Εισαγωγή στις Αποθήκες εδομένων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εισαγωγή στις Αποθήκες εδομένων"

Transcript

1 Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 1 Εισαγωγή: OLTP Παραδοσιακή ιαχείριση εδομένων με Σ Β Σύστημα Επεξεργασίας οσοληψιών On-Line Transaction Processing (OLTP) Εισαγωγή στις Αποθήκες εδομένων ιαφάνειες βασισμένες σε σχετικές διαφάνειες του Πάνου Βασιλειάδη Ένα πλήρες σύστημα που περιέχει εργαλεία για προγραμματισμό εφαρμογών, εκτέλεση και διαχείριση των δοσοληψιών Μια τέτοια εφαρμογή πρέπει να δουλεύει συνεχώς, να αντεπεξέρχεται αποτυχιών, εξελίσσεται συνεχώς, είναι συνήθως κατανεμημένη και περιλαμβάνει: Βάση εδομένων ίκτυο Προγράμματα εφαρμογής Εξαιρετικά κρίσιμη για τη λειτουργία κάθε οργανισμού Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 2 Εισαγωγή: OLTP Εισαγωγή: OLTP OLTP Αεροπορική Εταιρεία OLTP Τράπεζα Κράτησε για γιατον κ. κ. Χ την τηνθέση 13Α 13Αγια γιαla! 1 Δάνεια Κράτησε για γιατον κ. κ. Y την τηνθέση 13Α 13Αγια γιαla!... Γκισέ DB Πόσοι ταξιδεύουν για γιαla? 100 ΑΤΜ DB Πιστωτικές κάρτες Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 3 Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 4 Εισαγωγή: OLTP Εισαγωγή: OLΑP OLTP Βασικά Χαρακτηριστικά Ελάχιστος χρόνος διαθέσιμος για την εκτέλεση μιας δοσοληψίας. Λιγότερες από 10 προσβάσεις δίσκου. Περιορισμένος αριθμός υπολογισμών. Κάτω όριο λειτουργικών απαιτήσεων: 100 on-line Transactions Per Second (TPS) σε μια Β της τάξης του 1 GB Άνω όριο λειτουργικών απαιτήσεων: TPS σε μια Β μεγαλύτερη του 1 ΤB. Συστήματα Στήριξης Αποφάσεων Decision Support Systems (DSS) Υποβοήθηση λήψης αποφάσεων με πληροφορίες και αναφορές On-Line Analytical Processing (OLAP) Ευέλικτη, υψηλής απόδοσης πρόσβαση και ανάλυση μεγάλου όγκου σύνθετων δεδομένων από διαφορετικές εφαρμογές Ειδικού τύπου ερωτήσεις Οπτικοποίηση/στατιστική ανάλυση/πολυδιάστατη ανάλυση Εξόρυξη Γνώσης (Knowledge Discovery/Data Mining) Εξεύρεση προτύπων σε τεράστιεςβάσειςδεδομένων OLAP + Data Mining => On-line Analytical Mining Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 5 Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 6

2 Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 7 Εισαγωγή: OLΑP Εισαγωγή: OLΑP Παραδείγματα ερωτήσεων OLAP Ποιος ήταν ο όγκος πωλήσεων ανά περιοχή και κατηγορία προϊόντος την περασμένη χρονιά; Πόσο σχετίζονται οι αυξήσεις τιμών των υπολογιστών με τα κέρδη τωνπωλήσεωντα10 τελευταία χρόνια; Ποια ήταν τα δέκα πρώτα καταστήματα σε πωλήσεις CD; Πόσους δίσκους πουλήσαμε στην Πελοπόννησο το τελευταίο τέταρτο της περσινής χρονιάς σε καταστήματα με κατανάλωση μεγαλύτερη από 100 δίσκους μηνιαίως, και ποιο το κέρδος μας από αυτές τις πωλήσεις; Τι ποσοστό από τους πελάτες που αγοράζουν αναψυκτικά αγοράζουν και πατατάκια; Λειτουργικά Χαρακτηριστικά Απαιτήσεων OLAP Πρόσβαση σε μεγάλο όγκο δεδομένων Συμμετοχή αθροιστικών και ιστορικών δεδομένων σε πολύπλοκες ερωτήσεις Μεταβολή της «οπτικής γωνίας» παρουσίασης των δεδομένων (π.χ., από πωλήσεις ανά περιοχή -> πωλήσεις ανά τμήμα κλπ.) Συμμετοχή πολύπλοκων υπολογισμών (π.χ. στατιστικές συναρτήσεις) Γρήγορη απάντηση σε οποιαδήποτε χρονική στιγμή τεθεί ένα ερώτημα ( On-Line ). Πως θα το πετύχουμε; Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 8 Εισαγωγή ύο κεντρικά θέματα Απόδοση Αν μια πολύπλοκη OLAP ερώτηση χρειαστεί να κλειδώσει ένα ολόκληρο πίνακα, τότε όλες οι OLTP δοσοληψίες την περιμένουν μέχρι να τελειώσει Εννοιολογική διαφορά και ετερογένεια Αν στην Oracle Β του marketing ο πελάτης είναι EMP(ΑΤ,Name,Surname ) και στην COBOL Β των πωλήσεων είναι ΑΦΜ,FullName, η επερώτηση δεν είναι πάντα εύκολη... Αποθήκες εδομένων Μια κεντρικοποιημένη Β με σκοπό: την ολοκλήρωση (integration) ετερογενών πηγών πληροφοριών (data sources) => συνάθροιση όλης της ενδιαφέρουσας πληροφορίας σε μία τοποθεσία την αποφυγή της σύγκρουσης μεταξύ OLTP και OLAP (DSS) συστημάτων => απόδοση εφαρμογών και διαθεσιμότητα του συστήματος Μπορεί να συμπληρώνεται και από εξειδικευμένα θεματικά υποσύνολα (Data Marts) για περαιτέρω απόδοση των OLAP εφαρμογών Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 9 Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 10 Αποθήκες εδομένων Γενική Αρχιτεκτονική Μια Β υποστήριξης αποφάσεων, που διατηρείται χωριστά από την Β παραγωγής (operational database) ενός οργανισμού. S. Chaudhuri, U. Dayal, VLDB 96 tutorial Μια συλλογή δεδομένων που χρησιμοποιείται κυρίως για την λήψη αποφάσεων σε ένα οργανισμό, και είναι θεματικά προσανατολισμένη, έχει ολοκληρωμένα (ενοποιημένα) δεδομένα, τα οποία διατηρούνται σε βάθος χρόνου χωρίς να διαγράφονται. W.H. Inmon, Building the Data Warehouse, 1992 (ο εφευρέτης του όρου) Πηγή Δεδομένων OLTP συστήματα DW OLAP εργαλεία Data Marts Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 11 Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 12

3 Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 13 Εννοιολογική εναρμόνιση Προτερήματα/Ιδιότητες Οι διαφορετικές πηγές δεδομένων του ίδιου οργανισμού, μοντελοποιούν τις ίδιες οντότητες με διαφορετικούς τρόπους Η Αποθήκη εδομένων περιλαμβάνει το σύνολο αυτών των δεδομένων κάτω από ένα εναρμονισμένο σχήμα βάσης Ποιότητα εδομένων Η ποιότητα των δεδομένων στις πηγές είναι συχνά προβληματική (τα δεδομένα μπορεί να μην είναι πλήρη, να έχουν ασυνέπειες, να είναι παλιά, να παραβιάζουν τους λογικούς και δομικούς κανόνες αξιοπιστίας, κλπ) Έχει βρεθεί ότι τουλάχιστο 10% των δεδομένων είναι προβληματικά στις πηγές, με αποτέλεσμα οικονoμικές απώλειες του 25-40% Πριν την εισαγωγή στις αποθήκες δεδομένων καθαρισμός, επίσης λειτουργεί και ως ένα ενδιάμεσο σύστημα στον οποίο καθαρίζουμε τα δεδομένα Προτερήματα/Ιδιότητες Απόδοση Οι εφαρμογές OLAP επιταχύνονται αν τα δεδομένα οργανωθούν με μη παραδοσιακούς τρόπους (π.χ., απο-κανονικοποιημένα) Σ Β για OLTP (ευρετήρια, επεξεργασία δοσοληψιών) Οι σύνθετες OLAP ερωτήσεις θα συγκρούονταν με τις παραδοσιακές OLTP δοσοληψίες, με αποτέλεσμα την υπερφόρτωση του συστήματος Θεματικά προσανατολισμένη: ιατήρηση μόνο των σχετικών δεδομένων ιαθεσιμότητα Όσο περισσότερα αντίγραφα των δεδομένων, τόσο πιο πολύ το σύστημα είναι διαθέσιμο*, αφενός στην Αποθήκη εδομένων και αφετέρου στις πηγές * ιαθεσιμότητα: το ποσοστό του χρόνου που το σύστημα είναι σε λειτουργία και προσβάσιμο στις εφαρμογές. 24x7: Οι OLTP εφαρμογές, σε πολλούς οργανισμούς πρέπει να είναι διαθέσιμες 24 ώρες Χ 7 μέρες τη βδομάδα (π.χ., τράπεζες, αεροπορικές εταιρείες,...) Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 14 Προτερήματα/Ιδιότητες Ιστορικά εδομένα Ο χρονικός ορίζοντας μια αποθήκης δεδομένων είναι πολύ μεγαλύτερος από ότι ενός συστήματος σε λειτουργία Η Β έχει τα τωρινά δεδομένα ενώ οι αποθήκες διατηρούν και παλιά δεδομένα (πχ τα προηγούμενα 5-10 χρόνια) Τροποποιήσεις Οι τροποποιήσεις στις πηγές δεδομένων δεν φαίνονται άμεσα στις αποθήκες δεδομένων, συνήθως περιοδικά Μόνο δύο βασικές λειτουργίες: αρχικό φόρτωμα των δεδομένων (loading) και προσπέλαση δεδομένων (access) OLTP vs OLAP OLTP OLAP ομή Files/DBMS s RDBMS Πρόσβαση SQL/COBOL/ SQL + επεκτάσεις Ανάγκες που Αυτοματισμός Άντληση και καλύπτουν καθημερινών επεξεργασία πληροφ. εργασιών για χάραξη στρατηγικής Τύπος εδομένων Λεπτομερή Συνοπτικά, Αθροιστικά Λειτουργικά Όγκος εδομένων ~ 100 GB ~ 1 TB Φύση εδομένων υναμικά, Τρέχοντα Στατικά, Ιστορικά Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 15 Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 16 OLTP vs OLAP OLTP OLAP I/O Τύποι Περιορισμένο I/O Εκτεταμένο I/Os Συχνά disk seeks disk scans Τροποποιήσεις Συνεχείς Περιοδικές Ενημερώσεις Μέτρηση Απόδοσης Throughput Χρόνος Απόκρισης Φόρτος οσοληψίες με Ερωτήσεις που πρόσβαση λίγων σαρώνουν εγγραφών εκατομμύρια εγγραφών Σχεδίαση Β Κατευθυνόμενη Κατευθυνόμενη από Εφαρμογή από Περιεχόμενο OLTP vs OLAP OLTP OLAP Τυπικοί Χρήστες Χαμηλόβαθμοι Υπ. Υψηλόβαθμοι Υπ. Χρήση Μέσω Ad-hoc προκατασκευασμένων φορμών Αριθμός Χρηστών Χιλιάδες εκάδες Εστίαση Εισαγωγή Εξαγωγή εδομένων Πληροφοριών Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 17 Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 18

