Data Mining: Στοχεύοντας στους σωστούς πελάτες. Αριστομένης Μακρής
|
|
- Χριστός Δράκος
- 1 χρόνια πριν
- Προβολές:
Transcript
1 Data Mining: Στοχεύοντας στους σωστούς πελάτες
2 To CRM front-office πελατών Οι Προμηθευτές Οι Πελάτες ΟΟργανισμός
3 Τροφοδότηση ενεργειών Μάρκετινγκ ΒΙ
4 Απόταδεδομέναστηγνώση Επιχειρηματική Γνώση Επιχειρηματικοί Κανόνες Μετα- Δεδομένα Δομή Βάσης Δεδομένων Συγκεντρωτικά Δεδομένα (Λειτουργικά ή Επιχειρησιακά) Επιχειρησιακά ή Λειτουργικά Δεδομένα Τι μάθαμε από τα δεδομένα Λογική δομή δεδομένων και συσχετισμοί με φυσική δομή και πηγές Φυσική δομή δεδομένων, πίνακες, πεδία, κλειδιά Ομαδοποιήσεις κατά ποιος, τι, πότε, πού Ποιος, τι, πότε, πού Όγκος δεδομένων
5 Από την υπεροπληροφόρηση στην υποστήριξη διοικητικών αποφάσεων Από την υπερπληροφόρηση στην αποτελεσματική πληροφόρηση & Στήριξη των Αποφάσεων της Διοίκησης
6 Επιχειρηματικά Δεδομένα Το 80% των επιχειρηματικών δεδομένων είναι αδόμητα!!! Το σύνολο των δεδομένων αυτών διπλασιάζεται κάθε 6 8 μήνες!!!
7 Σχέση Αξίας Πληροφορίας / Όγκου Δεδομένων - Κόστος Κόστος Αξία 100% Αρχείων
8 Ανάγκες πληροφόρησης - πρόσβαση Ανάγκες Πληφορόρησης Δυνατότητες Πρόσβασης Προγραμματιστές Προγραμματιστές Αναλυτές Αναλυτές Managers Managers
9 Η συνολική εικόνα ενός συστήματος ΒΙ Τοπικές Βάσεις Βάσεις Κεντρικών Συστημάτων Βάσεις Τρίτων Ποιοτική Αναβάθμιση δεδομένων Λογισμικό Επικοινωνιών DATA WAREHOUSE Σχεδιασμός Ενοποίηση Επιλογή Συγχρονισμός Συντονισμός Warehouse database Διαχείριση Αξιοποίηση Πληροφοριών End User Queries Multidimensional G.I.S. Data Mining
10 Επιχειρηματική ευφυΐα (Business Intelligence BI) Αποθήκη πληροφοριών (Data warehouse) Αποθήκη πληροφοριών υποστηρικτικών διοικητικών αποφάσεων Η ακεραιότητα των δεδομένων επιτυγχάνεται με επιχειρηματικούς κανόνες Εφαρμογή ενιαίας διαμόρφωσης πληροφοριών Πηγή πληροφοριών (Data mart) Αποθήκη για συγκεκριμένους καταναλωτές Εξειδικευμένη ανάλυση δεδομένων Ανάλυση δεδομένων (Reporting, OLAP, GIS, Data mining) Ανάλυση για τάσεις, προβλέψεις πωλήσεων, διαχείριση αποθεμάτων Εντοπίζει προβλήματα, αναπτύσσει την έρευνα, συλλέγει και αναλύει δεδομένα
11 Extract Transform Load Τοπικές Βάσεις Βάσεις Κεντρικών Συστημάτων Βάσεις Τρίτων Ποιοτική Αναβάθμιση δεδομένων Λογισμικό Επικοινωνιών DATA WAREHOUSE Σχεδιασμός Ενοποίηση Επιλογή Συγχρονισμός Συντονισμός Warehouse database Διαχείριση Αξιοποίηση Πληροφοριών End User Queries Multidimensional G.I.S. Data Mining
12 Από τα πρωτογενή δεδομένα
13 Στη Σχεσιακή Βάση Δεδομένων
14 Από το Σχεσιακό στο Πολυδιάστατο Μοντέλο
15 Οι διαστάσεις
16 Τα πεδία τιμών
17 OLAP Reporting Τοπικές Βάσεις Βάσεις Κεντρικών Συστημάτων Βάσεις Τρίτων Ποιοτική Αναβάθμιση δεδομένων Λογισμικό Επικοινωνιών DATA WAREHOUSE Σχεδιασμός Ενοποίηση Επιλογή Συγχρονισμός Συντονισμός Warehouse database Διαχείριση Αξιοποίηση Πληροφοριών End User Queries Multidimensional G.I.S. Data Mining
18 Ανά Γεωγραφική Περιοχή και Κλάδο της Οικονομίας
19 Αγροτικά Προϊόντα-Ζωοτροφές Εισηγμένες
20 Ανά Αντικείμενο και Γεωγραφία
21 Εξόρυξη Δεδομένων (Data Mining)
22 Τι σημαίνει εξόρυξη δεδομένων Επιχειρηματικά Δεδομένα Δένδρο Απόφασης
23 Ορισμός εξόρυξης δεδομένων ΕΔ είναι η διερεύνηση και η ανάλυση μεγάλων ποσοτήτων πρωτογενών δεδομένων, με σκοπό την αποκάλυψη συγκεκριμένων δομών και σχέσεων ανάμεσά τους. Στόχος η βελτίωση του ανταγωνιστικού πλεονεκτήματος της επιχείρησης. Επίσης ΕΔ είναι ένα «σύνολο τεχνικών» για την ανάλυση μεγάλου όγκου δεδομένων.
24 Γιατί Εξόρυξη Δεδομένων; Όγκος των διαθέσιμων δεδομένων είναι πολύ μεγάλος (εκατομμύρια εγγραφές) Όλες οι επιχειρήσεις έχουν οικονομική πρόσβαση σε σημαντικών δυνατοτήτων Η/Υ Αύξηση των πιέσεων του ανταγωνισμού ανταγωνιστικά πλεονεκτήματα βραχύβια και σχετικά Διαθεσιμότητα τεχνολογικών υποδομών και λογισμικού
25 Επιχειρηματικά προβλήματα και εξόρυξη δεδομένων Ανάλυση αποχωρήσεων (churn analysis) γιατί φεύγουν οι πελάτες, τι θα τους κρατήσει; ; (π.χ.( κινητή τηλεφωνία) Σταυροειδείς πωλήσεις (cross-selling) selling) τι άλλο πιθανόν να αγόραζε ο πελάτης; ; (π.χ.( βιβλία Αmazon) Ανίχνευση απάτης (fraud detection) ποιες περιπτώσεις μπορεί να εμπεριέχουν δόλο; ; (π.χ.( δηλώσεις ασφαλιστικών) Διαχείριση κινδύνων (risk management) τι κινδύνους εμπεριέχει μια επιχειρηματική απόφαση; ; (π.χ.( έγκριση δανείου) Τμηματοποίηση πελατών (customer segmentation) τι κοινά χαρακτηριστικά έχουν οι πελάτες; ; (π.χ.( στόχευση υποψηφίων πιστωτικών καρτών) Στόχευση διαφημίσεων τι διαφημίσεις να βάλουμε στο web με βάση τις συνήθειες πλοήγησης και αγορών των πελατών; Προβλέψεις πωλήσεων (sales forecast) τι θα πουληθεί ανά μονάδα χρόνου στο μέλλον;
26 Βασικός Διαχωρισμός συστημάτων ΕΔ Κατευθυνόμενα (Directed) Στόχος η εξήγηση ή πρόβλεψη ή κατηγοριοποίηση συγκεκριμένης μεταβλητής μάρκετινγκ όπως ανταπόκριση σε άμεσες πωλήσεις ή διαθέσιμο εισόδημα ή συχνότητα παραγγελιών (ονομάζονται μεταβλητές στόχευσης). Ελεύθερα (Undirected) Στόχος η αποκάλυψη δομών ή ομοιοτήτων ή σχέσεων στα δεδομένα, χωρίς εκ των προτέρων χρήση κριτηρίων ή προκαθορισμένων δομών (π.χ. ηλικίες, φύλο).
