔ232 Οργάνωση Δεδομένων στη Κοινωνία της Πληροφορίας Το σχεσιακό μοντέλο βάσεων δεδομένων Περιεχόμενα Περιεχόμενα - Βιβλιογραφία Ενότητας Εισαγωγή στο σχεσιακό μοντέλο Σχεσιακές γλώσσες ερωτημάτων Περιορισμοί

Διαβάστε περισσότερα

5. ΠΟΛΥΔΙΑΣΤΑΤΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ

5. ΠΟΛΥΔΙΑΣΤΑΤΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ 5. ΠΟΛΥΔΙΑΣΤΑΤΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Το μοντέλο που δημιουργήσαμε στο προηγούμενο εργαστήριο έχει βελτιωθεί εν μέρει ώστε να συμπεριλάβει και κάποιες δυνατότητες οι οποίες απαιτούν σχετικά εξειδικευμένες

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠAΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠAΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠAΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ ΑΠΟΘΗΚΕΣ ΔΕΔΟΜΕΝΩΝ (DATA WAREHOUSES) ΔΙΑΦΟΡΕΣ OLTP KAI OLAP ΠΕΤΕΙΝΑΡΙΑ ΣΤΕΛΛΑ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Σ.

Διαβάστε περισσότερα

SQL Server 2005 Tutorial Αςκήςεισ. Γεράσιμος Μαρκέτος InfoLab, Τμήμα Ρληροφορικήσ, Ρανεπιςτήμιο Ρειραιϊσ (http://infolab.cs.unipi.

SQL Server 2005 Tutorial Αςκήςεισ. Γεράσιμος Μαρκέτος InfoLab, Τμήμα Ρληροφορικήσ, Ρανεπιςτήμιο Ρειραιϊσ (http://infolab.cs.unipi. SQL Server 2005 Tutorial Αςκήςεισ Γεράσιμος Μαρκέτος InfoLab, Τμήμα Ρληροφορικήσ, Ρανεπιςτήμιο Ρειραιϊσ (http://infolab.cs.unipi.gr/) Εργαςτηριακή Άςκηςη Σχεδιάςτε ςτον SQL Server 2005 μια βάςη δεδομζνων

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης Τµήµα Επιστήµης Υπολογιστών. ΗΥ-460 Συστήµατα ιαχείρισης Βάσεων εδοµένων ηµήτρης Πλεξουσάκης Βασίλης Χριστοφίδης

Πανεπιστήµιο Κρήτης Τµήµα Επιστήµης Υπολογιστών. ΗΥ-460 Συστήµατα ιαχείρισης Βάσεων εδοµένων ηµήτρης Πλεξουσάκης Βασίλης Χριστοφίδης Πανεπιστήµιο Κρήτης Τµήµα Επιστήµης Υπολογιστών ΗΥ-460 Συστήµατα ιαχείρισης Βάσεων εδοµένων ηµήτρης Πλεξουσάκης Βασίλης Χριστοφίδης Ονοµατεπώνυµο: Αριθµός Μητρώου: Τελική Εξέταση (3 ώρες) Ηµεροµηνία: 7

Διαβάστε περισσότερα

ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ. Ενότητα 1: Εισαγωγή στις Βάσεις Δεδομένων. Αθανάσιος Σπυριδάκος Διοίκηση Επιχειρήσεων

ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ. Ενότητα 1: Εισαγωγή στις Βάσεις Δεδομένων. Αθανάσιος Σπυριδάκος Διοίκηση Επιχειρήσεων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ενότητα 1: Εισαγωγή στις Βάσεις Δεδομένων Αθανάσιος Σπυριδάκος Διοίκηση Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Βασικές Ενότητες... 17 Πρόσθετες Ενότητες Ανεξαρτήτως Χρηστών... 17. Entry... Start... Services... Λογιστικές Εφαρμογές... 18. Retail...

Βασικές Ενότητες... 17 Πρόσθετες Ενότητες Ανεξαρτήτως Χρηστών... 17. Entry... Start... Services... Λογιστικές Εφαρμογές... 18. Retail... ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ ERP Βασικές Ενότητες... Πρόσθετες Ενότητες Ανεξαρτήτως Χρηστών... Entry... Start... Services... Λογιστικές Εφαρμογές... Retail... 4 4 5 6 7 7 7 ATLANTIS ENTRY ERP ATLANTIS Entry III

Διαβάστε περισσότερα

Δημιουργία και αξιοποίηση αποθηκών πληροφοριών (data warehouses) για την υποστήριξη λήψης διοικητικών αποφάσεων

Δημιουργία και αξιοποίηση αποθηκών πληροφοριών (data warehouses) για την υποστήριξη λήψης διοικητικών αποφάσεων Τμήμα οργάνωσης και διοίκησης επιχειρήσεων Ευρωπαϊκό Μεταπτυχιακό Πρόγραμμα στη Διοίκηση Επιχειρήσεων Ολική Ποιότητα (MBA TQM) Δημιουργία και αξιοποίηση αποθηκών πληροφοριών (data warehouses) για την υποστήριξη