4 Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 19 Σύγκριση με ενοποίηση ετερογενών Σ Β Wrapper/mediators Με βάση την ερώτηση, μεταφράζεται ανάλογα, εκτελείται σε κάθε Σ Β και τα αποτελέσματα ενοποιούνται σε μια ολική απάντηση Μοντέλο εδομένων και Λειτουργίες Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 20 Με λίγα λόγια Μια αποθήκη δεδομένων βασίζεται σε ένα πολυδιάστατο μοντέλο δεδομένων (multidimensional data model) που αναπαριστά τα δεδομένα με τη μορφή ενός κύβου δεδομένων (data cube) Ένας κύβος δεδομένων (data cube) επιτρέπει την μοντελοποίηση και την θεώρηση των δεδομένων από πολλές οπτικές γωνίες ιαστάσεις (dimensions)- Για συγκεκριμένες τιμές στις διαστάσεις μια Μέτρηση (Measure) αυτό που μας ενδιαφέρει να μετρήσουμε Item ιαστάσεις Location Εισαγωγή Παράδειγμα Κύβος ΠΩΛΗΣΕΙΣ Time Μέτρηση: Αριθμός Πωλήσεων για τις συγκεκριμένες διαστάσεις (Location, Item, Time) Κάθε διάσταση παίρνει τιμές από διαφορετικά επίπεδα, μπορεί να εκφραστεί σε διαφορετικά επίπεδα λεπτομέρειας Διαστάσεις: Product, Region, Date Ιεραρχίες διαστάσεων: Industry Country Year Category Product Region City Store Ιεραρχίες ιαστάσεων Month Quarter Day Week Εννοιολογική Ιεραρχία Item Location Κύβος ΠΩΛΗΣΕΙΣ Time Μέτρηση: Αριθμός Πωλήσεων για τις συγκεκριμένες διαστάσεις (Location, Item, Time) Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 21 Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 22 Εννοιολογική Ιεραρχία all Παράδειγμα: Εννοιολογική ιεραρχία (Concept Hierarchy) για Location all Σε σχεσιακό μοντέλο Μοντέλο εδομένων (Σχήμα) region country city office Πεδίο Τιμών Europe... North_America Germany... Spain Canada... Mexico Frankfurt... Vancouver... Toronto L. Chan... M. Wind Αντίστοιχες Τιμές Πίνακες ιαστάσεων Πίνακας με πληροφορία σχετικά με κάθε διάσταση Ιtem (item_name, brand, type), Τime(day, week, month, quarter, year) Πίνακας γεγονότων (Fact Table) έχει ως γνωρίσματα: τις μετρήσεις (πχ αριθμός πωλήσεων, τιμή σε δολάρια, κλπ) + το πρωτεύον κλειδί κάθε σχετικού πίνακα διαστάσεων Σχήμα Αστέρι (Star schema) Πίνακας γεγονότων στο κέντρο που συνδέεται με ένα σύνολο από πίνακες διαστάσεων Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 23 Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 24

5 Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 25 time day day_of_the_week month quarter year branch branch_name branch_type Παράδειγμα Σχήματος Αστεριού Μετρήσεις Πίνακας Γεγονότων ΠΩΛΗΣΕΙΣ units_sold dollars_sold avg_sales item item_name brand type supplier_type location street city state_or_province country 4 διαστάσεις (time, item, location, branch) Παράδειγμα Σχήματος Αστεριού Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 26 Σχήμα Νιφάδας (Snowflake schema) Μια βελτίωση του σχήματος αστέρι όπου η ιεραρχία διαστάσεων κανονικοποιείται σε ένα σύνολο από μικρότερους πίνακες διαστάσεων Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 27 time day day_of_the_week month quarter year branch branch_name branch_type Παράδειγμα Σχήματος Νιφάδας Πίνακας Γεγονότων ΠΩΛΗΣΕΙΣ units_sold dollars_sold avg_sales item item_name brand type supplier_key location street city_key supplier supplier_key supplier_type city_key Μετρήσεις city state_or_province country Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 28 city Αστερισμοί Γεγονότων (Fact constellations) Πολλαπλοί Πίνακες Γεγονότων που μοιράζονται τους Πίνακες ιαστάσεων, μπορούμε να τους δούμε ως συλλογή από αστέρια και άρα ως Αστερισμό Γεγονότων ή Σχήμα Γαλαξία (galaxy schema) Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 29 time day day_of_the_week month quarter year branch branch_name branch_type Παράδειγμα Σχήματος Νιφάδας Πίνακας Γεγονότων ΠΩΛΗΣΕΙΣ units_sold dollars_sold avg_sales item item_name brand type supplier_type location street city province_or_state country Πίνακας Γεγονότων ΑΠΟΣΤΟΛΗ shipper_key from_location to_location dollars_cost units_shipped shipper shipper_key Μετρήσεις shipper_name shipper_type Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 30

6 Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 31 Κύβος εδομένων Κύβος εδομένων Ορολογία Συχνά ο n-d κύβος λέγεται βασικός κυβοειδής (base cuboid). Στο παράδειγμα ο κύβος με τις τέσσερεις διαστάσεις (Item, Time, Branch, Location) O 0-D cuboid που περιέχει τη μεγαλύτερο επίπεδο περίληψης, apex cuboid. Πλέγμα Κυβοειδών Κύβος δεδομένων all time item location supplier time, item time, location item, location location, supplier time, supplier item, supplier time, location, supplier 0-D(apex) cuboid 1-D cuboids 2-D cuboids 3-D cuboids Το πλέγμα των κυβοειδών κύβος δεδομένων. time, item, location time, item, supplier item, location, supplier 4-D(base) cuboid time, item, location, supplier Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 32 Παράδειγμα Ιεραρχιών Οπτικοποίηση Κύβου Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 33 Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 34 Μετρήσεις - Συναθροίσεις Μετρήσεις - Συναθροίσεις Υπάρχουντρειςκατηγορίεςμετρήσεων: Κατανεμημένες (Distributive): αν μπορούμε να διαμερίσουμε τα δεδομένα και να υπολογίσουμε τη συναθροιστική συνάρτηση σε κάθε διαμέριση ξεχωριστά και σχεδόν άμεσα από αυτές τις τιμές να υπολογίσουμε την ολική τιμή Πχ count(), sum(), min(), max() Αλγεβρικές (Algebraic): πάλι μπορούμε να υπολογίσουμε την ολική τιμή της συνάρτησης από τις τιμές της συνάρτησης στις διαμερίσεις χρησιμοποιώντας M γνωρίσματα (όπου M σταθερά), Πχ. avg(), min_n(), standard_deviation() Ολιστικές (Holistic): δεν υπάρχει όριο (πολυπλοκότητα) σταθερής τάξης για το χώρο αποθήκευσης που χρειαζόμαστε για τον υπολογισμό της ολικής τιμής από τις τιμές στις διαμερίσεις, Πχ. median(), mode(), rank() Εκτός από τις λεπτομερείς πληροφορίες των fact tables, μπορεί να υπολογίσουμε και συναθροίσεις των δεδομένων για καλύτερους χρόνους απόκρισης. Για παράδειγμα, αν ο fact table είναι SALES(GeographyCode, ProductCode, TimeCode, AccountCode, Amount, Unit) μπορούμε να υπολογίσουμε AVG(Sales) ανά Region, Product, Quarter MAX(Sales) ανά Brand,Month, με Region = Europe SUM(Sales) ανά City Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 35 Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 36

7 Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 37 Βασικές Πράξεις Συναθροίσεις εδομένων TV PC VCR sum Product Παράδειγμα Date 1Qtr 2Qtr 3Qtr 4Qtr sum Total annual sales of TV in U.S.A. U.S.A Canada Mexico sum Country Χωριστός πίνακας/όψη αθροισμάτων Sales table RID City Amount 1 Athens $100 2 N.Y. $300 3 Rome $120 4 Athens $250 5 Rome $180 6 Rome $65 7 N.Y. $450 City-dimension sum table City Amount Athens $350 N.Y. $750 Rome $365 Επέκταση του υπάρχοντος βασικού πίνακα: Ενσωμάτωση των αθροιστικών εγγραφών στον βασικό (base/basic) fact table + μια επιπλέον στήλη που να εξηγεί το επίπεδο συνάθροισης Extended Sales table sum RID City Amount Level 1 Athens $100 NULL 2 N.Y. $300 NULL 3 Rome $120 NULL 4 Athens $250 NULL 5 Rome $180 NULL 6 Rome $65 NULL 7 N.Y. $450 NULL 8 Athens $350 City 9 N.Y. $750 City 10 Rome $365 City Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 38 Roll-up Συναθροιστική Άνοδος (Roll up): συνάθροιση της πληροφορίας = μετάβαση από χαμηλότερο σε υψηλότερο επίπεδο αδρομέρειας (π.χ. από day σε month) Αναλυτική Κάθοδος (Drill down): το αντίστροφο του Roll up (π.χ month σε day) Οριζόντιος Τεμαχισμός (Slice): (σχεσιακή) επιλογή Κάθετος Τεμαχισμός (Dice): (σχεσιακή) προβολή Περιστροφή (Pivot): αναδιάταξη της 2D προβολής του πολυδιάστατου κύβου στην οθόνη Η συναθροιστική άνοδος περιλαμβάνει τον υπολογισμό μίας συνολικής τιμής για μία θέση στην ιεραρχία μίας διάστασης δεδομένων. Για παράδειγμα, με ένα roll-up, οι πωλήσεις σε επίπεδο τοπικών μαγαζιών (Store) παράγουν τις συνολικές πωλήσεις σε επίπεδο πόλης (City) και αυτές με τη σειρά τους με ένα ακόμα roll-up παράγουν τις πωλήσεις σε επίπεδο περιοχής (Region). Industry Category Product Country Year Region Quarter City Month Week Store Day Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 39 Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 40 $2,3 $5,6 $8,9 $7,2 $0,75 $0,4 $1,5 $0,5 Χρόνος: Επίπεδο Quarter Roll-up (Παράδειγμα) Store1 Store2 Industry Category Product Year 1996 Country Year Region Quarter City Month Week Store Day Store1 Store2 $14,1 5 $6,9 Χρόνος: Επίπεδο Year SUM(s) $12,8 $1,8 $7,2 $1,6 Drill-Down Ο χρήστης περνά από ένα ανώτερο επίπεδο μίας διάστασης που έχει συγκεντρωτικά δεδομένα σε ένα χαμηλότερο επίπεδο με πιο λεπτομερή δεδομένα. Πρόκειται για την αντίστροφη πράξη του roll-up. Για παράδειγμα, κατά το drill down, ξεκινάμε από τις πωλήσεις ανά περιοχή (Region) και παίρνουμε τις αναλυτικές πωλήσεις ανά πόλη (City) και μετά τις πωλήσεις ανά κατάστημα (Store). Industry Category Country Region Year Quarter Product City MonthWeek Store Day Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 41 Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 42