27 Κατηγοριοποίηση συστημάτων εξόρυξης δεδομένων Ταξινόμηση (classification) Ομαδοποίηση (clustering) ή κατάτμηση (segmentation) Συσχετισμός (association) ή ανάλυση καλαθιού μάρκετινγκ Παλινδρόμηση (regression) Πρόβλεψη (forecasting) Ανάλυση ακολουθίας (sequence analysis) Ανάλυση αποκλίσεων (deviation analysis)
28 Ομαδοποίηση (clustering) ή κατάτμηση (segmentation) Χρησιμοποιείται για να εντοπίσει φυσικές ομαδοποιήσεις που βασίζονται σε ένα σύνολο χαρακτηριστικών. Περιπτώσεις στην ίδια ομάδα έχουν συνήθως κοινά χαρακτηριστικά. Ο αλγόριθμος είναι μη εποπτευόμενος (unsupervised) εφ όσον στη διαδικασία εκπαίδευσης δεν επιλέγεται μια μεταβλητή, αλλά όλες οι μεταβλητές αντιμετωπίζονται ισότιμα. Οι περισσότεροι αλγόριθμοι βασίζονται σε ένα σύνολο επαναλήψεων (iterations) και σταματούν όταν το μοντέλο συγκλίνει (converges), δηλαδή όταν τα σύνολα κάθε ομαδοποίησης γίνουν διακριτά. Για το λόγο αυτό, οι μεθοδολογίες ομαδοποίησης αναπτύχθηκαν σημαντικά μετά τα τέλη της δεκαετίας του 60, με τη χρήση των main frames.
29 Ομαδοποίηση (clustering) ή κατάτμηση (segmentation) Η πραγματικότητα είναι κάπως έτσι: Την εξήγηση των τμημάτων (cluster) πρέπει να τη δώσει ο ερευνητής
30 Ομαδοποιήσεις (Clustering) Τοπικές Βάσεις Βάσεις Κεντρικών Συστημάτων Βάσεις Τρίτων Ποιοτική Αναβάθμιση δεδομένων Λογισμικό Επικοινωνιών DATA WAREHOUSE Σχεδιασμός Ενοποίηση Επιλογή Συγχρονισμός Συντονισμός Warehouse database Διαχείριση Αξιοποίηση Πληροφοριών End User Queries Multidimensional G.I.S. Data Mining
31 1 η Ομαδοποίηση Εξαγωγικές- Εισαγωγικές-Προσωπικό
32 Ομάδες (10 & 11 ενδιαφέρουν)
33 Ομάδα 11 Στατιστικά «Ισχυρές» Μεταβλητές
34 Ουσιαστικά 5 ομαδοποιήσεις
35 2 η Ομαδοποίηση + Κλάδος + Περιφέρεια
36 Επιστροφή δεδομένων στο Excel
37 Εμπλουτισμός (πρόσθετες πληροφορίες) - Φιλτράρισμα
38 Τροφοδότηση στο CRM ΒΙ
39 Συσχετισμός (association) ή ανάλυση καλαθιού μάρκετινγκ Ονομάζεται έτσι γιατί η σημαντικότερη χρήση του είναι για την εκτίμηση των κυριοτέρων προϊόντων που πουλιούνται στο ίδιο καλάθι αγορών και ως εκ τούτου για την εκτίμηση επιχειρηματικών κανόνων με στόχο τη σταυροειδή πώληση (cross selling). Η διαδικασία του συσχετισμού στοχεύει (1) να εντοπίσει συχνές ομάδες επαναλαμβανόμε- νων πωλήσεων και (2) κανόνες συσχετισμού. Ο αλγόριθμος βρίσκει τα πλέον κοινά είδη μετά από πολλαπλές επαναλήψεις, με βάση το όριο συχνότητας (frequency threshold / support) που ορίζει ο χρήστης (π.χ. ένα όριο 2% σημαίνει ότι θα επιλεγούν μόνο τα είδη που είναι κοινά στο 2% του συνόλου των καλαθιών αγοράς). Κάθε ομάδα ειδών χαρακτηρίζεται από την τιμή του πλήθους των κοινών ειδών (π.χ.. 3 σημαίνει ότι βρέθηκαν 3 είδη κοινά στο 2% του συνόλου των καλαθιών αγοράς). Επίσης ο αλγόριθμος υπολογίζει κανόνες (π.χ. εάν κάποιος πελάτης αγοράσει μαζί τα είδη Α και Β τότε υπάρχει 80% πιθανότητα να αγοράσει και το είδος Γ).
40 Συσχετισμός (Association) Τοπικές Βάσεις Βάσεις Κεντρικών Συστημάτων Βάσεις Τρίτων Ποιοτική Αναβάθμιση δεδομένων Λογισμικό Επικοινωνιών DATA WAREHOUSE Σχεδιασμός Ενοποίηση Επιλογή Συγχρονισμός Συντονισμός Warehouse database Διαχείριση Αξιοποίηση Πληροφοριών End User Queries Multidimensional G.I.S. Data Mining
41 Αποτέλεσμα έρευνας αγοράς
42 Δημοφιλείς ταινίες
43 Ισχυροί συσχετισμοί (όσοι έχουν δει ΙΙΙ, συνήθως έχουν δει ΙΙ και 4)
44 Πλήθος αγορών
45 Στατιστική ισχύς συσχετισμών
46 Επιλογή πελατών βάσει κανόνα
47 Ομαδοποίηση των αποτελεσμάτων
48 Φιλτράρισμα αποτελεσμάτων
49 Τροφοδότηση στο CRM ΒΙ
50 Προβλήματα ευρύτερης αποδοχής Αποκλειστικά περιβάλλοντα (proprietary) με μικρές δυνατότητες ευρύτερης αξιοποίησης (έμφαση σε αλγορίθμους λόγω στατιστικού υπόβαθρου, ανυπαρξία APIs) Απευθύνονται σε αναλυτές με ισχυρό στατιστικό και μαθηματικό υπόβαθρο Περιορισμένη γνώση της τεχνολογίας από την αγορά Οι αλγόριθμοι πολύ γενικοί, οι κανόνες που προκύπτουν συχνά άπτονται της κοινής λογικής Έλλειψη standards. Γίνονται προσπάθειες (OLE DB for DM, XML / A for Analysis, ISO SQL MM, OMG CWM Common Warehouse Metadata)
51 Ο κύκλος ζωής ενός έργου εξόρυξης δεδομένων 1. Συλλογή δεδομένων 2. Καθαρισμός και μετατροπή δεδομένων 1. Μετατροπή μορφής δεδομένων 2. Μετατροπή συνεχών αριθμών (π.χ. περιορισμός σε εύρος τιμών) 3. Ομαδοποίηση σε λίγες διακριτές ομάδες 4. Δημιουργία συνόλων (aggregation) 5. Διαχείριση κενών τιμών (π.χ. αντικατάσταση με Μ.Ο. ή εκτίμηση) 6. Αφαίρεση περιθωριακών τιμών (outliers) 3. Δημιουργία μοντέλου επιλογή βέλτιστου αλγόριθμου 4. Αξιολόγηση ποιότητας μοντέλου (lift charts) επιχειρηματική αξία (ίσως να χρειασθεί νέος κύκλος επιστροφή στο βήμα 2) 5. Δημιουργία αναφορών (ευρήματα αξιολόγηση) 6. Προβλέψεις με βάση νέες περιπτώσεις (prediction scoring) 7. Ολοκλήρωση ευρημάτων στην επιχειρηματική εφαρμογή 8. Διαχείριση μοντέλου