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ. Βασικές Ενότητες... 19 Πρόσθετες Ενότητες... 19. Entry... 17. Start... 12 Λογιστικές Εφαρμογές... 13. xline ERP ATLANTIS ERP

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ. Βασικές Ενότητες... 19 Πρόσθετες Ενότητες... 19. Entry... 17. Start... 12 Λογιστικές Εφαρμογές... 13. xline ERP ATLANTIS ERP 3 ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ Βασικές Ενότητες... 5 Πρόσθετες Ενότητες... 6 Entry... 7 Start... 8 Λογιστικές Εφαρμογές... 8 xline ERP Βασικές Ενότητες... 9 Πρόσθετες Ενότητες... 10 Entry... 11 Start... 12 Λογιστικές

Διαβάστε περισσότερα

Επιχειρησιακά Πληροφοριακά Συστήματα. Site: www.aggelopoulos.tk e-mail: ioannis.aggelopoulos@gmail.com. Στόχος Σκοπός μαθήματος

Επιχειρησιακά Πληροφοριακά Συστήματα. Site: www.aggelopoulos.tk e-mail: ioannis.aggelopoulos@gmail.com. Στόχος Σκοπός μαθήματος Επιχειρησιακά Πληροφοριακά Συστήματα Διδάσκων: Αγγελόπουλος Γιάννης Δευτέρα 3-5 Τρίτη 4-6 Εργαστήριο Α Site: www.aggelopoulos.tk e-mail: ioannis.aggelopoulos@gmail.com 1 Στόχος Σκοπός μαθήματος Σκοπός:

Διαβάστε περισσότερα

Ελληνικό Ανοικτό Πανεπιστήµιο. Η Ανάλυση και ο Σχεδιασµός στην Ενοποιηµένη ιαδικασία. ρ. Πάνος Φιτσιλής

Ελληνικό Ανοικτό Πανεπιστήµιο. Η Ανάλυση και ο Σχεδιασµός στην Ενοποιηµένη ιαδικασία. ρ. Πάνος Φιτσιλής 1 Ελληνικό Ανοικτό Πανεπιστήµιο Η και ο στην Ενοποιηµένη ιαδικασία ρ. Πάνος Φιτσιλής Περιεχόµενα Γενικές αρχές ανάλυσης και σχεδιασµού Τα βήµατα της ανάλυσης και του σχεδιασµού Συµπεράσµατα 2 3 Η ανάλυση

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΕΑ ΥΛΗ (SYLLABUS) MASTER IN OFFICE microsoft word ΕΚΔΟΣΗ 1.0. Σόλωνος 108,Τηλ. 210.3387190 Φαξ 210.3634576

ΕΞΕΤΑΣΤΕΑ ΥΛΗ (SYLLABUS) MASTER IN OFFICE microsoft word ΕΚΔΟΣΗ 1.0. Σόλωνος 108,Τηλ. 210.3387190 Φαξ 210.3634576 ΕΞΕΤΑΣΤΕΑ ΥΛΗ (SYLLABUS) MASTER IN OFFICE microsoft word ΕΚΔΟΣΗ 1.0 ΤΙ ΕΙΝΑΙ ΤΟ MASTER IN OFFICE Το Master in Office είναι κατάλληλο για άτομα που έχουν κάποια εμπειρία στο Office (πχ. κάτοχοι πτυχίου

Διαβάστε περισσότερα

Εξελιγμένη διαχείριση της πλατφόρμας από τους Χρήστες:

Εξελιγμένη διαχείριση της πλατφόρμας από τους Χρήστες: Η Microsoft εξέδωσε τη νέα έκδοση του Microsoft Dynamics CRM, λίγο πριν τις επόμενες εκδόσεις όπως απεικονίζονται στο παρακάτω Microsoft Dynamics roadmap 2015. Η νέα έκδοση ή διαφορετικά το CRM 2015 έρχεται

Διαβάστε περισσότερα

ATHENS SCHOOL OF MANAGEMENT (THESSALONIKI) Η ΣΥΝΕΙΣΦΟΡΑ ΤΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΤΗΝ ΑΠΟΚΤΗΣΗ ΤΟΥ ΑΝΤΑΓΩΝΙΣΤΙΚΟΥ ΠΛΕΟΝΕΚΤΗΜΑΤΟΣ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ

ATHENS SCHOOL OF MANAGEMENT (THESSALONIKI) Η ΣΥΝΕΙΣΦΟΡΑ ΤΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΤΗΝ ΑΠΟΚΤΗΣΗ ΤΟΥ ΑΝΤΑΓΩΝΙΣΤΙΚΟΥ ΠΛΕΟΝΕΚΤΗΜΑΤΟΣ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ ATHENS SCHOOL OF MANAGEMENT (THESSALONIKI) Η ΣΥΝΕΙΣΦΟΡΑ ΤΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΤΗΝ ΑΠΟΚΤΗΣΗ ΤΟΥ ΑΝΤΑΓΩΝΙΣΤΙΚΟΥ ΠΛΕΟΝΕΚΤΗΜΑΤΟΣ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ Ομιλητής: Γιάννης Νάνος ΤΙ ΕΙΝΑΙ ΣΥΣΤΗΜΑ? Είναι μια

Διαβάστε περισσότερα