Τηλεπικοινωνιακά Ψηφιακά Δίκτυα Ενότητα 2: Θεωρία Κίνησης. Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Τηλεπικοινωνιακά Ψηφιακά Δίκτυα Ενότητα 2: Θεωρία Κίνησης. Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών"

Transcript

1 Τηλεπικοινωνιακά Ψηφιακά Δίκτυα Ενότητα 2: Θεωρία Κίνησης Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών

2 Κλήσεις σε εξέλιξη 22/6/2013 ΘΕΩΡΙΑ ΚΙΝΗΣΗΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΔΙΚΤΥΑ Θ. ΣΦΗΚΟΠΟΥΛΟΣ 1 ΓΕΝΙΚΑ ΠΕΡΙ ΚΙΝΗΣΗΣ - 1 Ο σχεδιασμός ενός τηλεπικοινωνιακού συστήματος απαιτεί την λήψη μιας απόφασης ως προς το μέγεθός του με σκοπό τη σωστή διακίνηση της κίνησης Ζευκτικό κύκλωμα: Περιγράφει κάθε οντότητα που μεταφέρει μια κλήση π.χ. Διεθνές κύκλωμα με μήκος χιλιάδων km Μερικά μέτρα καλωδίων μεταξύ μεταγωγέων του ίδιου τηλεφωνικού κέντρου κ.α. Ο αριθμός των κλήσεων σε εξέλιξη μεταβάλλεται με έναν τυχαίο τρόπο καθώς κάθε κλήση ξεχωριστά αρχίζει και τελειώνει με τυχαίο τρόπο Χρόνος σε min 2 1

3 Κλήσεις σε εξέλιξη 22/6/2013 ΓΕΝΙΚΑ ΠΕΡΙ ΚΙΝΗΣΗΣ - 2 Η τυχαία μεταβολή των κλήσεων σε εξέλιξη εξομαλύνεται παίρνοντας τον τρέχοντα μέσο όρο (running average) Κατά τη διάρκεια της νύχτας υπάρχει γενικά μικρότερη δραστηριότητα Αύξηση της κίνησης παρατηρείται προς το μέσο του πρωινού (επαγγελματικές δραστηριότητες), το απόγευμα και το βράδυ (κοινωνικές δραστηριότητες). Στα ενδιάμεσα υπάρχει ύφεση Το μέγεθος της κίνησης εξαρτάται και από το κέντρο το οποίο μελετάμε (π.χ. σε ένα κέντρο που εξυπηρετεί ένα ολόκληρο προάστιο η βραδινή κίνηση θα είναι μεγαλύτερη Ο αριθμός των κλήσεων μπορεί να μεταβάλλεται και με την εποχή του χρόνου (παραθεριστικά ή μη κέντρα) Ώρες αιχμής πμ μμ Χρόνος της ημέρας 3 ΓΕΝΙΚΑ ΠΕΡΙ ΚΙΝΗΣΗΣ - 3 Ώρα αιχμής ή ώρα μέγιστης απασχόλησης: Καλείται η περίοδος μιας ώρας που αντιστοιχεί στην αιχμή του φόρτου κίνησης Το πλήθος των αναγκαίων ζευκτικών κυκλωμάτων εξαρτάται από τη μεταφερόμενη κίνηση και πρέπει να είναι επαρκές για να καλύψει τις ανάγκες που προκύπτουν κατά την ώρα αιχμής Σε ώρες μη αιχμής το μεγαλύτερο ποσοστό του εξοπλισμού παραμένει αδρανές Οι τηλεπικοινωνιακοί οργανισμοί με σκοπό την ανακατανομή της κίνησης και κατ επέκταση τη μείωση των δαπανών δίνουν κίνητρα στους πελάτες τους (π.χ. φθηνότερες κλήσεις τις βραδινές ώρες) 4 2

4 22/6/2013 ΜΟΝΑΔΑ ΚΙΝΗΣΗΣ - 1 Ένταση κίνησης ή απλά κίνηση: Καθορίζεται από τον μέσο αριθμό κλήσεων που βρίσκονται σε εξέλιξη Η μονάδα κίνησης καλείται erlang (E) Σε μία ομάδα ζευκτικών κυκλωμάτων, ο μέσος αριθμός των κλήσεων εν εξελίξει εξαρτάται: από το ρυθμό άφιξης των κλήσεων από τη μέση διάρκειά τους Χρόνος κράτησης: Διάρκεια μιας κλήσης (Διάρκεια κατάληψης ενός ζευκτικού κυκλώματος). Ζευκτικό κέντρο Ε 1Ε 1Ε 3 0 Τ Χρόνος Ελεύθερο Απασχολημένο 5 C h T ΜΟΝΑΔΑ ΚΙΝΗΣΗΣ - 2 Μία ομάδα ζευκτικών κυκλωμάτων διακινεί κίνηση, η οποία δίνεται από τη σχέση: C h Α = κίνηση σε erlangs C = μέσος όρος αφίξεων κλήσεων κατά τη διάρκεια Τ T h = μέση διάρκεια κλήσεων Η κίνηση σε erlangs ισούται με το μέσο αριθμό των κλήσεων που φτάνουν κατά τη διάρκεια μίας περιόδου ίσης με τη μέση διάρκεια των κλήσεων (αν T = h τότε = C) Πρέπει Α1 για ένα μόνο κύκλωμα, αφού αυτό δεν μπορεί να διακινεί περισσότερες από μία κλήσεις Τότε η κίνηση είναι ένα κλάσμα του erlang ίσο με το μέσο ποσοστό του χρόνου για το οποίο το κύκλωμα είναι απασχολημένο. Το κλάσμα αυτό καλείται απασχόληση Η πιθανότητα να βρεθεί το κύκλωμα απασχολημένο, είναι ίση με το κλάσμα της μονάδας του χρόνου για το οποίο είναι απασχολημένο, δηλαδή ίση με την απασχόληση (Α) του κυκλώματος 6 3

5 22/6/2013 ΣΥΜΦΟΡΗΣΗ - 1 Το κόστος ικανοποίησης της ταυτόχρονης κλήσης όλων των συνδρομητών ενός κέντρου είναι απαγορευτικό, αλλά και η πιθανότητα για να συμβεί κάτι τέτοιο είναι αμελητέα Συμφόρηση: Είναι η κατάσταση κατά την οποία όλα τα κυκλώματα μιας ζευκτικής ομάδας είναι απασχολημένα και επομένως δεν μπορούν να δεχθούν άλλες κλήσεις Τα συστήματα μεταγωγής, ανάλογα με το πώς χειρίζονται τις καταστάσεις συμφόρησης, μπορούν να καταταχθούν στις εξής κατηγορίες: Συστήματα με ουρά ή καθυστέρηση (μεταγωγή μηνύματος): οι κλήσεις που φτάνουν κατά τη διάρκεια συμφόρησης, περιμένουν στην ουρά, έως ότου ελευθερωθεί ένα εξερχόμενο ζευκτικό κύκλωμα Συστήματα με απώλεια κλήσεων: όλες οι προσπάθειες αποκατάστασης των κλήσεων μέσω μίας ζευκτικής ομάδας κυκλωμάτων που παρουσιάζει συμφόρηση αποτυγχάνουν (μεταγωγή κυκλώματος τηλεφωνικά κέντρα) 7 ΣΥΜΦΟΡΗΣΗ - 2 Σε ένα σύστημα απώλειας κλήσεων ισχύει: Μεταφερόμενη κίνηση=προσφερόμενη κίνηση Απολεσθείσα κίνηση Βαθμός εξυπηρέτησης: Ποσοστό των κλήσεων που χάνονται ή που καθυστερούνται λόγω συμφόρησης (τρόπος μέτρησης εξυπηρέτησης). Σε ένα σύστημα με απώλεια κλήσεων ορίζεται ως: Αριθμός των κλήσεων που χάνονται Απωλεσθείσ α κίνηση B Αριθμός των κλήσεων που προσφέροντ αι Προσφερόμενη κίνηση = ποσοστό του χρόνου κατά τη διάρκεια του οποίου υπάρχει συμφόρηση = πιθανότητα συμφόρησης = πιθανότητα απώλειας κλήσεως λόγω συμφόρησης 8 4

