Άμεση Αναλυτική Επεξεργασία (OLAP)
|
|
- Τρίτωνος Βασιλείου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Άμεση Αναλυτική Επεξεργασία (OLAP)
2 Άμεση Αναλυτική Επεξεργασία (OLAP) Άμεση Αναλυτική Επεξεργασία (Online Analytical Processing - OLAP) Ανάλυση βασισμένη σε ένα κύβο OLAP Κύβος OLAP (OLAP Cube) Μια πολυδιάστατη όψη των αθροιστικών δεδομένων που βρίσκονται σε μια Αποθήκη Δεδομένων και αντιστοιχούν σε ένα θεματικό υποσύνολο. Τα συστήματα OLAP εκμεταλλεύονται τα δεδομένα με την μορφή που έχουν αποθηκευτεί στην Αποθήκη Δεδομένων και δίνουν τη δυνατότητα στους χρήστες να εκτελούν πολύπλοκα ερωτήματα που βασίζονται στην επιχειρηματική λογική καθώς και να αναλύουν τα δεδομένα σε πολλαπλές διαστάσεις.
3 Παράδειγμα Κύβου Α Β Γ Διάσταση Προϊόντος Ήπειρος Κρήτη Χωρική Διάσταση Αττική 2014
4 Δεδομένα Κύβου Sum of Sales Column Labels Row Labels Α Β Γ Grand Total 2014 Αττικη Ηπειρος Κρητη Total Αττικη Ηπειρος Κρητη Total Αττικη Ηπειρος Κρητη Total Grand Total
5 Ιεραρχίες επιπέδων για OLAP Μια διάσταση μοντελοποιεί όλους τους τρόπους με τους οποίους τα δεδομένα μπορούν να συναθροιστούν σε σχέση με μια συγκεκριμένη παράμετρο του περιεχομένου τους. Y e a r Ημερομηνία, Προϊόν, Τοποθεσία, Πωλητής, Κάθε διάσταση έχει μια σχετική ιεραρχία επιπέδων συνάθροισης των δεδομένων (hierarchy of levels). Αυτό σημαίνει, ότι η διάσταση μπορεί να θεωρηθεί από πολλά επίπεδα αδρομέρειας. Ημερομηνία: μέρα, εβδομάδα, μήνας, χρόνος, M o n th D a y W e e k Ο χρήστης μπορεί να πλοηγηθεί από το ένα επίπεδο στο άλλο, δημιουργώντας νέους κύβους κάθε φορά Αδρομέρεια: το αντίθετο της λεπτομέρειας
6 Product Κύβοι και Ιεραρχίες Διαστάσεων Sales volume Διαστάσεις: Product, Region, Date Ιεραρχίες διαστάσεων: Industry Country Year Category Region Quarter Month Product City Month Week Store Day
7 Συνήθεις πράξεις που κάνουμε σε κύβους Συναθροίσεις (total sales, percent-to-total) Συγκρίσεις (budget vs. expense) Ταξινόμηση - κατάταξη (top 10) Πρόσβαση σε πιο αναλυτική πληροφορία Οπτικοποίηση με διαφορετικούς τρόπους OLAP processing Navigation - Browsing Statistical analysis Time series Complex modelling
8 Πράξεις OLAP Συναθροιστική Άνοδος ή Προς τα πάνω συσσώρευση (Roll-up) - Συσσώρευση Roll-up: Summarizing the data along a dimension Αναλυτική Κάθοδος ή Διαδρομή προς τα κάτω (Drill-down) - Εμβάθυνση Drill Down/Up: Navigation from most summarized (up) to more detailed (down) levels Οριζόντιος Τεμαχισμός (Slice) Slicing: set one dimension constant (Slicer ) to show a two-dimensional table Slice: subset of dimensions Κάθετος Τεμαχισμός (Dice) Dicing: create a sub-cube Aggregation
9 Πράξεις OLAP Συναθροιστική Άνοδος ή Προς τα πάνω συσσώρευση (Roll-up) Πράξη με την οποία εκτελούμε ένα βήμα ανόδου στην ιεραρχία μιας διάστασης. Στο παράδειγμα του επόμενου σχήματος, έχουμε αρχικά ένα κύβο που αποτελείται από τρεις διαστάσεις: Χρώμα, Μοντέλο και Γεωγραφία. Η διάσταση Γεωγραφία έχει τρία επίπεδα: κατάστημα, περιοχή και περιφέρεια. Μία πράξη roll-up στη διάσταση Γεωγραφία θα μας έδινε έναν νέο κύβο που θα περιείχε αθροιστικές πωλήσεις προϊόντων ανά περιοχή, χρώμα και μοντέλο. Συνάθροιση της πληροφορίας = μετάβαση από χαμηλότερο σε υψηλότερο επίπεδο αδρομέρειας (π.χ. από day σε month) Αναλυτική Κάθοδος ή Διαδρομή προς τα κάτω (Drill-down) Η αντίστροφη πράξη του roll-up, όπου πάμε από ένα υψηλότερο επίπεδο ιεραρχίας μιας διάστασης σε ένα χαμηλότερο. Στο επόμενο σχήμα, μία πράξη drill-down στη διάσταση Γεωγραφία, από το επίπεδο περιφέρειας, στον τελευταίο κύβο, στο επίπεδο καταστήματος, θα μας έδινε τον αρχικό κύβο.
10 Πλοήγηση σε ιεραρχία διαστάσεων
11 Οριζόντιος Τεμαχισμός (Slice) Slice ενός πολυδιάστατου διανύσματος είναι μια στήλη δεδομένων η οποία αντιστοιχεί σε μια μοναδική τιμή μιας διάστασης. Η αντίστοιχη πράξη ονομάζεται Slicing. Επιτρέπει την εξαγωγή και οπτικοποίηση πληροφορίας για μια συγκεκριμένη τιμή μιας διάστασης. Ένα ειδικό φίλτρο απομόνωσης μιας συγκεκριμένης τιμής μιας διάστασης.
12 Οριζόντιος Τεμαχισμός (Slicing)
13 Οριζόντιος Τεμαχισμός (Slicing)
14 Κάθετος Τεμαχισμός (Dice) Επιλογή ενός υποσυνόλου από όλες τις διαστάσεις για συγκεκριμένες τιμές των διαστάσεων (zoom). Δίνει πιο λεπτομερή πληροφόρηση σε μια πιο μικρή κλίμακα δεδομένων. Ενσωματώνει την πράξη της Διαδρομής προς τα κάτω (drilling).
15 Κάθετος Τεμαχισμός (Dice)
16 Περιστροφή (Pivoting) Περιστροφή (Pivoting) Πράξη αλλαγής της διάταξης των διαστάσεων ώστε να διευκολυνθεί η ανάλυση. Κατά την περιστροφή (pivoting), δεν μεταβάλλονται ούτε μειώνονται τα δεδομένα του υπερκύβου. Απλά αλλάζει ο τρόπος παρουσίασής τους στην εφαρμογή ανάλυσης. Στο σχήμα φαίνονται οι διαφορετικοί τρόποι παρουσίασης ενός κύβου.
17 Περιστροφή (Pivoting)
18 Σχεσιακά συστήματα OLAP (ROLAP) Χρήση ενός RDBMS ως μέσου αποθήκευσης και επερώτησης Επιπλέον λειτουργικότητα των client εργαλείων Δυνατότητα επαναχρησιμοποίησης συναθροίσεων Χρήση multi statement SQL Βελτιστοποίηση των ερωτήσεων ανά RDBMS Αργά ως συστήματα Δυνατότητα υποβολής οποιασδήποτε ερώτησης Εύκολη χρήση από τους administrators που γνώριζαν τη σχεσιακή τεχνολογία
19 Βελτίωση Απόδοσης Συστημάτων ROLAP Εξειδικευμένες τεχνικές δεικτοδότησης (indexing) Εξειδικευμένες τεχνικές συνένωσης (join) Διαμοίραση των δεδομένων (data partitioning) και χρήση παράλληλων τεχνικών Εξειδικευμένες τεχνικές αποθήκευσης και επεξεργασίας ερωτήσεων για συναθροίσεις δεδομένων (aggregates) Επεκτάσεις της SQL και της επεξεργασίας των σχετικών ερωτήσεων
20 Συναθροίσεις Δεδομένων - Aggregations Εκτός από τις λεπτομερείς πληροφορίες των fact tables, μπορεί να υπολογίσουμε και συναθροίσεις των δεδομένων για καλύτερους χρόνους απόκρισης. Για παράδειγμα, αν ο fact table είναι SALES(GeographyCode, ProductCode, TimeCode, AccountCode, Amount, Unit) μπορούμε να υπολογίσουμε AVG(Sales) ανά Region, Product, Quarter MAX(Sales) ανά Brand, Month, με Region = Europe SUM(Sales) ανά City 20
21 Συναθροίσεις Δεδομένων Χωριστός πίνακας/όψη αθροισμάτων Sales table RID City Amount 1 Athens $100 2 N.Y. $300 3 Rome $120 4 Athens $250 5 Rome $180 6 Rome $65 7 N.Y. $450 City-dimension sum table City Amount Athens $350 N.Y. $750 Rome $365 Επέκταση του υπάρχοντος βασικού πίνακα Extended Sales table RID City Amount Level 1 Athens $100 NULL 2 N.Y. $300 NULL 3 Rome $120 NULL 4 Athens $250 NULL 5 Rome $180 NULL 6 Rome $65 NULL 7 N.Y. $450 NULL 8 Athens $350 City 9 N.Y. $750 City 10 Rome $365 City
22 MOLAP: Πολυδιάστατα συστήματα OLAP Η αποθήκευση γίνεται σε πολυδιάστατους πίνακες (multi-dimensional arrays) «πίνακες» με την έννοια των γλωσσών προγραμματισμού και όχι του σχεσιακού μοντέλου Χρήση τεχνικών συμπιέσεως (οι πίνακες είναι αραιοί σε βαθμό ως και 80%) Στις αρχές του 2002 είχαν το 98% της αγοράς στο πεδίο των client tools + Πολύ γρήγοροι υπολογισμοί των λειτουργιών OLAP - Απαιτούν τον προϋπολογισμό των απαραίτητων συναθροίσεων
23 Παράδειγμα για την Ελληνική Γεωργία Πηγή δεδομένων ELSTAT Διαστάσεις Διοικητικός διαχωρισμός (Administrative) (περιφέρεια, νομός) Προϊόν (Product) (κατηγορία, τύπος) Μέγεθος (Size) Χρόνος (Time (year)) Γεγονότα - Μετρήσεις Πλήθος Εκμεταλλεύσεων (Number of holdings) Καλλιεργήσιμη έκταση (Cultivation area) HAICTA 2015, September 17-20, 2015, Kavala, Greece
24 Μορφή αρχικών δεδομένων HAICTA 2015, September 17-20, 2015, Kavala, Greece
25 Ενδιάμεση μορφή δεδομένων HAICTA 2015, September 17-20, 2015, Kavala, Greece
26 Παράδειγμα 1 για τον κύβο OLAP HAICTA 2015, September 17-20, 2015, Kavala, Greece
27 Παράδειγμα 2 για τον κύβο OLAP HAICTA 2015, September 17-20, 2015, Kavala, Greece
28 Ορολογία Ιεραρχία (Hierarchy) Πίνακας Γεγονότων (Fact Table) Λογική δομή η οποία χρησιμοποιεί ταξινομημένα επίπεδα (levels) για την οργάνωση των δεδομένων Συνάθροιση δεδομένων. Π.χ., στη διάσταση του χρόνου, μια ιεραρχία μπορεί να χρησιμοποιηθεί για να συναθροίσει δεδομένα από το επίπεδο του Μήνα στο επίπεδο του Τετραμήνου και από εκεί στο επίπεδο του Έτους Διαδρομή εμβάθυνσης Επίπεδο (Level) Πίνακας σε ένα σχήμα Αστέρα με μετρικές και αναφορές σε διαστάσεις Περιλαμβάνει δύο ειδών πεδία: πεδία με μετρικές και πεδία τα οποία είναι ξένα κλειδιά σε πίνακες διαστάσεων Το πρωτεύον κλειδί είναι ένα σύνθετο κλειδί το οποίο συντίθεται από όλα τα ξένα κλειδιά Περιλαμβάνει γεγονότα στο χαμηλότερο επίπεδο ή συναθροισμένα γεγονότα (συνοπτικός πίνακας) Μια θέση στην ιεραρχία. Π.χ., στη διάσταση του χρόνου ο Μήνας, το Τετράμηνο και το Έτος Δεδομένα στο ίδιο επίπεδο συνάθροισης
29 Ορολογία Γεγονότα - Μετρήσεις (Facts Measures) Αυτό που προσπαθούμε να μετρήσουμε Συνήθως αριθμητικά, και συναθροισμένα (sum, count, or avg) Προσθετικά: Συνοψίζονται σε όλες τις διαστάσεις Ημι-προσθετικά: Συνοψίζονται σε ορισμένες διαστάσεις Μη-προσθετικά Περιλαμβάνει εκατομμύρια εγγραφές με αριθμητικά πεδία Χρησιμοποιεί ξένα κλειδιά σε εγγραφές διαστάσεων Διαστάσεις (Dimensions) Για την κατανομή ή το διαχωρισμό των αριθμητικών στοιχείων Χιλιάδες εγγραφές με πολλά περιγραφικά χαρακτηριστικά (πεδία) Μη-κανονικοποιημένα δεδομένα
30 Βήματα Σχεδιασμού Σχήματος Αστέρα Προσδιορισμός της επιχειρηματικής διαδικασίας που θα αναλυθεί (π.χ. πωλήσεις). Προσδιορισμός των μετρικών ή γεγονότων (ύψος πωλήσεων σε ευρώ). Προσδιορισμός των διαστάσεων για τις μετρικές (προϊόν, τοποθεσία, χρόνος). Καταγραφή των πεδίων που περιγράφουν κάθε διάσταση (όνομα περιοχής, ονομασία καταστήματος). Καθορισμός του χαμηλότερου επιπέδου συνάθροισης των δεδομένων στον πίνακα γεγονότων.
31 Σημαντικά χαρακτηριστικά των σχημάτων Αστέρα και Χιονονιφάδας Σχήμα Αστέρα Κάθε διάσταση έχει ένα πρωτεύον κλειδί. Ένας πίνακας διαστάσεων δεν έχει πατρικό πίνακα. Οι ιεραρχίες για τις διαστάσεις αποθηκεύονται στον πίνακα διαστάσεων. Σχήμα Χιονονιφάδας Ένας πίνακας διαστάσεων μπορεί να έχει ένα ή περισσότερους πατρικούς πίνακες. Οι ιεραρχίες αποθηκεύονται σε ξεχωριστούς πίνακες.
Άμεση Αναλυτική Επεξεργασία (OLAP)
1 Άμεση Αναλυτική Επεξεργασία (OLAP) 2 Περιεχόμενα Εφαρμογές στις Αποθήκες Δεδομένων Άμεση Αναλυτική Επεξεργασία (OLAP) Γεγονότα και Διαστάσεις Κύβοι και Ιεραρχίες διαστάσεων Πράξεις OLAP Αρχιτεκτονικές
Συστήματα OLAP. Πασχάλης Θρήσκος, PhD Λάρισα
Συστήματα OLAP Πασχάλης Θρήσκος, PhD Λάρισα 2016-2017 «Τα συστήματα άμεσης αναλυτικής επεξεργασίας (OLTP) χρησιμοποιούνται για να απαντηθούν ερωτήματα πάνω σε πολυδιάστατα δεδομένα πολύ γρήγορα» Wikipedia
Data Warehouse Refreshment via ETL tools. Panos Vassiliadis
Data Warehouse Refreshment via ETL tools Panos Vassiliadis Data Warehouse Environment 2 Extract-Transform-Load (ETL) Extract Transform & Clean Load Sources DSA DW 3 Importance ETL market has a steady increase
Αποθήκες Δεδομένων. Αρχιτεκτονική, Μοντέλο Δεδομένων και Σχεδίαση
Αποθήκες Δεδομένων Αρχιτεκτονική, Μοντέλο Δεδομένων και Σχεδίαση Περιεχόμενα Αποθήκες Δεδομένων Ορισμοί και χαρακτηριστικά αποθηκών δεδομένων Διαφορές βάσεων και αποθηκών δεδομένων Μοντέλα αποθηκών δεδομένων
Εξόρυξη Γνώσης από εδοµένα (Data Mining)
ΠΜΣ Πληροφορικής Πανεπιστηµίου Πειραιά Εξόρυξη Γνώσης από εδοµένα (Data Mining) Αποθήκες εδοµένων Γιάννης Θεοδωρίδης Τµήµα Πληροφορικής, Πανεπιστήµιο Πειραιά http://isl.cs.unipi.gr/db/courses/dm "Πυραµίδα"
Εισαγωγή στις Αποθήκες εδομένων
Εξόρυξη Δεδομένων: Ακ. Έτος 2007-2008 Αποθήκες Δεδομένων 1 Εισαγωγή: OLTP Παραδοσιακή ιαχείριση εδομένων με Σ Β Σύστημα Επεξεργασίας οσοληψιών On-Line Transaction Processing (OLTP) Εισαγωγή στις Αποθήκες
4. ΔΗΜΙΟΥΡΓΙΑ ΜΟΝΤΕΛΟΥ ΠΟΛΥΔΙΑΣΤΑΤΗΣ ΑΝΑΛΥΣΗΣ
4. ΔΗΜΙΟΥΡΓΙΑ ΜΟΝΤΕΛΟΥ ΠΟΛΥΔΙΑΣΤΑΤΗΣ ΑΝΑΛΥΣΗΣ Στο προηγούμενο εργαστήριο είδαμε πώς μπορούμε να αντλήσουμε πληροφορίες από μια σχεσιακή βάση δεδομένων με τη βοήθεια των ερωτημάτων (queries). Το μειονέκτημα
Data Cube. Μ.Χατζόπουλος 1
Data Cube Μ.Χατζόπουλος Μ.Χατζόπουλος 1 Ανάλυση εδοµένων Εξαγωγή συναθροιστικών δεδοµένων από µια βάση δεδοµένων Οπτικοποίηση των αποτελεσµάτων Μπορούνοιπαραδοσιακέςεπίπεδεςβάσειςδεδοµένων; Οι σχεσιακές
Βάσεις Δεδομένων ΙΙ. Διάλεξη 7 η Aποθήκες Δεδομένων και OLAP (On-line Analytical Processing)
Βάσεις Δεδομένων ΙΙ Διάλεξη 7 η Aποθήκες Δεδομένων και OLAP (On-line Analytical Processing) Δ. Χριστοδουλάκης - Α. Φωκά Τμήμα Μηχανικών Η/Υ & Πληροφορικής - Εαρινό Εξάμηνο 2007 Εισαγωγή Παραδοσιακές ΒΔ
Εισαγωγή στις Αποθήκες εδομένων
Εισαγωγή στις Αποθήκες εδομένων ιαφάνειες βασισμένες σε σχετικές διαφάνειες του Πάνου Βασιλειάδη Εξόρυξη Δεδομένων: Ακ. Έτος 2008-2009 Αποθήκες Δεδομένων 1 Εισαγωγή: OLTP Παραδοσιακή ιαχείριση εδομένων
ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Λήψη απόφασης, Συστήματα Υποστήριξης Αποφάσεων, OLAP Ανάλυση, Περιβαλλοντική Εκπαίδευση ΕΙΣΑΓΩΓΗ
Η Αναλυτική Επεξεργασία Δεδομένων (On Line Analytical Processing) στην Υποστήριξη Αποφάσεων των Υπευθύνων Περιβαλλοντικής Εκπαίδευσης των Διευθύνσεων Εκπαίδευσης Γιώργος Ραβασόπουλος 1, Ιωάννα Παπαιωάννου
Εισαγωγή στις Αποθήκες εδοµένων
Εισαγωγή στις Αποθήκες εδοµένων ιαφάνειες βασισµένες σε σχετικές διαφάνειες του Πάνου Βασιλειάδη Αποθήκες εδοµένων 1 Εισαγωγή: OLTP Παραδοσιακή ιαχείριση εδοµένων µε Σ Β Σύστηµα Επεξεργασίας οσοληψιών
Εξόρυξη Γνώσης από εδοµένα (Data Mining)
Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Εξόρυξη Γνώσης από εδοµένα (Data Mining) Αποθήκες εδοµένων Γιάννης Θεοδωρίδης, Νίκος Πελέκης Οµάδα ιαχείρισης εδοµένων Εργαστήριο Πληροφοριακών Συστηµάτων http://isl.cs.unipi.gr/db
5. ΠΟΛΥΔΙΑΣΤΑΤΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ
5. ΠΟΛΥΔΙΑΣΤΑΤΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Το μοντέλο που δημιουργήσαμε στο προηγούμενο εργαστήριο έχει βελτιωθεί εν μέρει ώστε να συμπεριλάβει και κάποιες δυνατότητες οι οποίες απαιτούν σχετικά εξειδικευμένες
Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής. Αποθήκες εδοµένων και Εξόρυξη Γνώσης. (Data Warehousing & Data Mining) Γιάννης Θεοδωρίδης, Νίκος Πελέκης
Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Αποθήκες εδοµένων και Εξόρυξη Γνώσης (Data Warehousing & Data Mining) Αποθήκες εδοµένων Γιάννης Θεοδωρίδης, Νίκος Πελέκης Εργαστήριο Πληροφοριακών Συστηµάτων http://infolab.cs.unipi.gr
Υποστήριξη Αποφάσεων. Γεώργιος Ευαγγελίδης. (βασισμένο στο κεφ. 23 του βιβλίου «Συστήματα Διαχείρισης Βάσεων Δεδομένων»)
Υποστήριξη Αποφάσεων Γεώργιος Ευαγγελίδης (βασισμένο στο κεφ. 23 του βιβλίου «Συστήματα Διαχείρισης Βάσεων Δεδομένων») Εισαγωγικά Οι επιχειρήσεις θέλουν να μπορούν να αναλύουν τα δεδομένα τους. Γιατί;
Αποθήκες Δεδομένων & Πολυδιάστατη Ανάλυση
Αποθήκες Δεδομένων & Πολυδιάστατη Ανάλυση Γιάννης Θεοδωρίδης InfoLab, Τμήμα Πληροφορικής, Πανεπιστήμιο Πειραιά http://infolab.cs.unipi.gr version: Nov.2009 Πηγές Το κύριο μέρος των διαφανειών προέρχεται
11.1. Θεωρητικό υπόβαθρο για τους κύβους δεδομένων και την πολυδιάστατη ανάλυση
Κεφάλαιο 11. Αποθήκες και κύβοι δεδομένων Σύνοψη Σ αυτό το κεφάλαιο θα παρουσιάσουμε τη δημιουργία μιας αποθήκης δεδομένων ή, αλλιώς, ενός κύβου δεδομένων. Ο κύβος είναι μια πολυδιάστατη δομή δεδομένων
Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων Ενότητα 3: Αποθήκες Δεδομένων Μέρος Α Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης
ΠΡΟΧΩΡΗΜΕΝΑ ΘΕΜΑΤΑ ΒΑΣΕΩΝ Ε ΟΜΕΝΩΝ -2
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚ. ΜΗΧ. ΚΑΙ ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ ΠΡΟΧΩΡΗΜΕΝΑ ΘΕΜΑΤΑ ΒΑΣΕΩΝ Ε ΟΜΕΝΩΝ ΑΠΟΘΗΚΕΣ Ε ΟΜΕΝΩΝ ΠΡΟΧΩΡΗΜΕΝΑ ΘΕΜΑΤΑ ΒΑΣΕΩΝ Ε ΟΜΕΝΩΝ -1 ΕΙΣΑΓΩΓΗ ΑΠΟΘΗΚΕΣ Ε ΟΜΕΝΩΝ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ
ΑΛΕΞΑΝΔΡΕΙΟ Τ.Ε.Ι ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΑΛΕΞΑΝΔΡΕΙΟ Τ.Ε.Ι ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Πτυχιακή Εργασία Οι τεχνολογίες OLAP και Data warehousing Του φοιτητή: Δαραβίγκα Δημήτριου Αρ. Μητρώου: 05/2933 Επιβλέπων
ΣΤΡΑΤΗΓΙΚΟ MANAGEMENT KAI EΠΙΧΕΙΡHΜΑΤΙΚΗ ΕΥΦΥΙΑ. Παρουσίαση 2 ο μέρος:
ΣΤΡΑΤΗΓΙΚΟ MANAGEMENT KAI EΠΙΧΕΙΡHΜΑΤΙΚΗ ΕΥΦΥΙΑ Παρουσίαση 2 ο μέρος: Λήψη αποφάσεων Η λήψη αποφάσεων αποτελεί κεντρική δραστηριότητα σε όλα τα επίπεδα λειτουργίας μιας επιχείρησης, από τον σχεδιασμό δράσεων,
Πολυδιάστατη Ανάλυση Δεδομένων
Πολυδιάστατη Ανάλυση Δεδομένων Άντληση δεδομένων από τη βάση Το πρώτο βήμα είναι η δημιουργία της πολυδιάστατης βάσης δεδομένων (OLAP On Line Analytical Processing) η οποία απευθύνεται στους καταναλωτές
Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Πρόγραµµα Μεταπτυχιακών Σπουδών «Πληροφορική»
Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Πρόγραµµα Μεταπτυχιακών Σπουδών «Πληροφορική» Μεταπτυχιακή ιατριβή Τίτλος ιατριβής Ονοµατεπώνυµο Φοιτητή Πατρώνυµο Συλλογή, ιασταύρωση, ιαχείριση και Επιχειρησιακή
Ανάλυση Δεδομένων (Data Analysis) Άμεση Αναλυτική Επεξεργασία (OLAP) Λειτουργίες Συνάθροισης στην SQL (windowing, ranking)
ΒΔ για Λήψη Αποφάσεων Ανάλυση Δεδομένων (Data Analysis) Άμεση Αναλυτική Επεξεργασία (OLAP) Λειτουργίες Συνάθροισης στην SQL (windowing, ranking) Οργάνωση ιστορικής πληροφορίας σε Αποθήκες Δεδομένων (Data
Προηγμένα Πληροφοριακά Συστήματα. Ακαδημαϊκό Έτος
Προηγμένα Πληροφοριακά Συστήματα Ακαδημαϊκό Έτος 2016-2017 Ομάδα: 1. Κανούτος Κωνσταντίνος ΑΜ: 5775 2. Καραχάλιος Αθανάσιος ΑΜ: 5784 3. Κυριακού Ανδρόνικος ΑΜ: 5806 4. Ντενέζος Παναγιώτης ΑΜ: 5853 5. Παρασκευόπουλος
4 Πολυδιάστατη Ανάλυση και Αποθήκες Δεδομένων
4 Πολυδιάστατη Ανάλυση και Αποθήκες Δεδομένων Σύνοψη Οι σύγχρονες επιχειρήσεις κατακλύζονται από ένα πακτωλό δεδομένων, τα οποία προέρχονται από εσωτερικές και εξωτερικές πηγές. Τα δεδομένα αυτά, αν και
Copyright 2007 Ramez Elmasri and Shamkant B. Navathe, Ελληνική Έκδοση, ίαυλος ιαφάνεια 29-1
ιαφάνεια 29-1 Εφαρµογές Βάσεων εδοµένων ΠΜΣ 510 ευτέρα 6-9 Αίθουσα Α Ώρες Γραφείου ευτέρα 5-6 (και οποιαδήποτε άλλη ώρα είµαι στο γραφείο ικτυακός τόπος www.di.uoa.gr/~pms510 Ύλη Αποθήκες δεδοµένων Εξόρυξη
Σχεδίαση και Ανάπτυξη Απ ποθηκών Δεδομένωνν
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Σχεδίαση και Ανάπτυξη Αποθηκών Δεδομένων Διπλωματική Εργασία του Ζαγκαρέτου Λεωνίδα (ΑΕΜ: 139) Επιβλέπων Καθηγητής: Νανόπουλος
Προκαταρκτικά. Όταν εκτελέσουμε για πρώτη φορά το power wabit, πρώτη δουλειά μας είναι να φέρουμε τον driver που θα κάνει τη διασύνδεση με τη mysql.
SQL power wabit Power wabit Ας υποθέσουμε ότι έχουμε δημιουργήσει με το mondrian ένα ή περισσότερα σχήματα, που μπορεί το κάθε ένα να περιέχει έναν ή περισσότερους κύβους. Κάθε σχήμα μπορεί να αναφέρεται
A ΕΠΑ.Λ ΕΦΑΡΜΟΓΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 5 η ΕΝΟΤΗΤΑ: ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ. Εκπαιδευτικοί: ΓΑΛΑΝΟΣ ΓΕΩΡΓΙΟΣ ΜΠΟΥΣΟΥΝΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ
A ΕΠΑ.Λ ΕΦΑΡΜΟΓΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 5 η ΕΝΟΤΗΤΑ: ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Εκπαιδευτικοί: ΓΑΛΑΝΟΣ ΓΕΩΡΓΙΟΣ ΜΠΟΥΣΟΥΝΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ 1 Βάση Δεδομένων: Με το όρο Βάση Δεδομένων εννοούμε ένα σύνολο δεδομένων που είναι οργανωμένο
Αποθήκες Δεδομένων. Αποθήκες και εξόρυξη δεδομένων 6 ο εξάμηνο
Αποθήκες Δεδομένων Αποθήκες και εξόρυξη δεδομένων 6 ο εξάμηνο Τι είναι Αποθήκες Δεδομένων? Αποθήκη Δεδομένων (Data Warehouse): Μία ΒΔ στήριξης αποφάσεων που διατηρείται ξεχωριστά από τη λειτουργική ΒΔ
Μοντέλο Διαστάσεων Αρχιτεκτονική Αποθηκών Δεδομένων. Πασχάλης Θρήσκος, PhD Λάρισα
Μοντέλο Διαστάσεων Αρχιτεκτονική Αποθηκών Δεδομένων Πασχάλης Θρήσκος, PhD Λάρισα 2016-2017 Βασικά βήματα διαχείρισης ενός DW έργου The DW Lifecycle Toolkit Μοντέλο διαστάσεων (Dimensional Modelling) Τεχνική
Οδηγίες Χρήσης της MySQL
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΗΜΕΙΩΣΕΙΣ ΣΕ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Οδηγίες Χρήσης της MySQL Διδάσκων: Γιάννης Θεοδωρίδης Συντάκτης Κειμένου: Βαγγέλης Κατσικάρος Νοέμβριος 2007 1 Περιεχόμενα Εισαγωγή...2
Βάσεις Δεδομένων. Τ.Ε.Ι. Ιονίων Νήσων Σχολή Διοίκησης και Οικονομίας - Λευκάδα
Βάσεις Δεδομένων Τ.Ε.Ι. Ιονίων Νήσων Σχολή Διοίκησης και Οικονομίας - Λευκάδα Στέργιος Παλαμάς, Υλικό Μαθήματος «Βάσεις Δεδομένων», 2015-2016 Κεφάλαιο 2: Περιβάλλον Βάσεων Δεδομένων Μοντέλα Δεδομένων 2.1
Περιεχόμενα. Πρόλογος 9. Ευχαριστίες 11. Εισαγωγή 13. 1 Κατανόηση των δεδομένων 23. 2 Βασικές τεχνικές ανάλυσης δεδομένων 41
Περιεχόμενα Πρόλογος 9 Ευχαριστίες 11 Εισαγωγή 13 Σχετικά με το βιβλίο...14 Σε ποιον απευθύνεται το βιβλίο...15 Οργάνωση του βιβλίου...16 Πώς θα προχωρήσετε...18 Στοιχεία του βιβλίου...19 Χρήση του συνοδευτικού
Σχεσιακό Μοντέλο (Γρήγορη επανάληψη) Πασχάλης Θρήσκος PhD Λάρισα
Σχεσιακό Μοντέλο (Γρήγορη επανάληψη) Πασχάλης Θρήσκος PhD Λάρισα 2016-2017 pthriskos@mnec.gr Σχεσιακές Βάσεις Δεδομένων Ορισμός : Τα δεδομένα αποθηκεύονται σε πίνακες που σχετίζονται μεταξύ τους με κοινά
ΑΠΟΘΗΚΕΣ Ε ΟΜΕΝΩΝ Σ. ΛΙΓΟΥ ΙΣΤΙΑΝΟΣ
ΑΠΟΘΗΚΕΣ Ε ΟΜΕΝΩΝ 195 ΑΠΟΘΗΚΕΣ Ε ΟΜΕΝΩΝ Σ. ΛΙΓΟΥ ΙΣΤΙΑΝΟΣ 8.1 ΓΕΝΙΚΑ Από τα µέσα της δεκαετίας του '70, η αλµατώδης παραγωγή πολύ ισχυρών συστηµάτων διαχείρισης βάσεων δεδοµένων βοήθησε στην ανάπτυξη πληροφοριακών
Βάσεις Δεδομένων 2η εργαστηριακή άσκηση
Βάσεις Δεδομένων 2η εργαστηριακή άσκηση Εισαγωγή στο περιβάλλον της oracle Δημιουργία πινάκων Δρ. Εύη Φαλιάγκα 1. Login Χρησιμοποιώντας έναν web explorer, μπαίνετε στο http://10.0.0.6:8080/apex και συμπληρώνετε
Οδηγίες Χρήσης της MySQL
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΗΜΕΙΩΣΕΙΣ ΣΕ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Οδηγίες Χρήσης της MySQL Διδάσκων: Γιάννης Θεοδωρίδης Συντάκτης Κειμένου: Βαγγέλης Κατσικάρος Απρίλιος 2007 1 Περιεχόμενα Εισαγωγή...2
ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ - ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΣΒΔ - ΕΙΣΑΓΩΓΗ ΣΤΟ ΜΟΝΤΕΛΟ ΟΝΤΟΤΗΤΩΝ ΣΥΣΧΕΤΙΣΕΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ
ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Χειμερινό Εξάμηνο 2013 - ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΣΒΔ - ΕΙΣΑΓΩΓΗ ΣΤΟ ΜΟΝΤΕΛΟ ΟΝΤΟΤΗΤΩΝ ΣΥΣΧΕΤΙΣΕΩΝ Δρ. Βαγγελιώ Καβακλή ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ, ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ 1 Αρχιτεκτονική
Μια ολοκληρωμένη, διαχρονική και μόνιμη συλλογή δεδομένων οργανωμένη κατά αντικείμενο ανάλυσης με στόχο τη διαδικασία υποστήριξης λήψης αποφάσεων -
Εξαγωγή Μετασχηματισμός Εισαγωγή Δεδομένων στην Αποθήκη Πληροφοριών (ETL) Ορισμοί Data Warehouse 1. 2. Μια ολοκληρωμένη, διαχρονική και μόνιμη συλλογή δεδομένων οργανωμένη κατά αντικείμενο ανάλυσης με
Η SQL αποτελείται από δύο υποσύνολα, τη DDL και τη DML.
Κεφάλαιο 5 Η γλώσσα SQL 5.1 Εισαγωγή Η γλώσσα SQL (Structured Query Language) είναι η πιο διαδεδομένη διαλογική γλώσσα ερωταπαντήσεων που χρησιμοποιείται για την επικοινωνία του χρήστη με σχεσιακές ΒΔ.
Εισαγωγή σε SQL Server Reporting Services
ΠΑΝΕΠΙΣΗΜΙΟ ΠΕΙΡΑΙΩ ΣΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗ ΠΡΟΧΩΡΗΜΕΝΑ ΘΕΜΑΣΑ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ Νίκος Γιατράκος (ngiatrak@unipi.gr) 1. SQL Server Reporting Services (SSRS) Component - Συνοπτικά Σο συστατικό SSRS του SQL Server
Ολοκληρωµένη λύση επιλεκτικής συγκέντρωσης, αναδιοργάνωσης δεδοµένων και παραγωγής πληροφορίας
e.nfo Ολοκληρωµένη λύση επιλεκτικής συγκέντρωσης, αναδιοργάνωσης δεδοµένων και παραγωγής πληροφορίας Εξασφάλιση της εξειδικευµένης λύσης business intelligence για κάθε επιχείρηση πελάτης Τράπεζα Πειραιώς
Βάσεις Δεδομένων και Ευφυή Πληροφοριακά Συστήματα Επιχειρηματικότητας. 2 ο Μάθημα: Βασικά Θέματα Βάσεων Δεδομένων. Δρ. Κωνσταντίνος Χ.
Βάσεις Δεδομένων και Ευφυή Πληροφοριακά Συστήματα Επιχειρηματικότητας 2 ο Μάθημα: Βασικά Θέματα Βάσεων Δεδομένων Δρ. Κωνσταντίνος Χ. Γιωτόπουλος Βασικά θέματα Βάσεων Δεδομένων Ένα Σύστημα Βάσης Δεδομένων
«Χωροχρονικές Αποθήκες εδοµένων και η Εφαρµογή τους στην Περίπτωση της Αγοράς Ακινήτων»
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ «Χωροχρονικές Αποθήκες εδοµένων και η Εφαρµογή τους στην Περίπτωση της Αγοράς Ακινήτων» Μιχάλης Βαζιργιάννης Συνεργάτες:. Ξηνταρα, Α. Στέφου, Θ. Ασηµίνα,
Μελέτη και Υλοποίηση Συστήματος Πολυδιάστατης Αναλυτικής Επεξεργασίας Δεδομένων (OLAP) στην Ορθοπεδική
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ (ΠΡΩΗΝ )ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΔΙΟΙΚΗΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΑ (Αμαλιάδα) ΤΜΗΜΑ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ (ΠΑΤΡΑ) Μελέτη και
ÈÛ ÁˆÁ ÛÙÈ μ ÛÂÈ Â ÔÌ ÓˆÓ
ΕΝΟΤΗΤΑ 1.1 ÈÛ ÁˆÁ ÛÙÈ μ ÛÂÈ Â ÔÌ ÓˆÓ ΔΙΔΑΚΤΙΚΟI ΣΤOΧΟΙ Στο τέλος της ενότητας αυτής πρέπει να μπορείτε: να επεξηγείτε τις έννοιες «βάση δεδομένων» και «σύστημα διαχείρισης βάσεων δεδομένων» να αναλύετε
Υποστηρικτικό Υλικό για Πτυχιακές και MSc. Π. Βασιλειάδης
Υποστηρικτικό Υλικό για Πτυχιακές και MSc Π. Βασιλειάδης RADAR: Radial Applications Depiction Around Relations For Data-Centric Ecosystems Panos Vassiliadis http://www.cs.uoi.gr/~pvassil/publications/2011_dali/index.html
Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής
Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Πρόγραµµα Μεταπτυχιακών Σπουδών «Πληροφορική» Μεταπτυχιακή ιατριβή Τίτλος ιατριβής Ονοµατεπώνυµο Φοιτητή Πατρώνυµο Υλοποίηση Αποθήκης Μεταναστευτικών εδοµένων OLAP
Οργάνωση Βάσεων Βιοϊατρικών Δεδομένων Εξόρυξη Γνώσης Βιοϊατρικών Δεδομένων. Σεμινάριο 7: Αλγόριθμοι για επεξεργασία ερωτήσεων και βελτιστοποίηση
Οργάνωση Βάσεων Βιοϊατρικών Δεδομένων Εξόρυξη Γνώσης Βιοϊατρικών Δεδομένων Σεμινάριο 7: Αλγόριθμοι για επεξεργασία ερωτήσεων και βελτιστοποίηση Ευάγγελος Καρκαλέτσης, Αναστασία Κριθαρά, Γεώργιος Πετάσης
Kεφ.2: Σχεσιακό Μοντέλο (επανάληψη) Κεφ.6.1: Σχεσιακή Άλγεβρα
Kεφ.2: Σχεσιακό Μοντέλο (επανάληψη) Κεφ.6.1: Σχεσιακή Άλγεβρα Database System Concepts, 6 th Ed. Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use Παράδειγμα Σχέσης attributes
Υλοποίηση των Σχεσιακών Τελεστών. 6/16/2009 Μ.Χατζόπουλος 1
Υλοποίηση των Σχεσιακών Τελεστών 6/16/2009 Μ.Χατζόπουλος 1 Ένα σχεσιακό ΣΔBΔ πρέπει να συμπεριλαμβάνει αλγόριθμους για υλοποίηση των διαφορετικών τύπων των σχεσιακών πράξεων (καθώς και άλλων πράξεων) που
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ. Βασικές Ενότητες... 19 Πρόσθετες Ενότητες... 19. Entry... 17. Start... 12 Λογιστικές Εφαρμογές... 13. xline ERP ATLANTIS ERP
3 ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ Βασικές Ενότητες... 5 Πρόσθετες Ενότητες... 6 Entry... 7 Start... 8 Λογιστικές Εφαρμογές... 8 xline ERP Βασικές Ενότητες... 9 Πρόσθετες Ενότητες... 10 Entry... 11 Start... 12 Λογιστικές
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 20: Κανονικοποίηση και Συναρτησιακές Εξαρτήσεις Ι Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στις έννοιες: Εισαγωγή στην Κανονικοποιήση Άτυπες κατευθύνσεις για Σχεδιασμό
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ Εισαγωγή στη MySQL Νικόλαος Ζ. Ζάχαρης Τι είναι η MySql Είναι ένα Σχεσιακό Σύστημα Διαχείρισης
Πανεπιστήμιο Πειραιώς, Τμήμα Πληροφορικής
Πανεπιστήμιο Πειραιώς, Τμήμα Πληροφορικής Ακαδημαϊκό έτος 2009-10 ΣΥΓΦΡΟΝΑ ΘΔΜΑΤΑ ΒΑΣΔΩΝ ΓΔΓΟΜΔΝΩΝ 1 η ΔΡΓΑΣΙΑ ΔΞΑΜΗΝΟΥ ομάδες των 2-3 ατόμων Εισαγωγή Έστω η βάση δεδομένων μιας επιχείρησης (θα μπορούσε
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΠΡΟΧΩΡΗΜΕΝΑ ΘΕΜΑΤΑ ΒΑΣΕΩΝ Ε ΟΜΕΝΩΝ Τ. Σελλής ΦΘΙΝΟΠΩΡΟ 2005 Λύση ΑΣΚΗΣΗΣ
Σχεδίαση Βάσεων Δεδομένων
Σχεδίαση Βάσεων Δεδομένων Η ιστορία των Βάσεων Δεδομένων History of the Database 1 Copyright 2013, Oracle and/or its affiliates. All rights reserved. Στόχοι Το μάθημα αυτό καλύπτει τους ακόλουθους στόχους:
ΑΠΟΔΟΤΙΚΗ ΑΠΟΤΙΜΗΣΗ ΕΡΩΤΗΣΕΩΝ OLAP Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ. Υποβάλλεται στην
ΑΠΟΔΟΤΙΚΗ ΑΠΟΤΙΜΗΣΗ ΕΡΩΤΗΣΕΩΝ OLAP Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ Υποβάλλεται στην ορισθείσα από την Γενική Συνέλευση Ειδικής Σύνθεσης του Τμήματος Πληροφορικής Εξεταστική Επιτροπή από την Χαρά Παπαγεωργίου
Εξαγωγή Μετασχηματισμός Εισαγωγή Δεδομένων στην Αποθήκη Πληροφοριών (ETL) ETL) Αριστομένης Μακρής
Εξαγωγή Μετασχηματισμός Εισαγωγή Δεδομένων στην Αποθήκη Πληροφοριών (ETL) ETL) Τεχνολογίες Υποστήριξης Λήψης Διοικητικών Αποφάσεων OLTP (On Line Transaction Processing) Επιχειρηματικές Εφαρμογές (Σχεσιακές
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΙI
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΙI Β. Μεγαλοοικονόμου Κατανεμημένες Βάσεις Δεδομένων (παρουσίαση βασισμένη εν μέρη σε σημειώσεις των Silberchatz, Korth και Sudarshan και του C. Faloutsos)
EBS Version Entersoft Business Suite Entersoft CRM
EBS Version 4.4.4.1 Entersoft Business Suite Entersoft CRM Νέα χαρακτηριστικά και επεκτάσεις Περιεχόμενα Συνοπτική περιγραφή περιεχομένων έκδοσης 3 Entersoft ERP... 3 Οριζόντια χαρακτηριστικά... 3 Entersoft
Τ Μ Η Μ Α Δ ΙΟ ΙΚ Η Σ Η Σ Μ Ο Ν Α Δ Ω Ν Υ Γ Ε ΙΑ Σ Π ΡΟ Ν Ο ΙΑ Σ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «ΕΓΚΑΤΑΣΤΑΣΗ ΚΑΙ ΜΕΑΕΤΗ ΕΡΓΑΛΕΙΩΝ ΔΙΑΧΕΙΡΙΣΗΣ ΔΕΔΟΜΕΝΩΝ OLAP»
^OAOtj / '** ΠΑ,4*Χ ifflhs&a' ν 1990 ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΛΑΜΑΤΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΟΙΚΟΝΟΜΙΑΣ Τ Μ Η Μ Α Δ ΙΟ ΙΚ Η Σ Η Σ Μ Ο Ν Α Δ Ω Ν Υ Γ Ε ΙΑ Σ Π ΡΟ Ν Ο ΙΑ Σ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «ΕΓΚΑΤΑΣΤΑΣΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΙI
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΙI B. Μεγαλοοικονόμου Αντικειμενοστρεφή και αντικειμενο-σχεσιακά ΣΔΒΔ (παρουσίαση βασισμένη εν μέρη σε σημειώσεις των Silberchatz, Korth και Sudarshan και του
Microsoft ACCESS ΒΑΣΗ ΔΕΔΟΜΕΝΩΝ ECDL. Περιεχόμενα. Απόκτησε τώρα το δίπλωμα. για να θεωρείσαι Επαγγελματίας! 1 Κατανόηση Βάσεων. 2 Χρήση της Εφαρμογής
Microsoft ACCESS Περιεχόμενα ΒΑΣΗ ΔΕΔΟΜΕΝΩΝ 1 Κατανόηση Βάσεων Δεδομένων 2 Χρήση της Εφαρμογής 3 Πίνακες 4 Ανάκτηση Πληροφοριών 5 Αντικείμενα 6 Αποτελέσματα Κατανόηση τι είναι μια βάση δεδομένων, πως είναι
ΧΡΗΣΙΜΕΣ ΠΛΗΡΟΦΟΡΙΕΣ ALTEC ΚΕΦΑΛΑΙΟ. ALTEC xline ERP ALTEC ATLANTIS II ERP ALTEC ATLANTIS II PAYROLL. ALTEC xline PAYROLL
9 ALTEC ΚΕΦΑΛΑΙΟ Συνδυασμοί Εμπορικής Διαχείρισης... Συνδυασμοί Εμπορικής Διαχείρισης με Γενική Λογιστική... Συνδυασμοί Εμπορικής Διαχείρισης με Έσοδα Έξοδα... Πρόσθετες Εφαρμογές... Entry... Start...
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι Β. Μεγαλοοικονόμου, Δ. Χριστοδουλάκης Query by Example QBE Ακ.Έτος 2008-09 (μεβάσητιςσημειώσειςτωνsilberchatz, Korth και Sudarshan και του C. Faloutsos CMU)
Στρατηγική Επιλογή Capital B.O.S. Capital B.O.S.
Στρατηγική Επιλογή Το ταχύτατα μεταβαλλόμενο περιβάλλον στο οποίο δραστηριοποιούνται οι επιχειρήσεις σήμερα, καθιστά επιτακτική -όσο ποτέ άλλοτε- την ανάπτυξη ολοκληρωμένων λύσεων που θα διασφαλίζουν,
Distance Functions on Hierarchies. Eftychia Baikousi
Distance Functions on Hierarchies Eftychia Baikousi Outline Definition of metric & similarity Various Distance Functions Minkowski Set based Edit distance Basic concept of OAP attice Distance in same level
2 ο Σύνολο Ασκήσεων. Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1
2 ο Σύνολο Ασκήσεων Οι βαθμοί θα ανακοινωθούν αύριο μαζί με τους βαθμούς της προγραμματιστικής άσκησης Τα αστεράκια δείχνουν τον εκτιμώμενο βαθμό δυσκολίας (*) εύκολο (**) μέτριο (***) δύσκολο Βάσεις Δεδομένων
ΕΞΕΤΑΣΤΕΑ ΥΛΗ (SYLLABUS) Ενότητα Advanced Βάσεις Δεδομένων, Προχωρημένο Επίπεδο. Copyright 2013 ECDL Foundation Ref: SL_AM3_Syl2.
ΕΞΕΤΑΣΤΕΑ ΥΛΗ (SYLLABUS) Ενότητα Advanced Βάσεις Δεδομένων, Προχωρημένο Επίπεδο Copyright 2013 ECDL Foundation Ref: SL_AM3_Syl2.0_v1 Page 17 of 29 Βάσεις Δεδομένων, Προχωρημένο Επίπεδο Ακολουθεί η Εξεταστέα
Εισαγωγή στο Auto Moto Cube
POWERED BY ACT Εισαγωγή στο Auto Moto Cube 1 Version: 01 Μάιος 2017 Εισαγωγή Εγχειριδίου Pylon-Auto Moto Cube Ο σκοπός της παρούσας σειράς εγχειριδίων για το Auto Moto Cube είναι η εισαγωγή του αναγνώστη
Βασικές Ενότητες... 18 Πρόσθετες Ενότητες... 18. Entry... Start... Λογιστικές Εφαρμογές... Βασικές Ενότητες... Πρόσθετες Ενότητες...
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ ERP Βασικές Ενότητες... Πρόσθετες Ενότητες... Entry... Start... Λογιστικές Εφαρμογές... 4 5 6 7 7 xline ERP Βασικές Ενότητες... Πρόσθετες Ενότητες... Entry... Start... Λογιστικές Εφαρμογές...
CYPDIS BI Platform. ών Υπηρεσιών
CYPDIS BI Platform Η επιχειρηματική νοημοσύνη (BI) του συστήματος βασίζεται στην πλατφόρμα Pentaho. Πρόκειται για μια πλατφόρμα λογισμικού που αποτελείται από το πλαίσιο (framework), τα εργαλεία (ΒΙ Components),
ΣΧΕΣΙΑΚΕΣ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ
ΣΧΕΣΙΑΚΕΣ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Διδάσκων του μαθήματος 2 Δρ. Λεωνίδας Φραγγίδης Τμήμα Διοίκησης Επιχειρήσεων ΤΕΙ ΑΜΘ Email: fragidis@teiemt.gr Ώρες Γραφείου: Τρίτη (10:00 12:00) Προτεινόμενα Βιβλία 3 Σχεσιακές
ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ - ΣΧΕΣΙΑΚΗ ΑΛΓΕΒΡΑ
ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ - ΣΧΕΣΙΑΚΗ ΑΛΓΕΒΡΑ Διδάσκων του μαθήματος 2 Δρ. Λεωνίδας Φραγγίδης Τμήμα Διοίκησης Επιχειρήσεων ΤΕΙ ΑΜΘ Email: fragidis@teiemt.gr Ώρες Γραφείου: Τρίτη (10:00 12:00) Προτεινόμενα Βιβλία
Προγραμματισμός ταμειακής ροής για αγορές υλικών
Προγραμματισμός ταμειακής ροής για αγορές υλικών Η βάση δεδομένων του Navision μπορεί να χρησιμοποιηθεί για την άντληση δεδομένων και από άλλα εργαλεία εκτός Navision. Θα δημιουργήσουμε ένα παράδειγμα
Βάσεις δεδομένων. (3 ο μάθημα) Ηρακλής Βαρλάμης
Βάσεις δεδομένων (3 ο μάθημα) Ηρακλής Βαρλάμης varlamis@hua.gr Περιεχόμενα Σχεσιακό μοντέλο δεδομένων Σχέσεις, γνωρίσματα, πλειάδες, πεδία ορισμού Πράξεις ενημέρωσης σε σχέσεις Απεικόνιση μοντέλου οντοτήτωνσυσχετίσεων
ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΖΩΓΡΑΦΟΥ , ΑΘΗΝΑ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΖΩΓΡΑΦΟΥ 157 73, ΑΘΗΝΑ ΕΣΒΓ - ΙΠΛ-Έτος-ID 20 Ιουνίου 2003 ΤΙΤΛΟΣ (ΤΟΜΟΣ
Τμήμα Πληροφορικής ΑΠΘ
Βάσεις Δεδομένων Εργαστήριο ΙΙ Τμήμα Πληροφορικής ΑΠΘ 2013-2014 2 Σκοπός του 2 ου εργαστηρίου Σκοπός αυτού του εργαστηρίου είναι: Η μελέτη ερωτημάτων σε μία μόνο σχέση. Εξετάζουμε τους τελεστές επιλογής
Βάσεις Δεδομένων Εισαγωγή
Βάσεις Δεδομένων Εισαγωγή Σκοποί ενότητας Εκμάθηση Συστημάτων Διαχείρισης Βάσεων Δεδομένων Δημιουργία E-R διαγραμμάτων 2 Περιεχόμενα ενότητας Συστήματα Διαχείρισης Βάσεων Δεδομένων Διάγραμμα οντοτήτων
GROUP BY, HAVING, COUNT, MIN, MAX, SUM, AVG, ROLLUP.
SQL: Ερωτήματα ομαδοποίησης και συνάθροισης GROUP BY, HAVING, COUNT, MIN, MAX, SUM, AVG, ROLLUP Αθανάσιος Σταυρακούδης http://stavrakoudis.econ.uoi.gr Άνοιξη 2016 1 / 56 Περιεχόμενα 1 Εισαγωγή, γενικές
Microsoft EXCEL ΛΟΓΙΣΤΙΚΑ ΦΥΛΛΑ ECDL. Περιεχόμενα. Απόκτησε τώρα το δίπλωμα. για να θεωρείσαι Επαγγελματίας! 1 Μορφοποίηση. 2 Τύποι και Συναρτήσεις
Microsoft EXCEL Περιεχόμενα 1 Μορφοποίηση 2 Τύποι και Συναρτήσεις 3 Γραφήματα 4 Ανάλυση 5 Επικύρωση και Έλεγχος 6 Βελτίωση Παραγωγικότητας ΛΟΓΙΣΤΙΚΑ ΦΥΛΛΑ Προχωρημένες επιλογές μορφοποίησης, όπως η μορφοποίηση
Tech village School. Ακολουθούν δομές και σχέδια του εκπαιδευτικού προγράμματος: Σελίδα 1 από 7
Tech Village School Κωδικός Πακέτου: Access Εκπαιδευτική Ενότητα: Βάσεις δεδομένων Είδος προγράμματος: Βασικές γνώσεις πληροφορικής Μέθοδος διδασκαλίας: Με διαλέξεις-εργαστήρια Περιγραφή Μεθόδου Διδασκαλίας:
Σχεσιακό Μοντέλο. Σχεδιασμός Βάσεων Δεδομένων Μάθημα 2 ο Μαρία Χαλκίδη
Σχεσιακό Μοντέλο Σχεδιασμός Βάσεων Δεδομένων Μάθημα 2 ο Μαρία Χαλκίδη Εισαγωγή Το σχεσιακό μοντέλο δεδομένων (relational data model) προτάθηκε από τον E. F. Codd το 1970 Aποτελεί ένα μέσο λογικής δόμησης
Στην ενότητα αυτή παρατίθενται δεξιότητες που αφορούν στη χρήση των πιο διαδεδομένων λογισμικών Γεωγραφικών Συστημάτων Πληροφοριών (GIS).
Ενότητα 3η: Χρήση Λογισμικού GIS Το παρακάτω αναλυτικό γνωστικό περιεχόμενο, αποτελεί την τρίτη ενότητα της εξεταστέας ύλης για την πιστοποίηση GISPro και παρέχει το υπόβαθρο της πρακτικής εξέτασης στο
Τμήμα Διοίκησης Επιχειρήσεων
Τμήμα Διοίκησης Επιχειρήσεων «Βάσεις Δεδομένων και Ευφυή Πληροφοριακά Συστήματα» «Σημειώσεις για την SQL» ΕΞΑΜΗΝΟ: ΣΤ Δρ. Κωνσταντίνος Χ. Γιωτόπουλος Πάτρα, Νοέμβριος 2010 SQL Create Table Η CREATE TABLE
Σχεσιακή Άλγεβρα και Σχεσιακός Λογισμός. Σχεσιακή Άλγεβρα Σχεσιακός Λογισμός
7 Σχεσιακή Άλγεβρα και Σχεσιακός Λογισμός Σχεσιακή Άλγεβρα Σχεσιακός Λογισμός Σχεσιακή Άλγεβρα H Σχεσιακή Άλγεβρα (relational algebra) ορίζει ένα σύνολο πράξεων που εφαρμόζονται σε μία ή περισσότερες σχέσεις
Βασικές Ενότητες... 18 Πρόσθετες Ενότητες Ανεξαρτήτως Χρηστών... 18. Λογιστικές Εφαρμογές... 12. Entry... 10 Start... 11. Services...
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ ERP Βασικές Ενότητες... Πρόσθετες Ενότητες Ανεξαρτήτως Χρηστών... Λογιστικές Εφαρμογές... Entry... Start... Services... 4 5 5 6 7 7 xline ERP Βασικές Ενότητες... 8 Πρόσθετες Ενότητες
Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Εισαγωγή στην Επεξεργασία Ερωτήσεων 1 Επεξεργασία Ερωτήσεων Θα δούμε την «πορεία» μιας SQL ερώτησης (πως εκτελείται) Ερώτηση SQL Ερώτηση ΣΒΔ Αποτέλεσμα 2 Βήματα Επεξεργασίας Τα βασικά βήματα στην επεξεργασία
EBS Version Entersoft Business Suite Entersoft CRM
EBS Version 4.4.0.10 Entersoft Business Suite Entersoft CRM Νέα χαρακτηριστικά και επεκτάσεις Περιεχόμενα Συνοπτική περιγραφή περιεχομένων έκδοσης 3 Entersoft ERP... 3 Entersoft ERP 4 Χρηματοοικονομικά...
Βασικές Ενότητες... 19 Πρόσθετες Ενότητες Ανεξαρτήτως Χρηστών... 19. Entry... 11 Start... 12. Services... Λογιστικές Εφαρμογές... 14. Retail...
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ ERP Βασικές Ενότητες... Πρόσθετες Ενότητες Ανεξαρτήτως Χρηστών... Entry... Start... Services... Λογιστικές Εφαρμογές... Retail... 4 5 6 7 8 8 8 xline ERP Βασικές Ενότητες... 9 Πρόσθετες
Ιωσηφίδης Ελευθέριος
Διαχείρηση Πολυδιάστατων Δεδομένων: Πειραματική και Συγκριτική Αξιολόγηση της Απόδοσης Εμπορικών και Ανοικτού Κώδικα DBMS Ιωσηφίδης Ελευθέριος ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Επιβλέπων Καθηγητής Ευαγγελίδης Γεώργιος
Γεωγραφικά Συστήματα Πληροφοριών και θαλάσσιο αιολικό - κυματικό δυναμικό. Παρασκευή Δρακοπούλου, Ινστιτούτο Ωκεανογραφίας, ΕΛΚΕΘΕ
Γεωγραφικά Συστήματα Πληροφοριών και θαλάσσιο αιολικό - κυματικό δυναμικό Παρασκευή Δρακοπούλου, Ινστιτούτο Ωκεανογραφίας, ΕΛΚΕΘΕ Σύστημα Γεωγραφικών Πληροφοριών: ένα εργαλείο "έξυπνου χάρτη" ολοκληρωμένο
Ολοκληρωμένη, σύγχρονη και ευέλικτη λύση ERP (Enterprise Resource Planning-Σύστημα Διαχείρισης Επιχειρησιακών Πόρων) για επιχειρήσεις, που επιθυμούν
Enterprise Resource Planning Systems (ERP) για Μεσαίες ή μεγάλες επιχειρήσεις Ολοκληρωμένη, σύγχρονη και ευέλικτη λύση ERP (Enterprise Resource Planning-Σύστημα Διαχείρισης Επιχειρησιακών Πόρων) για επιχειρήσεις,
Τεχνολογία Πολιτισμικού Λογισμικού
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Τεχνολογία Πολιτισμικού Λογισμικού Ενότητα 12: SQL και πολιτισμικά δεδομένα Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και
Τίτλος Πακέτου Certified Computer Expert-ACTA
Κωδικός Πακέτου ACTA - CCE - 002 Τίτλος Πακέτου Certified Computer Expert-ACTA Εκπαιδευτικές Ενότητες Επεξεργασία Κειμένου - Word Δημιουργία Εγγράφου Προχωρημένες τεχνικές επεξεργασίας κειμένου & αρχείων
Σχεσιακό Μοντέλο Περιορισμοί Μετατροπή ER σε Σχεσιακό Παράδειγμα.. Εργαστήριο Βάσεων Δεδομένων. Relational Model
.. Εργαστήριο Βάσεων Δεδομένων Relational Model . Σχεσιακό Μοντέλο (Relational Model) Το σχεσιακό μοντέλο παρουσιάζει μια βάση ως συλλογή από σχέσεις Μια σχέση είναι ένας πίνακας με διακριτό όνομα Κάθε