8 Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 43 Drill-down (Παράδειγμα) $2,3 $5,6 $8,9 $7,2 $0,75 $0,4 $1,5 $0,5 Item: Επίπεδο Industry Store1 Store2 Industry Category Product Country Year Region Quarter City Month Week Store Day Store1 Store2 VCR Camcorder TV CD player $0,6 $2,0 $1,2 $0,6 $2,4 $1,2 VCR $2,4 $2,4 Camcorder $3,3 $1,3 TV $2,2 $2,5 CD player $1,0 $1,0 Item: Επίπεδο Category Περιστροφή (Pivot) Εναλλαγή των γραμμών και των στηλών του κύβου, όπως αυτός παρουσιάζεται στην οθόνη εν απαιτείται κανένας νέος υπολογισμός στη Β Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 44 Store1 Store2 $2,3 $8,9 $0,75 $1,5 Pivot (Παράδειγμα) $5,6 $7,2 $0,4 $0,5 Store 1 Store 2 $2,3 $5,6 $8,9 $0,75 $1,5 $7,2 $0,4 $0,5 Οριζόντιος (slice) και Κάθετος (dice) Τεμαχισμός Slice : Επιλογή συγκεκριμένων τιμών σε κάποια διάσταση (select) Π.χ., διώξε το Store 2 από τα καταστήματα και τις βιομηχανίες και Dicing : Σβήσιμο μιας ολόκληρης διάστασης (project) Π.χ., από ένα κύβο πωλήσεων ανά προϊόν, ημερομηνία και περιοχή, να δειχθεί ο μέσος όρος πωλήσεων ανά προϊόν και ημερομηνία. Εναλλαγή γραμμών και στηλών Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 45 Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 46 Store1 Store2 $2,3 $8,9 $0,75 $1,5 $5,6 $7,2 $0,4 $0,5 Slice&Dice (Παράδειγμα) Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 47 Store1 $8,9 $0,75 Διώξε το Store 2 και τις βιομηχανίες & time (quarters) location (cities) Toronto 395 Vancouver 605 computer home item (types) Fig Typical OLAP Operations location (cities) item (types) Chicago New York Toronto Vancouver home computer phone computer home item (types) pivot phone security dice for (location = Toronto or Vancouver ) and (time = or ) and (item = home or computer ) Chicago 440 New York Toronto Vancouver Q3 Q4 slice computer security for time = home phone location (cities) time (quarters) item (types) USA 2000 Canada December security 400 computer security New York Vancouver home phone Chicago Toronto Εξόρυξη Δεδομένων: Ακ. Έτος location (cities) Αποθήκες Δεδομένων item (types) 48 time (months) time (quarters) Q3 Q4 location (countries) Vancouver January February March April May June July August September October November location (cities) roll-up on location (from cities to countries) drill-down on time (from quarters to months) 1000 computer home Chicago New York Toronto phone item (types) security

9 Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 49 Τελεστής Rollup group by rollup product, store, city group by product, store, city group by store, city group by city Τελεστής Cube για όλους τους δυνατούς συνδυασμούς group by cube product, store, city Rollup & Cube group by κάθε υποσύνολο του {product, store, city}, ανεξάρτητα από τη σειρά που έδωσα στις στήλες αυτές στην εντολή Το αποτέλεσμα των τελεστών δεν παράγει πολλούς μικρούς πίνακες, αλλά έναν πίνακα με εγγραφές με NULL όπου δεν αντιστοιχεί τιμή Τελεστές Rollup και Cube Aggregate Sum RED WHITE BLUE Jim Gray Adam Bosworth Andrew Layman Microsoft Group By (with total) By Color Sum RED WHITE BLUE By Make Hamid Pirahesh IBM Cross Tab Chevy Ford By Color select color, make, year, sum(units) from car_sales where make in { chevy, ford } and year between 1990 and 1994 group by cube color, make, year having sum(units) > 0; By Make & Year By Year FORD CHEVY By Color & Year Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 50 Sum Sum By Color 1993 By Make RED WHITE BLUE By Make & Color Αρχιτεκτονική Μετασχηματισμοί Αρχιτεκτονική (Back-End) DW Front-End Πηγή Δεδομένων OLTP συστήματα Data Marts OLAP εργαλεία Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 51 Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 52 Αρχιτεκτονική Πολλών Επιπέδων Multi-tier Αρχιτεκτονική Αρχιτεκτονική Πολλών Επιπέδων Multi-tier Αρχιτεκτονική Άλλες πηγές Metadata Monitor & Integrator OLAP Server Άλλες πηγές Metadata Monitor & Integrator OLAP Server ΒΔ σε λειτουργία Extract Transform Load Refresh Αποθήκη Δεδομένων Serve Analysis Query Reports Data mining ΒΔ σε λειτουργία Extract Transform Load Refresh DSA Αποθήκη Δεδομένων Serve Analysis Query Reports Data mining Data Marts Data Marts Πηγές εδομένων Αποθήκευση εδομένων Μηχανή OLAP Front-End Εργαλεία Πηγές εδομένων Αποθήκευση εδομένων Μηχανή OLAP Front-End Εργαλεία Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 53 Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 54

10 Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 55 Αρχιτεκτονικές Μονάδες Λεξικό Μεταπληροφορίας Sources (Πηγές): Κάθε πηγή από την οποία η Αποθήκη εδομένων αντλεί δεδομένα. {Data Staging Area (DSA): Μια Β στην οποία εκτελούνται οι μετασχηματισμοί και ο καθαρισμός των δεδομένων πριν την φόρτωση στην Αποθήκη εδομένων} Αποθήκη εδομένων (DW), Συλλογές εδομένων : Τα συστήματα που αποθηκεύονται τα δεδομένα που παρέχονται προς τους χρήστες. Data Marts: υποσύνολα της αποθήκης Βάση Μετα- εδομένων (Metadata Repository): Το υποσύστημα αποθήκευσης πληροφορίας σχετικά με τη δομή και λειτουργία όλου του συστήματος. Τα μετα-δεδομένα είναι τα δεδομένα που ορίζουν τα αντικείμενα της αποθήκης δεδομένων. Περιέχουν Περιγραφή της δομής της αποθήκης δεδομένων Σχήμα, όψεις, διαστάσεις, ιεραρχίες, την τοποθεσία των data mart και το περιεχόμενο τους, κλπ Λειτουργικά μεταδεδομένα data lineage (την ιστορία των δεδομένων που μεταφέρθηκαν και ποιοι μετασχηματισμοί χρησιμοποιήθηκαν), στοιχεία για το πόσο ενημερωμένα/πρόσφατα είναι, πληροφορία επίβλεψης (monitoring) για τη λειτουργία της αποθήκης (στατιστικά στοιχεία λειτουργίας, error reports, audit trails) Τους αλγορίθμους που χρησιμοποιηθήκαν για τις περιλήψεις Την απεικόνιση του λειτουργικού περιβάλλοντος στην αποθήκη δεδομένων εδομένα σχετικά με την απόδοση του συστήματος Business data Πολιτικές χρέωσης, ιδιοκτησίας δεδομένων, κλπ Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 56 Αρχιτεκτονική: Μετασχηματισμοί Μετασχηματισμοί Back-End Εργαλεία ETL (Extract-Transform-Load) εφαρμογές: Εφαρμογές που εκτελούν τις διαδικασίες Εξαγωγής, μεταφοράς, μετασχηματισμού, καθαρισμού και φόρτωσης των δεδομένων από τις πηγές στην Αποθήκη εδομένων. Front-End Εργαλεία Εφαρμογές Ανάλυσης: Εφαρμογές παραγωγής αναφορών, OLAP, DSS, Data Mining Data extraction Φέρε δεδομένα από πολλαπλές, ετερογενείς και εξωτερικές πηγές Data cleaning Εντοπισμός λαθών στα δεδομένα και διόρθωση τους όταν είναι δυνατόν Παραδείγματα: εδομένα που παραβιάζουν τους κανόνες της βάσης: διπλοεγγραφές, παραβιάσεις πρωτεύοντος ή ξένου κλειδιού, τιμές εκτός ορίων, παραβιάσεις λογικών κανόνων, κλπ Συνώνυμα και συγκρούσεις Ελλιπή δεδομένα Ομογενοποίηση κλειδιού Data transformation Back-End Εργαλεία Μετατροπή των δεδομένων από το τοπικό format στο format της αποθήκης Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 57 Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 58 Μετασχηματισμοί Εργαλεία για την Υποστήριξη Αποφάσεων Load Ταξινόμηση, δημιουργία περίληψης, ενοποίηση (consolidate), υπολογισμός όψεων, έλεγχος integrity, δημιουργία ευρετηρίων και διαμερίσεων Ηενημέρωση/ εισαγωγή δεδομένων στην πράξη δε γίνεται μέσω SQL, συνήθως μέσω εργαλείων batch loading που διαθέτουν όλα τα Σ Β Refresh Back-End Εργαλεία Μετέφερε τις τροποποιήσεις από τις πηγές δεδομένων στην αποθήκη δεδομένων Ad hoc ερωτήσεις και αναφορές Π.χ.,: MS Excel, Oracle Forms, OLAP Front-End Εργαλεία pivot tables, drill down, roll up, slice, dice Data Mining Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 59 Εξόρυξη Δεδομένων: Ακ. Έτος Αποθήκες Δεδομένων 60

Εισαγωγή στις Αποθήκες εδομένων

Εισαγωγή στις Αποθήκες εδομένων Εισαγωγή στις Αποθήκες εδομένων ιαφάνειες βασισμένες σε σχετικές διαφάνειες του Πάνου Βασιλειάδη Εξόρυξη Δεδομένων: Ακ. Έτος 2008-2009 Αποθήκες Δεδομένων 1 Εισαγωγή: OLTP Παραδοσιακή ιαχείριση εδομένων

Διαβάστε περισσότερα

Εξόρυξη Γνώσης από εδοµένα (Data Mining)

Εξόρυξη Γνώσης από εδοµένα (Data Mining) ΠΜΣ Πληροφορικής Πανεπιστηµίου Πειραιά Εξόρυξη Γνώσης από εδοµένα (Data Mining) Αποθήκες εδοµένων Γιάννης Θεοδωρίδης Τµήµα Πληροφορικής, Πανεπιστήµιο Πειραιά http://isl.cs.unipi.gr/db/courses/dm "Πυραµίδα"

Διαβάστε περισσότερα

Data Warehouse Refreshment via ETL tools. Panos Vassiliadis

Data Warehouse Refreshment via ETL tools. Panos Vassiliadis Data Warehouse Refreshment via ETL tools Panos Vassiliadis Data Warehouse Environment 2 Extract-Transform-Load (ETL) Extract Transform & Clean Load Sources DSA DW 3 Importance ETL market has a steady increase

Διαβάστε περισσότερα

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Λήψη απόφασης, Συστήματα Υποστήριξης Αποφάσεων, OLAP Ανάλυση, Περιβαλλοντική Εκπαίδευση ΕΙΣΑΓΩΓΗ

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Λήψη απόφασης, Συστήματα Υποστήριξης Αποφάσεων, OLAP Ανάλυση, Περιβαλλοντική Εκπαίδευση ΕΙΣΑΓΩΓΗ Η Αναλυτική Επεξεργασία Δεδομένων (On Line Analytical Processing) στην Υποστήριξη Αποφάσεων των Υπευθύνων Περιβαλλοντικής Εκπαίδευσης των Διευθύνσεων Εκπαίδευσης Γιώργος Ραβασόπουλος 1, Ιωάννα Παπαιωάννου

Διαβάστε περισσότερα

Ολοκληρωµένη λύση επιλεκτικής συγκέντρωσης, αναδιοργάνωσης δεδοµένων και παραγωγής πληροφορίας

Ολοκληρωµένη λύση επιλεκτικής συγκέντρωσης, αναδιοργάνωσης δεδοµένων και παραγωγής πληροφορίας e.nfo Ολοκληρωµένη λύση επιλεκτικής συγκέντρωσης, αναδιοργάνωσης δεδοµένων και παραγωγής πληροφορίας Εξασφάλιση της εξειδικευµένης λύσης business intelligence για κάθε επιχείρηση πελάτης Τράπεζα Πειραιώς

Διαβάστε περισσότερα

Orchid: Integrating Schema Mapping and ETL ICDE 2008

Orchid: Integrating Schema Mapping and ETL ICDE 2008 Orchid: Integrating Schema Mapping and ETL ICDE 2008 Δομουχτσίδης Παναγιώτης Γενικά Data warehouse (DW): Είναι μία αποθήκη πληροφοριών οργανωμένη από ένα ενοποιημένο μοντέλο. Τα δεδομένα συλλέγονται από

Διαβάστε περισσότερα

PROJECT ΕΡΓΑΣΤΗΡΙΩΝ ΒΑΣΕΩΝ ΔΕΔΟΜΕΝΩΝ Ι. Τμήμα Μηχανικών Πληροφορικής Τ.Ε.

PROJECT ΕΡΓΑΣΤΗΡΙΩΝ ΒΑΣΕΩΝ ΔΕΔΟΜΕΝΩΝ Ι. Τμήμα Μηχανικών Πληροφορικής Τ.Ε. Παραδοτέα 1. Το αρχείο.mdb της βάσης δεδομένων σας σε ACCESS 2. Ένα CD που θα αναγράφει το ονοματεπώνυμο του σπουδαστή και το ΑΕΜ και θα περιέχει το αρχείο.mdb της βάσης δεδομένων καθώς και το εγχειρίδιο

Διαβάστε περισσότερα

1. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΔΕΔΟΜΕΝΩΝ

1. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΔΕΔΟΜΕΝΩΝ 1. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΔΕΔΟΜΕΝΩΝ Τα δεδομένα που θα επεξεργασθούμε στη διάρκεια του εργαστηρίου παραχωρήθηκαν από την εταιρεία ICAP ειδικά για τις ανάγκες του μαθήματος. Τα δεδομένα αυτά αντλήθηκαν από την

Διαβάστε περισσότερα

11.1. Θεωρητικό υπόβαθρο για τους κύβους δεδομένων και την πολυδιάστατη ανάλυση

11.1. Θεωρητικό υπόβαθρο για τους κύβους δεδομένων και την πολυδιάστατη ανάλυση Κεφάλαιο 11. Αποθήκες και κύβοι δεδομένων Σύνοψη Σ αυτό το κεφάλαιο θα παρουσιάσουμε τη δημιουργία μιας αποθήκης δεδομένων ή, αλλιώς, ενός κύβου δεδομένων. Ο κύβος είναι μια πολυδιάστατη δομή δεδομένων

Διαβάστε περισσότερα

«Χωροχρονικές Αποθήκες εδοµένων και η Εφαρµογή τους στην Περίπτωση της Αγοράς Ακινήτων»

«Χωροχρονικές Αποθήκες εδοµένων και η Εφαρµογή τους στην Περίπτωση της Αγοράς Ακινήτων» ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ «Χωροχρονικές Αποθήκες εδοµένων και η Εφαρµογή τους στην Περίπτωση της Αγοράς Ακινήτων» Μιχάλης Βαζιργιάννης Συνεργάτες:. Ξηνταρα, Α. Στέφου, Θ. Ασηµίνα,

Διαβάστε περισσότερα

ΑΠΟΘΗΚΕΣ Ε ΟΜΕΝΩΝ Σ. ΛΙΓΟΥ ΙΣΤΙΑΝΟΣ

ΑΠΟΘΗΚΕΣ Ε ΟΜΕΝΩΝ Σ. ΛΙΓΟΥ ΙΣΤΙΑΝΟΣ ΑΠΟΘΗΚΕΣ Ε ΟΜΕΝΩΝ 195 ΑΠΟΘΗΚΕΣ Ε ΟΜΕΝΩΝ Σ. ΛΙΓΟΥ ΙΣΤΙΑΝΟΣ 8.1 ΓΕΝΙΚΑ Από τα µέσα της δεκαετίας του '70, η αλµατώδης παραγωγή πολύ ισχυρών συστηµάτων διαχείρισης βάσεων δεδοµένων βοήθησε στην ανάπτυξη πληροφοριακών

Διαβάστε περισσότερα

Business Development, SAP Hellas 01/12/2007

Business Development, SAP Hellas 01/12/2007 Επιχειρηµατική Ευφυΐα Απότηνιδέαστηνπράξη Παναγιώτης Θεοφάνους Business Development, SAP Hellas 01/12/2007 Περιεχόµενα 1. SAP Εταιρικόπροφίλ 2. Επιχειρηµατική Ευφυΐα - Η ανάγκη 3. SAP Business Intelligence

Διαβάστε περισσότερα

Επισκόπηση Μαθήµατος

Επισκόπηση Μαθήµατος Βάσεις εδοµένων 5 ο Εξάµηνο ηµήτρης Λέκκας Επίκουρος Καθηγητής dlekkas@env.aegean.gr Τµήµα Στατιστικής & Αναλογιστικών-Χρηµατοοικονοµικών Μαθηµατικών Επισκόπηση Μαθήµατος Εισαγωγή (Σ Β ) Το µοντέλο σχέσεων

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς. Τμήμα Ψηφιακών Συστημάτων Π.Μ.Σ. «Διδακτική της Τεχνολογίας & Ψηφιακά Συστήματα» Κατεύθυνση Ψηφιακών Επικοινωνιών και Δικτύων

Πανεπιστήμιο Πειραιώς. Τμήμα Ψηφιακών Συστημάτων Π.Μ.Σ. «Διδακτική της Τεχνολογίας & Ψηφιακά Συστήματα» Κατεύθυνση Ψηφιακών Επικοινωνιών και Δικτύων Πανεπιστήμιο Πειραιώς Τμήμα Ψηφιακών Συστημάτων Π.Μ.Σ. «Διδακτική της Τεχνολογίας & Ψηφιακά Συστήματα» Κατεύθυνση Ψηφιακών Επικοινωνιών και Δικτύων Διπλωματική Εργασία «Σχεδίαση και Ανάπτυξη Δικτυοκεντρικού

Διαβάστε περισσότερα

Γενικό πλαίσιο. Απαιτήσεις Μοντέλο εδοµένων. MinusXLRequirements. Απόστολος Ζάρρας http://www.cs.uoi.gr/~zarras/se.htm

Γενικό πλαίσιο. Απαιτήσεις Μοντέλο εδοµένων. MinusXLRequirements. Απόστολος Ζάρρας http://www.cs.uoi.gr/~zarras/se.htm MinusXLRequirements Απόστολος Ζάρρας http://www.cs.uoi.gr/~zarras/se.htm Γενικό πλαίσιο Μια από τις πιο γνωστές και ευρέως διαδεδομένες εμπορικές εφαρμογές για τη διαχείριση λογιστικών φύλλων είναι το

Διαβάστε περισσότερα

Certified Data Base Designer (CDBD)

Certified Data Base Designer (CDBD) Certified Data Base Designer (CDBD) Εξεταστέα Ύλη (Syllabus) Πνευµατικά ικαιώµατα Το παρόν είναι πνευµατική ιδιοκτησία της ACTA Α.Ε. και προστατεύεται από την Ελληνική και Ευρωπαϊκή νοµοθεσία που αφορά

Διαβάστε περισσότερα

Εισαγωγή στα Συστήματα Βάσεων Δεδομένων. Βάσεις Δεδομένων 2014-2015 Ευαγγελία Πιτουρά 1

Εισαγωγή στα Συστήματα Βάσεων Δεδομένων. Βάσεις Δεδομένων 2014-2015 Ευαγγελία Πιτουρά 1 Εισαγωγή στα Συστήματα Βάσεων Δεδομένων Ευαγγελία Πιτουρά 1 Τι θα δούμε σήμερα I. Σύντομη εισαγωγή στις ΒΔ II. Περιγραφή σκοπού και περιεχομένου μαθήματος III. Ιστορία των ΣΔΒΔ IV. Διαδικαστικά θέματα

Διαβάστε περισσότερα

ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ - ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΣΒΔ - ΕΙΣΑΓΩΓΗ ΣΤΟ ΜΟΝΤΕΛΟ ΟΝΤΟΤΗΤΩΝ ΣΥΣΧΕΤΙΣΕΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ

ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ - ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΣΒΔ - ΕΙΣΑΓΩΓΗ ΣΤΟ ΜΟΝΤΕΛΟ ΟΝΤΟΤΗΤΩΝ ΣΥΣΧΕΤΙΣΕΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Χειμερινό Εξάμηνο 2013 - ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΣΒΔ - ΕΙΣΑΓΩΓΗ ΣΤΟ ΜΟΝΤΕΛΟ ΟΝΤΟΤΗΤΩΝ ΣΥΣΧΕΤΙΣΕΩΝ Δρ. Βαγγελιώ Καβακλή ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ, ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ 1 Αρχιτεκτονική

Διαβάστε περισσότερα

SQL Data Manipulation Language

SQL Data Manipulation Language SQL Data Manipulation Language Τελεστής union συνδυάζει subselects τα οποία παράγουν συμβατές σχέσεις γενική μορφή: subselect {union [all] subselect} περιορισμός: τα subselects δεν μπορούν να περιέχουν

Διαβάστε περισσότερα

Διαχείριση Δεδομένων

Διαχείριση Δεδομένων Διαχείριση Δεδομένων Βαγγελιώ Καβακλή Τμήμα Πολιτισμικής Τεχνολογίας και Επικοινωνίας Πανεπιστήμιο Αιγαίου 1 Εαρινό Εξάμηνο 2012-13 Περιεχόμενο σημερινής διάλεξης Βάσεις Δεδομένων Ορισμοί Παραδείγματα

Διαβάστε περισσότερα

Information Technology for Business

Information Technology for Business Information Technology for Business! Lecturer: N. Kyritsis, MBA, Ph.D. Candidate!! e-mail: kyritsis@ist.edu.gr Διαχείριση Επιχειρηματικών Δεδομένων - Databases Ορισμός Βάσης Δεδομένων Συλλογή συναφών αρχείων

Διαβάστε περισσότερα

ΔΙΑΔΙΚΤΥΑΚΟ ΣΥΣΤΗΜΑ ΒΕΛΤΙΣΤΗΣ ΔΙΑΧΕΙΡΙΣΗΣ ΕΝΕΡΓΕΙΑΚΩΝ ΠΟΡΩΝ E.M.I.R. - Energy Management & Intelligent Reporting

ΔΙΑΔΙΚΤΥΑΚΟ ΣΥΣΤΗΜΑ ΒΕΛΤΙΣΤΗΣ ΔΙΑΧΕΙΡΙΣΗΣ ΕΝΕΡΓΕΙΑΚΩΝ ΠΟΡΩΝ E.M.I.R. - Energy Management & Intelligent Reporting ΔΙΑΔΙΚΤΥΑΚΟ ΣΥΣΤΗΜΑ ΒΕΛΤΙΣΤΗΣ ΔΙΑΧΕΙΡΙΣΗΣ ΕΝΕΡΓΕΙΑΚΩΝ ΠΟΡΩΝ E.M.I.R. - Energy Management & Intelligent Reporting Διαδικτυακό OLAP Σύστημα Λήψης Αποφάσεων και δημιουργίας έξυπνων προσαρμοστικών γραφημάτων

Διαβάστε περισσότερα

Συνοπτική επισκόπηση αγοράς & εργαλείων ΒΙ

Συνοπτική επισκόπηση αγοράς & εργαλείων ΒΙ Συνοπτική επισκόπηση αγοράς & εργαλείων ΒΙ Μιχάλης Μεταξάς Innovatia ΕΠΕ Agenda Αναφορά σε στοιχεία της µελέτης «Συγκέντρωση, ανάλυση και αξιολόγηση εργαλείων και λογισµικού Επιχειρηµατικής Ευφυΐας» Ορισµοί

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος 9. Ευχαριστίες 11. Εισαγωγή 13. 1 Κατανόηση των δεδομένων 23. 2 Βασικές τεχνικές ανάλυσης δεδομένων 41

Περιεχόμενα. Πρόλογος 9. Ευχαριστίες 11. Εισαγωγή 13. 1 Κατανόηση των δεδομένων 23. 2 Βασικές τεχνικές ανάλυσης δεδομένων 41 Περιεχόμενα Πρόλογος 9 Ευχαριστίες 11 Εισαγωγή 13 Σχετικά με το βιβλίο...14 Σε ποιον απευθύνεται το βιβλίο...15 Οργάνωση του βιβλίου...16 Πώς θα προχωρήσετε...18 Στοιχεία του βιβλίου...19 Χρήση του συνοδευτικού

Διαβάστε περισσότερα

ÈÛ ÁˆÁ ÛÙÈ μ ÛÂÈ Â ÔÌ ÓˆÓ

ÈÛ ÁˆÁ ÛÙÈ μ ÛÂÈ Â ÔÌ ÓˆÓ ΕΝΟΤΗΤΑ 1.1 ÈÛ ÁˆÁ ÛÙÈ μ ÛÂÈ Â ÔÌ ÓˆÓ ΔΙΔΑΚΤΙΚΟI ΣΤOΧΟΙ Στο τέλος της ενότητας αυτής πρέπει να μπορείτε: να επεξηγείτε τις έννοιες «βάση δεδομένων» και «σύστημα διαχείρισης βάσεων δεδομένων» να αναλύετε

Διαβάστε περισσότερα

Εισαγωγή. Τι είναι µια βάση δεδοµένων;

Εισαγωγή. Τι είναι µια βάση δεδοµένων; Ζήτω οι Βάσεις εδοµένων!! Εισαγωγή Αντικείµενο: Θεµελιώδες πρόβληµα της επιστήµης µας εδοµένα Μοντελοποίηση Αποθήκευση Επεξεργασία (εύρεση πληροφορίας σχετικής µε µια συγκεκριµένη ερώτηση) Σωστή Λειτουργία

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ. Παραγωγικές Λειτουργίες Επιχείρησης

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ. Παραγωγικές Λειτουργίες Επιχείρησης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: Οικονοµικές, Εµπορικές και Παραγωγικές Λειτουργίες

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων

Τμήμα Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων «Βάσεις Δεδομένων και Ευφυή Πληροφοριακά Συστήματα» «Σημειώσεις για την SQL» ΕΞΑΜΗΝΟ: ΣΤ Δρ. Κωνσταντίνος Χ. Γιωτόπουλος Πάτρα, Νοέμβριος 2010 SQL Create Table Η CREATE TABLE

Διαβάστε περισσότερα

Αναλυτικός Πίνακας Περιεχομένων

Αναλυτικός Πίνακας Περιεχομένων Αναλυτικός Πίνακας Περιεχομένων 9 Αναλυτικός Πίνακας Περιεχομένων ΣΥΝΟΠΤΙΚΑ ΠΕΡΙΕΧΟΜΕΝΑ...7 ΑΝΑΛΥΤΙΚΟΣ ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ...9 ΠΡΟΛΟΓΟΣ...15 1. ΕΙΣΑΓΩΓΗ ΣΤO EXCEL ΤΗΣ MICROSOFT...19 1.1. ΕΙΣΑΓΩΓΗ...20

Διαβάστε περισσότερα

Επίλυση προβλήματος με Access

Επίλυση προβλήματος με Access Δ.1. Το προς επίλυση πρόβλημα Ζητείται να κατασκευάσετε τα αρχεία και τα προγράμματα μιας εφαρμογής καταχώρησης Δαπανών μελών ΔΕΠ (Διδακτικό και Ερευνητικό Προσωπικό) για την παρακολούθηση του απολογισμού

Διαβάστε περισσότερα

6. ΑΠΟΘΗΚΕΣ ΔΕΔΟΜΕΝΩΝ

6. ΑΠΟΘΗΚΕΣ ΔΕΔΟΜΕΝΩΝ Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Α Ι Γ Α Ι Ο Υ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Σ Υ Σ Τ Η Μ Α Τ Α Υ Π Ο Σ Τ Η Ρ Ι Ξ Η Σ Α Π Ο Φ Α Σ Ε Ω Ν Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Α Κ Ε Σ Π Α Ρ Α Δ Ο Σ Ε Ι

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ενότητα 7: Βάσεις Δεδομένων (Θεωρία) Πασχαλίδης Δημοσθένης Τμήμα Ιερατικών Σπουδών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΕΡΑΤΟΣΘΕΝΗΣ: Ένα Πρωτότυπο Σύστημα για την Άμεση Αναλυτική Επεξεργασία των Δεδομένων

ΕΡΑΤΟΣΘΕΝΗΣ: Ένα Πρωτότυπο Σύστημα για την Άμεση Αναλυτική Επεξεργασία των Δεδομένων ΕΡΑΤΟΣΘΕΝΗΣ: Ένα Πρωτότυπο Σύστημα για την Άμεση Αναλυτική Επεξεργασία των Δεδομένων Ν. ΚΑΡΑΓΙΑΝΝΙΔΗΣ δρ Ηλεκτρολόγος Μηχ/κός & Μηχ/κός Υπολογιστών Ε. Μ. Π. Γ. ΡΟΥΣΣΟΣ Ηλεκτρολόγος Μηχ/κός & Μηχ/κός Υπολογιστών

Διαβάστε περισσότερα

INFORMATION MANAGEMENT

INFORMATION MANAGEMENT INFORMATION MANAGEMENT Εισηγητής ΜΙΧΑΛΟΠΟΥΛΟΣ ΒΑΣΙΛΕΙΟΣ ιδάκτορας Πανεπιστηµίου Πειραιώς ΑΘΗΝΑ INFORMATION MANAGEMENT Στόχοι Ποιός είναι ο ρόλος των πληροφοριακών συστηµάτων στο σύγχρονο επιχειρηµατικό

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΔΙΟΙΚΗΣΗΣ

ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΔΙΟΙΚΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΔΙΟΙΚΗΣΗΣ ΔΕΔΟΜΕΝΑ ΔΕΔΟΜΕΝΑ ΠΛΗΡΟΦΟΡΙΑ ΑΡΙΘΜΟΙ ΣΥΜΒΟΛΑ - ΛΕΞΕΙΣ ΟΠΟΙΑΔΗΠΟΤΕ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΣΥΜΒΑΙΝΕΙ ΣΕ ΜΙΑ ΟΙΚΟΝΟΜΙΚΗ ΜΟΝΑΔΑ ΠΡΕΠΕΙ ΝΑ ΜΕΤΡΕΙΤΑΙ ΚΑΙ ΝΑ ΚΑΤΑΓΡΑΦΕΤΑΙ ΟΡΓΑΝΩΣΗ ΚΑΤΑΓΡΑΦΗΣ

Διαβάστε περισσότερα

Αποθήκευση εδομένων. ομή ενός Σ Β. Εισαγωγή Το «εσωτερικό» ενός ΜΕΡΟΣ Β : Η (εσωτερική) αρχιτεκτονική ενός Σ Β είναι σε επίπεδα

Αποθήκευση εδομένων. ομή ενός Σ Β. Εισαγωγή Το «εσωτερικό» ενός ΜΕΡΟΣ Β : Η (εσωτερική) αρχιτεκτονική ενός Σ Β είναι σε επίπεδα Αποθήκευση εδομένων Βάσεις Δεδομένων 2009-2010 Ευαγγελία Πιτουρά 1 ΜΕΡΟΣ Β : Εισαγωγή Το «εσωτερικό» ενός Σ Β ομή ενός Σ Β Η (εσωτερική) αρχιτεκτονική ενός Σ Β είναι σε επίπεδα Τυπικά, κάθε σχέση σε ένα

Διαβάστε περισσότερα

Εισαγωγή στα Συστήµατα Βάσεων Δεδοµένων

Εισαγωγή στα Συστήµατα Βάσεων Δεδοµένων Εισαγωγή στα Συστήµατα Βάσεων Δεδοµένων Βάσεις εδοµένων 2011-2012 Ευαγγελία Πιτουρά 1 Βασικές Έννοιες Τι είναι µια βάση δεδοµένων; Βάση Δεδοµένων: συλλογή από σχετιζόµενα δεδοµένα Ειδικού σκοπού λογισµικό

Διαβάστε περισσότερα

ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ. Επιλέγει όλες τις πλειάδες, από μια σχέση R, που ικανοποιούν τη συνθήκη επιλογής.

ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ. Επιλέγει όλες τις πλειάδες, από μια σχέση R, που ικανοποιούν τη συνθήκη επιλογής. ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Χειμερινό Εξάμηνο 2012 SQL Structured Query Language Δρ. Βαγγελιώ Καβακλή ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ, ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ 1 Πράξεις της σχεσιακής άλγεβρας ΠΡΑΞΗ ΣΚΟΠΟΣ

Διαβάστε περισσότερα

Στρατηγικά Πληροφοριακά Συστήµατα. Κεφάλαιο 2. Ο στρατηγικός ρόλος των Πληροφοριακών Συστηµάτων ιοίκησης στην επιχείρηση. Ευαγγελάτος Ανδρέας

Στρατηγικά Πληροφοριακά Συστήµατα. Κεφάλαιο 2. Ο στρατηγικός ρόλος των Πληροφοριακών Συστηµάτων ιοίκησης στην επιχείρηση. Ευαγγελάτος Ανδρέας Κεφάλαιο 2 Στρατηγικά Πληροφοριακά Συστήµατα Ο στρατηγικός ρόλος των Πληροφοριακών Συστηµάτων ιοίκησης στην επιχείρηση Ευαγγελάτος Ανδρέας Εργαστήριο Πολυµέσων Επικοινωνίας 1. Εκπαιδευτικοί στόχοι του

Διαβάστε περισσότερα

Εισαγωγή στις βάσεις δεδομένων - Η ανατομία μιας βάσης δεδομένων

Εισαγωγή στις βάσεις δεδομένων - Η ανατομία μιας βάσης δεδομένων ΕΣΔ516 Τεχνολογίες Διαδικτύου Εισαγωγή στις βάσεις δεδομένων - Η ανατομία μιας βάσης δεδομένων Περιεχόμενα - Βιβλιογραφία Ενότητας Περιεχόμενα Ορισμοί Συστατικά στοιχεία εννοιολογικής σχεδίασης Συστατικά

Διαβάστε περισσότερα

Hawai i Health Connector Extended Services Transition Plan

Hawai i Health Connector Extended Services Transition Plan Appendix F Transition Plan Hawai ihealthconnector ExtendedServicesTransitionPlan AUGUST28,2015 201 Merchant Street, Suite 1630, Honolulu HI 96813 Contents ExecutiveSummary...3 Background...5 ExtendedServicesTransitionPlan(Plan)...6

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς, Τμήμα Πληροφορικής

Πανεπιστήμιο Πειραιώς, Τμήμα Πληροφορικής Πανεπιστήμιο Πειραιώς, Τμήμα Πληροφορικής Ακαδημαϊκό έτος 2009-10 ΣΥΓΦΡΟΝΑ ΘΔΜΑΤΑ ΒΑΣΔΩΝ ΓΔΓΟΜΔΝΩΝ 1 η ΔΡΓΑΣΙΑ ΔΞΑΜΗΝΟΥ ομάδες των 2-3 ατόμων Εισαγωγή Έστω η βάση δεδομένων μιας επιχείρησης (θα μπορούσε

Διαβάστε περισσότερα

Σύβακας Σταύρος ΠΕ19,MSc. IT ΣΥΒΑΚΑΣ ΣΤΑΥΡΟΣ ΕΡΩΤΗΜΑΤΑ

Σύβακας Σταύρος ΠΕ19,MSc. IT ΣΥΒΑΚΑΣ ΣΤΑΥΡΟΣ ΕΡΩΤΗΜΑΤΑ Σύβακας Σταύρος ΠΕ19,MSc. IT Εισαγωγή Τα ερωτήματα (queries) είναι μία από τις πιο σημαντικές δυνατότητες που προφέρει ένα Σ%Β% αφού επιτρέπουν: Ανάκτηση και ανάλυση των δεδομένων στην επιθυμητή μορφή

Διαβάστε περισσότερα

Κεφάλαιο 5. Δημιουργία φορμών για τη βάση δεδομένων DVDclub

Κεφάλαιο 5. Δημιουργία φορμών για τη βάση δεδομένων DVDclub Κεφάλαιο 5. Δημιουργία φορμών για τη βάση δεδομένων DVDclub Σύνοψη Σ αυτό το κεφάλαιο θα περιγράψουμε τη δημιουργία φορμών, προκειμένου να εισάγουμε δεδομένα και να εμφανίζουμε στοιχεία από τους πίνακες

Διαβάστε περισσότερα

Μοντέλο Οντοτήτων-Συσχετίσεων

Μοντέλο Οντοτήτων-Συσχετίσεων Μοντέλο Οντοτήτων-Συσχετίσεων 1 Εισαγωγή Σχεδιασμός μιας εφαρμογής ΒΔ: Βήματα 1. Συλλογή και Ανάλυση Απαιτήσεων (requirement analysis) Τι δεδομένα θα αποθηκευτούν, ποιες εφαρμογές θα κτιστούν πάνω στα

Διαβάστε περισσότερα

ΕΠΕΞΕΡΓΑΣΙΑ ΚΕΙΜΕΝΟΥ

ΕΠΕΞΕΡΓΑΣΙΑ ΚΕΙΜΕΝΟΥ 1. ΔΗΜΙΟΥΡΓΙΑ ΕΓΓΡΑΦΩΝ ΕΠΕΞΕΡΓΑΣΙΑ ΚΕΙΜΕΝΟΥ 1.1. Ορισµός εγγράφου, προτύπου, πρωτεύοντος και δευτερεύοντος εγγράφου 1.2. Πρότυπα 1.2.1. Δηµιουργία, µεταβολή, χρήση και διαγραφή προτύπων εγγράφων 1.2.2.

Διαβάστε περισσότερα

Ιωσηφίδης Ελευθέριος

Ιωσηφίδης Ελευθέριος Διαχείρηση Πολυδιάστατων Δεδομένων: Πειραματική και Συγκριτική Αξιολόγηση της Απόδοσης Εμπορικών και Ανοικτού Κώδικα DBMS Ιωσηφίδης Ελευθέριος ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Επιβλέπων Καθηγητής Ευαγγελίδης Γεώργιος

Διαβάστε περισσότερα

Βάσεις Δεδομένων 2010-2011 Ευαγγελία Πιτουρά 2. Εννοιολογικός Σχεδιασμός Βάσεων εδομένων (με χρήση του Μοντέλου Οντοτήτων/Συσχετίσεων)

Βάσεις Δεδομένων 2010-2011 Ευαγγελία Πιτουρά 2. Εννοιολογικός Σχεδιασμός Βάσεων εδομένων (με χρήση του Μοντέλου Οντοτήτων/Συσχετίσεων) Σχεσιακή Άλγεβρα Βάσεις Δεδομένων 2010-2011 Ευαγγελία Πιτουρά 1 Εισαγωγή Στα προηγούμενα μαθήματα: Εννοιολογικός Σχεδιασμός Βάσεων εδομένων (με χρήση του Μοντέλου Οντοτήτων/Συσχετίσεων) Λογικός Σχεδιασμός

Διαβάστε περισσότερα

MinusXL. MinusXL (Requirements Definition) Έκδοση <1.0>

MinusXL. MinusXL (Requirements Definition) Έκδοση <1.0> MinusXL MinusXL (Requirements Definition) Έκδοση Ιστορικό Προηγούμενων Εκδόσεων Ημερομηνία Έκδοση Περιγραφή Συγγραφέας 1 η έκδοση της περιγραφής των απαιτήσεων. Α. Ζάρρας Confidential,

Διαβάστε περισσότερα

Βάσεις Δεδομένων και Ευφυή Πληροφοριακά Συστήματα Επιχειρηματικότητας. 3ο Μάθημα: Εισαγωγή στην SQL. Δρ. Κωνσταντίνος Χ.

Βάσεις Δεδομένων και Ευφυή Πληροφοριακά Συστήματα Επιχειρηματικότητας. 3ο Μάθημα: Εισαγωγή στην SQL. Δρ. Κωνσταντίνος Χ. Βάσεις Δεδομένων και Ευφυή Πληροφοριακά Συστήματα Επιχειρηματικότητας 3ο Μάθημα: Εισαγωγή στην SQL Δρ. Κωνσταντίνος Χ. Γιωτόπουλος SQL Background SQL Structured Query Language Standard query γλώσσα για

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Ηλεκτρονικό Εμπόριο

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Ηλεκτρονικό Εμπόριο ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ Ηλεκτρονικό Εμπόριο Αναπτύσσοντας ένα Ηλεκτρονικό Κατάστημα Ηλεκτρονικό Εμπόριο Λειτουργικότητα Εφαρμογής Κατάλογος προϊόντων Καλάθι

Διαβάστε περισσότερα

Βάσεις εδομένων ΘΕΜΑ ΕΡΓΑΣΙΑΣ. Μέρμηγκας Αλέξανδρος Α.Μ. 30000. ιαχείρηση Πληροφοριακών Συστηματών

Βάσεις εδομένων ΘΕΜΑ ΕΡΓΑΣΙΑΣ. Μέρμηγκας Αλέξανδρος Α.Μ. 30000. ιαχείρηση Πληροφοριακών Συστηματών TMHMA ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τ.Ε.Ι. ΠΕΙΡΑΙΩΣ ΘΕΜΑ ΕΡΓΑΣΙΑΣ Βάσεις εδομένων Μέρμηγκας Αλέξανδρος Α.Μ. 30000 Βάση εδομένων Βάση δεδομένων είναι μια οργανωμένη συλλογή αλληλοσυσχετιζόμενων

Διαβάστε περισσότερα

Εισαγωγή στην πληροφορική

Εισαγωγή στην πληροφορική Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 6: Εισαγωγή στις βάσεις δεδομένων (Μέρος Α) Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΔΙΠΛΩΜΑΤΙΚΩΝ ΕΡΓΑΣΙΩΝ Εργ. Συστημάτων Βάσεων Γνώσεων & Δεδομένων CONTEXT AWARE ΣΥΣΤΗΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΒΑΣΕΩΝ ΔΕΔΟΜΕΝΩΝ ΕΙΣΑΓΩΓΙΚΟ ΣΗΜΕΙΩΜΑ

ΘΕΜΑΤΑ ΔΙΠΛΩΜΑΤΙΚΩΝ ΕΡΓΑΣΙΩΝ Εργ. Συστημάτων Βάσεων Γνώσεων & Δεδομένων CONTEXT AWARE ΣΥΣΤΗΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΒΑΣΕΩΝ ΔΕΔΟΜΕΝΩΝ ΕΙΣΑΓΩΓΙΚΟ ΣΗΜΕΙΩΜΑ CONTEXT AWARE ΣΥΣΤΗΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΒΑΣΕΩΝ ΔΕΔΟΜΕΝΩΝ ΕΙΣΑΓΩΓΙΚΟ ΣΗΜΕΙΩΜΑ Με τις συγκεκριμένες διπλωματικές εργασίες, ο στόχος μας είναι να κατασκευάσουμε το πρώτο ερευνητικό Σχεσιακό Σύστημα Διαχείρισης

Διαβάστε περισσότερα

Εφαρμογή ψηφιοποίησης RollMan

Εφαρμογή ψηφιοποίησης RollMan Εφαρμογή ψηφιοποίησης RollMan Η εφαρμογή ψηφιοποίησης των ληξιαρχικών πράξεων RollMan (RollManager) δημιουργήθηκε από την εταιρία ειδικά για το σκοπό αυτό στο πλαίσιο της συνεργασίας με τους Δήμους. Από

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης

Πληροφοριακά Συστήματα Διοίκησης : Επιχειρηματική Ευφυΐα, Βάσεις Δεδομένων και Πληροφοριών Επ. Καθ. Ευθύμιος Ταμπούρης tambouris@uom.gr Στόχος Τμήμα Διοίκησης Τεχνολογίας Τι είναι μια σχεσιακή βάση δεδομένων και σε τι διαφέρει από μια

Διαβάστε περισσότερα

Αποθήκες εδοµένων: Προκλήσεις και Ευκαιρίες

Αποθήκες εδοµένων: Προκλήσεις και Ευκαιρίες Αποθήκες εδοµένων: Προκλήσεις και Ευκαιρίες Ιωάννης Βασιλείου Εθνικό Μετσόβιο Πολυτεχνείο 27 Ιουνίου 2001 HELDINET - Αθήνα 1 ΕΠΙΣΚΟΠΗΣΗ ΟΜΙΛΙΑΣ Λίγα Λόγια για Αποθήκες εδοµένων (DW) Πως δηµιουργήθηκαν

Διαβάστε περισσότερα

Επερωτήσεις σύζευξης με κατάταξη

Επερωτήσεις σύζευξης με κατάταξη Επερωτήσεις σύζευξης με κατάταξη Επερωτήσεις κατάταξης Top-K queries Οι επερωτήσεις κατάταξης επιστρέφουν τις k απαντήσεις που ταιριάζουν καλύτερα με τις προτιμήσεις του χρήστη. Επερωτήσεις κατάταξης Top-K

Διαβάστε περισσότερα

Το Σχεσιακό Μοντέλο. Βάσεις Δεδομένων 2014-2015. Ευαγγελία Πιτουρά 1

Το Σχεσιακό Μοντέλο. Βάσεις Δεδομένων 2014-2015. Ευαγγελία Πιτουρά 1 Το Σχεσιακό Μοντέλο Ευαγγελία Πιτουρά 1 Μοντελοποίηση Σχήμα (database schema): η περιγραφή της δομής της πληροφορίας που είναι αποθηκευμένη στη βδ με τη χρήση ενός μοντέλου δεδομένων Μοντέλο Δεδομένων:

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΑ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Εργασία στην Oracle ΔΙΑΧΕΙΡΙΣΗ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΡΑΤΗΣΕΩΝ ΘΕΣΕΩΝ ΜΙΑΣ ΑΕΡΟΠΟΡΙΚΗΣ ΕΤΑΙΡΙΑΣ ΜΑΘΗΜΑ: ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ

Διαβάστε περισσότερα

Βάσεις εδοµένων 2002-2003 Ευαγγελία Πιτουρά 2

Βάσεις εδοµένων 2002-2003 Ευαγγελία Πιτουρά 2 Η Γλώσσα SQL Βάσεις εδοµένων 2002-2003 Ευαγγελία Πιτουρά 1 Η γλώσσα SQL What men or gods are these? What maidens loth? What mad pursuit? What struggle to escape? What pipes and timbrels? What wild ectasy?

Διαβάστε περισσότερα

Θεωρία Κανονικοποίησης

Θεωρία Κανονικοποίησης Θεωρία Κανονικοποίησης Πρώτη Κανονική Μορφή (1NF) Αποσύνθεση Συναρτησιακές Εξαρτήσεις Δεύτερη (2NF) και Τρίτη Κανονική Μορφή (3NF) Boyce Codd Κανονική Μορφή (BCNF) Καθολική Διαδικασία Σχεδίασης ΒΔ Βασική

Διαβάστε περισσότερα

Βάσεις Δεδομένων και Ευφυή Πληροφοριακά Συστήματα Επιχειρηματικότητας. Πληροφοριακά Συστήματα και Βάσεις Δεδομένων. Δρ. Κωνσταντίνος Χ.

Βάσεις Δεδομένων και Ευφυή Πληροφοριακά Συστήματα Επιχειρηματικότητας. Πληροφοριακά Συστήματα και Βάσεις Δεδομένων. Δρ. Κωνσταντίνος Χ. Βάσεις Δεδομένων και Ευφυή Πληροφοριακά Συστήματα Επιχειρηματικότητας Πληροφοριακά Συστήματα και Βάσεις Δεδομένων Δρ. Κωνσταντίνος Χ. Γιωτόπουλος Ρόλος των Πληροφοριακών Συστημάτων στους Οργανισμούς Οι

Διαβάστε περισσότερα

Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α

Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α 1 Windows 8.1 1.1 Βασικές Έννοιες Πληροφορικής και Επικοινωνιών Εισαγωγή 19 Τι είναι ο Ηλεκτρονικός Υπολογιστής 20 Κατηγορίες Υπολογιστών 21 Κύρια μέρη ενός Προσωπικού Υπολογιστή

Διαβάστε περισσότερα

Βάσεις Δεδομένων. Εργαστήριο ΙV. Τμήμα Πληροφορικής ΑΠΘ 2014-2015

Βάσεις Δεδομένων. Εργαστήριο ΙV. Τμήμα Πληροφορικής ΑΠΘ 2014-2015 Βάσεις Δεδομένων Εργαστήριο ΙV Τμήμα Πληροφορικής ΑΠΘ 2014-2015 2 Σκοπός του 4 ου εργαστηρίου Σκοπός αυτού του εργαστηρίου είναι: η μελέτη ερωτημάτων σύνδεσης η μελέτη ερωτημάτων συνάθροισης 3 Εκφράσεις

Διαβάστε περισσότερα

5. ΠΟΛΥΔΙΑΣΤΑΤΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ

5. ΠΟΛΥΔΙΑΣΤΑΤΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ 5. ΠΟΛΥΔΙΑΣΤΑΤΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Το μοντέλο που δημιουργήσαμε στο προηγούμενο εργαστήριο έχει βελτιωθεί εν μέρει ώστε να συμπεριλάβει και κάποιες δυνατότητες οι οποίες απαιτούν σχετικά εξειδικευμένες

Διαβάστε περισσότερα

ΑΠΟΔΟΤΙΚΗ ΑΠΟΤΙΜΗΣΗ ΕΡΩΤΗΣΕΩΝ OLAP Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ. Υποβάλλεται στην

ΑΠΟΔΟΤΙΚΗ ΑΠΟΤΙΜΗΣΗ ΕΡΩΤΗΣΕΩΝ OLAP Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ. Υποβάλλεται στην ΑΠΟΔΟΤΙΚΗ ΑΠΟΤΙΜΗΣΗ ΕΡΩΤΗΣΕΩΝ OLAP Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ Υποβάλλεται στην ορισθείσα από την Γενική Συνέλευση Ειδικής Σύνθεσης του Τμήματος Πληροφορικής Εξεταστική Επιτροπή από την Χαρά Παπαγεωργίου

Διαβάστε περισσότερα

Ελληνικό Ανοικτό Πανεπιστήµιο. Η Ανάλυση και ο Σχεδιασµός στην Ενοποιηµένη ιαδικασία. ρ. Πάνος Φιτσιλής

Ελληνικό Ανοικτό Πανεπιστήµιο. Η Ανάλυση και ο Σχεδιασµός στην Ενοποιηµένη ιαδικασία. ρ. Πάνος Φιτσιλής 1 Ελληνικό Ανοικτό Πανεπιστήµιο Η και ο στην Ενοποιηµένη ιαδικασία ρ. Πάνος Φιτσιλής Περιεχόµενα Γενικές αρχές ανάλυσης και σχεδιασµού Τα βήµατα της ανάλυσης και του σχεδιασµού Συµπεράσµατα 2 3 Η ανάλυση

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠAΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠAΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠAΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ ΑΠΟΘΗΚΕΣ ΔΕΔΟΜΕΝΩΝ (DATA WAREHOUSES) ΔΙΑΦΟΡΕΣ OLTP KAI OLAP ΠΕΤΕΙΝΑΡΙΑ ΣΤΕΛΛΑ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Σ.

Διαβάστε περισσότερα

ATHENS SCHOOL OF MANAGEMENT (THESSALONIKI) Η ΣΥΝΕΙΣΦΟΡΑ ΤΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΤΗΝ ΑΠΟΚΤΗΣΗ ΤΟΥ ΑΝΤΑΓΩΝΙΣΤΙΚΟΥ ΠΛΕΟΝΕΚΤΗΜΑΤΟΣ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ

ATHENS SCHOOL OF MANAGEMENT (THESSALONIKI) Η ΣΥΝΕΙΣΦΟΡΑ ΤΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΤΗΝ ΑΠΟΚΤΗΣΗ ΤΟΥ ΑΝΤΑΓΩΝΙΣΤΙΚΟΥ ΠΛΕΟΝΕΚΤΗΜΑΤΟΣ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ ATHENS SCHOOL OF MANAGEMENT (THESSALONIKI) Η ΣΥΝΕΙΣΦΟΡΑ ΤΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΤΗΝ ΑΠΟΚΤΗΣΗ ΤΟΥ ΑΝΤΑΓΩΝΙΣΤΙΚΟΥ ΠΛΕΟΝΕΚΤΗΜΑΤΟΣ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ Ομιλητής: Γιάννης Νάνος ΤΙ ΕΙΝΑΙ ΣΥΣΤΗΜΑ? Είναι μια

Διαβάστε περισσότερα

Διάλεξη 07: Σχεσιακό Μοντέλο II (Relational Data Model) Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 07: Σχεσιακό Μοντέλο II (Relational Data Model) Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 07: Σχεσιακό Μοντέλο II (Relational Data Model) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στις έννοιες: Περιορισμοί Σχεσιακού Μοντέλου και Σχεσιακά Σχήματα Πράξεις Ενημερώσεων

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΕΑ ΥΛΗ (SYLLABUS) MASTER IN OFFICE microsoft word ΕΚΔΟΣΗ 1.0. Σόλωνος 108,Τηλ. 210.3387190 Φαξ 210.3634576

ΕΞΕΤΑΣΤΕΑ ΥΛΗ (SYLLABUS) MASTER IN OFFICE microsoft word ΕΚΔΟΣΗ 1.0. Σόλωνος 108,Τηλ. 210.3387190 Φαξ 210.3634576 ΕΞΕΤΑΣΤΕΑ ΥΛΗ (SYLLABUS) MASTER IN OFFICE microsoft word ΕΚΔΟΣΗ 1.0 ΤΙ ΕΙΝΑΙ ΤΟ MASTER IN OFFICE Το Master in Office είναι κατάλληλο για άτομα που έχουν κάποια εμπειρία στο Office (πχ. κάτοχοι πτυχίου

Διαβάστε περισσότερα

Σχεδίαση και Χρήση Βάσεων Δεδομένων. Χρήση του DBDesigner. Γιώργος Πυρουνάκης - forky@di.uoa.gr

Σχεδίαση και Χρήση Βάσεων Δεδομένων. Χρήση του DBDesigner. Γιώργος Πυρουνάκης - forky@di.uoa.gr Σχεδίαση και Χρήση Βάσεων Δεδομένων Χρήση του DBDesigner Γιώργος Πυρουνάκης - forky@di.uoa.gr Δομή Διαλέξεων Εισαγωγή στο DBDesigner Εφαρμογή στη ΒΔ Προμηθευτής-Προϊόντα Παραδείγματα μοντελοποίησης και

Διαβάστε περισσότερα

AM5 Βάσεις Δεδομένων Προχωρημένο Επίπεδο Εξεταστέα Ύλη (Syllabus) Εκδοση 1.0

AM5 Βάσεις Δεδομένων Προχωρημένο Επίπεδο Εξεταστέα Ύλη (Syllabus) Εκδοση 1.0 AM5 Βάσεις Δεδομένων Προχωρημένο Επίπεδο Εξεταστέα Ύλη (Syllabus) Εκδοση 1.0 ΑΠΟΚΗΡΥΞΗ Παρ όλα τα μέτρα που έχουν ληφθεί από το Ίδρυμα ECDL για την προετοιμασία αυτής της έκδοσης, καμία εγγύηση δεν παρέχεται

Διαβάστε περισσότερα

Managing Information. Lecturer: N. Kyritsis, MBA, Ph.D. Candidate Athens University of Economics and Business. e-mail: kyritsis@ist.edu.

Managing Information. Lecturer: N. Kyritsis, MBA, Ph.D. Candidate Athens University of Economics and Business. e-mail: kyritsis@ist.edu. Managing Information Lecturer: N. Kyritsis, MBA, Ph.D. Candidate Athens University of Economics and Business e-mail: kyritsis@ist.edu.gr Διαχείριση Γνώσης Knowledge Management Learning Objectives Ποιοί

Διαβάστε περισσότερα

Copyright 2007 Ramez Elmasri and Shamkant B. Navathe, Ελληνική Έκδοση Δίαυλος Διαφάνεια 2-1

Copyright 2007 Ramez Elmasri and Shamkant B. Navathe, Ελληνική Έκδοση Δίαυλος Διαφάνεια 2-1 Copyright 2007 Ramez Elmasri and Shamkant B. Navathe, Ελληνική Έκδοση Δίαυλος Διαφάνεια 2-1 Κεφάλαιο 2 Έννοιες και Αρχιτεκτονική Συστημάτων Βάσεων δεδομένων Copyright 2007 Ramez Elmasri and Shamkant B.

Διαβάστε περισσότερα

Πληροφοριακά Συστήµατα

Πληροφοριακά Συστήµατα Nell Dale John Lewis Chapter 12 Πληροφοριακά Συστήµατα Στόχοι Ενότητας Η κατανόηση της έννοιας «Πληροφοριακό Σύστηµα» Επεξήγηση της οργάνωσης λογιστικών φύλλων (spreadsheets) Επεξήγηση της ανάλυσης δεδοµένων

Διαβάστε περισσότερα

Οδηγίες Χρήσης της MySQL

Οδηγίες Χρήσης της MySQL ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΗΜΕΙΩΣΕΙΣ ΣΕ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Οδηγίες Χρήσης της MySQL Διδάσκων: Γιάννης Θεοδωρίδης Συντάκτης Κειμένου: Βαγγέλης Κατσικάρος Νοέμβριος 2007 1 Περιεχόμενα Εισαγωγή...2

Διαβάστε περισσότερα

Information Technology for Business

Information Technology for Business Information Technology for Business Lecturer: N. Kyritsis, MBA, Ph.D. Candidate e-mail: kyritsis@ist.edu.gr Computer System Hardware Υποδομή του Information Technology Υλικό Υπολογιστών (Hardware) Λογισμικό

Διαβάστε περισσότερα

ECDL Module 5 Χρήση Βάσεων εδοµένων Εξεταστέα Ύλη, έκδοση 5.0 (Syllabus Version 5.0)

ECDL Module 5 Χρήση Βάσεων εδοµένων Εξεταστέα Ύλη, έκδοση 5.0 (Syllabus Version 5.0) ECDL Module 5 Χρήση Βάσεων εδοµένων Εξεταστέα Ύλη, έκδοση 5.0 (Syllabus Version 5.0) (Module 5 Using Databases) Συνολική ιάρκεια: Προτεινόµενο * Χρονοδιάγραµµα Εκπαίδευσης 10-16 (δέκα έως δεκαέξι) ώρες

Διαβάστε περισσότερα

Αφίξεις Τουριστών / Arrivals of Tourists

Αφίξεις Τουριστών / Arrivals of Tourists Αφίξεις Τουριστών / Arrivals of Tourists Περίοδος Αναφοράς: Ιανουάριος - Δεκέμβριος 2014 Reference Period: January - December 2014 Τελευταία Ενημέρωση: 19/01/2015 Last Update: Σελίδα / Page 2 3 4 5 6 7

Διαβάστε περισσότερα

Εργαλεία CASE. Computer Assisted Systems Engineering. Δρ Βαγγελιώ Καβακλή. Τμήμα Πολιτισμικής Τεχνολογίας και Επικοινωνίας Πανεπιστήμιο Αιγαίου

Εργαλεία CASE. Computer Assisted Systems Engineering. Δρ Βαγγελιώ Καβακλή. Τμήμα Πολιτισμικής Τεχνολογίας και Επικοινωνίας Πανεπιστήμιο Αιγαίου ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Εργαλεία CASE Computer Assisted Systems Engineering Δρ Βαγγελιώ Καβακλή Τμήμα Πολιτισμικής Τεχνολογίας και Επικοινωνίας Πανεπιστήμιο Αιγαίου Εαρινό Εξάμηνο 2011-2012 1 Εργαλεία CASE

Διαβάστε περισσότερα

Αποθηκευμένες Διαδικασίες Stored Routines (Procedures & Functions)

Αποθηκευμένες Διαδικασίες Stored Routines (Procedures & Functions) Αποθηκευμένες Διαδικασίες Stored Routines (Procedures & Functions) Αυγερινός Αραμπατζής avi@ee.duth.gr www.aviarampatzis.com Βάσεις Δεδομένων Stored Procedures 1 Stored Routines (1/2) Τμήματα κώδικα τα

Διαβάστε περισσότερα

8 ΙΑΧΕΙΡΙΣΗ Ε ΟΜΕΝΩΝ ΠΡΟΙΟΝΤΟΣ PRODUCT DATA MANAGEMENT (PDM)... 8-1

8 ΙΑΧΕΙΡΙΣΗ Ε ΟΜΕΝΩΝ ΠΡΟΙΟΝΤΟΣ PRODUCT DATA MANAGEMENT (PDM)... 8-1 8 ΙΑΧΕΙΡΙΣΗ Ε ΟΜΕΝΩΝ ΠΡΟΙΟΝΤΟΣ PRODUCT DATA MANAGEMENT (PDM)... 8-1 8.1 ΟΡΙΣΜΟΣ...8-1 8.2 ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΛΕΙΤΟΥΡΓΙΑΣ...8-3 8.3 ΠΡΟΤΕΡΗΜΑΤΑ ΧΡΗΣΗΣ...8-5 8.4 ΣΤΑ ΙΑ ΕΦΑΡΜΟΓΗΣ...8-7 8 ΙΑΧΕΙΡΙΣΗ Ε ΟΜΕΝΩΝ ΠΡΟΙΟΝΤΟΣ

Διαβάστε περισσότερα

ΧΡΗΣΗ Η/Υ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΑΡΧΕΙΩΝ

ΧΡΗΣΗ Η/Υ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΑΡΧΕΙΩΝ ΧΡΗΣΗ Η/Υ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΑΡΧΕΙΩΝ 1. ΠΕΡΙΒΑΛΛΟΝ ΗΛΕΚΤΡΟΝΙΚΟΥ ΥΠΟΛΟΓΙΣΤΗ 1.1. Βασικές Λειτουργίες και Ρυθµίσεις 1.1.1 Εκκίνηση, Τερµατισµός, Επανεκκίνηση του Η/Υ ακολουθώντας τις κατάλληλες διαδικασίες 1.1.2

Διαβάστε περισσότερα

Βάσεις Δεδομένων Ι - 06. Ευρετήρια/Indexes. (...και επιδόσεις ΣΔΒΔ) Views (Όψεις) Φώτης Κόκκορας (MSc/PhD) Τμήμα Τεχνολογίας Πληροφορικής & Τηλεπ/νιών

Βάσεις Δεδομένων Ι - 06. Ευρετήρια/Indexes. (...και επιδόσεις ΣΔΒΔ) Views (Όψεις) Φώτης Κόκκορας (MSc/PhD) Τμήμα Τεχνολογίας Πληροφορικής & Τηλεπ/νιών Βάσεις Δεδομένων Ι - 06 Ευρετήρια/Indexes (...και επιδόσεις ΣΔΒΔ) Views (Όψεις) Φώτης Κόκκορας (MSc/PhD) Τμήμα Τεχνολογίας Πληροφορικής & Τηλεπ/νιών ΤΕΙ Λάρισας Τι είναι τα ευρετήρια; Ευρετήριο/Index:

Διαβάστε περισσότερα

Ανάλυση και Σχεδιασµός Πληροφοριακών Συστηµάτων

Ανάλυση και Σχεδιασµός Πληροφοριακών Συστηµάτων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 1/10 2/20 3/15 4/10 5/20 6/20 7/10 /105 Συνολο Ανάλυση και Σχεδιασµός Πληροφοριακών Συστηµάτων ΕΞΕΤΑΣΗ

Διαβάστε περισσότερα

Θεμελιώδεις Αρχές Συστημάτων Βάσεων Δεδομένων

Θεμελιώδεις Αρχές Συστημάτων Βάσεων Δεδομένων Θεμελιώδεις Αρχές Συστημάτων Βάσεων Δεδομένων Β. Μεγαλοοικονόμου Εισαγωγή στην Εξόρυξη Δεδομένων Γενική Επισκόπηση- Σχεσιακό μοντέλο Σχεσιακό Μοντέλο -SQL Συναρτησιακές εξαρτήσεις & Κανονικοποίηση Φυσικός

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΛΗ11 2014-15 Α ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ - 7 ΙΟΥΝΙΟΥ 2015 ΜΕΡΟΣ Α : ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ [ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 45 ] Σημείωση: Το σύνολο βαθμών του Μέρους Α (ερωτήσεις πολλαπλής

Διαβάστε περισσότερα

2004 Microsoft Corporation. All rights reserved. This presentation is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR

2004 Microsoft Corporation. All rights reserved. This presentation is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR ISV Royalty Πρόγραµµα Content created by 3 Leaf Solutions 1 ISV Royalty Licensing Program Απευθύνεται σε:: Independent Software Vendors (ISVs) εταιρίες ανάπτυξης προϊόντων λογισµικού οι οποίες ενδιαφέρονται

Διαβάστε περισσότερα

ΘΕΜΑΤΑ. Θέμα 1 ο Σύμφωνα με τους παραπάνω πίνακες και τη θέση που έχουν τα ξένα κλειδιά βρείτε τους

ΘΕΜΑΤΑ. Θέμα 1 ο Σύμφωνα με τους παραπάνω πίνακες και τη θέση που έχουν τα ξένα κλειδιά βρείτε τους ΘΕΜΑΤΑ A Οι παρακάτω πίνακες αποτελούνται από τα εξής πεδία : ΕΡΓΑΖΟΜΕΝΟΣ : ΑΦΜ, ΕΠΙΘΕΤΟ, ΟΝΟΜΑ, ΤΗΛ, ΟΔΟΣ, ΠΟΛΗ,ΜΙΣΘΟΣ, ΚΤ ΤΜΗΜΑ : ΚΤ, ΑΦΜ, ΤΙΤΛΟΣ_ΤΜΗΜΑΤΟΣ, ΤΗΛ ΕΡΓΑ : ΚΕΡ, ΠΕΡΙΓΡΑΦΗ, ΤΟΠΟΘΕΣΙΑ, ΠΡΟΫΠΟΛΟΓΙΣΜΟΣ

Διαβάστε περισσότερα

dbase# AuthorGr Year Month 22453 Καλλέργης, Ε. 1876 September 22454 Καλλέργης, Ε. 1876 November 21466 Καλλιγάς, Μ. [1874] [September] 21468 Καλλιγάς, Π. 1874 December 21467 Καλλιγάς, Π. 1874 May 21942

Διαβάστε περισσότερα

1. PHOTOMOD Montage Desktop (βασικό πρόγραμμα)

1. PHOTOMOD Montage Desktop (βασικό πρόγραμμα) PHOTOMOD 4.4 Lite Προσοχή: Πριν από την εκκίνηση του PHOTOMOD πρέπει να ενεργοποιηθεί η λειτουργία PHOTOMOD System Monitor (παρουσιάζεται με το εικονίδιο ) με την εντολή: START Programs PHOTOMOD Utility

Διαβάστε περισσότερα

Εισαγωγή. Κατανεµηµένα Συστήµατα 01-1

Εισαγωγή. Κατανεµηµένα Συστήµατα 01-1 Εισαγωγή Υλισµικό Λογισµικό Αρχές σχεδίασης ιαφάνεια Κλιµάκωση Παρεχόµενες υπηρεσίες Μοντέλο πελάτη εξυπηρετητή Μοντέλο πελάτη εξυπηρετητή τριών επιπέδων Κατανοµή επεξεργασίας Κατανεµηµένα Συστήµατα 01-1

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. 1 ο ΣΧΟΛΕΙΟ ΚΩΔΙΚΑ «Βασικά Θέματα Προγραμματισμού στην Ανάπτυξη Δυναμικών Διαδικτυακών Εφαρμογών» (Part 3) Ουρανία Σμυρνάκη

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. 1 ο ΣΧΟΛΕΙΟ ΚΩΔΙΚΑ «Βασικά Θέματα Προγραμματισμού στην Ανάπτυξη Δυναμικών Διαδικτυακών Εφαρμογών» (Part 3) Ουρανία Σμυρνάκη ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 1 ο ΣΧΟΛΕΙΟ ΚΩΔΙΚΑ «Βασικά Θέματα Προγραμματισμού στην Ανάπτυξη Δυναμικών Διαδικτυακών Εφαρμογών» (Part 3) Ουρανία Σμυρνάκη 1 3 η ενότητα: Εισαγωγή στις Βάσεις Δεδομένων και στην MySQL

Διαβάστε περισσότερα

Το σχεσιακό μοντέλο βάσεων δεδομένων

Το σχεσιακό μοντέλο βάσεων δεδομένων ΕΣΔ232 Οργάνωση Δεδομένων στη Κοινωνία της Πληροφορίας Το σχεσιακό μοντέλο βάσεων δεδομένων Περιεχόμενα Περιεχόμενα - Βιβλιογραφία Ενότητας Εισαγωγή στο σχεσιακό μοντέλο Σχεσιακές γλώσσες ερωτημάτων Περιορισμοί

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Υλικό Υπολογιστών Κεφάλαιο 5ο Οργάνωση υπολογιστών

Εισαγωγή στην επιστήμη των υπολογιστών. Υλικό Υπολογιστών Κεφάλαιο 5ο Οργάνωση υπολογιστών Εισαγωγή στην επιστήμη των υπολογιστών Υλικό Υπολογιστών Κεφάλαιο 5ο Οργάνωση υπολογιστών 1 Οργάνωση υπολογιστών ΚΜΕ Κύρια Μνήμη Υποσύστημα εισόδου/εξόδου 2 Κεντρική Μονάδα Επεξεργασίας (ΚΜΕ) R1 R2 ΑΛΜ

Διαβάστε περισσότερα

Μέρος Α Περιβάλλον Εργασίας Windows... 19. Εργαστηριακή Άσκηση 1 Το Γραφικό Περιβάλλον του Υπολογιστή... 21

Μέρος Α Περιβάλλον Εργασίας Windows... 19. Εργαστηριακή Άσκηση 1 Το Γραφικό Περιβάλλον του Υπολογιστή... 21 Περιεχόμενα Μέρος Α Περιβάλλον Εργασίας Windows... 19 Εργαστηριακή Άσκηση 1 Το Γραφικό Περιβάλλον του Υπολογιστή... 21 1.1 Εκκίνηση του ηλεκτρονικού υπολογιστή... 22 1.2 Γραφικό παραθυρικό περιβάλλον εργασίας...

Διαβάστε περισσότερα

SQL Server 2005 Tutorial Αςκήςεισ. Γεράσιμος Μαρκέτος InfoLab, Τμήμα Ρληροφορικήσ, Ρανεπιςτήμιο Ρειραιϊσ (http://infolab.cs.unipi.

SQL Server 2005 Tutorial Αςκήςεισ. Γεράσιμος Μαρκέτος InfoLab, Τμήμα Ρληροφορικήσ, Ρανεπιςτήμιο Ρειραιϊσ (http://infolab.cs.unipi. SQL Server 2005 Tutorial Αςκήςεισ Γεράσιμος Μαρκέτος InfoLab, Τμήμα Ρληροφορικήσ, Ρανεπιςτήμιο Ρειραιϊσ (http://infolab.cs.unipi.gr/) Εργαςτηριακή Άςκηςη Σχεδιάςτε ςτον SQL Server 2005 μια βάςη δεδομζνων

Διαβάστε περισσότερα