6 22/6/2013 ΣΥΜΦΟΡΗΣΗ - 3 Αν προσφέρονται Α erlangs κίνησης σε μία ομάδα ζευκτικών κυκλωμάτων, που έχουν βαθμό εξυπηρέτησης Β, τότε η απώλεια κίνησης είναι ΑΒ, και η μεταφερόμενη κίνηση είναι Α(1 Β) erlangs. Όσο μεγαλύτερος είναι ο βαθμός εξυπηρέτησης, τόσο χειρότερη είναι η εξυπηρέτηση που προσφέρεται. Ο βαθμός εξυπηρέτησης κανονικά καθορίζεται για την κίνηση στην ώρα αιχμής και μπορεί να μεταβάλλεται από π.χ για τα φτηνά ζευκτικά κυκλώματα ενός κέντρου σε 0.01 για τις συνδέσεις μεταξύ κέντρων και σε 0.1 για τους δαπανηρούς διεθνείς δρόμους. 9 ΜΕΤΡΗΣΗ ΤΗΣ ΚΙΝΗΣΗΣ Οι εταιρίες τηλεπικοινωνιών χρειάζεται να γνωρίζουν πότε ένα σύστημα υπερφορτώνεται και πρέπει να εγκατασταθεί επιπρόσθετος εξοπλισμός Συνεπώς, η κίνηση θα πρέπει να μετράται τακτικά, και να φυλάσσονται οι καταγραφές Η μέτρηση της μεταφερόμενης κίνησης ανάγεται σε μία μέτρηση ανά τακτά διαστήματα των κλήσεων που βρίσκονται σε εξέλιξη, κατά τη διάρκεια της ώρας αιχμής, και εξαγωγή του μέσου όρου των αποτελεσμάτων Με βάση τα στοιχεία της παρούσας κίνησης γίνεται πρόβλεψη για την μελλοντική κίνηση 10 5

7 22/6/2013 ΜΑΘΗΜΑΤΙΚΟ ΜΟΝΤΕΛΟ - 1 Ένα απλό μαθηματικό μοντέλο κίνησης βασίζεται στις εξής υποθέσεις: Η κίνηση είναι καθαρά τυχαία οι αφίξεις και οι τερματισμοί των κλήσεων είναι ανεξάρτητα τυχαία γεγονότα η εμφάνιση των κλήσεων δεν επηρεάζεται από τις προηγούμενες κλήσεις. (κίνηση χωρίς μνήμη) ο αριθμός των πηγών που δημιουργούν τις κλήσεις είναι πολύ μεγάλος Η κίνηση χαρακτηρίζεται από στατιστική ισορροπία η παραγωγή κίνησης είναι μία στατική τυχαία διαδικασία, δηλαδή οι πιθανότητες δεν αλλάζουν κατά τη διάρκεια της θεωρούμενης περιόδου ο μέσος αριθμός των κλήσεων που βρίσκονται σε εξέλιξη, παραμένει σταθερός η στατιστική ισορροπία δεν ισχύει αμέσως πριν και αμέσως μετά την ώρα αιχμής 11 ΜΑΘΗΜΑΤΙΚΟ ΜΟΝΤΕΛΟ - 2 Η υπόθεση των τυχαίων αφίξεων και τερματισμών των κλήσεων οδηγεί στα εξής αποτελέσματα: Το πλήθος των αφίξεων των κλήσεων δίνεται από μία κατανομή Poisson, δηλαδή: P(x) x μ e x! όπου x το πλήθος των αφίξεων κλήσεων μέσα σε χρόνο Τ και μ ο μέσος αριθμός των αφίξεων κλήσεων μέσα στο χρόνο Τ Τα διαστήματα, Τ, μεταξύ των αφίξεων των κλήσεων είναι διαστήματα μεταξύ ανεξάρτητων τυχαίων γεγονότων και έχουν μία αρνητική εκθετική κατανομή: t / T P(T t) e όπου T είναι το μέσο διάστημα μεταξύ των αφίξεων των κλήσεων Εφόσον η άφιξη και ο τερματισμός κάθε κλήσης είναι ανεξάρτητα τυχαία γεγονότα, η διάρκεια κάθε κλήσης, Τ, είναι επίσης ένα διάστημα μεταξύ δύο τυχαίων γεγονότων, που έχει μία αρνητική εκθετική κατανομή: t /h P(T t) e - x 12 6

8 22/6/2013 ΜΑΘΗΜΑΤΙΚΟ ΜΟΝΤΕΛΟ - 3 Για μία ομάδα Ν ζευκτικών κυκλωμάτων ο αριθμός των εξελισσόμενων κλήσεων είναι πάντα από 0 ως Ν Απλή αλυσίδα Markov: Η διαδικασία έχει Ν+1 καταστάσεις, και η συμπεριφορά της εξαρτάται από την πιθανότητα μετάβασης της κάθε κατάστασης στην ακριβώς επόμενη ή στην ακριβώς προηγούμενη Πιθανότητες κατάστασης P(j): Είναι η πιθανότητα της κατάστασης j Πιθανότητες μετάβασης P j,k : Είναι η πιθανότητα μετάβασης στην κατάσταση k δεδομένου ότι βρισκόμαστε στην κατάσταση j Κανονική αλυσίδα Markov: Οι παραπάνω πιθανότητες δεν αλλάζουν δηλαδή υπάρχει στατιστική ισορροπία P 0,1 P j,k P N-1,N 0 1 j k N-1 N P 1,0 P k,j P N,N-1 P(0) P(1) P(j) P(k) P(N-1) P(N) 13 ΜΑΘΗΜΑΤΙΚΟ ΜΟΝΤΕΛΟ - 4 Σε ένα πολύ μικρό χρονικό διάστημα δt ισχύουν: Η πιθανότητα να συμβεί ένα γεγονός είναι μικρή Η πιθανότητα να συμβούν δύο ή περισσότερα γεγονότα είναι αμελητέα Τα γεγονότα που μπορούν να συμβούν στο διάστημα δt είναι: Μία κλήση φτάνει, με πιθανότητα P(α) Μία κλήση τερματίζεται, με πιθανότητα Ρ(e) Καμία μεταβολή, με πιθανότητα 1 - Ρ(α) - Ρ(e) 14 7

9 22/6/2013 ΜΑΘΗΜΑΤΙΚΟ ΜΟΝΤΕΛΟ - 5 Μέσος αριθμός των αφίξεων κλήσεων κατά τη χρονική διάρκεια Τ: C = T/h Για δt πολύ μικρό, ο μέσος αριθμός των αφίξεων κλήσεων κατά τη διάρκεια του δt ισούται με την πιθανότητα, Ρ(α), μία κλήση να αφιχθεί στο διάστημα αυτό: Pj,k = P(α) = δt/h Για δt πολύ μικρό ο μέσος αριθμός των κλήσεων που τερματίζονται στο διάστημα δt ισούται με την πιθανότητα, P(e), μία κλήση να τερματιστεί στο διάστημα αυτό: Pk,j = P(e) = kδt/h 15 ΜΑΘΗΜΑΤΙΚΟ ΜΟΝΤΕΛΟ - 6 Πιθανότητες μετάβασης: P(jk) = P(j) P(α) = P(j) δt/h P(kj) = P(k) P(e) = P(k) kδt/h Η παραδοχή της στατιστικής ισορροπίας επιβάλλει ότι: P(jk) = P(kj) P(k)=P(j)/k Γενικά: Όμως: Άρα τελικά: x P( x) P( 0) x! x 1 P( x) P( 0) e P( 0) P( 0 x0 x0 x! x P( x) e x! ) e 16 8

10 22/6/2013 ΣΥΣΤΗΜΑΤΑ ΜΕ ΑΠΩΛΕΙΑ ΚΛΗΣΕΩΝ - 1 Ο Erlang προσδιόρισε το βαθμό εξυπηρέτησης ενός συστήματος με απώλεια κλήσεων. Η λύση εξαρτάται από τις παρακάτω υποθέσεις : Η κίνηση είναι καθαρά τυχαία Υπάρχει στατιστική ισορροπία Υπάρχει πλήρης διαθεσιμότητα: Κάθε κλήση που φθάνει έχει την δυνατότητα να συνδεθεί με οποιοδήποτε ελεύθερο εξερχόμενο κύκλωμα (επαρκής αριθμός των εξόδων ενός μεταγωγέα) Οι κλήσεις που συναντούν συμφόρηση χάνονται κάθε κλήση που συναντά συμφόρηση απορρίπτεται αμέσως από το σύστημα ο χρήστης πρέπει να ξανακαλέσει αργότερα Προσφερμόμενη κίνηση erlangs Ν εξερχόμενα κέντρα 17 ΣΥΣΤΗΜΑΤΑ ΜΕ ΑΠΩΛΕΙΑ ΚΛΗΣΕΩΝ - 2 Η κίνηση που προσφέρεται την ώρα αιχμής, είναι ελαφρώς μεγαλύτερη Η συνολικά προσφερόμενη κίνηση είναι το άθροισμα όλων των επιτυχών και ανεπιτυχών κλήσεων Αν υπάρχουν x κλήσεις σε εξέλιξη, τότε: x P( x) x P ( 0)! Δεν μπορεί να υπάρχει αρνητικός αριθμός κλήσεων ούτε περισσότερες κλήσεις από Ν δηλ. 0 x N N N x 1 P( x) 1 P( 0) P( 0) N x x! x0 x0 x0 x! 18 9

11 Μέση κίνηση ανά ζευκτικό κέντρο (Ε) Απαιτούμενος αριθμός ζευκτικών κέντρων 22/6/2013 Πρώτη κατανομή Erlang: Πιθανότητα συμφόρησης: ΣΥΣΤΗΜΑΤΑ ΜΕ ΑΠΩΛΕΙΑ ΚΛΗΣΕΩΝ - 3 P(N) B E () P( x) Η Ε 1,Ν (Α) δίνεται με επαναληπτική εφαρμογή της απλής σχέσης (Ε 1,0 = 1): E1, N1( ) E1, N ( ) N E1, N1( ) Υπάρχουν επίσης πίνακες που δίνουν τις τιμές της Ε 1,Ν (Α) 1,N N k0 N k N k0 / N! / k! x / x! k / k! 19 ΕΠΙΔΟΣΕΙΣ ΚΙΝΗΣΗΣ - 1 Αύξηση της κίνησης, Α, αντιστοιχεί σε μία ανάλογη αύξηση των απαιτούμενων κυκλωμάτων, Ν, προκειμένου ο βαθμός εξυπηρέτησης Β να παραμείνει σταθερός Αν ο βαθμός απασχόλησης των κυκλωμάτων παραμένει αμετάβλητος, τότε η πιθανότητα να βρεθούν όλα τα κυκλώματα απασχολημένα είναι μικρότερη, όσο μεγαλύτερη είναι η ομάδα κυκλωμάτων Για ένα δεδομένο βαθμό εξυπηρέτησης, μία μεγάλη ομάδα κυκλωμάτων έχει υψηλότερο βαθμό απασχόλησης σε σύγκριση με μία μικρή ομάδα και χαρακτηρίζεται ως αποδοτικότερη Είναι προτιμότερο η κίνηση να γίνεται σε μία μόνο μεγάλη ομάδα κυκλωμάτων, παρά να διακινείται από περισσότερες μικρές ομάδες Συνολική κίνηση (Ε) 20 10

12 Βαθμός εξυπηρέτησης 22/6/2013 Στις μεγάλες ομάδες ο βαθμός εξυπηρέτησης χειροτερεύει περισσότερο με την υπερφόρτωση της κίνησης (λόγω υψηλής αποδοτικότητας) Σαν λύση, οι περισσότεροι τηλεπικοινωνιακοί οργανισμοί υιοθετούν ένα διπλό κριτήριο δυο βαθμούς εξυπηρέτησης υπό κανονικό φορτίο κίνησης για δεδομένη ποσοστιαία υπερφόρτωση (μεγαλύτερος) Ο αριθμός των κυκλωμάτων που παρέχονται, προσδιορίζεται με βάση το κριτήριο που απαιτεί τον μεγαλύτερο αριθμό ΕΠΙΔΟΣΕΙΣ ΚΙΝΗΣΗΣ ζ. κέντρα 70 ζ. κέντρα 40 ζ. κέντρα 30 ζ. κέντρα 25 ζ. κέντρα 20 ζ. κέντρα 15 ζ. κέντρα 10 ζ. κέντρα 5 ζ. κέντρα Επί τοις εκατό υπερφόρτωση 21 ΣΥΣΤΗΜΑΤΑ ΑΠΩΛΕΙΑΣ ΣΕ ΣΥΖΕΥΞΗ Για μια σύνδεση με δύο ζεύξεις, βαθμών εξυπηρέτησης Β 1 και Β 2 αντίστοιχα, ισχύουν: Κίνηση που προσφέρεται στη δεύτερη ζεύξη: Α(1 - Β 1 ) Κίνηση που καταλήγει στον προορισμό της: Α(1 - Β 1 )(1 - Β 2 )= Α(1 + Β 1 Β 2 - Β 1 - Β 2 ) Συνολικός βαθμός εξυπηρέτησης: Β = Β 1 + Β 2 - Β 1 Β 2 Στην πράξη Β 1, Β 2 1, οπότε το Β 1 Β 2 είναι αμελητέο και επομένως Β = Β 1 + Β 2 n Γενικά, για μία σύνδεση n ζεύξεων ισχύει: B B k k1 Η παραπάνω σχέση είναι προσεγγιστική για τους εξής λόγους: οι βαθμοί εξυπηρέτησης καθορίζονται για τις ώρες αιχμής, και οι ώρες αυτές μπορεί να μην συμπίπτουν σε όλες τις ζεύξεις Συνήθως η συνολική απώλεια είναι μόνον ελαφρώς μεγαλύτερη από εκείνη της ζεύξης που βρίσκεται στην ώρα αιχμής Οι προβλέψεις που γίνονται για την εγκατάσταση νέου εξοπλισμού είναι λανθασμένες και ο βαθμός εξυπηρέτησης υπερβαίνει την καθορισμένη τιμή του πριν το τέλος της περιόδου πρόβλεψης 22 11

13 22/6/2013 ΣΥΣΤΗΜΑΤΑ ΜΕ ΟΥΡΑ η ΚΑΤΑΝΟΜΗ ERLNG Εξυπηρετητές (servers): Είναι τα κυκλώματα στα συστήματα ουράς Σύστημα Μ/ Μ/ Ν: Η κίνηση είναι καθαρά τυχαία Υπάρχει στατιστική ισορροπία Υπάρχει πλήρης διαθεσιμότητα Οι κλήσεις που αντιμετωπίζουν συμφόρηση εισάγονται σε μία ουρά και αποθηκεύονται εκεί μέχρις ότου ελευθερωθεί ένας εξυπηρετητής Η 2 η υπόθεση προϋποθέτει ότι Α Ν. Στην αντίθετη περίπτωση το μήκος της ουράς διαρκώς αυξάνεται προς το άπειρο (κατάργηση στατιστικής ισορροπίας) Δεύτερη κατανομή του Erlang: Είναι η πιθανότητα να συναντήσουμε καθυστέρηση σε ένα σύστημα Μ / Μ / Ν στο οποίο προσφέρεται κίνηση Α Προσφερμόμενη κίνηση erlangs Ουρά. Ν εξυπηρετητές 23 ΣΥΣΤΗΜΑΤΑ ΜΕ ΟΥΡΑ η ΚΑΤΑΝΟΜΗ ERLNG Όταν ο συνολικός αριθμός των κλήσεων που υπάρχουν στο σύστημα x < N, τότε εξυπηρετούνται x κλήσεις και δε συμβαίνει καμία καθυστέρηση Όταν x > Ν, τότε υπάρχουν Ν κλήσεις που εξυπηρετούνται και x N κλήσεις στην ουρά (όλοι οι εξυπηρετητές είναι απασχολημένοι) Αν x N τότε δεν υπάρχει ουρά, και όπως και στα συστήματα με απώλεια κλήσεων χωρίς συμφόρηση ισχύει: x P(x) P(0), 0 x Ν x! 24 12

14 Πιθανότητα καθυστέρησης, Ε2,Ν (Α) 22/6/2013 ΣΥΣΤΗΜΑΤΑ ΜΕ ΟΥΡΑ η ΚΑΤΑΝΟΜΗ ERLNG Αν x > N. Λόγω της στατιστικής ισορροπίας: Ν κλήσεις μπορούν να Μια άφιξη στο δt τερματιστούν στο δt t t P(x 1 x) P(x x 1) P(x)N P(x 1) P(x) P(x 1) h h N Χρησιμοποιώντας την σχέση για x N έχουμε: P N N ( ) N P ( 0)! Με την βοήθεια των παραπάνω καταλήγουμε στην γενική σχέση: Χωρίς όριο στο μήκος της ουράς το x μπορεί να πάρει τιμές μεταξύ 0 και οπότε: P( x) 1 x0 N N1 x N Με βάση τα παραπάνω έχουμε: P( 0) N!( N ) x 0 x! x N P x N N P N ( ) ( 0) N N P ( ) x N 0!! x 1 25 ΣΥΣΤΗΜΑΤΑ ΜΕ ΟΥΡΑ - 4 ΠΙΘΑΝΟΤΗΤΑ ΚΑΘΥΣΤΕΡΗΣΗΣ Κίνηση ανά εξυπηρετητή (Α/Ν) Για x N παρουσιάζεται καθυστέρηση Η πιθανότητα να υπάρχουν στο σύστημα τουλάχιστον z κλήσεις (όπου z N) είναι: N x N z N N P(x z) P(x) P( 0) P( 0) xz N! xz N N! N k0 N Άρα z N N N N N P(x z) P( 0) P( ) N! N 1 0 N N! N N Η πιθανότητα καθυστέρησης, P(x>N) (τύπος καθυστέρησης του Erlang) είναι: N N PD P( 0) E2, N() N! N Η πιθανότητα καθυστέρησης αυξάνεται τείνοντας στο 1.0 όσο το Α τείνει στο Ν. Για Α > Ν, το μήκος της ουράς μεγαλώνει απρόβλεπτα 1 z 26 k 13

15 22/6/2013 ΣΥΣΤΗΜΑΤΑ ΜΕ ΟΥΡΑ - 5 ΧΩΡΗΤΙΚΟΤΗΤΑ ΠΕΠΕΡΑΣΜΕΝΗΣ ΟΥΡΑΣ Ένα πραγματικό σύστημα δεν μπορεί να έχει άπειρη ουρά Αν η ουρά έχει τη δυνατότητα να κρατήσει μόνο μέχρι Q κλήσεις, τότε x Q + N Οι προηγούμενες εξισώσεις γίνονται: N1 x N N Q k N1 x N 1 N 1 0) x0 x! N! N k 0 N x0 x! N! 1 P( Αν η πιθανότητα απώλειας είναι μικρή, τότε το σφάλμα από τις προηγούμενες εξισώσεις είναι αμελητέο Η πιθανότητα απώλειας μπορεί να εκτιμηθεί, εάν πρώτα θεωρηθεί ότι η ουρά είναι άπειρη και μετά υπολογισθεί το Ρ(x Q + N): N QN Q N N P(x Q N) P( 0) PD N! N N N (/ N) / N Q

16 Τέλος Θεωρία Κίνησης

17 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στo πλαίσιo του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Αθηνών» έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. Θεωρία Κίνησης 3

18 Σημειώματα

19 Σημείωμα Ιστορικού Εκδόσεων Έργου Το παρόν έργο αποτελεί την έκδοση 1.0. Θεωρία Κίνησης 5

20 Σημείωμα Αναφοράς Copyright Εθνικόν και Καποδιστριακόν Πανεπιστήμιον Αθηνών, Βαρουτάς Δημήτρης, Σφηκόπουλος Θωμάς. «Τηλεπικοινωνιακά Ψηφιακά Δίκτυα. Θεωρία Κίνησης». Έκδοση: 1.0. Αθήνα Διαθέσιμο από τη δικτυακή διεύθυνση: Θεωρία Κίνησης 6

21 Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά, Μη Εμπορική Χρήση Παρόμοια Διανομή 4.0 [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». [1] Ως Μη Εμπορική ορίζεται η χρήση: που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του έργου και αδειοδόχο που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις) από την προβολή του έργου σε διαδικτυακό τόπο Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. Θεωρία Κίνησης 7

22 Διατήρηση Σημειωμάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει: το Σημείωμα Αναφοράς το Σημείωμα Αδειοδότησης τη δήλωση Διατήρησης Σημειωμάτων το Σημείωμα Χρήσης Έργων Τρίτων (εφόσον υπάρχει) μαζί με τους συνοδευόμενους υπερσυνδέσμους. Θεωρία Κίνησης 8

Κινητές επικοινωνίες. Κεφάλαιο 3 Ένταση κίνησης σε δίκτυο

Κινητές επικοινωνίες. Κεφάλαιο 3 Ένταση κίνησης σε δίκτυο Κινητές επικοινωνίες Κεφάλαιο 3 Ένταση κίνησης σε δίκτυο 1 ΓΕΝΙΚΑ Ο αριθμός των κλήσεων σε εξέλιξη μεταβάλλεται με έναν τυχαίο τρόπο καθώς κάθε κλήση ξεχωριστά αρχίζει και τελειώνει με τυχαίο τρόπο. Κατά

Διαβάστε περισσότερα

Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη ISO Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας

Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη ISO Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας ISO 17025 5.9. ΔΙΑΣΦΑΛΙΣΗ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΔΟΚΙΜΩΝ (1) 5.9.1 Το Εργαστήριο

Διαβάστε περισσότερα

Συστήματα Αναμονής. Ενότητα 6: Θεωρία Ουρών. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Συστήματα Αναμονής. Ενότητα 6: Θεωρία Ουρών. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Συστήματα Αναμονής Ενότητα 6: Θεωρία Ουρών Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Συστήματα Αναμονής. Ενότητα 10: Ουρά Μ/Μ/s. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Συστήματα Αναμονής. Ενότητα 10: Ουρά Μ/Μ/s. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Συστήματα Αναμονής Ενότητα 10: Ουρά Μ/Μ/s Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 7: ΑΣΚΗΣΕΙΣ ΜΕΓΕΘΟΥΣ ΕΠΙΧΕΙΡΗΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 6 η Άσκηση - DFS δένδρα Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Συστήματα Αναμονής. Ενότητα 3: Στοχαστικές Ανελίξεις. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Συστήματα Αναμονής. Ενότητα 3: Στοχαστικές Ανελίξεις. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Συστήματα Αναμονής Ενότητα 3: Στοχαστικές Ανελίξεις Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Συστήματα Αναμονής. Ενότητα 5: Ανέλιξη Poisson. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Συστήματα Αναμονής. Ενότητα 5: Ανέλιξη Poisson. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Συστήματα Αναμονής Ενότητα 5: Ανέλιξη Poisson Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Διδακτική Μαθηματικών Ι Ενότητα 5: Διερευνητικές δραστηριότητες

Διδακτική Μαθηματικών Ι Ενότητα 5: Διερευνητικές δραστηριότητες Διδακτική Μαθηματικών Ι Ενότητα 5: Διερευνητικές δραστηριότητες Γιώργος Ψυχάρης Σχολή Θετικών επιστημών Τμήμα Μαθηματικό ΔΙΕΡΕΥΝΗΤΙΚΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ Δραστηριότητα 1 Το εξωτερικό τετράγωνο αντιπροσωπεύει

Διαβάστε περισσότερα

Μηχανολογικό Σχέδιο Ι

Μηχανολογικό Σχέδιο Ι ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 8: Άτρακτοι και σφήνες Μ. Γρηγοριάδου Μηχανολόγων Μηχανικών Α.Π.Θ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Θεωρία Τηλεπικοινωνιακής Κίνησης

Θεωρία Τηλεπικοινωνιακής Κίνησης Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα: Ασκήσεις για τις ενότητες 7 8 (Πολυδιάστατη Κίνηση Αναδρομικός τύπος Kaufman- Roberts) Ιωάννης Μοσχολιός Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών

Διαβάστε περισσότερα

Σχεδίαση Μεικτών VLSI Κυκλωμάτων Ενότητα 9: Ευστάθεια και Αντιστάθμιση Συχνότητας

Σχεδίαση Μεικτών VLSI Κυκλωμάτων Ενότητα 9: Ευστάθεια και Αντιστάθμιση Συχνότητας Σχεδίαση Μεικτών VLSI Κυκλωμάτων Αγγελική Αραπογιάννη Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Σύστημα αρνητικής ανάδρασης Y X s H(s) 1 H(s) Συνάρτηση μεταφοράς κλειστού βρόχου Ταλαντωτής

Διαβάστε περισσότερα

Διοικητική Λογιστική

Διοικητική Λογιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 6: Μέθοδοι ς Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά Το έργο

Διαβάστε περισσότερα

Κβαντική Επεξεργασία Πληροφορίας

Κβαντική Επεξεργασία Πληροφορίας Κβαντική Επεξεργασία Πληροφορίας Ενότητα 11: Είδη και μετασχηματισμοί πινάκων Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Είδη και μετασχηματισμοί

Διαβάστε περισσότερα

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 3: Κλασικά Υποδείγματα της Διεθνούς Οικονομικής Θεωρίας (Heckscher-Ohlin model) Γρηγόριος

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ασκήσεις 1 Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 2 1. Σκοποί ενότητας... 5 2.

Διαβάστε περισσότερα

Διοικητική Λογιστική

Διοικητική Λογιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 9: Κριτήρια κατάταξης του κόστους Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται

Διαβάστε περισσότερα

Διοίκηση Εξωτερικής Εμπορικής Δραστηριότητας

Διοίκηση Εξωτερικής Εμπορικής Δραστηριότητας Διοίκηση Εξωτερικής Εμπορικής Δραστηριότητας Ενότητα 8: Αξιολόγηση και επιλογή αγορών στόχων από ελληνική εταιρία στον κλάδο παραγωγής και εμπορίας έτοιμου γυναικείου Καθ. Αλεξανδρίδης Αναστάσιος Δρ. Αντωνιάδης

Διαβάστε περισσότερα

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Διάλεξη 15: Προσφορά κλάδου Ανδρέας Παπανδρέου Σχολή Οικονομικών και Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Προσφορά από ανταγωνιστικό

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 11: Διανύσματα (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων &

Διαβάστε περισσότερα

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 1: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται βασικές

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 4: Στρατηγικοί προσανατολισμοί Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων

Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων Ενότητα 1: E-L Συστήματα Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης

Διαβάστε περισσότερα

Εισαγωγή στη Δικτύωση Υπολογιστών

Εισαγωγή στη Δικτύωση Υπολογιστών Εισαγωγή στη Δικτύωση Υπολογιστών Ενότητα 3: Το Επίπεδο Συνδέσμου Δεδομένων Δημήτριος Τσώλης Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών

Διαβάστε περισσότερα

Διδακτική Πληροφορικής

Διδακτική Πληροφορικής Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διδακτική Πληροφορικής Ενότητα 4: Διδακτικός μετασχηματισμός βασικών εννοιών πληροφορικής Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons

Διαβάστε περισσότερα

Παιδαγωγικά. Ενότητα Β: Γενικοί σκοποί της διδασκαλίας και διδακτικοί στόχοι. Ζαχαρούλα Σμυρναίου Σχολή Φιλοσοφίας Τμήμα Παιδαγωγικής και Ψυχολογίας

Παιδαγωγικά. Ενότητα Β: Γενικοί σκοποί της διδασκαλίας και διδακτικοί στόχοι. Ζαχαρούλα Σμυρναίου Σχολή Φιλοσοφίας Τμήμα Παιδαγωγικής και Ψυχολογίας Παιδαγωγικά Ενότητα Β: Γενικοί σκοποί της διδασκαλίας και διδακτικοί στόχοι Ζαχαρούλα Σμυρναίου Σχολή Φιλοσοφίας Τμήμα Παιδαγωγικής και Ψυχολογίας Σκοποί ενότητας Σύγχρονες προσεγγίσεις των γενικών σκοπών

Διαβάστε περισσότερα

Παιδαγωγική ή Εκπαίδευση ΙΙ

Παιδαγωγική ή Εκπαίδευση ΙΙ Παιδαγωγική ή Εκπαίδευση ΙΙ Ενότητα 2 Ζαχαρούλα Σμυρναίου Σχολή: Φιλοσοφική Τμήμα: Φιλοσοφίας Παιδαγωγικής Ψυχολογίας Μορφές διδασκαλίας Οι Μορφές διδασκαλίας Αναφέρονται στον τρόπο παρουσίασης του μαθήματος,

Διαβάστε περισσότερα

Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.

Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ. ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 2: Οργάνωση και Διοίκηση Εισαγωγή Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΔΕΝΤΡΑ

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΔΕΝΤΡΑ Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΔΕΝΤΡΑ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών

Διαβάστε περισσότερα

Διαφήμιση και Δημόσιες Σχέσεις Ενότητα 9: Σχέσεις διαφημιστή-διαφημιζόμενου

Διαφήμιση και Δημόσιες Σχέσεις Ενότητα 9: Σχέσεις διαφημιστή-διαφημιζόμενου Διαφήμιση και Δημόσιες Σχέσεις Ενότητα 9: Σχέσεις διαφημιστή-διαφημιζόμενου Θεοδωρίδης Προκόπης Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση

Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση Ενότητα 1.1: Αγγελική Γιαννικοπούλου Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία (ΤΕΑΠΗ) Διδακτική Πρακτική Διδακτική πρακτική: Σταυρούλα Παλάτου.

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης Ενότητα 10: Διαχείριση Έργων (2ο Μέρος)

Πληροφοριακά Συστήματα Διοίκησης Ενότητα 10: Διαχείριση Έργων (2ο Μέρος) Πληροφοριακά Συστήματα Διοίκησης Ενότητα 10: Διαχείριση Έργων (2ο Μέρος) Γρηγόριος Μπεληγιάννης Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων και Τροφίμων

Διαβάστε περισσότερα

Συστήματα Αναμονής. Ενότητα 4: Αλυσίδες Markov. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Συστήματα Αναμονής. Ενότητα 4: Αλυσίδες Markov. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Συστήματα Αναμονής Ενότητα 4: Αλυσίδες Markov Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 9: Άσκηση εμπορικής πολιτικής Παράδειγμα άσκησης εμπορικής πολιτικής Γρηγόριος Ζαρωτιάδης

Διαβάστε περισσότερα

6 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων

6 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων 6 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων 1 Περιεχόμενα 1 η Άσκηση... 3 2 η Άσκηση... 4 3 η Άσκηση... 4 4 η Άσκηση... 4 5 η Άσκηση... 5 6 η Άσκηση... 5 7 η Άσκηση... 5 8 η Άσκηση... 6 Χρηματοδότηση... 7

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών

Συστήματα Επικοινωνιών Συστήματα Επικοινωνιών Ενότητα 4: Απόδοση συστημάτων AM υπό θόρυβο Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Παρουσίαση της γενικής μορφής

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 12: Αρχή ελαχίστου του Pontryagin Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το

Διαβάστε περισσότερα

Σχεδίαση Ολοκληρωμένων Κυκλωμάτων Ενότητα Α-Κεφάλαιο 3: Οξείδωση του πυριτίου. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Σχεδίαση Ολοκληρωμένων Κυκλωμάτων Ενότητα Α-Κεφάλαιο 3: Οξείδωση του πυριτίου. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Σχεδίαση Ολοκληρωμένων Κυκλωμάτων Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Η θεωρία ανάπτυξης του οξειδίου (1από4) 2 3 Η θεωρία ανάπτυξης του οξειδίου (2από4) D x k h k 1 C C ox s s

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 5: Διαχείριση Έργων υπό συνθήκες αβεβαιότητας

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 5: Διαχείριση Έργων υπό συνθήκες αβεβαιότητας Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 5: Διαχείριση Έργων υπό συνθήκες αβεβαιότητας Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 11: Θεωρία Οργάνωσης & Διοίκησης Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Ιστορία της μετάφρασης

Ιστορία της μετάφρασης ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Μεταφραστές και πρωτότυπα. Ελένη Κασάπη ΤΜΗΜΑ ΑΓΓΛΙΚΗΣ ΓΛΩΣΣΑΣ ΚΑΙ ΦΙΛΟΛΟΓΙΑΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα : Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 6: ΜΕΓΕΘΟΣ ΕΠΙΧΕΙΡΗΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους

Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Γενική Φυσική Ενότητα: Κινητική

Γενική Φυσική Ενότητα: Κινητική Γενική Φυσική Ενότητα: Κινητική Όνομα Καθηγητή: Γεώργιος Βούλγαρης Τμήμα: Μαθηματικό Σελίδα 2 1. Ασκήσεις κινητικής... 4 1.1 Άσκηση 1... 4 1.2 Άσκηση 2... 4 1.3 Άσκηση 3... 4 1.4 Άσκηση 4... 4 1.5 Άσκηση

Διαβάστε περισσότερα

Τηλεπικοινωνιακά Δίκτυα Ευρείας Ζώνης Ενότητα 8: MPLS και Τηλεπικοινωνιακή Κίνηση

Τηλεπικοινωνιακά Δίκτυα Ευρείας Ζώνης Ενότητα 8: MPLS και Τηλεπικοινωνιακή Κίνηση Τηλεπικοινωνιακά Δίκτυα Ευρείας Ζώνης Ενότητα 8: MPLS και Τηλεπικοινωνιακή Κίνηση Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Εισαγωγικά

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ασκήσεις 10 Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 2 1. Σκοποί ενότητας... 5

Διαβάστε περισσότερα

Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση

Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση Ενότητα 2.1: Αγγελική Γιαννικοπούλου Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία (ΤΕΑΠΗ) Διδακτική Πρακτική Διδακτική πρακτική: Μαρία Φράγκου.

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 10: Ασκήσεις Προτύπου Κόστους Αποκλίσεων.

Λογιστική Κόστους Ενότητα 10: Ασκήσεις Προτύπου Κόστους Αποκλίσεων. Λογιστική Κόστους Ενότητα 10: Ασκήσεις Προτύπου Κόστους Αποκλίσεων. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση

Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση Ενότητα 4.3: Αγγελική Γιαννικοπούλου Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία (ΤΕΑΠΗ) Διδακτική Πρακτική Διδακτική πρακτική: Ελένη Τσενεκίδη,

Διαβάστε περισσότερα

Διδακτική Πληροφορικής

Διδακτική Πληροφορικής Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διδακτική Πληροφορικής Ενότητα 6: Διαδικασίες Μάθησης Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Μάρκετινγκ. Ενότητα 2: Αξία για τους Πελάτες

Μάρκετινγκ. Ενότητα 2: Αξία για τους Πελάτες Μάρκετινγκ Ενότητα 2: Αξία για τους Πελάτες Θεοδωρίδης Προκόπης Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.) Σκοποί 2 ης Ενότητας

Διαβάστε περισσότερα

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 2: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 2: Γραμμικές συναρτήσεις (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση

Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση Ενότητα 4.4: Αρχιτεκτονική και Εικονογραφημένο Βιβλίο Αγγελική Γιαννικοπούλου Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία (ΤΕΑΠΗ) Διδακτική

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ

ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ Ενότητα 3: Νόμος του Ohm Κανόνες του Kirchhoff Αριστείδης Νικ. Παυλίδης Τμήμα Μηχανολόγων Μηχανικών και Βιομηχανικού Σχεδιασμού ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Βάσεις Δεδομένων. Ενότητα 1: Εισαγωγή στις Βάσεις δεδομένων. Πασχαλίδης Δημοσθένης Τμήμα Ιερατικών σπουδών

Βάσεις Δεδομένων. Ενότητα 1: Εισαγωγή στις Βάσεις δεδομένων. Πασχαλίδης Δημοσθένης Τμήμα Ιερατικών σπουδών Βάσεις Δεδομένων Ενότητα 1: Εισαγωγή στις Βάσεις δεδομένων Πασχαλίδης Δημοσθένης Τμήμα Ιερατικών σπουδών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Ζωική Ποικιλότητα. Ενότητα 7. Bauplan. Ρόζα Μαρία Τζαννετάτου Πολυμένη, Επίκουρη Καθηγήτρια Σχολή Θετικών Επιστημών Τμήμα Βιολογίας

Ζωική Ποικιλότητα. Ενότητα 7. Bauplan. Ρόζα Μαρία Τζαννετάτου Πολυμένη, Επίκουρη Καθηγήτρια Σχολή Θετικών Επιστημών Τμήμα Βιολογίας Ζωική Ποικιλότητα Ενότητα 7. Bauplan Ρόζα Μαρία Τζαννετάτου Πολυμένη, Επίκουρη Καθηγήτρια Σχολή Θετικών Επιστημών Τμήμα Βιολογίας Bauplan 1/2 Ο όρος εισήχθη από τον H. Woodgen (1894-1981), το 1945. Σημασία

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ

ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ Ενότητα 4: Ισχύς στο Συνεχές Ρεύμα Αριστείδης Νικ. Παυλίδης Τμήμα Μηχανολόγων Μηχανικών και Βιομηχανικού Σχεδιασμού ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ

ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ Ενότητα 6: Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιγραφική στατιστική ΕΡΩΤΗΜΑ ΑΠΑΝΤΗΣΗ Όλες

Διαβάστε περισσότερα

Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση

Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση Ενότητα 3.1: Αγγελική Γιαννικοπούλου Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία (ΤΕΑΠΗ) Διδακτική Πρακτική Διδακτική Πρακτική: Φαίδρα Γκρέβε-Μιχαλοπούλου.

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 6: Εφαρμογές Γραμμικού Προγραμματισμού (2 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 7: Η επιλογή των πιθανοτικών κατανομών εισόδου

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 7: Η επιλογή των πιθανοτικών κατανομών εισόδου Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 7: Η επιλογή των πιθανοτικών κατανομών εισόδου Γαροφαλάκης Ιωάννης Πολυτεχνική Σχολή Τμήμα Μηχ/κών Η/Υ & Πληροφορικής Περιεχόμενα ενότητας Εισαγωγή Συλλογή

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 7: Κοστολογική διάρθρωση Κέντρα Κόστους.

Λογιστική Κόστους Ενότητα 7: Κοστολογική διάρθρωση Κέντρα Κόστους. Λογιστική Κόστους Ενότητα 7: Κοστολογική διάρθρωση Κέντρα Κόστους. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Διδακτική της Πληροφορικής

Διδακτική της Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 14: Διδακτικές Προσεγγίσεις για τον Προγραμματισμό Σταύρος Δημητριάδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

Συστήματα Αναμονής. Ενότητα 1: Εισαγωγή. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Συστήματα Αναμονής. Ενότητα 1: Εισαγωγή. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Συστήματα Αναμονής Ενότητα 1: Εισαγωγή Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Ηλεκτροτεχνία Ηλ. Μηχανές & Εγκαταστάσεις πλοίου (Θ)

Ηλεκτροτεχνία Ηλ. Μηχανές & Εγκαταστάσεις πλοίου (Θ) Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Ηλεκτροτεχνία Ηλ. Μηχανές & Εγκαταστάσεις πλοίου (Θ) Ενότητα 6: Εναλλασσόμενα τριφασικά κυκλώματα μόνιμης κατάστασης Δ.Ν. Παγώνης Τμήμα Ναυπηγών Μηχανικών ΤΕ

Διαβάστε περισσότερα

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις Άσκηση 1β: Ενθαλπία εξατμίσεως Αθανάσιος Τσεκούρας Τμήμα Χημείας 1. Θεωρία... 3 2. Μετρήσεις... 4 3. Επεξεργασία Μετρήσεων... 5 Σελίδα 2 1. Θεωρία Σύμφωνα με τον κανόνα

Διαβάστε περισσότερα

Ενδεικτικές λύσεις ασκήσεων διαγραμμάτων περίπτωσης χρήσης (1ο Μέρος)

Ενδεικτικές λύσεις ασκήσεων διαγραμμάτων περίπτωσης χρήσης (1ο Μέρος) Ενδεικτικές λύσεις ασκήσεων διαγραμμάτων περίπτωσης χρήσης (1ο Μέρος) 1 Περιεχόμενα 1 η Άσκηση Λειτουργίες του βιβλίου διευθύνσεων σε ένα πρόγραμμα ηλεκτρονικού ταχυδρομείου... 4 2 η Άσκηση Λειτουργίες

Διαβάστε περισσότερα

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 2 : Κλασικά Υποδείγματα της Διεθνούς Οικονομικής Θεωρίας (Ricardo model) Γρηγόριος Ζαρωτιάδης

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 4: Εκθετικές και λογαριθμικές συναρτήσεις (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

Εφαρμοσμένη Βελτιστοποίηση

Εφαρμοσμένη Βελτιστοποίηση Εφαρμοσμένη Βελτιστοποίηση Ενότητα 1: Το πρόβλημα της βελτιστοποίησης Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική

Εισαγωγή στην Πληροφορική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Εισαγωγή στην Πληροφορική Ενότητα 2: Ψηφιακή Λογική Ι Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1 Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 5: Υποδείγματα Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Συστήματα Αναμονής. Ενότητα 2: Τυχαίες Μεταβλητές. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Συστήματα Αναμονής. Ενότητα 2: Τυχαίες Μεταβλητές. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Συστήματα Αναμονής Ενότητα 2: Τυχαίες Μεταβλητές Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Έλεγχος και Διασφάλιση Ποιότητας

Έλεγχος και Διασφάλιση Ποιότητας Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 6: Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας ΔΙΑΚΡΙΒΩΣΗ ΚΑΙ ΕΛΕΓΧΟΣ ΘΕΡΜΟΜΕΤΡΩΝ (1) Παράμετροι προς εξέταση: Ακρίβεια σε σχέση με διακριβωμένο

Διαβάστε περισσότερα

Διοικητική Λογιστική

Διοικητική Λογιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 6: Συστήματα Κοστολόγησης Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ενότητα 10: ΡΑΝΤΕΣ Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creatve Commos εκτός και αν αναφέρεται διαφορετικά Το έργο υλοποιείται

Διαβάστε περισσότερα

Φυσική ΙΙΙ. Ενότητα 6: Εναλλασσόμενα Ρεύματα. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Φυσική ΙΙΙ. Ενότητα 6: Εναλλασσόμενα Ρεύματα. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής Φυσική ΙΙΙ Ενότητα 6: Εναλλασσόμενα Ρεύματα Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής Εναλλασσόμενη τάση V=V 0 sinωt ω=2πf όπου f η συχνότητα V 0 το πλάτος Πλεονεκτήματα Μεταφορά ισχύος.

Διαβάστε περισσότερα

Οργάνωση και Διοίκηση Πωλήσεων

Οργάνωση και Διοίκηση Πωλήσεων Οργάνωση και Διοίκηση Πωλήσεων Ενότητα 5: ΚΑΘΟΡΙΣΜΟΣ ΣΤΟΧΩΝ ΠΩΛΗΣΕΩΝ Αθανασιάδης Αναστάσιος Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και Οικονομία Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

Νέες Τεχνολογίες και Καλλιτεχνική Δημιουργία

Νέες Τεχνολογίες και Καλλιτεχνική Δημιουργία Παιδαγωγικό Τμήμα Νηπιαγωγών Νέες Τεχνολογίες και Καλλιτεχνική Δημιουργία Ενότητα # 9: Ψηφιακός Ήχος - Audacity Θαρρενός Μπράτιτσης Παιδαγωγικό Τμήμα Νηπιαγωγών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ενότητα 1: ΑΠΛΟΣ ΤΟΚΟΣ Βασικές έννοιες Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Media Monitoring. Ενότητα 4: Η δομή του monitoring των ΜΜΕ. Σταμάτης Πουλακιδάκος Σχολή ΟΠΕ Τμήμα ΕΜΜΕ

Media Monitoring. Ενότητα 4: Η δομή του monitoring των ΜΜΕ. Σταμάτης Πουλακιδάκος Σχολή ΟΠΕ Τμήμα ΕΜΜΕ Media Monitoring Ενότητα 4: Η δομή του monitoring των ΜΜΕ Σταμάτης Πουλακιδάκος Σχολή ΟΠΕ Τμήμα ΕΜΜΕ To monitoring στην Ελλάδα και τον κόσμο Ραγδαία αύξηση ζήτησης υπηρεσιών Ραγδαία αύξηση κέντρων monitoring

Διαβάστε περισσότερα

Media Monitoring. Ενότητα 3: Σχεδιασμός και Πραγματοποίηση επιστημονικής ερευνητικής εργασίας. Σταμάτης Πουλακιδάκος Σχολή ΟΠΕ Τμήμα ΕΜΜΕ

Media Monitoring. Ενότητα 3: Σχεδιασμός και Πραγματοποίηση επιστημονικής ερευνητικής εργασίας. Σταμάτης Πουλακιδάκος Σχολή ΟΠΕ Τμήμα ΕΜΜΕ Media Monitoring Ενότητα 3: Σχεδιασμός και Πραγματοποίηση επιστημονικής ερευνητικής εργασίας Σταμάτης Πουλακιδάκος Σχολή ΟΠΕ Τμήμα ΕΜΜΕ Μερικές συμβουλές ως προς το περιεχόμενο και τη δομή Γενική εικόνα

Διαβάστε περισσότερα

Διοίκηση Ολικής Ποιότητας & Επιχειρηματική Αριστεία Ενότητα 1.3.2: Παραδοσιακή VS νέα προσέγγιση της ΔΟΠ

Διοίκηση Ολικής Ποιότητας & Επιχειρηματική Αριστεία Ενότητα 1.3.2: Παραδοσιακή VS νέα προσέγγιση της ΔΟΠ Διοίκηση Ολικής Ποιότητας & Επιχειρηματική Αριστεία Ενότητα 1.3.2: Ψωμάς Ευάγγελος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.) Παραδοσιακή

Διαβάστε περισσότερα

Χριστιανική και Βυζαντινή Αρχαιολογία

Χριστιανική και Βυζαντινή Αρχαιολογία Χριστιανική και Βυζαντινή Αρχαιολογία Ενότητα Β: Πρωτοβυζαντινή Τέχνη (7 ος αι. 843) Αρχιτεκτονική Η Ζωγραφική της Εικονομαχικής περιόδου (726-843) Στουφή - Πουλημένου Ιωάννα Ἐθνικὸ καὶ Καποδιστριακὸ Πανεπιστήμιο

Διαβάστε περισσότερα

Διδακτική Πληροφορικής

Διδακτική Πληροφορικής Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διδακτική Πληροφορικής Ενότητα 1: Εισαγωγή Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά Το έργο

Διαβάστε περισσότερα

Ηλεκτροτεχνία ΙΙ. Ενότητα 2: Ηλεκτρικά κυκλώματα συνεχούς ρεύματος. Δημήτρης Στημονιάρης, Δημήτρης Τσιαμήτρος Τμήμα Ηλεκτρολογίας

Ηλεκτροτεχνία ΙΙ. Ενότητα 2: Ηλεκτρικά κυκλώματα συνεχούς ρεύματος. Δημήτρης Στημονιάρης, Δημήτρης Τσιαμήτρος Τμήμα Ηλεκτρολογίας Ηλεκτροτεχνία ΙΙ Ενότητα 2: Ηλεκτρικά κυκλώματα συνεχούς ρεύματος Δημήτρης Στημονιάρης, Δημήτρης Τσιαμήτρος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών Συστημάτων

Ασφάλεια Πληροφοριακών Συστημάτων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Ασφάλεια Πληροφοριακών Συστημάτων Ενότητα 1: Εισαγωγή Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 2: Ανάλυση Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 2: Ανάλυση Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 2: Ανάλυση Παλινδρόμησης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ

ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ Ενότητα 11: «Ασκήσεις 1» ΚΥΡΙΑΖΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ Τμήμα ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Ψηφιακή Λογική Σχεδίαση

Ψηφιακή Λογική Σχεδίαση Ψηφιακή Λογική Σχεδίαση Επιμέλεια: Γεώργιος Θεοδωρίδης, Επίκουρος Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ

ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ Ενότητα 6: Εναλλασσόμενο Ρεύμα Αριστείδης Νικ. Παυλίδης Τμήμα Μηχανολόγων Μηχανικών και Βιομηχανικού Σχεδιασμού ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Λογικός Προγραμματισμός Ασκήσεις

Λογικός Προγραμματισμός Ασκήσεις Λογικός Προγραμματισμός Ασκήσεις Παναγιώτης Σταματόπουλος Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιεχόμενα 1. Α Ομάδα Ασκήσεων "Λογικού Προγραμματισμού" Ακαδημαϊκού Έτους 2011-12... 3 1.1 Άσκηση 1...

Διαβάστε περισσότερα

Θεωρία Λήψης Αποφάσεων

Θεωρία Λήψης Αποφάσεων Θεωρία Λήψης Αποφάσεων Ενότητα 3: Ασκήσεις Bayes Περιοχές Απόφασης Διακρίνουσες Συναρτήσεις Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

Οργάνωση και Διοίκηση Πωλήσεων Ενότητα 1: Ο ΡΟΛΟΣ ΤΩΝ ΠΩΛΗΣΕΩΝ ΣΤΟ ΠΛΑΙΣΙΟ ΤΗΣ ΣΤΡΑΤΗΓΙΚΗΣ ΜΑΡΚΕΤΙΝΓΚ

Οργάνωση και Διοίκηση Πωλήσεων Ενότητα 1: Ο ΡΟΛΟΣ ΤΩΝ ΠΩΛΗΣΕΩΝ ΣΤΟ ΠΛΑΙΣΙΟ ΤΗΣ ΣΤΡΑΤΗΓΙΚΗΣ ΜΑΡΚΕΤΙΝΓΚ Οργάνωση και Διοίκηση Πωλήσεων Ενότητα 1: Ο ΡΟΛΟΣ ΤΩΝ ΠΩΛΗΣΕΩΝ ΣΤΟ ΠΛΑΙΣΙΟ ΤΗΣ ΣΤΡΑΤΗΓΙΚΗΣ ΜΑΡΚΕΤΙΝΓΚ Αθανασιάδης Αναστάσιος Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και Οικονομία Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα