Information Retrieval

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Information Retrieval"

Transcript

1 Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη 5(α): Συμπίεση Ευρετηρίου 1

2 ΣΤΑΤΙΣΤΙΚΑ ΣΥΛΛΟΓΗΣ 2

3 Κεφ. 5 Στατιστικά στοιχεία Πόσο μεγάλο είναι το λεξικό και οι καταχωρήσεις; 3

4 Κεφ. 4.2 Στατιστικά για τη συλλογή Reuters RCV1 N L M T documents tokens per document terms (= word types) bytes per token (incl. spaces/punct.) bytes per token (without spaces/punct.) bytes per term (= word type) non-positional postings 800, , ,000,000 4

5 Κεφ. 5.1 Μέγεθος ευρετηρίου size of word types (terms) non-positional postings positional postings dictionary non-positional index positional index Size (K) % cumul % Size (K) % cumul % Size (K) Unfiltered , ,879 % cumul % No numbers , , Case folding , , stopwords , , stopwords , , stemming , ,

6 Κεφ. 5.1 Λεξιλόγιο και μέγεθος συλλογής Πόσο μεγάλο είναι το λεξιλόγιο όρων; Δηλαδή, πόσες είναι οι διαφορετικές λέξεις; Υπάρχει κάποιο άνω όριο; Π.χ., το Oxford English Dictionary 600,000 λέξεις, αλλά στις πραγματικά μεγάλες συλλογές ονόματα προσώπων, προϊόντων, κλπ Στην πραγματικότητα, το λεξιλόγιο συνεχίζει να μεγαλώνει με το μέγεθος της συλλογής 6

7 Κεφ. 5.1 Λεξιλόγιο και μέγεθος συλλογής Ο νόμος του Heaps: M = k T b M είναι το μέγεθος του λεξιλογίου (αριθμός όρων), T ο αριθμός των tokens στη συλλογή περιγράφει πως μεγαλώνει το λεξιλόγιο όσο μεγαλώνει η συλλογή Συνήθης τιμές: 30 k 100 (εξαρτάται από το είδος της συλλογής) και b 0.5 Σε log-log plot του μεγέθους Μ του λεξιλογίου με το Τ, ο νόμος προβλέπει γραμμή με κλίση περίπου ½ 7

8 Κεφ. 5.1 Για το RCV1, η διακεκομμένη γραμμή log 10 M = 0.49 log 10 T (best least squares fit) Οπότε, M = T 0.49, άρα k = and b = Heaps Law Καλή προσέγγιση για το Reuters RCV1! Για το πρώτα 1,000,020 tokens, ο νόμος προβλέπει 38,323 όρους, στην πραγματικότητα 38,365 8

9 Κεφ. 5.1 Ο νόμος του Heaps Τα παρακάτω επηρεάζουν το μέγεθος του λεξικού: Stemming Including numbers Spelling errors Case folding 9

10 Κεφ. 5.1 Ο νόμος του Zipf Ο νόμος του Heaps μας δίνει το μέγεθος του λεξιλογίου μιας συλλογής Θα εξετάσουμε τη σχετική συχνότητα των όρων Στις φυσικές γλώσσες, υπάρχουν λίγοι πολύ συχνοί όροι και πάρα πολύ σπάνιοι 10

11 Κεφ. 5.1 Ο νόμος του Zipf Ο νόμος του Zipf: Ο i-οστός πιο συχνός όρος έχει συχνότητα ανάλογη του 1/i. cf i 1/i = c/i όπου c μια normalizing constant Όπου cf i collection frequency: ο αριθμός εμφανίσεων του όρου t i στη συλλογή. o Αν ο πιο συχνός όρος (ο όρος the) εμφανίζεται cf 1 φορές o Τότε ο δεύτερος πιο συχνός (of) εμφανίζεται cf 1 /2 φορές o Ο τρίτος (and) cf 1 /3 φορές o 11

12 Κεφ. 5.1 Ο νόμος του Zipf log cf i = log c - log i Γραμμική σχέση μεταξύ log cf i και log i cfi = c i K, k = -1 power law σχέση (εκθετικός νόμος) 12

13 κεφ. 5.1 Zipf s law for Reuters RCV1 13

14 Κεφ. 5.2 ΣΥΜΠΙΕΣΗ 14

15 Κεφ. 5 Συμπίεση Θα δούμε μερικά θέματα για τη συμπίεση το λεξικού και των λιστών καταχωρήσεων Βασικό Boolean ευρετήριο, χωρίς πληροφορία θέσης κλπ 15

16 Κεφ. 5 Γιατί συμπίεση; Λιγότερος χώρος στη μνήμη Λίγο πιο οικονομικό Κρατάμε περισσότερα πράγματα στη μνήμη Αύξηση της ταχύτητας Αύξηση της ταχύτητας μεταφοράς δεδομένων από το δίσκο στη μνήμη [διάβασε τα συμπιεσμένα δεδομένα αποσυμπίεσε] γρηγορότερο από [διάβασε μη συμπιεσμένα δεδομένα] Προϋπόθεση: Γρήγοροι αλγόριθμοι αποσυμπίεσης 16

17 Κεφ. 5.1 Απωλεστική και μη συμπίεση Lossless compression: (μη απωλεστική συμπίεση) Διατηρείτε όλη η πληροφορία Αυτή που κυρίως χρησιμοποιείται σε ΑΠ Lossy compression: (απωλεστική συμπίεση) Κάποια πληροφορία χάνεται Πολλά από τα βήματα προ-επεξεργασίας (μετατροπή σε μικρά, stop words, stemming, number elimination) μπορεί να θεωρηθούν ως lossy compression Μπορεί να είναι αποδεκτή στην περίπτωση π.χ., που μας ενδιαφέρουν μόνο τα κορυφαία από τα σχετικά έγγραφα 17

18 Κεφ. 5.2 ΣΥΜΠΙΕΣΗ ΛΕΞΙΚΟΥ 18

19 Κεφ. 5.2 Συμπίεση λεξικού Η αναζήτηση αρχίζει από το λεξικό -> Θα θέλαμε να το κρατάμε στη μνήμη Συνυπάρχει με άλλες εφαρμογές (memory footprint competition) Κινητές/ενσωματωμένες συσκευές μικρή μνήμη Ακόμα και αν όχι στη μνήμη, θα θέλαμε να είναι μικρό για γρήγορη αρχή της αναζήτησης 19

20 Κεφ. 5.2 Αποθήκευση λεξικού Κάθε εγγραφή: τον όρο, συχνότητα εμφάνισης, δείκτη Θα θεωρήσουμε την πιο απλή αποθήκευση, ως ταξινομημένο πίνακα εγγραφών σταθερού μεγέθους (array of fixed-width entries) ~400,000 όροι; 28 bytes/term = 11.2 MB. Terms Freq. Postings ptr. a 656,265 aachen 65.. zulu 221 Δομή Αναζήτησης Λεξικού 20 bytes 4 bytes each 20

21 Κεφ. 5.2 Αποθήκευση λεξικού Σπατάλη χώρου Πολλά από τα bytes στη στήλη Term δε χρησιμοποιούνται δίνουμε 20 bytes για όρους με 1 γράμμα Και δε μπορούμε να χειριστούμε το supercalifragilisticexpialidocious ή hydrochlorofluorocarbons. Μέσος όρος στο γραπτό λόγο για τα Αγγλικά είναι ~4.5 χαρακτήρες/λέξη. Μέσος όρος των λέξεων στο λεξικό για τα Αγγλικά: ~8 χαρακτήρες Οι μικρές λέξεις κυριαρχούν στα tokens αλλά όχι στους όρους. 21

22 Συμπίεση της λίστας όρων: Λεξικό-ως-Σειρά-Χαρακτήρων Κεφ. 5.2 Αποθήκευσε το λεξικό ως ένα (μεγάλο) string χαρακτήρων: Ένας δείκτης δείχνει στο τέλος της τρέχουσας λέξης (αρχή επόμενης) Εξοικονόμηση 60% του χώρου..systilesyzygeticsyzygialsyzygyszaibelyiteszczecinszomo. Freq Postings ptr. Term ptr. Συνολικό μήκος της σειράς (string) = 400K x 8B = 3.2MB Δείκτες για 3.2M θέσεις: log 2 3.2M = 22bits = 3bytes 22

23 Κεφ. 5.2 Χώρος για το λεξικό ως string 4 bytes ανά όρο για το Freq. 4 bytes ανά όρο για δείκτες σε Postings. 3 bytes ανά term pointer Κατά μέσο όρο 8 bytes ανά όρο στο string (3.2ΜΒ) 400K όροι x MB (έναντι 11.2MB για σταθερό μήκος λέξης) Κατά μέσο όρο:11bytes /term 23

24 Κεφ. 5.2 Blocking (Δείκτες σε ομάδες) Διαίρεσε το string σε ομάδες (blocks) των k όρων Διατήρησε ένα δείκτη σε κάθε ομάδα Παράδειγμα: k = 4. Χρειαζόμαστε και το μήκος του όρου (1 extra byte).7systile9syzygetic8syzygial6syzygy11szaibelyite8szczecin9szomo. Freq. Postings ptr. Term ptr Κερδίζουμε 3 bytes για k - 1 δείκτες. Χάνουμε 4 (k) bytes για το μήκος του όρου 24

25 Κεφ. 5.2 Blocking Συνολικό όφελος για block size k = 4 Χωρίς blocking 3 bytes/pointer 3 x 4 = 12 bytes, (ανά block) Τώρα = 7 bytes. Εξοικονόμηση ακόμα ~0.5MB. Ελάττωση του μεγέθους του ευρετηρίου από 7.6 MB σε 7.1 MB. Γιατί όχι ακόμα μεγαλύτερο k; Σε τι χάνουμε; 25

26 Κεφ. 5.2 Αναζήτηση στο λεξικό χωρίς Βlocking Ας υποθέσουμε δυαδική αναζήτηση και ότι κάθε όρος ισοπίθανο να εμφανιστεί στην ερώτηση (όχι και τόσο ρεαλιστικό στη πράξη) μέσος αριθμός συγκρίσεων = ( )/8 ~2.6 Άσκηση: σκεφτείτε ένα καλύτερο τρόπο αναζήτησης αν δεν έχουμε ομοιόμορφη κατανομή των όρων 26

27 Κεφ. 5.2 Αναζήτηση στο λεξικό με Βlocking Δυαδική αναζήτηση μας οδηγεί σε ομάδες (block) από k = 4 όρους Μετά γραμμική αναζήτηση στους k = 4 αυτούς όρους. Μέσος όρος (δυαδικό δέντρο)= ( )/8 = 3 27

28 Κεφ. 5.2 Εμπρόσθια κωδικοποίηση (Front coding) Οι λέξεις συχνά έχουν μεγάλα κοινά προθέματα αποθήκευση μόνο των διαφορών 8automata8automate9automatic10automation 8automat*a1 e2 ic3 ion Encodes automat Extra length beyond automat. 28

29 Κεφ. 5.2 Περίληψη συμπίεσης για το λεξικό του RCV1 Τεχνική Μέγεθος σε MB Fixed width 11.2 Dictionary-as-String with pointers to every term Also, blocking k = Also, Blocking + front coding

30 Κεφ. 5.2 Εμπρόσθια κωδικοποίηση (Front coding) Αν στο δίσκο, μπορούμε να έχουμε ένα Β- δέντρο με τον πρώτο όρο σε κάθε σελίδα Κατακερματισμός ελαττώνει το μέγεθος αλλά πρόβλημα με ενημερώσεις 30

31 Κεφ. 5.3 ΣΥΜΠΙΕΣΗ ΤΩΝ ΚΑΤΑΧΩΡΗΣΕΩΝ 31

32 Κεφ. 5.3 Συμπίεση των καταχωρήσεων Το αρχείο των καταχωρήσεων είναι πολύ μεγαλύτερο αυτού του λεξικού - τουλάχιστον 10 φορές. Βασική επιδίωξη: αποθήκευση κάθε καταχώρησης συνοπτικά Στην περίπτωση μας, μια καταχώρηση είναι το αναγνωριστικό ενός εγγράφου (docid). Για τη συλλογή του Reuters (800,000 έγγραφα), μπορούμε να χρησιμοποιήσουμε 32 bits ανά docid αν έχουμε ακεραίους 4-bytes. Εναλλακτικά, log 2 800, bits ανά docid. Μπορούμε λιγότερο από 20 bits ανά docid; 32

33 Κεφ. 5.3 Συμπίεση των καταχωρήσεων Μέγεθος της συλλογής 800,000 (έγγραφα) 200 (token) 6 bytes = 960 MB Μέγεθος του αρχείου καταχωρήσεων 100,000,000 (καταχωρήσεις) 20/8 bytes = 250MB 33

34 Κεφ. 5.3 Συμπίεση των καταχωρήσεων Αποθηκεύουμε τη λίστα των εγγράφων σε αύξουσα διάταξη των docid. computer: 33, 47,1 54, 159, 202 Συνέπεια: αρκεί να αποθηκεύουμε τα κενά (gaps). 33, 14, 107, 5, 43 Γιατί; Τα περισσότερα κενά μπορεί να κωδικοποιηθούν/αποθηκευτούν με πολύ λιγότερα από 20 bits. 34

35 Κεφ. 5.3 Παράδειγμα 35

36 Κεφ. 5.3 Συμπίεση των καταχωρήσεων Ένας όρος όπως arachnocentric εμφανίζεται ίσως σε ένα έγγραφο στο εκατομμύριο. Ένας όρος όπως the εμφανίζεται σχεδόν σε κάθε έγγραφο, άρα 20 bits/εγγραφή πολύ ακριβό 36

37 Κωδικοποίηση μεταβλητού μεγέθους (Variable length encoding) Στόχος: Για το arachnocentric, θα χρησιμοποιήσουμε εγγραφές ~20 bits/gap. Για το the, θα χρησιμοποιήσουμε εγγραφές ~1 bit/gap entry. Αν το μέσο κενό για έναν όρο είναι G, θέλουμε να χρησιμοποιήσουμε εγγραφές ~log 2 G bits/gap. Κεφ. 5.3 Βασική πρόκληση: κωδικοποίηση κάθε ακεραίου (gap) με όσα λιγότερα bits είναι απαραίτητα για αυτόν τον ακέραιο. Αυτό απαιτεί κωδικοποίηση μεταβλητού μεγέθους -- variable length encoding Αυτό το πετυχαίνουμε χρησιμοποιώντας σύντομους κώδικες για μικρούς αριθμούς 37

38 Κεφ. 5.3 Κωδικοί μεταβλητών Byte (Variable Byte (VB) codes) Κωδικοποιούμε κάθε διάκενο με ακέραιο αριθμό από bytes Το πρώτο bit κάθε byte χρησιμοποιείται ως bit συνέχισης (continuation bit) Είναι 0 σε όλα τα bytes εκτός από το τελευταίο, όπου είναι 1 0, αν ακολουθεί και δεύτερο byte 1, αλλιώς Χρησιμοποιείται για να σηματοδοτήσει το τελευταίο byte της κωδικοποίησης 38

39 Κεφ. 5.3 Κωδικοί μεταβλητών Byte (Variable Byte (VB) codes) Ξεκίνα με ένα byte για την αποθήκευση του G Αν G 127, υπολόγισε τη δυαδική αναπαράσταση με τα 7 διαθέσιμα bits and θέσε c =1 Αλλιώς, κωδικοποίησε τα 7 lower-order bits του G και χρησιμοποίησε επιπρόσθετα bytes για να κωδικοποιήσεις τα higher order bits με τον ίδιο αλγόριθμο Στο τέλος, θέσε το bit συνέχισης του τελευταίου byte σε 1, c=1 και στα άλλα σε 0, c = 0. 39

40 Κεφ. 5.3 Παράδειγμα docids gaps VB code Postings stored as the byte concatenation Key property: VB-encoded postings are uniquely prefix-decodable For a small gap (5), VB uses a whole byte. 40

41 Κεφ. 5.3 Άλλες κωδικοποιήσεις Αντί για bytes, δηλαδή 8 bits, άλλες μονάδες πχ 32 bits (words), 16 bits, 4 bits (nibbles). Compression ratio vs speed of decompression Με byte χάνουμε κάποιο χώρο αν πολύ μικρά διάκενα nibbles καλύτερα σε αυτές τις περιπτώσεις. Μικρές λέξεις, πιο περίπλοκος χειρισμός Οι κωδικοί VΒ χρησιμοποιούνται σε πολλά εμπορικά/ερευνητικά συστήματα 41

42 Κεφ. 5.3 Συμπίεση του RCV1 Data structure Size in MB dictionary, fixed-width 11.2 dictionary, term pointers into string 7.6 with blocking, k = with blocking & front coding 5.9 collection (text, xml markup etc) 3,600.0 collection (text) Term-doc incidence matrix 40,000.0 postings, uncompressed (32-bit words) postings, uncompressed (20 bits) postings, variable byte encoded postings, g-encoded

43 Sec. 5.3 Περίληψη Μπορούμε να κατασκευάσουμε ένα ευρετήριο για Boolean ανάκτηση πολύ αποδοτικό από άποψη χώρου Μόνο 4% του συνολικού μεγέθους της συλλογής Μόνο το 10-15% του συνολικού κειμένου της συλλογής Βέβαια, έχουμε αγνοήσει την πληροφορία θέσης Η εξοικονόμηση χώρου είναι μικρότερη στην πράξη Αλλά, οι τεχνικές είναι παρόμοιες 43

44 ΤΕΛΟΣ πρώτου μέρους 5 ου Μαθήματος Ερωτήσεις? Χρησιμοποιήθηκε κάποιο υλικό των: Pandu Nayak and Prabhakar Raghavan, CS276: Information Retrieval and Web Search (Stanford) 44

45 Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη 5(β) : Βαθμολόγηση. Στάθμιση όρων. Το μοντέλο διανυσματικού χώρου. 45

46 Κεφ. 6 Τι άλλο θα δούμε σήμερα; Βαθμολόγηση και κατάταξη εγγράφων Στάθμιση όρων (term weighting) Αναπαράσταση εγγράφων και ερωτημάτων ως διανύσματα 46

47 Κεφ. 6 Κατάταξη εγγράφων (Ranked retrieval) Μέχρι τώρα, τα ερωτήματα που είδαμε ήταν Boolean. Τα έγγραφα είτε ταιριάζουν στο ερώτημα, είτε όχι Τα Boolean ερωτήματα συχνά έχουν είτε πολύ λίγα (=0) είτε πάρα πολλά (χιλιάδες) αποτελέσματα ( feast or famine ) Ερώτημα 1: standard user dlink ,000 hits Ερώτημα 2: standard user dlink 650 no card found : 0 hits Χρειάζεται επιδεξιότητα για να διατυπωθεί μια ερώτηση που έχει ως αποτέλεσμα ένα διαχειρίσιμο αριθμό ταιριασμάτων AND πολύ λίγα - OR πάρα πολλά 47

48 Κεφ. 6 Διάταξη εγγράφων (Ranked retrieval) Κατάλληλη για ειδικούς με σαφή κατανόηση των αναγκών τους και της συλλογής Επίσης, καλή για εφαρμογές: οι εφαρμογές μπορούν να επεξεργαστούν χιλιάδες αποτελεσμάτων. Αλλά, όχι κατάλληλη για την πλειοψηφία των χρηστών Είναι δύσκολο για τους περισσότερους χρήστες να διατυπώσουν Boolean ερωτήματα Οι περισσότεροι χρήστες δεν θέλουν να διαχειριστούν χιλιάδες αποτελέσματα. Ιδιαίτερα στην περίπτωση των αναζητήσεων στο web 48

49 Κεφ. 6 Μοντέλα διαβαθμισμένης ανάκτησης Αντί ενός συνόλου εγγράφων που ικανοποιούν το ερώτημα, η διαβαθμισμένη ανάκτηση (ranked retrieval) επιστρέφει μια διάταξη των (κορυφαίων) για την ερώτηση εγγράφων της συλλογής Όταν το σύστημα παράγει ένα διατεταγμένο σύνολο αποτελεσμάτων, τα μεγάλα σύνολα δεν αποτελούν πρόβλημα Δείχνουμε απλώς τα κορυφαία (top) k ( 10) αποτελέσματα Δεν παραφορτώνουμε το χρήστη Προϋπόθεση: ο αλγόριθμος διάταξης να δουλεύει σωστά 49

50 Μοντέλα διαβαθμισμένης ανάκτησης Αν και διαφορετικά θέματα, η διαβαθμισμένη ανάκτηση συνήθως με ερωτήματα ελεύθερου κειμένου Ερωτήματα ελεύθερου κειμένου (Free text queries): Μία ή περισσότερες λέξεις σε μια φυσική γλώσσα (αντί για μια γλώσσα ερωτημάτων με τελεστές και εκφράσεις) 50

51 Βαθμολόγηση ως βάση της Κεφ. 6 διαβαθμισμένης ανάκτησης Θέλουμε να επιστρέψουμε τα αποτελέσματα διατεταγμένα με βάση το πόσο πιθανό είναι να είναι χρήσιμα στο χρήστη Πως διατάσουμε-διαβαθμίζουμε τα έγγραφα μιας συλλογής με βάση ένα ερώτημα Αναθέτουμε ένα βαθμό (score) ας πούμε στο [0, 1] σε κάθε έγγραφο Αυτός ο βαθμός μετρά πόσο καλά το έγγραφο d ταιριάζει (match) με το ερώτημα q 51

52 Βαθμός ταιριάσματος ερωτήματοςεγγράφου Κεφ. 6 Χρειαζόμαστε ένα τρόπο για να αναθέσουμε ένα βαθμό σε κάθε ζεύγος ερωτήματος(q)/εγγράφου(d) score(d, q) Αν ο όρος του ερωτήματος δεν εμφανίζεται στο έγγραφο, τότε ο βαθμός θα πρέπει να είναι 0 Όσο πιο συχνά εμφανίζεται ο όρος του ερωτήματος σε ένα έγγραφο, τόσο μεγαλύτερος θα πρέπει να είναι ο βαθμός Θα εξετάσουμε κάποιες εναλλακτικές για αυτό 52

53 Κεφ. 6 Προσπάθεια 1: Συντελεστής Jaccard Υπενθύμιση: συνηθισμένη μέτρηση της επικάλυψης δύο συνόλων A και B jaccard(a,b) = A B / A B jaccard(a,a) = 1 jaccard(a,b) = 0 if A B = 0 Τα A και B δεν έχουν απαραίτητα το ίδιο μέγεθος Αναθέτει πάντα έναν αριθμό μεταξύ του 0 και του 1 53

54 Συντελεστής Jaccard: Παράδειγμα βαθμολόγησης Κεφ. 6 Ποιος είναι o βαθμός ταιριάσματος ερωτήματοςεγγράφου με βάση το συντελεστή Jaccard για τα παρακάτω; Ερώτημα (q): ides of march Έγγραφο 1 (d1): caesar died in march Έγγραφο 2 (d2): the long march Θα δούμε και έναν πιο πλήρη τρόπο κανονικοποιήσης του μήκους: A B / A B 54

55 Κεφ. 6.2 Παράδειγμα Ποιο είναι ο βαθμός για τα παρακάτω ζεύγη χρησιμοποιώντας jaccard; q: [information on cars] d: all you ve ever wanted to know about cars q: [information on cars] d: information on trucks, information on planes, information on trains q: [red cars and red trucks] d: cops stop red cars more often 55

56 Συχνότητα όρου - Term frequency (tf) Η συχνότητα όρου tf t,d του όρου t σε ένα έγγραφο d ορίζεται ως ο αριθμός των φορών που το t εμφανίζεται στο d (το πλήθος των εμφανίσεων του όρου t στο έγγραφο d) 56

57 Κεφ. 6.2 Παράδειγμα Ποιο είναι ο βαθμός για τα παρακάτω ζεύγη χρησιμοποιώντας tf; q: [information on cars] d: all you ve ever wanted to know about cars q: [information on cars] d: information on trucks, information on planes, information on trains q: [red cars and red trucks] d: cops stop red cars more often 57

58 Κεφ. 6 Προβλήματα Jaccard δεν λαμβάνει υπ όψιν την συχνότητα όρου (term frequency): πόσες φορές εμφανίζεται ο όρος στο έγγραφο Αγνοεί το γεγονός πως οι σπάνιοι όροι περιέχουν περισσότερη πληροφορία από ό,τι οι συχνοί. 58

59 Κεφ Συχνότητα εγγράφου (Document frequency) Οι σπάνιοι όροι παρέχουν περισσότερη πληροφορία από τους συχνούς όρους Θυμηθείτε τα stop words (διακοπτόμενες λέξεις) Θεωρείστε έναν όρο σε μια ερώτηση που είναι σπάνιος στη συλλογή (π.χ., arachnocentric) Το έγγραφο που περιέχει αυτόν τον όρο είναι πιο πιθανό να είναι περισσότερο συναφές με το ερώτημα από ένα έγγραφο που περιέχει ένα λιγότερο σπάνιο όρο του ερωτήματος Θέλουμε να δώσουμε μεγαλύτερο βάρος στους σπάνιους όρους αλλά πως; df 59

60 Κεφ Βάρος idf df t είναι η συχνότητα εγγράφων του t: ο αριθμός (πλήθος) των εγγράφων της συλλογής που περιέχουν το t df t είναι η αντίστροφη μέτρηση της πληροφορίας που παρέχει ο όρος t df t N Ορίζουμε την αντίστροφη συχνότητα εγγράφων idf (inverse document frequency) του t ως idf N/df t t 60

61 Κεφ Βαθμός εγγράφου και ερώτησης Score(q,d) t q d tf.idf t,d Μεγάλο για όρους που εμφανίζονται πολλές φορές σε λίγα έγγραφα (μεγάλη διακριτική δύναμη (discriminating power) σε αυτά τα έγγραφα Μικρότερο όταν ο όρος εμφανίζεται λίγες φορές σε ένα έγγραφο ή όταν εμφανίζεται σε πολλά έγγραφα Το μικρότερο για όρους που εμφανίζονται σχεδόν σε όλα τα έγγραφα Υπάρχουν πολλές άλλες παραλλαγές Πως υπολογίζεται το tf (με ή χωρίς log) Αν δίνεται βάρος και στους όρους του ερωτήματος 61

62 Κεφ Συχνότητα συλλογής και εγγράφου Η συχνότητα συλλογής ενός όρου t είναι ο αριθμός των εμφανίσεων του t στη συλλογή, μετρώντας και τις πολλαπλές εμφανίσεις Παράδειγμα: Word Collection frequency Document frequency insurance try Ποια λέξη είναι καλύτερος όρος αναζήτησης (και πρέπει να έχει μεγαλύτερο βάρος)? 62

63 Bag of words model Η tf-idf διαβάθμιση δεν εξετάζει τη διάταξη των λέξεων σε ένα έγγραφο John is quicker than Mary και Mary is quicker than John Έχουν τα ίδια διανύσματα Αυτό λέγεται μοντέλο σάκου λέξεων (bag of words model) έχει σημασία ο αριθμός των εμφανίσεων αλλά όχι η διάταξη Θα εισάγουμε πληροφορία θέσης αργότερα 63

64 Κεφ Στάθμιση tf-idf Ποιο είναι το idf ενός όρου που εμφανίζεται σε κάθε έγγραφο (ποια η σχέση με stop words); tf-idf των παρακάτω όρων: 64

65 Η επίδραση του idf στη διάταξη Το idf δεν επηρεάζει τη διάταξη ερωτημάτων με ένα όρο, όπως iphone Το idf επηρεάζει μόνο τη διάταξη εγγράφων με τουλάχιστον δύο όρους Για το ερώτημα capricious person, η idf στάθμιση έχει ως αποτέλεσμα οι εμφανίσεις του capricious να μετράνε περισσότερο στην τελική διάταξη των εγγράφων από ότι οι εμφανίσεις του person. (ένα έγγραφο που περιέχει μόνο το capricious είναι πιο σημαντικό από ένα που περιέχει μόνο το person) 65

66 Συχνότητα όρου - Term frequency (tf) Η συχνότητα όρου tf t,d του όρου t σε ένα έγγραφο d ορίζεται ως ο αριθμός των φορών που το t εμφανίζεται στο d. Φτάνει μόνο η συχνότητα Ένα έγγραφο με 10 εμφανίσεις ενός όρου είναι πιο σχετικό από ένα έγγραφο με 1 εμφάνιση του όρου.. Αλλά είναι 10 φορές πιο σχετικό; Η σχετικότητα (relevance) δεν αυξάνει ανάλογα με τη συχνότητα όρου 66

67 Κεφ. 6.2 Στάθμιση με Log-συχνότητας Η στάθμιση με χρήση του λογάριθμου της συχνότητας (log frequency weight) του όρου t στο d είναι w t,d 1 log10 tft,d, if tft,d 0 0, otherwise 0 0, 1 1, 2 1.3, 10 2, , etc. Ο βαθμός για ένα ζεύγος εγγράφου-ερωτήματος: άθροισμα όλων των κοινών όρων : t q d score ) idf (1 log tft, d Ο βαθμός είναι 0 όταν κανένας από τους όρους του ερωτήματος δεν εμφανίζεται στο έγγραφο t 67

68 Κεφ Βάρος idf Χρησιμοποιούμε log (N/df t ) αντί για N/df t για να «ομαλοποιήσουμε» την επίδραση του idf. idf log ( N/df t 10 t ) 68

69 Κεφ Παράδειγμα idf, έστω N = 1 εκατομμύριο term df t idf t calpurnia 1 6 animal sunday 1,000 3 fly 10,000 2 under 100,000 1 the 1,000,000 0 idf log ( N/df t 10 t Κάθε όρος στη συλλογή έχει μια τιμή idf Ολική μέτρηση (επίσης, αλλάζει συνεχώς) ) 69

70 Κεφ Στάθμιση tf-idf Το tf-idf βάρος ενός όρου είναι το γινόμενο του βάρους tf και του βάρους idf. w (1 log tf ) log 10 t, d 10 ( N / df t, d t ) Overlap score measure Το πιο γνωστό σχήμα διαβάθμισης στην ανάκτηση πληροφορίας Εναλλακτικά ονόματα: tf.idf, tf x idf Αυξάνει με τον αριθμό εμφανίσεων του όρου στο έγγραφο Αυξάνει με τη σπανιότητα του όρου στη συλλογή 70

71 Κεφ. 6.2 Δυαδική μήτρα σύμπτωσης (binary termdocument incidence matrix) Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth Antony Brutus Caesar Calpurnia Cleopatra mercy worser Κάθε έγγραφο αναπαρίσταται ως ένα δυαδικό διάνυσμα {0,1} V (την αντίστοιχη στήλη) 71

72 Κεφ. 6.2 Ο πίνακας με μετρητές Θεωρούμε τον tf, αριθμό (πλήθος) των εμφανίσεων ενός όρου σε ένα έγγραφο: Κάθε έγγραφο είναι ένα διάνυσμα μετρητών στο N v : μια στήλη παρακάτω Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth Antony Brutus Caesar Calpurnia Cleopatra mercy worser

73 Κεφ. 6.3 Ο πίνακας με βάρη Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth Antony Brutus Caesar Calpurnia Cleopatra mercy worser Θεωρούμε το tf-idf βάρος του όρου: Κάθε έγγραφο είναι ένα διάνυσμα tf-idf βαρών στο R v 73

74 Αποθήκευση Που υπάρχει αυτή η πληροφορία στο σύστημα ανάκτησης πληροφορίας; 74

75 Τα έγγραφα ως διανύσματα (vector space model) Κεφ. 6.3 Έχουμε ένα V -διάστατο διανυσματικό χώρο Οι όροι είναι οι άξονες αυτού του χώρου Τα έγγραφα είναι σημεία ή διανύσματα σε αυτόν τον χώρο Πολύ μεγάλη διάσταση: δεκάδες εκατομμύρια διαστάσεις στην περίπτωση της αναζήτησης στο web Πολύ αραιά διανύσματα οι περισσότεροι όροι είναι 0 75

76 Κεφ. 6.3 Τα ερωτήματα ως διανύσματα Βασική ιδέα 1: Εφαρμόζουμε το ίδιο και για τα ερωτήματα, δηλαδή, αναπαριστούμε και τα ερωτήματα ως διανύσματα στον ίδιο χώρο Βασική ιδέα 2: Διαβάθμιση των εγγράφων με βάση το πόσο κοντά είναι στην ερώτηση σε αυτό το χώρο Κοντινά = ομοιότητα διανυσμάτων Ομοιότητα αντίθετο της απόστασης 76

77 Κεφ. 6.3 Ομοιότητα διανυσμάτων Πρώτη προσέγγιση απόστασης μεταξύ δυο διανυσμάτων Ευκλείδεια απόσταση; Δεν είναι καλή ιδέα είναι μεγάλη για διανύσματα διαφορετικού μήκους 77

78 Κεφ. 6.3 Γιατί η απόσταση δεν είναι καλή ιδέα Η Ευκλείδεια απόσταση μεταξύ του q και του d 2 είναι μεγάλη αν και η κατανομή των όρων είναι παρόμοια 78

79 Κεφ. 6.3 Χρήση της γωνίας αντί της απόστασης Έστω ένα έγγραφο d. Ως παράδειγμα, υποθέστε ότι κάνουμε append το d στον εαυτό του και έστω d το κείμενο που προκύπτει. Σημασιολογικά το d και το d έχουν το ίδιο περιεχόμενο Η Ευκλείδεια απόσταση μεταξύ τους μπορεί να είναι πολύ μεγάλη Η γωνία όμως είναι 0 (αντιστοιχεί στη μεγαλύτερη ομοιότητα) => χρήση της γωνίας 79

80 Κεφ. 6.3 Από γωνίες σε συνημίτονα Οι παρακάτω έννοιες είναι ισοδύναμες: Διαβάθμιση των εγγράφων σε φθίνουσα διάταξη με βάση τη γωνία μεταξύ του εγγράφου και του ερωτήματος Διαβάθμιση των εγγράφων σε αύξουσα διάταξη με βάση το συνημίτονο της γωνίας μεταξύ του εγγράφου και του ερωτήματος Συνημίτονο μονότονα φθίνουσα συνάρτηση στο διάστημα [0 o, 180 o ] 80

81 Κεφ. 6.3 Από γωνίες σε συνημίτονα 81

82 cosine(query,document) V i i V i i V i i i d q q d d d q q d q d q d q ), cos( Dot product Unit vectors q i είναι το tf-idf βάρος του όρου i στην ερώτηση d i είναι το tf-idf βάρος του όρου i στο έγγραφο cos(q,d) is the cosine similarity of q and d or, equivalently, the cosine of the angle between q and d. Κεφ

83 Κεφ. 6.3 Κανονικοποίηση του μήκους Ένα διάνυσμα μπορεί να κανονικοποιηθεί διαιρώντας τα στοιχεία του με το μήκος του, με χρήση της L 2 νόρμας: 2 x x Διαιρώντας ένα διάνυσμα με την L 2 νόρμα το κάνει μοναδιαίο Για παράδειγμα το d and d (d και μετά d) έχουν τα ίδια διανύσματα μετά την κανονικοποίηση μήκους Ως αποτέλεσμα, μικρά και μεγάλα έγγραφα έχουν συγκρίσιμα βάρη 2 i i 83

84 Συνημίτονο για κανονικοποιημένα διανύσματα Για διανύσματα που έχουμε κανονικοποιήσει το μήκος τους (length-normalized vectors) το συνημίτονο είναι απλώς το εσωτερικό γινόμενο (dot or scalar product): cos(q,d ) q d V q d i 1 i i 84

85 Ομοιότητα συνημίτονου 85

86 Κεφ. 6.3 Παράδειγμα Ποια είναι οι ομοιότητα μεταξύ των έργων (εγγράφων) SaS: Sense and Sensibility PaP: Pride and Prejudice, and WH: Wuthering Heights? Συχνότητα όρων (μετρητές) term SaS PaP WH affection jealous gossip wuthering Για απλοποίηση δε θα χρησιμοποιήσουμε τα idf βάρη 86

87 Κεφ. 6.3 Παράδειγμα (συνέχεια) Log frequency weighting term SaS PaP WH affection jealous gossip wuthering After length normalization term SaS PaP WH affection jealous gossip wuthering cos(sas,pap) cos(sas,wh) 0.79 cos(pap,wh) 0.69 Why do we have cos(sas,pap) > cos(sas,wh)? 87

88 Κεφ. 6.3 Computing cosine scores 88

89 Κεφ. 6.4 Παραλλαγές της tf-idf στάθμισης Γιατί δεν έχει σημασία η βάση του λογαρίθμου; 89

90 Κεφ. 6.4 Στάθμιση ερωτημάτων και εγγράφων Πολλές μηχανές αναζήτησης σταθμίζουνε διαφορετικά τις ερωτήσεις από τα έγγραφα Συμβολισμό: ddd.qqq, με χρήση των ακρονύμων του πίνακα Συχνό σχήμα : lnc.ltc Έγγραφο: logarithmic tf (l as first character), no idf, cosine normalization Γιατί; Ερώτημα: logarithmic tf (l in leftmost column), idf (t στη δεύτερη στήλη), no normalization 90

91 Περίληψη βαθμολόγησης στο διανυσματικό χώρο Αναπαράσταση του ερωτήματος ως ένα διαβαθμισμένο tf-idf διάνυσμα Αναπαράσταση κάθε εγγράφου ως ένα διαβαθμισμένο tf-idf διάνυσμα Υπολόγισε το συνημίτονο για κάθε ζεύγος ερωτήματος, εγγράφου Διάταξε τα έγγραφα με βάση αυτό το βαθμό Επέστρεψε τα κορυφαία Κ (π.χ., Κ =10) έγγραφα στο χρήστη 91

92 Κεφ. 6.4 Παράδειγμα: lnc.ltc Έγγραφο: car insurance auto insurance Ερώτημα: best car insurance Term Query Document Pro d tfraw tf-wt df idf wt n liz e tf-raw tf-wt wt n liz e auto best car insurance Doc length = Score = =

93 ΤΕΛΟΣ δεύτερου μέρους 5 ου Μαθήματος Ερωτήσεις? Χρησιμοποιήθηκε κάποιο υλικό των: Pandu Nayak and Prabhakar Raghavan, CS276:Information Retrieval and Web Search (Stanford) Hinrich Schütze and Christina Lioma, Stuttgart IIR class 93

Τι (άλλο) θα δούμε σήμερα;

Τι (άλλο) θα δούμε σήμερα; Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη6: Βαθμολόγηση. Στάθμιση όρων. Το μοντέλο διανυσματικού χώρου. 1 Κεφ. 6 Τι (άλλο) θα δούμε σήμερα;

Διαβάστε περισσότερα

Εύρεση & Διαχείριση Πληροφορίας στον Παγκόσµιο Ιστό. Διδάσκων Δημήτριος Κατσαρός

Εύρεση & Διαχείριση Πληροφορίας στον Παγκόσµιο Ιστό. Διδάσκων Δημήτριος Κατσαρός Εύρεση & Διαχείριση Πληροφορίας στον Παγκόσµιο Ιστό Διδάσκων Δημήτριος Κατσαρός Διάλεξη 10η: 31/03/2014 1 Problem with Boolean search: feast or famine Ch. 6 Boolean queries often result in either too few

Διαβάστε περισσότερα

Information Retrieval

Information Retrieval Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη 3: Δομές για Λεξικά. Ανάκτηση Ανεκτική στα Σφάλματα (υποστήριξη *) 1 Ch. 2 Επανάληψη προηγούμενης

Διαβάστε περισσότερα

HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems. Μοντέλα Ανάκτησης Ι

HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems. Μοντέλα Ανάκτησης Ι Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Μοντέλα Ανάκτησης Ι (Retrieval Models) Γιάννης Τζίτζικας άλ ιάλεξη

Διαβάστε περισσότερα

Information Retrieval

Information Retrieval Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη 1: Εισαγωγή. Ανάκτηση Boole Κεφ. 1.1 Τι είναι η «Ανάκτηση Πληροφορίας»; Ανάγκη πληροφόρησης Βάση

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Ενότητα 3 Λειτουργίες σε Bits, Αριθμητικά Συστήματα Χρήστος Γκουμόπουλος Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Φύση υπολογιστών Η

Διαβάστε περισσότερα

Posting File. D i. tf key1 [position1 position2 ] D j tf key2... D l.. tf keyl

Posting File. D i. tf key1 [position1 position2 ] D j tf key2... D l.. tf keyl ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΗΥ463 Συστήµατα Ανάκτησης Πληροφοριών Εργασία: Ανεστραµµένο Ευρετήριο Εισαγωγή Σκοπός της εργασίας είναι η δηµιουργία ενός ανεστραµµένου ευρετηρίου για τη µηχανή αναζήτησης Μίτος, το

Διαβάστε περισσότερα

Ευρετήρια. Ευρετήρια. Βάσεις Δεδομένων 2009-2010: Ευρετήρια 1

Ευρετήρια. Ευρετήρια. Βάσεις Δεδομένων 2009-2010: Ευρετήρια 1 Ευρετήρια 1 Ευρετήρια Ένα ευρετήριο (index) είναι μια βοηθητική δομή αρχείου που κάνει πιο αποδοτική την αναζήτηση μιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται (συνήθως) σε ένα γνώρισμα του αρχείου

Διαβάστε περισσότερα

Ευρετηρίαση, Αποθήκευση και Οργάνωση Αρχείων (Indexing, Storage and File Organization) ΜΕΡΟΣ Ι

Ευρετηρίαση, Αποθήκευση και Οργάνωση Αρχείων (Indexing, Storage and File Organization) ΜΕΡΟΣ Ι Ευρετηρίαση, Αποθήκευση και Οργάνωση Αρχείων (Indexing, Storage and File Organization) ΜΕΡΟΣ Ι Κεφάλαιο 8 Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009 Ανάκτηση Πληροφορίας 2009-2010 1 Δομές

Διαβάστε περισσότερα

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009. HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009. HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Στατιστικά Κειμένου Text Statistics Γιάννης Τζίτζικας άλ ιάλεξη :

Διαβάστε περισσότερα

ΤΕΙ ΚΡΗΤΗΣ ΤΜ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡ/ΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΔΙΔΑΣΚΩΝ: Δρ. Γ. ΓΑΡΔΙΚΗΣ. Κωδικοποίηση εικόνας

ΤΕΙ ΚΡΗΤΗΣ ΤΜ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡ/ΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΔΙΔΑΣΚΩΝ: Δρ. Γ. ΓΑΡΔΙΚΗΣ. Κωδικοποίηση εικόνας ΤΕΙ ΚΡΗΤΗΣ ΤΜ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡ/ΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΔΙΔΑΣΚΩΝ: Δρ. Γ. ΓΑΡΔΙΚΗΣ 2 Κωδικοποίηση εικόνας Ακολουθία από ψηφιοποιημένα καρέ (frames) που έχουν συλληφθεί σε συγκεκριμένο ρυθμό frame rate (π.χ. 10fps,

Διαβάστε περισσότερα

Β1.1 Αναπαράσταση Δεδομένων και Χωρητικότητα Μονάδων Αποθήκευσης

Β1.1 Αναπαράσταση Δεδομένων και Χωρητικότητα Μονάδων Αποθήκευσης Β1.1 Αναπαράσταση Δεδομένων και Χωρητικότητα Μονάδων Αποθήκευσης Τι θα μάθουμε σήμερα: Να αναφέρουμε τον τρόπο αναπαράστασης των δεδομένων (δυαδικό σύστημα) Να αναγνωρίζουμε πώς γράμματα και σύμβολα από

Διαβάστε περισσότερα

DIP_06 Συμπίεση εικόνας - JPEG. ΤΕΙ Κρήτης

DIP_06 Συμπίεση εικόνας - JPEG. ΤΕΙ Κρήτης DIP_06 Συμπίεση εικόνας - JPEG ΤΕΙ Κρήτης Συμπίεση εικόνας Το μέγεθος μιας εικόνας είναι πολύ μεγάλο π.χ. Εικόνα μεγέθους Α4 δημιουργημένη από ένα σαρωτή με 300 pixels ανά ίντσα και με χρήση του RGB μοντέλου

Διαβάστε περισσότερα

Κατακερματισμός. 4/3/2009 Μ.Χατζόπουλος 1

Κατακερματισμός. 4/3/2009 Μ.Χατζόπουλος 1 Κατακερματισμός 4/3/2009 Μ.Χατζόπουλος 1 H ιδέα που βρίσκεται πίσω από την τεχνική του κατακερματισμού είναι να δίνεται μια συνάρτησης h, που λέγεται συνάρτηση κατακερματισμού ή παραγωγής τυχαίων τιμών

Διαβάστε περισσότερα

Ανάκτηση Δεδομένων (Information Retrieval)

Ανάκτηση Δεδομένων (Information Retrieval) Ανάκτηση Δεδομένων (Information Retrieval) Παύλος Εφραιμίδης Βάσεις Δεδομένων Ανάκτηση Δεδομένων 1 Information Retrieval (1) Βάσεις Δεδομένων: Περιέχουν δομημένη πληροφορία: Πίνακες Ανάκτηση Πληροφορίας

Διαβάστε περισσότερα

Αρχές κωδικοποίησης. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 08-1

Αρχές κωδικοποίησης. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 08-1 Αρχές κωδικοποίησης Απαιτήσεις κωδικοποίησης Είδη κωδικοποίησης Κωδικοποίηση εντροπίας Διαφορική κωδικοποίηση Κωδικοποίηση μετασχηματισμών Στρωματοποιημένη κωδικοποίηση Κβαντοποίηση διανυσμάτων Τεχνολογία

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Βασικές Έννοιες Προγραμματισμού Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Αριθμητικά συστήματα Υπάρχουν 10 τύποι ανθρώπων: Αυτοί

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 19 Hashing - Κατακερματισμός 1 / 23 Πίνακες απευθείας πρόσβασης (Direct Access Tables) Οι πίνακες απευθείας

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών

Εισαγωγή στην επιστήμη των υπολογιστών Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 3ο Αναπαράσταση Αριθμών www.di.uoa.gr/~organosi 1 Δεκαδικό και Δυαδικό Δεκαδικό σύστημα 2 3 Δεκαδικό και Δυαδικό Δυαδικό Σύστημα

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας. Φροντιστήριο 3

Ανάκτηση Πληροφορίας. Φροντιστήριο 3 Ανάκτηση Πληροφορίας Φροντιστήριο 3 Τσιράκης Νίκος Νοέμβριος 2007 2 Περιεχόμενα Ανεστραμμένα Αρχεία Εισαγωγή Δημιουργία Συμπίεση Πιθανοτικά Μοντέλα 3 Ανεστραμμένα Αρχεία 4 Εισαγωγή Με ποιους τρόπους μπορούμε

Διαβάστε περισσότερα

Διάλεξη 20: Χαμηλού Επιπέδου Προγραμματισμός II

Διάλεξη 20: Χαμηλού Επιπέδου Προγραμματισμός II Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου ΕΠΛ132 Αρχές Προγραμματισμού II Διάλεξη 20: Χαμηλού Επιπέδου Προγραμματισμός II (Κεφάλαια 25.2, KNK-2ED) Δημήτρης Ζεϊναλιπούρ http://www.cs.ucy.ac.cy/courses/epl132

Διαβάστε περισσότερα

ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ. Επίπεδα Αφαίρεσης Σ Β. Αποθήκευση Εγγραφών - Ευρετήρια. ρ. Βαγγελιώ Καβακλή ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ, Επίπεδο Όψεων.

ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ. Επίπεδα Αφαίρεσης Σ Β. Αποθήκευση Εγγραφών - Ευρετήρια. ρ. Βαγγελιώ Καβακλή ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ, Επίπεδο Όψεων. ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ Χειµερινό Εξάµηνο 2002 Αποθήκευση Εγγραφών - Ευρετήρια ρ Βαγγελιώ Καβακλή ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ, ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ Επίπεδα Αφαίρεσης Σ Β Επίπεδο Όψεων Όψη Όψη

Διαβάστε περισσότερα

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή 1. Ηλεκτρονικός Υπολογιστής Ο Ηλεκτρονικός Υπολογιστής είναι μια συσκευή, μεγάλη ή μικρή, που επεξεργάζεται δεδομένα και εκτελεί την εργασία του σύμφωνα με τα παρακάτω

Διαβάστε περισσότερα

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit!

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit! Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές ) http://di.ionio.gr/~mistral/tp/csintro/ Αριθμοί Πράξεις με δυαδικούς αριθμούς

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 20 Huffman codes 1 / 12 Κωδικοποίηση σταθερού μήκους Αν χρησιμοποιηθεί κωδικοποίηση σταθερού μήκους δηλαδή

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Μοντέλα Ανάκτησης Ι (Retrieval Models)

Μοντέλα Ανάκτησης Ι (Retrieval Models) Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 006 Διάρθρωση HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Informaion Rerieval (IR) Sysems Μοντέλα Ανάκτησης Ι (Rerieval Models) Εισαγωγή στα Μοντέλα

Διαβάστε περισσότερα

Διάλεξη 3: Προγραμματισμός σε JAVA I. Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 3: Προγραμματισμός σε JAVA I. Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 3: Προγραμματισμός σε JAVA I Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στις έννοιες: - Στοιχειώδης Προγραμματισμός - Προγραμματισμός με Συνθήκες - Προγραμματισμός με Βρόγχους

Διαβάστε περισσότερα

Τμήμα Λογιστικής. Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. Μαθήματα 6 και 7 Αναπαράσταση της Πληροφορίας στον Υπολογιστή. 1 Στέργιος Παλαμάς

Τμήμα Λογιστικής. Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. Μαθήματα 6 και 7 Αναπαράσταση της Πληροφορίας στον Υπολογιστή. 1 Στέργιος Παλαμάς ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Τμήμα Λογιστικής Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές Μαθήματα 6 και 7 Αναπαράσταση της Πληροφορίας στον Υπολογιστή 1 1. Αριθμοί: Το Δυαδικό Σύστημα Οι ηλεκτρονικοί υπολογιστές

Διαβάστε περισσότερα

2.1. Εντολές. 2.2. Σχόλια. 2.3. Τύποι Δεδομένων

2.1. Εντολές. 2.2. Σχόλια. 2.3. Τύποι Δεδομένων 2 Βασικές Εντολές 2.1. Εντολές Οι στην Java ακολουθούν το πρότυπο της γλώσσας C. Έτσι, κάθε εντολή που γράφουμε στη Java θα πρέπει να τελειώνει με το ερωτηματικό (;). Όπως και η C έτσι και η Java επιτρέπει

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ H O G feature descriptor global feature the most common algorithm associated with person detection Με τα Ιστογράμματα της Βάθμωσης (Gradient) μετράμε τον προσανατολισμό και την ένταση της βάθμωσης σε μία

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 4: ΣΥΣΤΗΜΑΤΑ ΠΟΛΥΜΕΣΩΝ Θεωρητικές Ασκήσεις (# ): ειγµατοληψία, κβαντοποίηση και συµπίεση σηµάτων. Στην τηλεφωνία θεωρείται ότι το ουσιαστικό περιεχόµενο της

Διαβάστε περισσότερα

Λειτουργικά Συστήματα (ΙΙ) (διαχείριση αρχείων)

Λειτουργικά Συστήματα (ΙΙ) (διαχείριση αρχείων) Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Λειτουργικά Συστήματα (ΙΙ) (διαχείριση αρχείων) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Λειτουργικό Σύστημα:

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Κατακερματισμός. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Κατακερματισμός. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Κατακερματισμός Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Λεξικό Dictionary Ένα λεξικό (dictionary) είναι ένας αφηρημένος τύπος δεδομένων (ΑΤΔ) που διατηρεί

Διαβάστε περισσότερα

Περιεχόμενο: Δομή υπολογιστή Συστήματα αρίθμησης

Περιεχόμενο: Δομή υπολογιστή Συστήματα αρίθμησης Περιεχόμενο: Δομή υπολογιστή Συστήματα αρίθμησης ΟΜΗ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ Ένας υπολογιστής αποτελείται από την Κεντρική Μονάδα Επεξεργασίας (ΚΜΕ), τη µνήµη, τις µονάδες εισόδου/εξόδου και το σύστηµα διασύνδεσης

Διαβάστε περισσότερα

Διάλεξη 3η: Τύποι Μεταβλητών, Τελεστές, Είσοδος/Έξοδος

Διάλεξη 3η: Τύποι Μεταβλητών, Τελεστές, Είσοδος/Έξοδος Διάλεξη 3η: Τύποι Μεταβλητών, Τελεστές, Είσοδος/Έξοδος Τμήμα Επιστήμης Υπολογιστών, Πανεπιστήμιο Κρήτης Εισαγωγή στην Επιστήμη Υπολογιστών Βασίζεται σε διαφάνειες του Κ Παναγιωτάκη Πρατικάκης (CSD) Μεταβλητές,

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 6 : Κωδικοποίηση & Συμπίεση εικόνας Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Υπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM).

Υπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM). Μνήμες Ένα από τα βασικά πλεονεκτήματα των ψηφιακών συστημάτων σε σχέση με τα αναλογικά, είναι η ευκολία αποθήκευσης μεγάλων ποσοτήτων πληροφοριών, είτε προσωρινά είτε μόνιμα Οι πληροφορίες αποθηκεύονται

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 8 & 9 11/10/07

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 8 & 9 11/10/07 ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 8 & 9 11/10/07 Τμήμα θεωρίας: Α.Μ. 8, 9 Κάθε Πέμπτη, 11πμ-2μμ, ΑΜΦ23. Διδάσκων: Ντίνος Φερεντίνος Γραφείο 118 email: kpf3@cornell.edu Μάθημα: Θεωρία + προαιρετικό

Διαβάστε περισσότερα

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση) TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών

Διαβάστε περισσότερα

Αναπαράσταση Μη Αριθμητικών Δεδομένων

Αναπαράσταση Μη Αριθμητικών Δεδομένων Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2014-15 Αναπαράσταση Μη Αριθμητικών Δεδομένων (κείμενο, ήχος και εικόνα στον υπολογιστή) http://di.ionio.gr/~mistral/tp/csintro/

Διαβάστε περισσότερα

! Δεδομένα: ανεξάρτητα από τύπο και προέλευση, στον υπολογιστή υπάρχουν σε μία μορφή: 0 και 1

! Δεδομένα: ανεξάρτητα από τύπο και προέλευση, στον υπολογιστή υπάρχουν σε μία μορφή: 0 και 1 Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 5-6 Αναπαράσταση Μη Αριθμητικών Δεδομένων (κείμενο, ήχος και εικόνα στον υπολογιστή) http://di.ionio.gr/~mistral/tp/csintro/

Διαβάστε περισσότερα

Κεφάλαιο 14. οµές Ευρετηρίων για Αρχεία. ιαφάνεια 14-1

Κεφάλαιο 14. οµές Ευρετηρίων για Αρχεία. ιαφάνεια 14-1 ιαφάνεια 14-1 Κεφάλαιο 14 οµές Ευρετηρίων για Αρχεία Copyright 2007 Ramez Elmasri and Shamkant B. NavatheΕλληνικήΈκδοση, ιαβλος, Επιµέλεια Μ.Χατζόπουλος 1 Θα µιλήσουµε για Τύποι Ταξινοµηµένων Ευρετηρίων

Διαβάστε περισσότερα

Προγραμματισμός Ι. Δυναμική Διαχείριση Μνήμης. Δημήτρης Μιχαήλ. Ακ. Έτος 2011-2012. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Προγραμματισμός Ι. Δυναμική Διαχείριση Μνήμης. Δημήτρης Μιχαήλ. Ακ. Έτος 2011-2012. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Προγραμματισμός Ι Δυναμική Διαχείριση Μνήμης Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ακ. Έτος 2011-2012 Ανάγκη για Δυναμική Μνήμη Στατική Μνήμη Μέχρι τώρα χρησιμοποιούσαμε

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος 2001-2002 ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #4

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος 2001-2002 ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #4 ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος 2001-2002 ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #4 «Προγραμματισμός Η/Υ» - Τετράδιο Εργαστηρίου #4 2 Γενικά Στο Τετράδιο #4 του Εργαστηρίου θα αναφερθούμε σε θέματα διαχείρισης πινάκων

Διαβάστε περισσότερα

Περιεχόμενα. Περιεχόμενα

Περιεχόμενα. Περιεχόμενα Περιεχόμενα xv Περιεχόμενα 1 Αρχές της Java... 1 1.1 Προκαταρκτικά: Κλάσεις, Τύποι και Αντικείμενα... 2 1.1.1 Βασικοί Τύποι... 5 1.1.2 Αντικείμενα... 7 1.1.3 Τύποι Enum... 14 1.2 Μέθοδοι... 15 1.3 Εκφράσεις...

Διαβάστε περισσότερα

Τα δεδομένα συνήθως αποθηκεύονται σε αρχεία στο δίσκο

Τα δεδομένα συνήθως αποθηκεύονται σε αρχεία στο δίσκο Οργάνωση Αρχείων 1 Αρχεία Τα δεδομένα συνήθως αποθηκεύονται σε αρχεία στο δίσκο Η μεταφορά δεδομένων από το δίσκο στη μνήμη και από τη μνήμη στο δίσκο γίνεται σε μονάδες blocks Βασικός στόχος η ελαχιστοποίηση

Διαβάστε περισσότερα

Copyright 2007 Ramez Elmasri and Shamkant B. Navathe, Ελληνική Έκδοση, Δίαβλος, Επιμέλεια Μ.Χατζόπουλος Διαφάνεια 14-1

Copyright 2007 Ramez Elmasri and Shamkant B. Navathe, Ελληνική Έκδοση, Δίαβλος, Επιμέλεια Μ.Χατζόπουλος Διαφάνεια 14-1 Δίαβλος, Επιμέλεια Μ.Χατζόπουλος Διαφάνεια 14-1 Κεφάλαιο 14 Δομές Ευρετηρίων για Αρχεία Copyright 2007 Ramez Elmasri and Shamkant B. Navathe Ελληνική Έκδοση, Διαβλος, Επιμέλεια Μ.Χατζόπουλος Θα μιλήσουμε

Διαβάστε περισσότερα

ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ. Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου

ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ. Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου Κ. ΝΑΣΟΠΟΥΛΟΣ - Α. ΧΡΗΣΤΙ ΟΥ Κ. ΝΑΣΟΠΟΥΛΟΣ - Α. ΧΡΗΣΤΙ ΟΥ Οκτώβριος 011 MATLAB

Διαβάστε περισσότερα

[2] Υπολογιστικά συστήματα: Στρώματα. Τύποι δεδομένων. Μπιτ. επικοινωνία εφαρμογές λειτουργικό σύστημα προγράμματα υλικό

[2] Υπολογιστικά συστήματα: Στρώματα. Τύποι δεδομένων. Μπιτ. επικοινωνία εφαρμογές λειτουργικό σύστημα προγράμματα υλικό Υπολογιστικά συστήματα: Στρώματα 1 ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ επικοινωνία εφαρμογές λειτουργικό σύστημα προγράμματα υλικό δεδομένα Αναπαράσταση δεδομένων 2 Τύποι δεδομένων Τα δεδομένα

Διαβάστε περισσότερα

Βασικές Έννοιες Πληροφορικής

Βασικές Έννοιες Πληροφορικής Βασικές Έννοιες Πληροφορικής 1. Τι είναι ο Ηλεκτρονικός Υπολογιστής Ο Ηλεκτρονικός Υπολογιστής είναι οποιαδήποτε συσκευή μεγάλη ή μικρή που επεξεργάζεται δεδομένα και εκτελεί την εργασία του σύμφωνα με

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Συμβολοσειρές. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Συμβολοσειρές. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Συμβολοσειρές Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Συμβολοσειρές Συμβολοσειρές και προβλήματα που αφορούν συμβολοσειρές εμφανίζονται τόσο συχνά που

Διαβάστε περισσότερα

ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ. Αναπαράσταση δεδομένων

ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ. Αναπαράσταση δεδομένων ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Αναπαράσταση δεδομένων Υπολογιστικά συστήματα: Στρώματα 1 επικοινωνία εφαρμογές λειτουργικό σύστημα προγράμματα υλικό δεδομένα Τύποι δεδομένων 2 Τα δεδομένα

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Εισαγωγή. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Εισαγωγή. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Εισαγωγή Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Βιβλιογραφία Robert Sedgewick, Αλγόριθμοι σε C, Μέρη 1-4 (Θεμελιώδεις Έννοιες, Δομές Δεδομένων, Ταξινόμηση,

Διαβάστε περισσότερα

Θα μιλήσουμε για ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ. Διαφάνειες του καθ. Γιάννη Τζίτζικα (Παν. Κρήτης) http://www.ics.forth.

Θα μιλήσουμε για ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ. Διαφάνειες του καθ. Γιάννη Τζίτζικα (Παν. Κρήτης) http://www.ics.forth. Θα μιλήσουμε για ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ Διαφάνειες του καθ. Γιάννη Τζίτζικα (Παν. Κρήτης) http://www.ics.forth.gr/~tzitzik/ Γιατοπιθανοτικότουκαθ. Απ. Παπαδόπουλου (Αριστοτέλειο Παν.) Κεφάλαιο 2

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι

Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι Εισαγωγή στην επιστήμη των υπολογιστών Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι 1 Έννοια Ανεπίσημα, ένας αλγόριθμος είναι μια βήμα προς βήμα μέθοδος για την επίλυση ενός προβλήματος ή την διεκπεραίωση

Διαβάστε περισσότερα

Ενότητα 4. Εισαγωγή στην Πληροφορική. Αναπαράσταση δεδοµένων. Αναπαράσταση πληροφορίας. υαδικοί αριθµοί. Χειµερινό Εξάµηνο 2006-07

Ενότητα 4. Εισαγωγή στην Πληροφορική. Αναπαράσταση δεδοµένων. Αναπαράσταση πληροφορίας. υαδικοί αριθµοί. Χειµερινό Εξάµηνο 2006-07 Ενότητα 4 Εισαγωγή στην Πληροφορική Κεφάλαιο 4Α: Αναπαράσταση πληροφορίας Κεφάλαιο 4Β: Επεξεργαστές που χρησιµοποιούνται σε PCs Χειµερινό Εξάµηνο 2006-07 ρ. Παναγιώτης Χατζηδούκας (Π..407/80) Εισαγωγή

Διαβάστε περισσότερα

Δίκτυα Υπολογιστών ΙΙ (Ασκήσεις Πράξης)

Δίκτυα Υπολογιστών ΙΙ (Ασκήσεις Πράξης) TEI Σερρών Τμήμα Πληροφορικής και Επικοινωνιών Δίκτυα Υπολογιστών ΙΙ (Ασκήσεις Πράξης) Subnetting-VLSM-Troubleshooting IP Τομέας Τηλεπικοινωνιών και Δικτύων Δρ. Αναστάσιος Πολίτης Καθηγητής Εφαρμογών anpol@teiser.gr

Διαβάστε περισσότερα

Δομές Δεδομένων. Λουκάς Γεωργιάδης. http://www.cs.uoi.gr/~loukas/courses/data_structures/ email: loukas@cs.uoi.gr

Δομές Δεδομένων. Λουκάς Γεωργιάδης. http://www.cs.uoi.gr/~loukas/courses/data_structures/ email: loukas@cs.uoi.gr Δομές Δεδομένων http://www.cs.uoi.gr/~loukas/courses/data_structures/ Λουκάς Γεωργιάδης email: loukas@cs.uoi.gr Αλγόριθμος: Μέθοδος για την επίλυση ενός προβλήματος Δεδομένα: Σύνολο από πληροφορίες που

Διαβάστε περισσότερα

Οι βασικές λειτουργίες (ή πράξεις) που γίνονται σε μια δομή δεδομένων είναι:

Οι βασικές λειτουργίες (ή πράξεις) που γίνονται σε μια δομή δεδομένων είναι: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Μια δομή δεδομένων στην πληροφορική, συχνά αναπαριστά οντότητες του φυσικού κόσμου στον υπολογιστή. Για την αναπαράσταση αυτή, δημιουργούμε πρώτα ένα αφηρημένο μοντέλο στο οποίο προσδιορίζονται

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 1: Εισαγωγή- Χαρακτηριστικά Παραδείγματα Αλγορίθμων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ / ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ / ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ / ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΟΥΛΙΟΥ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 ΘΕΜΑ Α

Διαβάστε περισσότερα

Κεφάλαιο 7 Ιεραρχία Μνήμης (Memory Hierarchy)

Κεφάλαιο 7 Ιεραρχία Μνήμης (Memory Hierarchy) Κεφάλαιο 7 Ιεραρχία Μνήμης (Memory Hierarchy) 1 Συστήματα Μνήμης Η οργάνωση του συστήματος μνήμης επηρεάζει τη λειτουργία και απόδοση ενός μικροεπεξεργαστή: Διαχείριση μνήμης και περιφερειακών (Ι/Ο) απότολειτουργικόσύστημα

Διαβάστε περισσότερα

Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1

Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1 Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1 Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ.Χατζόπουλος 2 Δένδρο αναζήτησης είναι ένας ειδικός τύπος δένδρου που χρησιμοποιείται για να καθοδηγήσει την αναζήτηση μιας

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο. Εξαγωγή σχέσεων μεταξύ οντοτήτων από το αρχείο της εφημερίδας «ΤΑ ΝΕΑ» με χρήση τεχνικών μη-επιβλεπόμενης μάθησης

Εθνικό Μετσόβιο Πολυτεχνείο. Εξαγωγή σχέσεων μεταξύ οντοτήτων από το αρχείο της εφημερίδας «ΤΑ ΝΕΑ» με χρήση τεχνικών μη-επιβλεπόμενης μάθησης Εθνικό Μετσόβιο Πολυτεχνείο Σχολη Ηλεκτρολογων Μηχανικων και Μηχανικων Υπολογιστων Τομεας Τεχνολογιας Πληροφορικης και Υπολογιστων Εξαγωγή σχέσεων μεταξύ οντοτήτων από το αρχείο της εφημερίδας «ΤΑ ΝΕΑ»

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Γραφήματα. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Γραφήματα. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Γραφήματα Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Γραφήματα Κατευθυνόμενο Γράφημα Ένα κατευθυνόμενο γράφημα G είναι ένα ζευγάρι (V, E) όπου V είναι ένα

Διαβάστε περισσότερα

Επεξεργασία Χαρτογραφικής Εικόνας

Επεξεργασία Χαρτογραφικής Εικόνας Επεξεργασία Χαρτογραφικής Εικόνας ιδάσκων: Αναγνωστόπουλος Χρήστος Αρχές συµπίεσης δεδοµένων Ήδη συµπίεσης Συµπίεση εικόνων Αλγόριθµος JPEG Γιατί χρειαζόµαστε συµπίεση; Τα σηµερινά αποθηκευτικά µέσα αδυνατούν

Διαβάστε περισσότερα

Διάλεξη 15: Αναδρομή (Recursion) Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 15: Αναδρομή (Recursion) Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 15: Αναδρομή (Recursion) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Η έννοια της αναδρομής Μη αναδρομικός / Αναδρομικός Ορισμός Συναρτήσεων Παραδείγματα Ανάδρομης Αφαίρεση της Αναδρομής

Διαβάστε περισσότερα

Άσκηση 1. Δίδονται: Ποσότητα Πληροφορίας. D4: 300 bit ΔΜ: 2 Kbit E: 10 Mbit. Διαφημιστικά Μηνύματα (ΔΜ) + Εικόνες (Ε)

Άσκηση 1. Δίδονται: Ποσότητα Πληροφορίας. D4: 300 bit ΔΜ: 2 Kbit E: 10 Mbit. Διαφημιστικά Μηνύματα (ΔΜ) + Εικόνες (Ε) Άσκηση 1 Σε ένα δίκτυο τηλεματικής όπου υποστηρίζεται η υπηρεσία Διαχείρισης Στόλου Δημοσίων Οχημάτων Μεταφοράς επιβατών, ο κεντρικός υπολογιστής του κάθε οχήματος λαμβάνει μέσω αισθητήρων τις παρακάτω

Διαβάστε περισσότερα

Ενώσεις δεδομένων Απαριθμητές Ψηφιακοί τελεστές Αναδρομικές συναρτήσεις

Ενώσεις δεδομένων Απαριθμητές Ψηφιακοί τελεστές Αναδρομικές συναρτήσεις Ενώσεις δεδομένων Απαριθμητές Ψηφιακοί τελεστές Αναδρομικές συναρτήσεις Ενώσεις δεδομένων (union) τι και γιατί Συσκευές με μικρή μνήμη => ανάγκη εξοικονόμησης πόρων Παρατήρηση: αχρησιμοποίητη μνήμη. Έστω

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στην Πληροφορική & τον Προγραμματισμό Ενότητα 3 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα

Διαβάστε περισσότερα

ΕΠΛ660 Ανάκτηση Πληροφοριών και Μηχανές Αναζήτησης

ΕΠΛ660 Ανάκτηση Πληροφοριών και Μηχανές Αναζήτησης ΕΠΛ660 Ανάκτηση Πληροφοριών και Μηχανές Αναζήτησης Introduction and Boolean Retrieval Διαδικαστικά Μεταπτυχιακό μάθημα Πληροφορικής Το μάθημα απευθύνεται επίσης σε: προπτυχιακούς φοιτητές (τελειόφοιτους)

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Πίνακες Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ακ. Έτος 2012-2013 Πίνακες Πολλές φορές θέλουμε να κρατήσουμε στην μνήμη πολλά αντικείμενα

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Μέθοδοι Εξόρυξης Κειμένου για Ομαδοποίηση Ιδεών ΔΙΠΛΩΜΑΤΙΚΗ

Διαβάστε περισσότερα

Βάσεις δεδομένων. (10 ο μάθημα) Ηρακλής Βαρλάμης varlamis@hua.gr

Βάσεις δεδομένων. (10 ο μάθημα) Ηρακλής Βαρλάμης varlamis@hua.gr Βάσεις δεδομένων (10 ο μάθημα) Ηρακλής Βαρλάμης varlamis@hua.gr Περιεχόμενα Ευρετήρια Σκανδάλες PL/SQL Δείκτες/Δρομείς 2 Αποθήκευση δεδομένων Πρωτεύουσα αποθήκευση Κύρια μνήμη (main memory) ή κρυφή μνήμη

Διαβάστε περισσότερα

Διαδικασιακός Προγραμματισμός

Διαδικασιακός Προγραμματισμός Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 12 η Αναζήτηση/Ταξινόμηση Πίνακα Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην

Διαβάστε περισσότερα

Πληρουορική Γ Γσμμασίοσ

Πληρουορική Γ Γσμμασίοσ Πληρουορική Γ Γσμμασίοσ Προγραμματισμός και Αλγόριθμοι Από το και τημ Χελώμα στημ Ευριπίδης Βραχνός http://evripides.mysch.gr/ 2014 2015 1 Προγραμματισμός Ζάννειο Πρότυπο Πειραματικό Γυμνάσιο Πειραιά Ενότητα:

Διαβάστε περισσότερα

Διάρθρωση. Στατιστικά Κειμένου Text Statistics. Συχνότητα Εμφάνισης Λέξεων Ο Νόμος του Zipf Ο Νόμος του Heaps. Ανάκτηση Πληροφορίας 2008-2009 1

Διάρθρωση. Στατιστικά Κειμένου Text Statistics. Συχνότητα Εμφάνισης Λέξεων Ο Νόμος του Zipf Ο Νόμος του Heaps. Ανάκτηση Πληροφορίας 2008-2009 1 Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2008 Στατιστικά Κειμένου Text Statistics CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2008 1 Διάρθρωση Συχνότητα Εμφάνισης

Διαβάστε περισσότερα

Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1

Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1 Συστήματα αρίθμησης Δεκαδικό σύστημα αρίθμησης 1402 = 1000 + 400 +2 =1*10 3 + 4*10 2 + 0*10 1 + 2*10 0 Γενικά σε ένα σύστημα αρίθμησης με βάση το b N, ένας ακέραιος αριθμός με n ψηφία παριστάνεται ως:

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΙI

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΙI ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΙI Δομές Ευρετηρίων και Κατακερματισμός Αρχείων II Β. Μεγαλοοικονόμου Δ. Χριστοδουλάκης (παρουσίαση βασισμένη εν μέρη σε σημειώσεις των Silberchatz, Korth και

Διαβάστε περισσότερα

ΗΥ-460 Συστήµατα ιαχείρισης Βάσεων εδοµένων ηµήτρης Πλεξουσάκης Βασίλης Χριστοφίδης

ΗΥ-460 Συστήµατα ιαχείρισης Βάσεων εδοµένων ηµήτρης Πλεξουσάκης Βασίλης Χριστοφίδης Πανεπιστήµιο Κρήτης Τµήµα Επιστήµης Υπολογιστών ΗΥ-460 Συστήµατα ιαχείρισης Βάσεων εδοµένων ηµήτρης Πλεξουσάκης Βασίλης Χριστοφίδης Ονοµατεπώνυµο: Αριθµός Μητρώου: Επαναληπτική Εξέταση (3 ώρες) Ηµεροµηνία:

Διαβάστε περισσότερα

EFFICIENT TOP-K QUERYING OVER SOCIAL-TAGGING NETWORKS

EFFICIENT TOP-K QUERYING OVER SOCIAL-TAGGING NETWORKS EFFICIENT TOP-K QUERYING OVER SOCIAL-TAGGING NETWORKS Ralf Schenkel, Tom Crecelious, Mouna Kacimi, Sebastian Michel, Thomas Neumann, Josiane Xavier Parreira, Gerhard Weikum ΠΡΟΒΛΗΜΑ Εύρεση ενός αποτελεσματικού

Διαβάστε περισσότερα

Τα µπιτ και η σηµασία τους. Σχήµα bit. ΚΕΦΑΛΑΙΟ 1: Αποθήκευση εδοµένων (1/2) 1.7 Αποθήκευση κλασµάτων 1.8 Συµπίεση δεδοµένων 1.9 Σφάλµατα επικοινωνίας

Τα µπιτ και η σηµασία τους. Σχήµα bit. ΚΕΦΑΛΑΙΟ 1: Αποθήκευση εδοµένων (1/2) 1.7 Αποθήκευση κλασµάτων 1.8 Συµπίεση δεδοµένων 1.9 Σφάλµατα επικοινωνίας ΚΕΦΑΛΑΙΟ 1: Αποθήκευση εδοµένων (1/2) ΚΕΦΑΛΑΙΟ 1: Αποθήκευση εδοµένων (2/2) 1.1 Τα bits και ο τρόπος που αποθηκεύονται 1.2 Κύρια µνήµη 1.3 Αποθηκευτικά µέσα 1.4 Αναπαράσταση πληροφοριών ως σχηµάτων bits

Διαβάστε περισσότερα

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ 1) Πότε χρησιμοποιείται η δομή επανάληψης

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 5η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Η Μέθοδος «Διαίρει & Βασίλευε» Η Μέθοδος

Διαβάστε περισσότερα

Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών

Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Υλοποίηση ΑΤΔ με Συνδεδεμένες Λίστες -

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΉΜΑ ΕΠΙΣΤΉΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 7 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: hp://ecla.uop.gr/coure/tst25 e-ail:

Διαβάστε περισσότερα

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ HY3. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ Π. ΤΣΟΜΠΑΝΟΠΟΥΛΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μέθοδος ελαχίστων τετραγώνων Τα σφάλματα

Διαβάστε περισσότερα

Επίπεδο δικτύου IP διευθυνσιοδότηση

Επίπεδο δικτύου IP διευθυνσιοδότηση Επίπεδο δικτύου IP διευθυνσιοδότηση (πες μου την IP σου να σου πω ποιος είσαι) Εργαστήριο Δικτύων Υπολογιστών 2014-2015 Τμήμα Μηχανικών Η/Υ και Πληροφορικής Επίπεδο δικτύου (Network layer) Επίπεδο εφαρμογής

Διαβάστε περισσότερα

Διάλεξη 6: Δείκτες και Πίνακες

Διάλεξη 6: Δείκτες και Πίνακες Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου ΕΠΛ132 Αρχές Προγραμματισμού II Διάλεξη 6: Δείκτες και Πίνακες (Κεφάλαιο 12, KNK-2ED) Δημήτρης Ζεϊναλιπούρ http://www.cs.ucy.ac.cy/courses/epl132 6-1 Περιεχόμενο

Διαβάστε περισσότερα

Τσάπελη Φανή ΑΜ: 2004030113. Ενισχυτική Μάθηση για το παιχνίδι dots. Τελική Αναφορά

Τσάπελη Φανή ΑΜ: 2004030113. Ενισχυτική Μάθηση για το παιχνίδι dots. Τελική Αναφορά Τσάπελη Φανή ΑΜ: 243113 Ενισχυτική Μάθηση για το παιχνίδι dots Τελική Αναφορά Περιγραφή του παιχνιδιού Το παιχνίδι dots παίζεται με δύο παίχτες. Έχουμε έναν πίνακα 4x4 με τελείες, και σκοπός του κάθε παίχτη

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟ MATHLAB Α ΜΕΡΟΣ

ΕΙΣΑΓΩΓΗ ΣΤΟ MATHLAB Α ΜΕΡΟΣ ΕΙΣΑΓΩΓΗ ΣΤΟ MATHLAB Α ΜΕΡΟΣ ΕΙΣΑΓΩΓΗ ΠΙΝΑΚΩΝ ΣΤΟ MATHLAB Αν θέλουμε να εισάγουμε έναν πίνακα στο mathlab και να προβληθεί στην οθόνη βάζουμε τις τιμές του σε άγκιστρα χωρίζοντάς τις με κόμματα ή κενό

Διαβάστε περισσότερα

ΤΑΞΙΝΟΜΗΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΕΡΩΤΗΜΑΤΟΣ

ΤΑΞΙΝΟΜΗΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΕΡΩΤΗΜΑΤΟΣ ΤΑΞΙΝΟΜΗΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΕΡΩΤΗΜΑΤΟΣ Η συνθήκη WHERE βάζει περιορισμούς στις εγγραφές που επιστρέφονται. Ο όρος ORDER BY ταξινομεί τις εγγραφές που επιστρέφονται. Παράδειγμα: SELECT * FROM table_name ORDER

Διαβάστε περισσότερα

Query-Driven Indexing for Scalable Peer-to-Peer Text Retrieval. Gleb Skobeltsyn, Toan Luu, Ivana Podnar Zarko, Martin Rajman, Karl Aberer

Query-Driven Indexing for Scalable Peer-to-Peer Text Retrieval. Gleb Skobeltsyn, Toan Luu, Ivana Podnar Zarko, Martin Rajman, Karl Aberer Query-Driven Indexing for Scalable Peer-to-Peer Text Retrieval Gleb Skobeltsyn, Toan Luu, Ivana Podnar Zarko, Martin Rajman, Karl Aberer Περιγραφή του προβλήματος Ευρετηριοποίηση μεγάλων συλλογών εγγράφων

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 12: Δέντρα ΙΙ -Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης(ΔΔΑ) - Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου - Εισαγωγή

Διαβάστε περισσότερα

C: Από τη Θεωρία στην Εφαρµογή 2 ο Κεφάλαιο

C: Από τη Θεωρία στην Εφαρµογή 2 ο Κεφάλαιο C: Από τη Θεωρία στην Εφαρµογή Κεφάλαιο 2 ο Τύποι Δεδοµένων Δήλωση Μεταβλητών Έξοδος Δεδοµένων Γ. Σ. Τσελίκης Ν. Δ. Τσελίκας Μνήµη και Μεταβλητές Σχέση Μνήµης Υπολογιστή και Μεταβλητών Η µνήµη (RAM) ενός

Διαβάστε περισσότερα

Εργαστήριο Σημασιολογικού Ιστού

Εργαστήριο Σημασιολογικού Ιστού Εργαστήριο Σημασιολογικού Ιστού Ενότητα 8: Εισαγωγή στη SPARQL Βασική Χρήση Μ.Στεφανιδάκης 3-5-2015. Η γλώσσα ερωτημάτων SPARQL Ερωτήσεις (και ενημερώσεις) σε σετ δεδομένων RDF Και σε δεδομένα άλλης μορφής

Διαβάστε περισσότερα

Στοιχεία Προγραμματισμού Σε Γραφικό Περιβάλλον Φύλλο εργασίας 1 ο

Στοιχεία Προγραμματισμού Σε Γραφικό Περιβάλλον Φύλλο εργασίας 1 ο Τετάρτη, 30 Οκτωβρίου 2013 Στοιχεία Προγραμματισμού Σε Γραφικό Περιβάλλον Φύλλο εργασίας 1 ο Λύστε στο Visual Basic Express 2010 τις παρακάτω ασκήσεις: 1. Να δημιουργήσετε ένα νέο Project του είδους Console

Διαβάστε περισσότερα