52 Υπεροχή DM έναντι άλλων τεχνολογιών αξιοποίησης δεδομένων Τι συμβαίνει; Γιατί συμβαίνει;
Η συνολική εικόνα. Ποιοτική Αναβάθμιση δεδομένων. Λογισμικό Επικοινωνιών DATA WAREHOUSE. Σχεδιασμός Ενοποίηση Επιλογή Συγχρονισμός Συντονισμός
Η συνολική εικόνα Τοπικές Βάσεις Βάσεις Κεντρικών Συστημάτων Βάσεις Τρίτων Ποιοτική Αναβάθμιση δεδομένων Λογισμικό Επικοινωνιών DATA WAREHOUSE Σχεδιασμός Ενοποίηση Επιλογή Συγχρονισμός Συντονισμός Warehouse
Εξόρυξη Δεδομένων Data Mining
Εξόρυξη Δεδομένων Data Mining Η συνολική εικόνα ενός συστήματος BI/BA Επιχειρηματική Γνώση Από τα δεδομένα στη γνώση Επιχειρηματι κοί Κανόνες Μετα- Δεδομένα Δομή Βάσης Δεδομένων Συγκεντρωτικά Δεδομένα
Εξαγωγή Μετασχηματισμός Εισαγωγή Δεδομένων στην Αποθήκη Πληροφοριών (ETL) ETL) Αριστομένης Μακρής
Εξαγωγή Μετασχηματισμός Εισαγωγή Δεδομένων στην Αποθήκη Πληροφοριών (ETL) ETL) Τεχνολογίες Υποστήριξης Λήψης Διοικητικών Αποφάσεων OLTP (On Line Transaction Processing) Επιχειρηματικές Εφαρμογές (Σχεσιακές
1. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΔΕΔΟΜΕΝΩΝ
1. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΔΕΔΟΜΕΝΩΝ Τα δεδομένα που θα επεξεργασθούμε στη διάρκεια του εργαστηρίου παραχωρήθηκαν από την εταιρεία ICAP ειδικά για τις ανάγκες του μαθήματος. Τα δεδομένα αυτά αντλήθηκαν από την
Ένα σύνολο αλληλοσχετιζόμενων συστημάτων που συλλέγουν, επεξεργάζονται, αποθηκεύουν και διανέμουν πληροφορίες
Συστήματα Επιχειρηματικής Ευφυΐας (BI Business Intelligence) Οι πιέσεις του περιβάλλοντος Πληροφοριακά Συστήματα Ένα σύνολο αλληλοσχετιζόμενων συστημάτων που συλλέγουν, επεξεργάζονται, αποθηκεύουν και
Ευφυΐας (Business Intelligence)
(Business Intelligence) Οι πιέσεις του περιβάλλοντος Πληροφοριακά Συστήματα Ένα σύνολο αλληλοσχετιζόμενων συστημάτων που συλλέγουν, επεξεργάζονται, αποθηκεύουν και διανέμουν πληροφορίες ΠΕΡΙΒΑΛΛΟΝ Προμηθευτές
Προγράμματα Η /Υ / Εφαρμογές σε συστ ήματα Π ό οι τητας Αριστομένης Μακρής
Προγράμματα Η/Υ Εφαρμογές σε συστήματα Ποιότητας Οι οκτώ αρχές της ποιότητας Εστίαση στον πελάτη: οι επιχειρήσεις, δδ δεδομένου ότι στηρίζονται και εξαρτώνται απ τους πελάτες, οφείλουν να αναγνωρίζουν
Πανεπιστήμιο Πειραιώς Τμήμα : Οργάνωσης και Διοίκησης Επιχειρήσεων
Πανεπιστήμιο Πειραιώς Τμήμα : Οργάνωσης και Διοίκησης Επιχειρήσεων ΕΚΠΑΙΔΕΥΣΗ & ΑΡΧΙΚΗ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΤΑΡΤΙΣΗ (Ε.Π.Ε.Α.Ε.Κ. II) στο πλαίσιο των Κατηγοριών Πράξεων 2.2.2.α. «Αναμόρφωση Προπτυχιακών Προγραμμάτων
Προγράμματα Κατάρτισης από την ITMC A.E.
Ι Τ Μ C Α. Ε. Σ Υ Μ Β Ο Υ Λ Ο Ι Ε Π Ι Χ Ε Ι Ρ Η Σ Ε Ω Ν INNOVATION, TECHNOLOGY & MAΝAGEMENT CONSULTANTS «Στόχος μας είναι ο μετασχηματισμός των εταιρικών πελατών μας σε δυναμικούς, αποτελεσματικούς και
Επιχειρείν. Αριστομένης Μακρής
Στρατηγικά Συστήματα Πληροφορικής και Ηλεκτρονικού Επιχειρείν Από τα δεδομένα στη γνώση Επιχειρηματική Γνώση Επιχειρηματικοί Κανόνες Μετα- Δεδομένα Δομή Βάσης Δεδομένων Συγκεντρωτικά Δεδομένα (Λειτουργικά
Προγράμματα Κατάρτισης από την ITMC A.E.
Ι Τ Μ C Α. Ε. Σ Υ Μ Β Ο Υ Λ Ο Ι Ε Π Ι Χ Ε Ι Ρ Η Σ Ε Ω Ν INNOVATION, TECHNOLOGY & MAΝAGEMENT CONSULTANTS «Στόχος μας είναι ο μετασχηματισμός των εταιρικών πελατών μας σε δυναμικούς, αποτελεσματικούς και
Η ΕΠΑΝΑΣΤΑΣΗ ΤΟΥ ΚΡΙΟΥ
Βασίλης Γ. Αγγέλης Δρ. Μηχανικός Η/Υ και Πληροφορικής Η ΕΠΑΝΑΣΤΑΣΗ ΤΟΥ ΚΡΙΟΥ Μετατρέψτε τα δεδομένα σας σε κέρδος Αθήνα Κάθε γνήσιο αντίγραφο έχει την υπογραφή του συγγραφέα Έκδοση 1 η, Copyright 2007
Ολοκληρωµένη λύση επιλεκτικής συγκέντρωσης, αναδιοργάνωσης δεδοµένων και παραγωγής πληροφορίας
e.nfo Ολοκληρωµένη λύση επιλεκτικής συγκέντρωσης, αναδιοργάνωσης δεδοµένων και παραγωγής πληροφορίας Εξασφάλιση της εξειδικευµένης λύσης business intelligence για κάθε επιχείρηση πελάτης Τράπεζα Πειραιώς
Υποσυστήματα Πωλήσεων και Μάρκετινγκ
Υποσυστήματα Πωλήσεων και Μάρκετινγκ Εξέταση των υποσυστημάτων που σχετίζονται με πωλήσεις και μάρκετινγκ Κατανόηση των διασυνδέσεων μεταξύ επιχειρηματικών διαδικασιών στα υποσυστήματα αυτά Μελέτη Περίπτωσης:
Ομαδοποίηση των απαιτήσεων του προτύπου ISO Σύστημα ποιότητας Ευθύνη της διοίκησης Διαχείριση πόρων Υλοποίηση του προϊόντος
Ομαδοποίηση των απαιτήσεων του προτύπου ISO 9001:2000 Σύστημα ποιότητας Ευθύνη της διοίκησης Διαχείριση πόρων Υλοποίηση του προϊόντος / Παροχή της υπηρεσίας Μέτρηση ανάλυση και βελτίωση Εισαγωγή στα Συστήματα
Συστήματα Επιχειρηματικής Ευφυΐας (BI/BA) Αριστομένης Μακρής
Οι πιέσεις του περιβάλλοντος Πληροφοριακά Συστήματα Ένα σύνολο αλληλοσχετιζόμενων συστημάτων που συλλέγουν, επεξεργάζονται, αποθηκεύουν και διανέμουν πληροφορίες ΠΕΡΙΒΑΛΛΟΝ Προμηθευτές Πελάτες ΟΡΓΑΝΙΣΜΟΣ
Business Development, SAP Hellas 01/12/2007
Επιχειρηµατική Ευφυΐα Απότηνιδέαστηνπράξη Παναγιώτης Θεοφάνους Business Development, SAP Hellas 01/12/2007 Περιεχόµενα 1. SAP Εταιρικόπροφίλ 2. Επιχειρηµατική Ευφυΐα - Η ανάγκη 3. SAP Business Intelligence
Εξέταση των συμμετεχόντων στην εφοδιαστική αλυσίδα. διαδικασιών που υποστηρίζουν την
Συστήματα ERP και επιχειρησιακή ολοκλήρωση Εξέταση των συμμετεχόντων στην εφοδιαστική αλυσίδα Κατανόηση των σχέσεων μεταξύ των διαδικασιών που υποστηρίζουν την εφοδιαστική αλυσίδα Κατανόηση του ρόλου του
Εργαλεία επιχειρηματικής ευφυΐας στο εμπορικό τμήμα Marketing Τραπεζικού Οργανισμού
Εργαλεία επιχειρηματικής ευφυΐας στο εμπορικό τμήμα Marketing Τραπεζικού Οργανισμού 0 Περιεχόμενα Εισαγωγή... 2 Δομή βάσης Data Warehouse... 3 Δημιουργία ενδεικτικής σχεσιακής βάσης δεδομένων... 3 Δημιουργία
Συστήματα ΟΔΕΠ (Ολοκληρωμένης. Διαχείρισης Επιχειρησιακών Πόρων)- ERP (Enterprise Resource Planning)
(Ολοκληρωμένης Διαχείρισης Επιχειρησιακών Πόρων)- ERP (Enterprise Resource Planning) Διοίκηση μέσω Πληροφοριακών Συστημάτων Στρατηγική Διοίκηση Επιχειρηματική Διαδικασία Εισαγωγή Παραγγελίας Παραλαβή Προκαταβολής
Μια ολοκληρωμένη, διαχρονική και μόνιμη συλλογή δεδομένων οργανωμένη κατά αντικείμενο ανάλυσης με στόχο τη διαδικασία υποστήριξης λήψης αποφάσεων -
Εξαγωγή Μετασχηματισμός Εισαγωγή Δεδομένων στην Αποθήκη Πληροφοριών (ETL) Ορισμοί Data Warehouse 1. 2. Μια ολοκληρωμένη, διαχρονική και μόνιμη συλλογή δεδομένων οργανωμένη κατά αντικείμενο ανάλυσης με
Πληροφοριακό Σύστημα Επιχειρηματικής Ευφυίας για την Oμαδοποίηση Πελατών Λιανικής
Πληροφοριακό Σύστημα Επιχειρηματικής Ευφυίας για την Oμαδοποίηση Πελατών Λιανικής Τ Μ Η Μ Α Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ Α Ρ Ι Σ Τ Ο Τ Ε Λ Ε Ι Ο Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Θ Ε Σ Σ Α Λ Ο Ν Ι Κ Η Σ Δομή Παρουσίασης
ΠΜΣ Πληροφορικής Πανεπιστηµίου Πειραιά. Εξόρυξη Γνώσης από εδοµένα (Data Mining) Εισαγωγή. Γιάννης Θεοδωρίδης
ΠΜΣ Πληροφορικής Πανεπιστηµίου Πειραιά Εξόρυξη Γνώσης από εδοµένα (Data Mining) Εισαγωγή Γιάννης Θεοδωρίδης Τµήµα Πληροφορικής, Πανεπιστήµιο Πειραιά http://isl.cs.unipi.gr/db/courses/dm πληµµύρα από δεδοµένα
7. ΣΥΣΤΗΜΑΤΑ ΕΞΟΡΥΞΗΣ ΔΕΔΟΜΕΝΩΝ
7. ΣΥΣΤΗΜΑΤΑ ΕΞΟΡΥΞΗΣ ΔΕΔΟΜΕΝΩΝ ΠΡΟΣΟΧΗ: Κάθε φορά που θα φθάνετε στο σημείο αυτό πριν από τη δημιουργία κάθε μοντέλου, το σύστημα δίνει αυτόματα δυο αριθμήσεις: (1) στο τέλος του πεδίου Structure name
Βέλτιστες Πρακτικές Διασφάλισης Ποιότητας. Δεδομένων. Πώς προσεγγίζουμε την Ποιότητα των Δδ Δεδομένων
Διοίκηση Ποιότητας Επιχειρηματικών Δεδομένων Enterprise Data Quality Management (EDQM) Περιεχόμενα Ο επιχειρησιακός αντίκτυπος της Ποιότητας των Δεδομένων Βέλτιστες Πρακτικές Διασφάλισης Ποιότητας Δεδομένων
Πληροφοριακά Συστήματα Διοίκησης
Πληροφοριακά Συστήματα Διοίκησης Επιχειρηματική ευφυΐα ΠΜΣ Λογιστική Χρηματοοικονομική και Διοικητική Επιστήμη ΤΕΙ Ηπείρου Επιχειρηματική ευφυΐα Η πλειονότητα των ατόμων μιας επιχείρησης έχουν ανάγκη υποστήριξης
Συνοπτική επισκόπηση αγοράς & εργαλείων ΒΙ
Συνοπτική επισκόπηση αγοράς & εργαλείων ΒΙ Μιχάλης Μεταξάς Innovatia ΕΠΕ Agenda Αναφορά σε στοιχεία της µελέτης «Συγκέντρωση, ανάλυση και αξιολόγηση εργαλείων και λογισµικού Επιχειρηµατικής Ευφυΐας» Ορισµοί
ΕΞΟΡΥΞΗ ΔΕΔΟΜΕΝΩΝ. Εισαγωγή στην Εξόρυξη Δεδομένων Πασχάλης Θρήσκος, PhD Λάρισα
1 ΕΞΟΡΥΞΗ ΔΕΔΟΜΕΝΩΝ Εισαγωγή στην Εξόρυξη Δεδομένων Πασχάλης Θρήσκος, PhD Λάρισα 2016-2017 2 Τα δεδομένα πολλαπλασιάζονται με γεωμετρική πρόοδο Οι χρήστες συσκευών επιθυμούν εξεζητημένη και εκλεπτυσμένη
Ενότητα 3: Διαχείριση πληροφοριακών πόρων με τη χρήση βάσεων δεδομένων
Ενότητα 3: Διαχείριση πληροφοριακών πόρων με τη χρήση βάσεων δεδομένων YouTube Ιδρύθηκε το 2005 Στόχος του ήταν να δημιουργήσει μία παγκόσμια κοινότητα Βάση δεδομένων βίντεο Μέσα σε ένα χρόνο από τη δημιουργία
Πληροφοριακά Συστήματα Διοίκησης
Πληροφοριακά Συστήματα Διοίκησης Επιχειρηματική ευφυΐα ΠΜΣ Λογιστική Χρηματοοικονομική και Διοικητική Επιστήμη ΤΕΙ Ηπείρου @ 2017 Επιχειρηματική ευφυΐα Η πλειονότητα των εργαζομένων μιας επιχείρησης έχουν
ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΜΑΡΚΕΤΙΝΓΚ
ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΜΑΡΚΕΤΙΝΓΚ Ενότητα 1: e Marketing Definition Τί είναι το ηλεκτρονικό μάρκετινγκ Βλαχοπούλου Μάρω Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Τι είναι πληροφοριακό σύστημα
Τι είναι πληροφοριακό σύστημα Ένας ορισμός είναι ότι ένα πληροφοριακό σύστημα είναι ένα σύνολο αλληλοσυνδεόμενων μερών που συνεργάζονται για τη συλλογή, επεξεργασία, αποθήκευση και διάχυση πληροφοριών
4. ΔΗΜΙΟΥΡΓΙΑ ΜΟΝΤΕΛΟΥ ΠΟΛΥΔΙΑΣΤΑΤΗΣ ΑΝΑΛΥΣΗΣ
4. ΔΗΜΙΟΥΡΓΙΑ ΜΟΝΤΕΛΟΥ ΠΟΛΥΔΙΑΣΤΑΤΗΣ ΑΝΑΛΥΣΗΣ Στο προηγούμενο εργαστήριο είδαμε πώς μπορούμε να αντλήσουμε πληροφορίες από μια σχεσιακή βάση δεδομένων με τη βοήθεια των ερωτημάτων (queries). Το μειονέκτημα
Απάντηση 8: Σύμφωνα με την διακήρυξη, απαιτείται η ανάπτυξη ενός συστήματος με υψηλές δυνατότητες αναφορών και συνδυασμού δεδομένων από πολλές πηγές.
Ερώτηση 8: Αναφορικά με την ανάπτυξη συστήματος και παραγωγής αναφορών όπως αυτό προδιαγράφεται στο τεύχος διαγωνισμού «Ανάπτυξη Ψηφιακών Εφαρμογών για την συλλογή και αξιοποίηση δεδομένων προώθησης της
Τίτλος Ειδικού Θεματικού Προγράμματος: «Διοίκηση, Οργάνωση και Πληροφορική για Μικρο-μεσαίες Επιχειρήσεις»
ΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ, ΒΑΣΙΚΟΣ ΠΑΡΑΓΟΝΤΑΣ ΓΙΑ ΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΚΑΙ ΚΟΙΝΩΝΙΚΗ ΑΝΑΠΤΥΞΗ ΤΟΥ ΑΙΓΑΙΟΠΕΛΑΓΙΤΙΚΟΥ ΧΩΡΟΥ Τίτλος Ειδικού Θεματικού Προγράμματος: «Διοίκηση, Οργάνωση και Πληροφορική για Μικρο-μεσαίες
Μάθημα 3. Θεμέλια Επιχειρηματικής Ευφυΐας: Διαχείριση Βάσεων Δεδομένων και πληροφοριών
Μάθημα 3. Θεμέλια Επιχειρηματικής Ευφυΐας: Διαχείριση Βάσεων Δεδομένων και πληροφοριών Περιεχόμενα μαθήματος Πώς οργανώνει τα δεδομένα μια σχεσιακή βάση δεδομένων και σε τι διαφέρει από μια αντικειμενοστρεφή
ΣΤΡΑΤΗΓΙΚΟ ΜΑΡΚΕΤΙΝΓΚ
ΣΤΡΑΤΗΓΙΚΟ ΜΑΡΚΕΤΙΝΓΚ Ενότητα 5: Τα στάδια του κύκλου ζωής της Βιομηχανίας (ΚΖΒ) και η Ανάλυση Πωλήσεων Χρήστος Βασιλειάδης Τμήμα Οργάνωσης & Διοίκησης Επιχειρήσεων ΣΤΡΑΤΗΓΙΚΟ ΜΑΡΚΕΤΙΝΓΚ ΧΡΗΣΤΟΣ ΒΑΣΙΛΕΙΑΔΗΣ
Κατανόηση των παραγόντων που συνδέονται με την εξέλιξη των συστημάτων ERP
Συστήματα ERP και βελτίωση επιχειρησιακών διαδικασιών Κατανόηση των παραγόντων που συνδέονται με την εξέλιξη των συστημάτων ERP Βελτίωση επιχειρησιακών διαδικασιών (BPR, CPI) Κατανομή μοντέλου επεξεργασίας
Advanced Analytics Software Training.
ΠΡΟΓΡΑΜΜΑ JAN - JUL 2017 Advanced Analytics Software Training. STATISTICS MODELING DEPLOYMENT Predicta S.A. Χατζηκωνσταντή 18, Αθήνα, 115 24 T. +30 210 69 31 040 F. +30 210 69 31 079 E. info@predicta.gr
1 Cosmos Business Systems SA Cosmos Consulting SA Software Solutions
1 Cosmos Business Systems SA Cosmos Consulting SA Software Solutions Microsoft Dynamics CRM Τι είναι; Το CRM αποτελεί το τεχνολογικό εργαλείο για την υλοποίηση ενιαίας, πελατοκεντρικής επιχειρηματικής
ΔΙΑΔΙΚΤΥΑΚΟ ΣΥΣΤΗΜΑ ΒΕΛΤΙΣΤΗΣ ΔΙΑΧΕΙΡΙΣΗΣ ΕΝΕΡΓΕΙΑΚΩΝ ΠΟΡΩΝ E.M.I.R. - Energy Management & Intelligent Reporting
ΔΙΑΔΙΚΤΥΑΚΟ ΣΥΣΤΗΜΑ ΒΕΛΤΙΣΤΗΣ ΔΙΑΧΕΙΡΙΣΗΣ ΕΝΕΡΓΕΙΑΚΩΝ ΠΟΡΩΝ E.M.I.R. - Energy Management & Intelligent Reporting Διαδικτυακό OLAP Σύστημα Λήψης Αποφάσεων και δημιουργίας έξυπνων προσαρμοστικών γραφημάτων
ΧΡΗΣΙΜΕΣ ΠΛΗΡΟΦΟΡΙΕΣ ALTEC ΚΕΦΑΛΑΙΟ. ALTEC xline ERP ALTEC ATLANTIS II ERP ALTEC ATLANTIS II PAYROLL. ALTEC xline PAYROLL
9 ALTEC ΚΕΦΑΛΑΙΟ Συνδυασμοί Εμπορικής Διαχείρισης... Συνδυασμοί Εμπορικής Διαχείρισης με Γενική Λογιστική... Συνδυασμοί Εμπορικής Διαχείρισης με Έσοδα Έξοδα... Πρόσθετες Εφαρμογές... Entry... Start...
Περιεχόμενα Α ΜΕΡΟΣ. Πρόλογος των Συγγραφέων ΚΕΦΑΛΑΙΟ 1 Πληροφοριακά Συστήματα. ΚΕΦΑΛΑΙΟ 2 Πληροφοριακά Συστήματα και Σύγχρονη Επιχείρηση
Πρόλογος των Συγγραφέων... 21 Α ΜΕΡΟΣ ΚΕΦΑΛΑΙΟ 1 Πληροφοριακά Συστήματα 1.1 Εισαγωγή... 29 1.2 Σύστημα... 29 1.3 Πληροφοριακά Συστήματα... 31 1.3.1 Ορισμός του Πληροφοριακού Συστήματος... 31 1.3.2 Συστατικά
ΠΑΡΟΥΣΙΑΣΗ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ
ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΡΟΥΣΙΑΣΗ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ ΣΧΕΔΙΑΣΗ ΚΑΙ ΧΡΗΣΗ ΕΚΤΥΠΩΣΕΩΝ-ΑΝΑΦΟΡΩΝ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ERP ΜΕ ΣΚΟΠΟ ΤΗΝ ΣΤΗΡΙΞΗ ΑΠΟΦΑΣΕΩΝ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ
8. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΔΕΔΟΜΕΝΩΝ
8. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΔΕΔΟΜΕΝΩΝ Στόχος του εργαστηρίου αυτού είναι να δείξει πώς τα εργαστήρια με τα δεδομένα της ICAP μπορούν να υλοποιηθούν χωρίς τη χρήση SQL Server, χρησιμοποιώντας μόνον Excel και Rapid
Δημιουργία και αξιοποίηση αποθηκών πληροφοριών (data warehouses) για την υποστήριξη λήψης διοικητικών αποφάσεων
Τμήμα οργάνωσης και διοίκησης επιχειρήσεων Ευρωπαϊκό Μεταπτυχιακό Πρόγραμμα στη Διοίκηση Επιχειρήσεων Ολική Ποιότητα (MBA TQM) Δημιουργία και αξιοποίηση αποθηκών πληροφοριών (data warehouses) για την υποστήριξη
Ηλεκτρονικό Εμπόριο. Ενότητα 6: Διαχείριση Σχέσεων με Πελάτες Σαπρίκης Ευάγγελος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
Ηλεκτρονικό Εμπόριο Ενότητα 6: Διαχείριση Σχέσεων με Πελάτες Σαπρίκης Ευάγγελος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Business Intelligence Tools Avecon, data mining techniques online analytical processing OLAP Avecon Εξοικονόμηση κόστους: DataMATRIX3
Οι επιχειρήσεις αναγνωρίζουν πλέον την δύναμη και την ανταγωνιστικότητα που αποκτούν με την ενσωμάτωση επιχειρηματικών εφαρμογών ευφυΐας - Business Intelligence Tools. Οι εφαρμογές B.I παρέχουν στις επιχειρήσεις
Θεμελιώδεις Αρχές Συστημάτων Βάσεων Δεδομένων
Θεμελιώδεις Αρχές Συστημάτων Βάσεων Δεδομένων Β. Μεγαλοοικονόμου Εισαγωγή στην Εξόρυξη Δεδομένων Γενική Επισκόπηση- Σχεσιακό μοντέλο Σχεσιακό Μοντέλο -SQL Συναρτησιακές εξαρτήσεις & Κανονικοποίηση Φυσικός
Εξόρυξη Γνώσης µε SQL Server 2005 Analysis Services
Εξόρυξη Γνώσης µε SQL Server 2005 Analysis Services Γεράσιµος Μαρκέτος Οµάδα ιαχείρισης εδοµένων, Τµήµα Πληροφορικής, Πανεπιστήµιο Πειραιώς (http://isl.cs.unipi.gr/db) οµή παρουσίασης SQL Server 2005 Επιχειρηµατική
Created by : Market Research Team. Market Research Team
Υπηρεσίες Έρευνας Αγοράς 2 0 0 9 Created by : Έρευνα Αγοράς Σήµερα που οι συνθήκες ανταγωνισµού στην αγορά γίνονται όλο και πιο απαιτητικές, οι επιχειρήσεις έχουν ολοένα και µεγαλύτερη ανάγκη για αξιοποίηση
Εξόρυξη Γνώσης από εδοµένα (Data Mining)
ΠΜΣ Πληροφορικής Πανεπιστηµίου Πειραιά Εξόρυξη Γνώσης από εδοµένα (Data Mining) Αποθήκες εδοµένων Γιάννης Θεοδωρίδης Τµήµα Πληροφορικής, Πανεπιστήµιο Πειραιά http://isl.cs.unipi.gr/db/courses/dm "Πυραµίδα"
Εισαγωγή στο Μάρκετινγκ
Εισαγωγή στο Μάρκετινγκ 1. Ορισμός- Marketing Concept 2. Προσανατολισμοί της επιχείρησης 3. Βασικές έννοιες του Μάρκετινγκ 4. Ο ρόλος της Έρευνας Αγοράς 1 Ορισμός- Marketing Concept Διάφοροι ορισμοί «η
Δρ. Βλάχβεη Ασπασία, Αναπ. Καθ. Τμήματος Διεθνούς Εμπορίου. marketing. Κυριότερες έννοιες
Δρ. Βλάχβεη Ασπασία, Αναπ. Καθ. Τμήματος Διεθνούς Εμπορίου marketing Κυριότερες έννοιες Η φιλοσοφία του μάρκετινγκ Μάρκετινγκ με επίκεντρο την παραγωγή:στόχος να αυξηθεί η παραγωγή ώστε να μειωθεί το κόστος
Πληροφοριακά Συστήματα Διοίκησης
: Επιχειρηματική Ευφυΐα, Βάσεις Δεδομένων και Πληροφοριών Επ. Καθ. Ευθύμιος Ταμπούρης tambouris@uom.gr Στόχος Τμήμα Διοίκησης Τεχνολογίας Τι είναι μια σχεσιακή βάση δεδομένων και σε τι διαφέρει από μια
Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής
Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Προηγμένα Συστήματα Πληροφορικής» Μεταπτυχιακή Διατριβή Τίτλος Διατριβής Ονοματεπώνυμο Φοιτητή Αριθμός Μητρώου Κατεύθυνση Επιβλέπων
Που πάνε τα στοιχεία (data) μας; Κίνδυνοι από τρίτους φορείς
Που πάνε τα στοιχεία (data) μας; Κίνδυνοι από τρίτους φορείς Παναγιώτης Δρούκας Πρόεδρος ISACA Athens Chapter CISA, CRISC, CGEIT, COBIT 5 (f) 2η Ημερίδα Εσωτερικού Ελέγχου 19 Μαΐου 2016 1 Περιεχόμενα Εισαγωγή
ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ
ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Μαρίνος Θεμιστοκλέους Email: mthemist@unipi.gr Ανδρούτσου 150 Γραφείο 206 Τηλ. 210 414 2723 Ώρες Γραφείου: Δευτέρα 11-12 AM Πληροφοριακά Συστήματα (ΠΣ) Information Systems (IS) Ορισμός
Ανακάλυψη κανόνων συσχέτισης από εκπαιδευτικά δεδομένα
6ο Πανελλήνιο Συνέδριο των Εκπαιδευτικών για τις ΤΠΕ «Αξιοποίηση των Τεχνολογιών της Πληροφορίας και της Επικοινωνίας στη Διδακτική Πράξη» Σύρος 6-8 Μαϊου 2011 Ανακάλυψη κανόνων συσχέτισης από εκπαιδευτικά
ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ. ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ
ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΓΙΑΝΝΗΣ ΦΑΝΟΥΡΓΙΑΚΗΣ ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΣΥΝΕΡΓΑΤΗΣ ΤΕΙ ΚΡΗΤΗΣ ΔΟΜΗ ΠΑΡΟΥΣΙΑΣΗΣ 1. Εισαγωγή
Είδη Groupware. Λογισμικό Συνεργασίας Ομάδων (Groupware) Λογισμικό Groupware. Υπάρχουν διάφορα είδη groupware ανάλογα με το αν οι χρήστες εργάζονται:
Μάθημα 10 Συστήματα Διάχυσης και Διαχείρισης Γνώσης Chapter 10 Knowledge Transfer In The E-world Chapter 13 Knowledge Management Tools and Knowledge Portals Συστήματα Διάχυσης και Διαχείρισης Γνώσης Λογισμικό
Οι «κύκλοι» της επιχειρησιακής νοηµοσύνης. Μέθοδοι και Τεχνικές εξερεύνησης των
Οι «κύκλοι» της επιχειρησιακής νοηµοσύνης. Μέθοδοι και Τεχνικές εξερεύνησης των δεδοµένων για την απόκτηση γνώσης (Knowledge Discovery). Eπιχειρησιακή νοηµοσύνη σε ένα σύγχρονο οργανισµό: Data Warehouses.
Σημαντικότητα της Έρευνας Μάρκετινγκ
Έρευνα Μάρκετινγκ 2 Σύνολο Τεχνικών και Αρχών που αποβλέπουν στη συστηματική Συλλογή Καταγραφή Ανάλυση Ερμηνεία Στοιχείων / Δεδομένων, με τέτοιο τρόπου που να βοηθούν τη διαδικασία λήψης αποφάσεων Μάρκετινγκ
Επιχειρησιακά Πληροφοριακά Συστήματα. Site: www.aggelopoulos.tk e-mail: ioannis.aggelopoulos@gmail.com. Στόχος Σκοπός μαθήματος
Επιχειρησιακά Πληροφοριακά Συστήματα Διδάσκων: Αγγελόπουλος Γιάννης Δευτέρα 3-5 Τρίτη 4-6 Εργαστήριο Α Site: www.aggelopoulos.tk e-mail: ioannis.aggelopoulos@gmail.com 1 Στόχος Σκοπός μαθήματος Σκοπός:
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ. Βασικές Ενότητες... 19 Πρόσθετες Ενότητες... 19. Entry... 17. Start... 12 Λογιστικές Εφαρμογές... 13. xline ERP ATLANTIS ERP
3 ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ Βασικές Ενότητες... 5 Πρόσθετες Ενότητες... 6 Entry... 7 Start... 8 Λογιστικές Εφαρμογές... 8 xline ERP Βασικές Ενότητες... 9 Πρόσθετες Ενότητες... 10 Entry... 11 Start... 12 Λογιστικές
Μάθημα 6 ο : Πληροφοριακά Συστήματα Επιχειρήσεων (1/2)
Μάθημα 6 ο : Πληροφοριακά Συστήματα Επιχειρήσεων (1/2) ΠΛΗΡΟΦΟΡΙΚΑ ΣΥΣΤΗΜΑΤΑ ΔΙΟΙΚΗΣΗΣ 1/47 ΗΛΙΑΣ ΓΟΥΝΟΠΟΥΛΟΣ Σκοπός 6 ου Μαθήματος Να γνωρίσετε: Τις επιχειρηματικές λειτουργίες και οντότητες Την επιχειρηματική
AΤΕΙ Θεσσαλονίκης - Παράρτημα Κατερίνης Τμήμα Τυποποίησης και Διακίνησης Προϊόντων (Logistics)
AΤΕΙ Θεσσαλονίκης - Διακίνησης Προϊόντων (Logistics) www.logistics.teithe.gr Επίκουρος Καθηγητής dfolinas@gmail.com Στόχοι Θέματα παρουσίασης παρουσίασης Επιστήμη των Logistics Επιχειρηματικό ενδιαφέρον
Πανεπιστήµιο Πειραιώς - Τµήµα Πληροφορικής. Αποθήκες εδοµένων και Εξόρυξη Γνώσης. (Data Warehousing & Data Mining) Εισαγωγή
Πανεπιστήµιο Πειραιώς - Τµήµα Πληροφορικής Αποθήκες εδοµένων και Εξόρυξη Γνώσης (Data Warehousing & Data Mining) Εισαγωγή Γιάννης Θεοδωρίδης, Νίκος Πελέκης Οµάδα ιαχείρισης εδοµένων Εργαστήριο Πληροφοριακών
ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ, ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ, ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ, ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ
Α' ΕΞΑΜΗΝΟ 1 Α.1010 Μικροοικονομική (Microeconomics) ΜΓΥ Υ 2 2 4 8 5 2 Α.1020 Χρηματοοικονομική Λογιστική (Financial Accounting) ΜΓΥ Υ 2 2 2 6 10 6 3 Α.1030 Αρχές Οργάνωσης και Διοίκησης Επιχειρήσεων (Principles
Managing Information. Lecturer: N. Kyritsis, MBA, Ph.D. Candidate Athens University of Economics and Business. e-mail: kyritsis@ist.edu.
Managing Information Lecturer: N. Kyritsis, MBA, Ph.D. Candidate Athens University of Economics and Business e-mail: kyritsis@ist.edu.gr Διαχείριση Γνώσης Knowledge Management Learning Objectives Ποιοί
ΕURO ATLANTIS II ERP ΒΑΣΙΚΕΣ ΕΝΟΤΗΤΕΣ. Περιγραφή Εφαρµογή Σύµβαση 2.400
ATLANTIS II ERP ΒΑΣΙΚΕΣ ΕΝΟΤΗΤΕΣ 211 016 ATLANTIS - Διαχείριση Λογαριασµών Εισπρακτέων - Πληρωτέων Πελάτες - Χρεώστες, Πωλητές - Εισπράκτορες, Έργα Πελατών, Προµηθευτές - Πιστωτές, Διαχείριση Ειδικών Λογαριασµών,
Πανεπιστήμιο Πειραιώς Τμήμα : Οργάνωσης και Διοίκησης Επιχειρήσεων
Πανεπιστήμιο Πειραιώς Τμήμα : Οργάνωσης και Διοίκησης Επιχειρήσεων ΕΚΠΑΙΔΕΥΣΗ & ΑΡΧΙΚΗ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΤΑΡΤΙΣΗ (Ε.Π.Ε.Α.Ε.Κ. II) στο πλαίσιο των Κατηγοριών Πράξεων 2.2.2.α. «Αναμόρφωση Προπτυχιακών Προγραμμάτων
Εξόρυξη Γνώσης από εδοµένα (data mining)
Εξόρυξη νώσης από εδοµένα (data mining) Ε.Κ.Ε.Φ.Ε. ηµόκριτος Ινστ. Πληροφορικής και Τηλεπικοινωνιών εώργιος Παλιούρας Email: paliourg@iit.demokritos.gr WWW: http://www.iit.demokritos.gr/~paliourg Περιεχόµενα
Πανεπιστήμιο Αιγαίου Σχολή Κοινωνικών Επιστημών Τμήμα Πολιτισμικής Τεχνολογίας Και Επικοινωνίας
Πανεπιστήμιο Αιγαίου Σχολή Κοινωνικών Επιστημών Τμήμα Πολιτισμικής Τεχνολογίας Και Επικοινωνίας Ψηφιακό Περιεχόμενο & Ηλεκτρονικό Εμπόριο (Δ εξάμηνο) Διάλεξη # 8η: Έρευνα αγοράς στο Διαδίκτυο Χαρίκλεια
ΠΡΟΓΡΑΜΜΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΣΕΜΙΝΑΡΙΩΝ Μάρτιος 2005 Σεπτέµβριος 2005 www.spss.gr
2 ΗΜΕΡΕΣ 10 ΩΡΕΣ SPSS BASE PART I Πρόκειται για το εισαγωγικό σεµινάριο στη χρήση του λογισµικού SPSS. Είναι ο αρχικός οδηγός του τρόπου χρήσης και της περιγραφής του περιβάλλοντος εργασίας του SPSS. Το
CRM. Σηµειώσεις για το σεµινάριο Αθανάσιος Ν. Σταµούλης. Customer Relationship Management
CRM Σηµειώσεις για το σεµινάριο Αθανάσιος Ν. Σταµούλης Customer Relationship Management Το Customer Relationship Management ή Marketing είναι µια συνολική πελατοκεντρική προσέγγιση που επιτρέπει τον εντοπισµό,
Βασικές Ενότητες... 18 Πρόσθετες Ενότητες... 18. Entry... Start... Λογιστικές Εφαρμογές... Βασικές Ενότητες... Πρόσθετες Ενότητες...
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ ERP Βασικές Ενότητες... Πρόσθετες Ενότητες... Entry... Start... Λογιστικές Εφαρμογές... 4 5 6 7 7 xline ERP Βασικές Ενότητες... Πρόσθετες Ενότητες... Entry... Start... Λογιστικές Εφαρμογές...
Οικονομία - Επιχειρήσεις Μάρκετινγκ 1
Οικονομία - Επιχειρήσεις Μάρκετινγκ 1 Επιμέλεια: Γεώργιος Λελεδάκης (Λέκτορας Οικονομικού Πανεπιστημίου Αθηνών) Συγγραφή: Ευθύμιος Ζιγκιρίδης ΠΡΟΛΟΓΟΣ & ΕΠΕΞΕΡΓΑΣΙΑ ΚΕΙΜΕΝΩΝ Άρης Κουμπαρέλης Καθηγητής
Κεφάλαιο 20. Ανακάλυψη Γνώσης σε Βάσεις δεδοµένων. Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.
Κεφάλαιο 20 Ανακάλυψη Γνώσης σε Βάσεις δεδοµένων Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Τεχνητή Νοηµοσύνη, B' Έκδοση - 1 - Ανακάλυψη Γνώσης σε
ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ. Συστήματα Διαχείρισης Βάσεων Δεδομένων
ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Συστήματα Διαχείρισης Βάσεων Δεδομένων 1 ΕΙΣΑΓΩΓΗ Η τεχνολογία των Βάσεων Δεδομένων (ΒΔ) (Databases - DB) και των Συστημάτων Διαχείρισης Βάσεων Δεδομένων (ΣΔΒΔ)
Η εταιρία µας στελεχώνεται από: Μηχανικούς Πληροφορικής. ιδάκτορες Πληροφορικής. Επιµελητές κειµένων και Marketing υλικού
ΕΤΑΙΡΙΚΟ ΠΡΟΦΙΛ Η Silicontech ιδρύθηκε πρόσφατα (Νοέµβριο 2004) πραγµατοποιώντας το όραµα µιας ολοκληρωµένης οµάδας συνεργατών, ειδικευµένων στον τοµέα της πληροφορικής και των επικοινωνιών. Μετά από µια
w w w. e m p h a s i s. c o m. g r
w w w. e m p h a s i s. c o m. g r Η emphasis είναι μέλος του ομίλου εταιρειών ARTION και έχει σαν αντικείμενο την παροχή εξειδικευμένων υπηρεσιών marketing. Κύριο συστατικό της emphasis αποτελεί η βαθιά
Αριστοµένης Μακρής Εργαστήρια Η/Υ
Λογισµικό Η/Υ (Software)( Οι βασικές κατηγορίες λογισµικού!λειτουργικά Συστήµατα (Operating Systems O/S)!Λειτουργικά βοηθητικά προγράµµατα (Tools and Utilities)!Περιβάλλοντα ανάπτυξης µηχανογραφικών εφαρµογών!προϊόντα
Αριστομένης Μακρής. Συστήματα Επιχειρηματικής Ευφυΐας (BI/BA)
Αναλυτική μέσων Κοινωνικής Δικτύωσης (Social Media Analytics) Πληθυσμός Τεχνολογία ο χώρος (χορός) των υπερβολών Παράδειγμα υπερβολής Το 2005 το αγοράζει η News Corp αντί $580.000.000 Το 2008 η αξία της
Ενότητα 4: Πληροφοριακά συστήματα για την επιχείρηση
Ενότητα 4: Πληροφοριακά συστήματα για την επιχείρηση Χρηματοοικονομική διοίκηση Χρηματοοικονομικό ΠΣ: επιχειρησιακό ΠΣ που υπάρχει σχεδόν σε κάθε οργανισμό και υποστηρίζει χρηματοοικονομικούς λογαριασμούς
Εµβάθυνση στις έννοιες: Ανάλυση, β) Εξαγωγή Αναφορών (Enterprise Reporting & Online Analytical Processing / OLAP). Παραδείγµατα.
Εµβάθυνση στις έννοιες: α) Εξερεύνηση Βάσεων εδοµένων και Ανάλυση, β) Εξαγωγή Αναφορών (Enterprise Reporting & Online Analytical Processing / OLAP). Παραδείγµατα. ΠΕΤΑ: ΟΤΑ Επιχειρησιακή Νοηµοσύνη [Bc1.1.2
ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΜΑΡΚΕΤΙΝΓΚ
ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΜΑΡΚΕΤΙΝΓΚ Ενότητα 2: Μάρκετινγκ Στόχοι Αποφάσεις Ιδεολογία Ανάλυση Στρατηγικής Βλαχοπούλου Μάρω Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Περιγραφή Μαθήματος. Περιγραφή Περιεχόμενο του Μαθήματος
+ Περιγραφή Μαθήματος Τίτλος Κωδικός Αριθμός του Πληροφοριακά Συστήματα Μαθήματος : Επίπεδο Τύπος του Μαθήματος : ΠΡΟΠΤΥΧΙΑΚΟ - ΥΠΟΧΡΕΩΤΙΚΟ Έτος Σπουδών Εξάμηνο : 5 Ε Αριθμός Ευρωπαϊκών Πιστωτικών Μονάδων
ΒΑΣΙΚΟΙ ΤΟΜΕΙΣ ΑΝΑΦΟΡΑΣ ΕΝΟΣ BUSINESS PLAN. Εισαγωγή
ΒΑΣΙΚΟΙ ΤΟΜΕΙΣ ΑΝΑΦΟΡΑΣ ΕΝΟΣ BUSINESS PLAN Εισαγωγή Η κατάρτιση ενός Επιχειρηματικού Σχεδίου αποτελεί ένα εργαλείο στο οποίο καταγράφεται ουσιαστικά το «Πλάνο Δράσης» της επιχείρησης, τα βήματα που θα
Εφαρμοσμένο Μάρκετινγκ Αγροτικών Προϊόντων
Η σύγχρονη αγροτική επιχείρηση για να ανταπεξέλθει στο συνεχώς μεταβαλλόμενο και ανταγωνιστικό παγκοσμιοποιημένο περιβάλλον πρέπει να διοικείται από στελέχη με δεξιότητες και γνώσεις. Ο αγρότης-επιχειρηματίας
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Information Technology for Business
Information Technology for Business! Lecturer: N. Kyritsis, MBA, Ph.D. Candidate!! e-mail: kyritsis@ist.edu.gr Διαχείριση Επιχειρηματικών Δεδομένων - Databases Ορισμός Βάσης Δεδομένων Συλλογή συναφών αρχείων
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης Kozani GR 50100
Ποσοτικές Μέθοδοι Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR 50100 Απλή Παλινδρόμηση Η διερεύνηση του τρόπου συμπεριφοράς
ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ. Ενότητα # 6: ΟΡΓΑΝΩΣΙΑΚΟΣ ΣΧΕΔΙΑΣΜΟΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ Ενότητα # 6: ΟΡΓΑΝΩΣΙΑΚΟΣ ΣΧΕΔΙΑΣΜΟΣ Διδάσκων: Μανασάκης Κωνσταντίνος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Τα κείμενα και τα διαγράμματα της παρουσίασης
ΕΠΙΔΡΩΝΤΕΣ ΠΑΡΑΓΟΝΤΕΣ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ ΜΑΡΚΕΤΙΝΓΚ
Η ΛΕΙΤΟΥΡΓΙΑ ΤΟΥ ΜΑΡΚΕΤΙΝΓΚ Το Μάρκετινγκ αποτελεί μια βασική επιχειρηματική λειτουργία που έχει στόχο την ανάπτυξη, την οργάνωση και των έλεγχο ανταλλακτικών διαδικασιών μεταξύ της επιχείρησης και των
Κεφάλαιο 1 ο. Διοίκηση και διαχείριση της ψηφιακής επιχείρησης
Κεφάλαιο 1 ο Διοίκηση και διαχείριση της ψηφιακής επιχείρησης Διδακτικοί στόχοι Να αναλυθεί ο ρόλος των πληροφοριακών συστημάτων στο επιχειρηματικό περιβάλλον Ναοριστείτοπληροφοριακόσύστημα, η ορολογία
Πώς τα συστήματα ERP βελτιώνουν την αποτελεσματικότητα των. οργανισμούς που τα χρησιμοποιούν; Ποια είναι τα επιχειρησιακά οφέλη; συστημάτων ERP
Εισαγωγή στα - ERP Πώς τα συστήματα ERP βελτιώνουν την αποτελεσματικότητα των πληροφοριακών συστημάτων στους οργανισμούς που τα χρησιμοποιούν; Ποια είναι τα επιχειρησιακά οφέλη; Η ιστορία και η εξέλιξη
ΕΠΙΧΕΙΡΗΣΙΑΚΕΣ ΠΡΟΒΛΕΨΕΙΣ
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ Ι - ΠΡΟΒΛΕΨΕΙΣ ΚΑΙ ΣΥΓΧΡΟΝΗ ΔΙΟΙΚΗΣΗ....................................17 1.1 Προβλέψεις - Τεχνικές προβλέψεων και διοίκηση................................17 1.2 Τεχνικές προβλέψεων
Αλλάξτε τον τρόπο που κάνετε τη δουλειά σας
ΓΙΑ ΜΙΑ ΑΝΟΙKΤΗ ΕΠΙΧΕΙΡΗΣΗ Αλλάξτε τον τρόπο που κάνετε τη δουλειά σας Web & Mobile apps Για µια ανοικτή επιχείρηση Σήµερα περισσότερο από ποτέ, µια επιχείρηση που θέλει να ανοίξει νέους δρόµους ανάπτυξης
Έρευνα Μάρκετινγκ Ενότητα 5
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5 : Μέθοδοι Στατιστικής Ανάλυσης Χριστίνα Μπουτσούκη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative