Ανάκτηση Πληροφορίας

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ανάκτηση Πληροφορίας"

Transcript

1 Ανάκτηση Πληροφορίας Το μοντέλο Boolean Το μοντέλο Vector Ταξινόμηση Μοντέλων IR Ανάκτηση Περιήγηση Κλασικά Μοντέλα Boolean Vector Probabilistic Δομικά Μοντέλα Non-Overlapping Lists Proximal Nodes Browsing Flat Structure Guided Hypertext Συνολοθεωρητικά Fuzzy Extended Boolean Αλγεβρικά Generalized Vector Latent Semantic Neural Networks Πιθανοτικά Inference Network Belief Network Ανάκτηση Πληροφορίας Τμήμα Πληροφορικής ΑΠΘ 2 1

2 Χαρακτηριστικά Μοντέλων IR Ένα μοντέλο IR χαρακτηρίζεται από: D, σύνολο λογικών όψεων κειμένων Q, σύνολο λογικών όψεων ερωτημάτων F, πλαίσιο μοντελοποίησης κειμένων, ερωτημάτων και συσχετισμών τους R(q,d), συνάρτηση βαθμολόγησης Ανάκτηση Πληροφορίας Τμήμα Πληροφορικής ΑΠΘ 3 Λέξεις Κλειδιά (Keywords) Χρησιμοποιούνται σαν αντιπρόσωποι όλου του κειμένου και βοηθούν στη σύντομη περιγραφή του κειμένου (περίληψη). Απαιτείται προσοχή στην επιλογή τους, έτσι ώστε τα κείμενα να διαχωρίζονται κατάλληλα. Ανάκτηση Πληροφορίας Τμήμα Πληροφορικής ΑΠΘ 4 2

3 Παράδειγμα Κείμενο 1 Κείμενο 2 Κείμενο 3 η γεωργική επανάσταση η βιομηχανική επανάσταση η επανάσταση υψηλής τεχνολογίας Η επιλογή της λέξης επανάσταση σαν λέξη κλειδί για τα τρία κείμενα δημιουργεί πρόβλημα. Γιατί; Ανάκτηση Πληροφορίας Τμήμα Πληροφορικής ΑΠΘ 5 Παρατήρηση Όλες οι λέξεις κλειδιά δεν έχουν την ίδια βαρύτητα για τις προτιμήσεις των χρηστών. Κάποιες λέξεις μπορεί να είναι σημαντικές ενώ κάποιες άλλες λιγότερο σημαντικές. Έστω ki μία λέξη κλειδί και dj ένα κείμενο. Το βάρος ορίζεται ως w(ki,dj) >= 0 (ή απλούστερα wij) και δηλώνει το πόσο σημαντική είναι η λέξη κλειδί ki σε σχέση με το κείμενο dj. Ανάκτηση Πληροφορίας Τμήμα Πληροφορικής ΑΠΘ 6 3

4 Ορισμός Έστω t αριθμός των keywords και K={k1,,kt} το σύνολο των keywords. Εάν το keyword ki δεν εμφανίζεται στο κείμενο dj τότε w(ki,dj)=0. Διαφορετικά, w(ki,dj) > 0. Άρα σε κάθε κείμενο dj αντιστοιχεί ένα διάνυσμα βαρών (w1,j, w2,j,, wt,j). Ανάκτηση Πληροφορίας Τμήμα Πληροφορικής ΑΠΘ 7 Κλασικά Μοντέλα IR Κάθε κείμενο αντιπροσωπεύεται από ένα σύνολο χαρακτηριστικών λέξεων (keywords). Ένα keyword είναι χρήσιμο για να θυμόμαστε το βασικό θέμα του κειμένου. Συνήθως τα keywords είναι ουσιαστικά, τα οποία από μόνα τους έχουν νόημα. Ωστόσο, οι μηχανές αναζήτησης θεωρούν ότι όλες οι λέξεις του κειμένου είναι keywords (full text representation) Ανάκτηση Πληροφορίας Τμήμα Πληροφορικής ΑΠΘ 8 4

5 Κλασικά Μοντέλα IR ki ένα keyword (index term) dj ένα κείμενο t συνολικός αριθμός keywords K = {k1, k2,, kt} σύνολο keywords wij >= 0 βάρος μεταξύ ki, dj wij = 0 το ki δε βρίσκεται στο κείμενο dj vec(dj) = (w1j, w2j,, wtj) διάνυσμα που σχετίζεται με το κείμενο dj gi(vec(dj)) = wij συνάρτηση που επιστρέφει το βάρος που σχετίζεται με τα ki και dj Ανάκτηση Πληροφορίας Τμήμα Πληροφορικής ΑΠΘ 9 Boolean Μοντέλο Απλό, βασίζεται στη Θεωρία Συνόλων Διατύπωση ερωτημάτων ως λογικές εκφράσεις ακριβής σημαντική (exact semantics) απλός φορμαλισμός q = ka (kb kc) To keyword είναι είτε παρόν είτε απόν wij ε {0,1} Για παράδειγμα q = ka (kb kc) vec(qdnf) = (1,1,1) (1,1,0) (1,0,0) vec(qcc) = (1,1,0) ένα conjunctive component Ανάκτηση Πληροφορίας Τμήμα Πληροφορικής ΑΠΘ 10 5

6 Boolean Μοντέλο q = ka (kb kc) Ka (1,0,0) (1,1,0) (1,1,1) Kb sim(q,dj) = 1 if vec(qcc) (vec(qcc) ε vec(qdnf)) ( ki, gi(vec(dj)) = gi(vec(qcc))) Kc 0 otherwise Ανάκτηση Πληροφορίας Τμήμα Πληροφορικής ΑΠΘ 11 Μειονεκτήματα Boolean Μοντέλου Δεν υπάρχει υποστήριξη για μερική ταύτιση (partial matching) Δεν υπάρχει βαθμολόγηση των αποτελεσμάτων. Η ερώτηση πρέπει να διατυπωθεί με λογική έκφραση, το οποίο δεν είναι πάντα εύκολο για όλους τους χρήστες. Τα ερωτήματα που διατυπώνονται είναι τις περισσότερες φορές πολύ απλοϊκά. Επομένως, το boolean μοντέλο άλλοτε επιστρέφει πάρα πολλά κείμενα και άλλοτε πάρα πολύ λίγα. Ανάκτηση Πληροφορίας Τμήμα Πληροφορικής ΑΠΘ 12 6

7 Μέθοδοι Υπολογισμού Ομοιότητας Μέθοδοι υπολογισμού ομοιότητας: μετρούν το βαθμό ομοιότητας μεταξύ ενός ερωτήματος και των εγγράφων. Ερώτημα Ομοιότητα Έγγραφα Σημειώστε τη διαφορά με τις μεθόδους που υποστηρίζουν μόνο επακριβή αναζήτηση (exact match). Για παράδειγμα, στο Boolean μοντέλο ένα κείμενο χαρακτηρίζεται είτε σχετικό είτε άσχετο ως προς το ερώτημα. Ανάκτηση Πληροφορίας Τμήμα Πληροφορικής ΑΠΘ 13 Χρήση Καταλόγων Ερώτημα Κατάλογος Έγγραφα Μηχανισμός υπολογισμού ομοιότητας μεταξύ ερωτήματος και κειμένων της συλλογής. Σύνολο κειμένων με σειρά βαθμού ομοιότητας Ανάκτηση Πληροφορίας Τμήμα Πληροφορικής ΑΠΘ 14 7

8 Το Βασικό Πρόβλημα Πρόβλημα: Πόσο μοιάζουν δύο έγγραφα; Ιδέα: Όσο περισσότερες κοινές λέξεις έχουν δύο κείμενα, τόσο περισσότερο μοιάζουν. Παράδειγμα: Έστω τα ακόλουθα έγγραφα. Πόσο μοιάζουν μεταξύ τους; d 1 d 2 d 3 ant ant bee dog bee dog hog dog ant dog cat gnu dog eel fox Ανάκτηση Πληροφορίας Τμήμα Πληροφορικής ΑΠΘ 15 Διανυσματικό Μοντέλο: δυαδικά βάρη Ο χώρος των όρων Αποτελείται από m διαστάσεις, όπου m είναι ο αριθμός των μοναδικών όρων που χρησιμοποιούνται στα έγγραφα. Διάνυσμα Το έγγραφο dj αναπαρίσταται ως διάνυσμα με συντεταγμένες wij (όρος i, έγγραφο j). w ij = 1 w ij = 0 αν ο i-οστός όρος εμφανίζεται στο dj διαφορετικά Ανάκτηση Πληροφορίας Τμήμα Πληροφορικής ΑΠΘ 16 8

9 Διανυσματικό Μοντέλο: δυαδικά βάρη t 3 διάνυσμα εγγράφου d 1 w 31 t 2 w 11 w 21 t 1 Ανάκτηση Πληροφορίας Τμήμα Πληροφορικής ΑΠΘ 17 Διανυσματικό Μοντέλο: δυαδικά βάρη document text terms d 1 ant ant bee ant bee d 2 dog bee dog hog dog ant dog ant bee dog hog d 3 cat gnu dog eel fox cat dog eel fox gnu ant bee cat dog eel fox gnu hog d d d διανύσματα 8 διαστάσεις w ij = 1 αν το dj περιέχει τον i-οστό όρο Ανάκτηση Πληροφορίας Τμήμα Πληροφορικής ΑΠΘ 18 9

10 Ομοιότητα Εγγράφων Η ομοιότητα μεταξύ δύο εγγράφων υπολογίζεται με βάση τη γωνία που σχηματίζεται μεταξύ των δύο αντίστοιχων διανυσμάτων. Πιο συγκεκριμένα, χρησιμοποιείται το συνημίτονο της γωνίας θ. t 3 θ d 1 d 2 t 2 t 1 Ανάκτηση Πληροφορίας Τμήμα Πληροφορικής ΑΠΘ 19 Μαθηματικές Έννοιες x = (x 1, x 2, x 3,..., x n ) διάνυσμα στο χώρο των n διαστάσεων Μέτρο του x δίνεται με βάση το Πυθαγόρειο θεώρημα x 2 = x 12 + x 22 + x x n 2 Αν x 1 και x 2 είναι διανύσματα: Εσωτερικό Γινόμενο (dot product) δίνεται από: x 1.x 2 = x 11 x 21 + x 12 x 22 + x 13 x x 1n x 2n Συνημίτονο γωνίας μεταξύ των διανυσμάτων x 1 and x 2: x cos (θ) = 1.x 2 x 1 x 2 Ανάκτηση Πληροφορίας Τμήμα Πληροφορικής ΑΠΘ 20 10

11 Παράδειγμα: δυαδικά βάρη ant bee cat dog eel fox gnu hog length d d d Ανάκτηση Πληροφορίας Τμήμα Πληροφορικής ΑΠΘ 21 Παράδειγμα: δυαδικά βάρη Πίνακας ομοιότητα εγγράφων d 1 d 2 d 3 d d d Ανάκτηση Πληροφορίας Τμήμα Πληροφορικής ΑΠΘ 22 11

12 Ομοιότητα Ερωτήματος-Εγγράφου t 3 q d cos(θ) is used as a measure of similarity θ t 2 t 1 Ανάκτηση Πληροφορίας Τμήμα Πληροφορικής ΑΠΘ 23 Ομοιότητα Ερωτήματος-Εγγράφου query q ant dog document text terms d 1 ant ant bee ant bee d 2 dog bee dog hog dog ant dog ant bee dog hog d 3 cat gnu dog eel fox cat dog eel fox gnu ant bee cat dog eel fox gnu hog q 1 1 d d d Ανάκτηση Πληροφορίας Τμήμα Πληροφορικής ΑΠΘ 24 12

13 Ομοιότητα Ερωτήματος-Εγγράφου d 1 d 2 d 3 q 1/2 1/ 2 1/ Με βάση το ερώτημα και τα έγγραφα του παραδείγματος το έγγραφο που χαρακτηρίζεται περισσότερο σχετικό ως προς q είναι το d2, μετά το d1 και τέλος το d3. Ανάκτηση Πληροφορίας Τμήμα Πληροφορικής ΑΠΘ 25 Χρήση του Διανυσματικού Μοντέλου Ερώτημα με κατώφλι (περιοχής) Για το ερώτημα q το σύστημα επιστρέφει όλα τα έγγραφα που έχουν βαθμό ομοιότητας μεγαλύτερο από κάποιο κατώφλι (π.χ., > 0.6). Ερώτημα top-k Για το ερώτημα q το σύστημα επιστρέφει τα k έγγραφα που έχουν το μεγαλύτερο βαθμό ομοιότητας ως προς το q. Ανάκτηση Πληροφορίας Τμήμα Πληροφορικής ΑΠΘ 26 13

14 Γενίκευση: μη δυαδικά βάρη Το Διανυσματικό Μοντέλο βελτιώνεται με την εισαγωγή επιπλέον πληροφορίας για τον προσδιορισμό των βαρών wij. Μερικές από τις πληροφορίες αυτές είναι οι εξής: Το πλήθος των εγγράφων που περιέχουν τον όρο, Πόσες φορές εμφανίζεται ένας όρος σε ένα έγγραφο, Το μήκος των εγγράφων. Ανάκτηση Πληροφορίας Τμήμα Πληροφορικής ΑΠΘ 27 Διανυσματικό Μοντέλο: μη δυαδικά βάρη Ο χώρος των όρων Αποτελείται από m διαστάσεις, όπου m είναι ο αριθμός των μοναδικών όρων που χρησιμοποιούνται στα έγγραφα. Διάνυσμα Το έγγραφο dj αναπαρίσταται ως διάνυσμα με συντεταγμένες wij (όρος i, έγγραφο j). w ij > 0 w ij = 0 αν ο i-οστός όρος εμφανίζεται στο dj διαφορετικά Η τιμή w ij ορίζεται ως το βάρος του i-οστού όρου στο j-οστό έγγραφο. Ανάκτηση Πληροφορίας Τμήμα Πληροφορικής ΑΠΘ 28 14

15 Προσδιορισμός Βαρών Η γενική μορφή προσδιορισμού των βαρών wij είναι: wij = TFij x IDFi Όπου TFij είναι ένας παράγοντας που εξαρτάται από τη συχνότητα εμφάνισης του i-οστού όρου στο j-οστό έγγραφο. Ο παράγοντας IDFi εξαρτάται από το πλήθος των εγγράφων που περιέχουν τον όρο ti. Ανάκτηση Πληροφορίας Τμήμα Πληροφορικής ΑΠΘ 29 Προσδιορισμός Βαρών Στη βιβλιογραφία έχουν προταθεί διάφοροι μαθηματικοί τύποι υπολογισμού των ποσοτήτων TF και IDF (και κατά συνέπεια των βαρών wij). Έστω, N συνολικός αριθμός κειμένων ni αριθμός εγγράφων που περιέχουν τον όρο ti freq(i,j) συχνότητα εμφάνισης του όρου ti στο κείμενο dj Ο κανονικοποιημένος παράγοντας μπορεί να υπολογιστεί ως: TFij = freq(i,j) / maxl(freq(l,j)) Το μέγιστο υπολογίζεται από όλους τους όρους που περιέχονται στο dj O παράγοντας IDFi μπορεί να υπολογιστεί ως: IDFi = log (N/ni) Ο λογάριθμος χρησιμοποιείται για να γίνουν οι τιμές συγκρίσιμες. Ανάκτηση Πληροφορίας Τμήμα Πληροφορικής ΑΠΘ 30 15

16 Διανυσματικό Μοντέλο Πλεονεκτήματα: Η χρήση βαρών βελτιώνει την ποιότητα του αποτελέσματος Η μερική ταύτιση επιτρέπει την ανάκτηση κειμένων τα οποία προσεγγίζουν τη συνθήκη της ερώτησης. Η χρήση του συνημιτόνου (cosine ranking formula) ταξινομεί τα κείμενα με βάση την ομοιότητά τους ως προς το ερώτημα. Μειονεκτήματα: Το μοντέλο υποθέτει ότι οι όροι είναι ανεξάρτητοι μεταξύ τους, κάτι που απλοποιεί την κατάσταση, όμως δεν ισχύει γενικά. Ανάκτηση Πληροφορίας Τμήμα Πληροφορικής ΑΠΘ 31 16

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4: Μοντελοποίηση: Διανυσματικό μοντέλο Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Ανάκτηση πληροφορίας

Ανάκτηση πληροφορίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ανάκτηση πληροφορίας Ενότητα 3: Μοντελοποίηση: Boolean μοντέλο Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #04 Εισαγωγή στα Μοντέλα Ανάκτησης Πληροφορίας Boolean Μοντέλο 1 Άδεια χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Μοντελοποίηση. Μοντέλα IR που έχουν προταθεί και χρησιµοποιούνται από υπάρχοντα συστήµατα.

Μοντελοποίηση. Μοντέλα IR που έχουν προταθεί και χρησιµοποιούνται από υπάρχοντα συστήµατα. Μοντελοποίηση Μοντέλα I που έχουν προταθεί και χρησιµοποιούνται από υπάρχοντα συστήµατα. Ταξινόµηση Μοντέλων I etreval Browsng Κλασικά Μοντέλα Boolean Vector robablstc οµικά Μοντέλα Non-Overlappng Lsts

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #06 Πιθανοτικό Μοντέλο 1 Άδεια χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Το Πιθανοκρατικό Μοντέλο Κλασικά Μοντέλα Ανάκτησης Τρία είναι τα, λεγόμενα, κλασικά μοντέλα ανάκτησης: Λογικό (Boolean) που βασίζεται στη Θεωρία Συνόλων Διανυσματικό (Vector) που βασίζεται στη Γραμμική

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #05 Ακρίβεια vs. Ανάκληση Extended Boolean Μοντέλο Fuzzy Μοντέλο 1 Άδεια χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Part A. CS-463 Information Retrieval Systems. Yannis Tzitzikas. University of Crete. CS-463,Spring 05 PART (A) PART (C):

Part A. CS-463 Information Retrieval Systems. Yannis Tzitzikas. University of Crete. CS-463,Spring 05 PART (A) PART (C): CS-463 Information Systems Μοντέλα Ανάκτησης ( Models) Part A Yannis Tzitzikas University of Crete CS-463,Spring 05 Lecture : 3 Date : 1-3- ιάρθρωση PART (A) Ανάκτηση και Φιλτράρισµα Εισαγωγή στα Μοντέλα

Διαβάστε περισσότερα

HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems. Μοντέλα Ανάκτησης Ι

HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems. Μοντέλα Ανάκτησης Ι Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Μοντέλα Ανάκτησης Ι (Retrieval Models) Γιάννης Τζίτζικας άλ ιάλεξη

Διαβάστε περισσότερα

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών HY463 - Συστήματα Ανάκτησης Πληροφοριών Εαρινό Εξάμηνο. Φροντιστήριο 3.

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών HY463 - Συστήματα Ανάκτησης Πληροφοριών Εαρινό Εξάμηνο. Φροντιστήριο 3. Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών HY6 - Συστήματα Ανάκτησης Πληροφοριών 007 008 Εαρινό Εξάμηνο Φροντιστήριο Retrieval Models Άσκηση Θεωρείστε μια συλλογή κειμένων που περιέχει τα ακόλουθα

Διαβάστε περισσότερα

Θα μιλήσουμε για ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ. Διαφάνειες του καθ. Γιάννη Τζίτζικα (Παν. Κρήτης) http://www.ics.forth.

Θα μιλήσουμε για ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ. Διαφάνειες του καθ. Γιάννη Τζίτζικα (Παν. Κρήτης) http://www.ics.forth. Θα μιλήσουμε για ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ Διαφάνειες του καθ. Γιάννη Τζίτζικα (Παν. Κρήτης) http://www.ics.forth.gr/~tzitzik/ Γιατοπιθανοτικότουκαθ. Απ. Παπαδόπουλου (Αριστοτέλειο Παν.) Κεφάλαιο 2

Διαβάστε περισσότερα

Θα μιλήσουμε για ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ. Διαφάνειες του καθ. Γιάννη Τζίτζικα (Παν. Κρήτης)

Θα μιλήσουμε για ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ. Διαφάνειες του καθ. Γιάννη Τζίτζικα (Παν. Κρήτης) Θα μιλήσουμε για ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ Διαφάνειες του καθ. Γιάννη Τζίτζικα (Παν. Κρήτης) http://www.ics.forth.gr/~tzitzik/ Για το πιθανοκρατικό του καθ. Απ. Παπαδόπουλου (Αριστοτέλειο Παν.) Κεφάλαιο

Διαβάστε περισσότερα

Διαχείριση εγγράφων. Αποθήκες και Εξόρυξη Δεδομένων Διδάσκων: Μ. Χαλκίδη

Διαχείριση εγγράφων. Αποθήκες και Εξόρυξη Δεδομένων Διδάσκων: Μ. Χαλκίδη Διαχείριση εγγράφων Αποθήκες και Εξόρυξη Δεδομένων Διδάσκων: Μ. Χαλκίδη Απεικόνιση κειμένων για Information Retrieval Δεδομένου ενός κειμένου αναζητούμε μια μεθοδολογία απεικόνισης του γραμματικού χώρου

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Λανθάνουσα Σημασιολογική Ανάλυση (Latent Semantic Analysis) Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ. Μάθημα 7 ο : Ανάκτηση πληροφορίας. Γεώργιος Πετάσης. Ακαδημαϊκό Έτος:

ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ. Μάθημα 7 ο : Ανάκτηση πληροφορίας. Γεώργιος Πετάσης. Ακαδημαϊκό Έτος: ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ Μάθημα 7 ο : Ανάκτηση πληροφορίας Γεώργιος Πετάσης Ακαδημαϊκό Έτος: 2012 2013 ΤMHMA MHXANIKΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ, Πανεπιστήμιο Πατρών, 2012 2013 Οι διαφάνειες αυτού του μαθήματος βασίζονται

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Μοντελοποίηση: Πιθανοκρατικό Μοντέλο Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΛΥΣΕΙΣ 2 ης ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ

ΛΥΣΕΙΣ 2 ης ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ ΛΥΣΕΙΣ 2 ης ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ Άσκηση 1 Θεωρείστε μια συλλογή κειμένων που περιέχει τα ακόλουθα 5 έγγραφα: Έγγραφο 1: «Computer Games» Έγγραφο 2: «Computer Games Computer Games» Έγγραφο 3: «Games Theory and

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας (Information Retrieval IR) ιδακτικό βοήθηµα 2. Πανεπιστήµιο Θεσσαλίας Πολυτεχνική Σχολή Τµήµα Μηχ. Η/Υ, Τηλ/νιών & ικτύων

Ανάκτηση Πληροφορίας (Information Retrieval IR) ιδακτικό βοήθηµα 2. Πανεπιστήµιο Θεσσαλίας Πολυτεχνική Σχολή Τµήµα Μηχ. Η/Υ, Τηλ/νιών & ικτύων Ανάκτηση Πληροφορίας (Information Retrieval IR) Πανεπιστήµιο Θεσσαλίας Πολυτεχνική Σχολή Τµήµα Μηχ. Η/Υ, Τηλ/νιών & ικτύων Ακαδηµαϊκό Έτος 2005-2006 ιδακτικό βοήθηµα 1 Καλύπτει το 60% του 510 σελίδες 1η

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας (Information Retrieval IR)

Ανάκτηση Πληροφορίας (Information Retrieval IR) Ανάκτηση Πληροφορίας (Information Retrieval IR) Πανεπιστήµιο Θεσσαλίας Πολυτεχνική Σχολή Τµήµα Μηχ. Η/Υ, Τηλ/νιών & ικτύων Ακαδηµαϊκό Έτος 2005-2006 ιδακτικό βοήθηµα 1 Καλύπτει το 60% του αντικειµένου

Διαβάστε περισσότερα

Προτεινόμενες Λύσεις 1 ης Σειράς Ασκήσεων (Αξιολόγηση της Αποτελεσματικότητας της Ανάκτησης & Μοντέλα Ανάκτησης)

Προτεινόμενες Λύσεις 1 ης Σειράς Ασκήσεων (Αξιολόγηση της Αποτελεσματικότητας της Ανάκτησης & Μοντέλα Ανάκτησης) Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών ΗΥ463 Συστήματα Ανάκτησης Πληροφοριών 28-29 Εαρινό Εξάμηνο Προτεινόμενες Λύσεις 1 ης Σειράς Ασκήσεων (Αξιολόγηση της Αποτελεσματικότητας της Ανάκτησης &

Διαβάστε περισσότερα

6. Βαθμολόγηση, Στάθμιση Όρων, και το Μοντέλο Διανυσματικού Χώρου

6. Βαθμολόγηση, Στάθμιση Όρων, και το Μοντέλο Διανυσματικού Χώρου Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 6. Βαθμολόγηση, Στάθμιση Όρων, και το Μοντέλο Διανυσματικού Χώρου Ανάκτηση Πληροφοριών Χρήστος ουλκερίδης

Διαβάστε περισσότερα

Part C. CS-463 Information Retrieval Systems. Yannis Tzitzikas. University of Crete PART (C): CS-463,Spring 05 PART (A)

Part C. CS-463 Information Retrieval Systems. Yannis Tzitzikas. University of Crete PART (C): CS-463,Spring 05 PART (A) CS-463 Information Systems Μοντέλα Ανάκτησης ( Models) Part C Yannis Tzitzikas University of Crete CS-463,Spring 05 Lecture : 5 Date : 8-3- ιάρθρωση ιάλεξης PART (A) Ανάκτηση και Φιλτράρισµα Εισαγωγή στα

Διαβάστε περισσότερα

Information Retrieval

Information Retrieval Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη 7: Βαθμολόγηση. Στάθμιση όρων. Το μοντέλο διανυσματικού χώρου. 1 Κεφ. 6 Τι θα δούμε σήμερα; Βαθμολόγηση

Διαβάστε περισσότερα

Τι (άλλο) θα δούμε σήμερα;

Τι (άλλο) θα δούμε σήμερα; Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη6: Βαθμολόγηση. Στάθμιση όρων. Το μοντέλο διανυσματικού χώρου. 1 Κεφ. 6 Τι (άλλο) θα δούμε σήμερα;

Διαβάστε περισσότερα

Θέμα : Retrieval Models. Ημερομηνία : 9 Μαρτίου 2006

Θέμα : Retrieval Models. Ημερομηνία : 9 Μαρτίου 2006 ΗΥ-464: Συστήματα Ανάκτησης Πληροφορίας Informaton Retreval Systems Πανεπιστήμιο Κρήτης Άνοιξη 2006 Φροντιστήριο 2 Θέμα : Retreval Models Ημερομηνία : 9 Μαρτίου 2006 Outlne Prevous Semester Exercses Set

Διαβάστε περισσότερα

Μοντέλα Ανάκτησης IΙ (Retrieval Models)

Μοντέλα Ανάκτησης IΙ (Retrieval Models) Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2008 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Μοντέλα Ανάκτησης IΙ (Retrieval Models) Γιάννης Τζίτζικας ιάλεξη

Διαβάστε περισσότερα

ΑΣΚΗΣΗ. Δημιουργία Ευρετηρίων Συλλογής Κειμένων

ΑΣΚΗΣΗ. Δημιουργία Ευρετηρίων Συλλογής Κειμένων Γλωσσική Τεχνολογία Ακαδημαϊκό Έτος 2011-2012 Ημερομηνία Παράδοσης: Στην εξέταση του μαθήματος ΑΣΚΗΣΗ Δημιουργία Ευρετηρίων Συλλογής Κειμένων Σκοπός της άσκησης είναι η υλοποίηση ενός συστήματος επεξεργασίας

Διαβάστε περισσότερα

Δημιουργία Ευρετηρίων Συλλογής Κειμένων

Δημιουργία Ευρετηρίων Συλλογής Κειμένων Γλωσσική Τεχνολογία Ακαδημαϊκό Έτος 2011-2012 - Project Σεπτεμβρίου Ημερομηνία Παράδοσης: Στην εξέταση του μαθήματος Εξέταση: Προφορική, στο τέλος της εξεταστικής. Θα βγει ανακοίνωση στο forum. Ομάδες

Διαβάστε περισσότερα

Μοντέλα Ανάκτησης Ι (Retrieval Models)

Μοντέλα Ανάκτησης Ι (Retrieval Models) Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 006 Διάρθρωση HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Informaion Rerieval (IR) Sysems Μοντέλα Ανάκτησης Ι (Rerieval Models) Εισαγωγή στα Μοντέλα

Διαβάστε περισσότερα

Πιθανοκρατικό μοντέλο

Πιθανοκρατικό μοντέλο Πιθανοκρατικό μοντέλο Το μοντέλο MAP Αλέξανδρος Γκιμπερίτης Βασίλης Μπούργος Δημήτρης Σουραβλιάς 1 Εισαγωγικές έννοιες Κάθε έγγραφο d της συλλογής παριστάνεται από το δυαδικό διάνυσμα x = (x 1, x 2,...,

Διαβάστε περισσότερα

ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 2 του βιβλίου. 2 ο ΜΕΡΟΣ

ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ.  Κεφάλαιο 2 του βιβλίου. 2 ο ΜΕΡΟΣ ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ Διαφάνειες του καθ. Γιάννη Τζίτζικα (Παν. Κρήτης) http://www.ics.forth.gr/~tzitzik/ Για το πιθανοκρατικό του καθ. Απ. Παπαδόπουλου (Αριστοτέλειο Παν.) Κεφάλαιο 2 του βιβλίου

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Ανάδραση Σχετικότητας (Relevance Feedback ή RF) Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας. Διδάσκων: Φοίβος Μυλωνάς. Διάλεξη #03

Ανάκτηση Πληροφορίας. Διδάσκων: Φοίβος Μυλωνάς. Διάλεξη #03 Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #03 Βασικές έννοιες Ανάκτησης Πληροφορίας Δομή ενός συστήματος IR Αναζήτηση με keywords ευφυής

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανύσματα Ευθείες - Επίπεδα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Διάνυσμα ή Διανυσματικό μέγεθος (Vector) Μέγεθος που

Διαβάστε περισσότερα

ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΣΤΟΝ ΠΑΓΚΟΣΜΙΟ ΙΣΤΟ & ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ

ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΣΤΟΝ ΠΑΓΚΟΣΜΙΟ ΙΣΤΟ & ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΣΤΟΝ ΠΑΓΚΟΣΜΙΟ ΙΣΤΟ & ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ 5//013 ο ΓΛΩΣΣΑ ΚΑΙ ΑΝΑΖΗΤΗΣΗ ΠΛΗΡΟΦΟΡΙΑΣ Ενότητες Εισαγωγή Συστήματα Aνάκτησης πληροφορίας Κατασκευή ερωτημάτων Δεικτοδότηση Αναζήτηση στο

Διαβάστε περισσότερα

Γλωσσικη τεχνολογια. Προεπεξεργασία Κειμένου

Γλωσσικη τεχνολογια. Προεπεξεργασία Κειμένου Γλωσσικη τεχνολογια Προεπεξεργασία Κειμένου Στόχος Επεξεργασίας Γραπτό κείμενο: Τρόπος επικοινωνίας Φέρει σημασιολογικό περιεχόμενο Αναζητούμε τρόπο να: Μετρήσουμε το πληροφοριακό περιεχόμενο Ποσοτικοποιήσουμε

Διαβάστε περισσότερα

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013 stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ Στέλιος Τζωρτζάκης 1 3 4 Ο διανυσματικός χώρος των φυσικών καταστάσεων Η έννοια

Διαβάστε περισσότερα

Part B. CS-463 Information Retrieval Systems. Yannis Tzitzikas. University of Crete. CS-463,Spring 05 PART (A) PART (C):

Part B. CS-463 Information Retrieval Systems. Yannis Tzitzikas. University of Crete. CS-463,Spring 05 PART (A) PART (C): CS-463 Information Systems Μοντέλα Ανάκτησης ( Models) Part B Yannis Tzitzikas University of Crete CS-463,Spring 05 Lecture : 4 Date : 3-3- ιάρθρωση ιάλεξης PART (A) Ανάκτηση και Φιλτράρισµα Εισαγωγή στα

Διαβάστε περισσότερα

Μία αξιωματική προσέγγιση για τη διαφοροποίηση των αποτελεσμάτων

Μία αξιωματική προσέγγιση για τη διαφοροποίηση των αποτελεσμάτων Μία αξιωματική προσέγγιση για τη διαφοροποίηση των αποτελεσμάτων ΜΑΘΗΜΑ Ανάκτηση Πληροφορίας Παππάς Χρήστος Ιωάννινα, Ιανουάριος 2010 Διάρθρωση Εισαγωγή Πρόβλημα Σημαντικότητα Ενδιαφέροντα θέματα Τεχνικό

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 10: Παράλληλη Ανάκτηση Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 1: Μέθοδοι Αναγνώρισης Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

1.1 ΟΡΙΣΜΟΙ, ΣΤΟΙΧΕΙΩΔΗΣ ΠΡΟΣΕΓΓΙΣΗ

1.1 ΟΡΙΣΜΟΙ, ΣΤΟΙΧΕΙΩΔΗΣ ΠΡΟΣΕΓΓΙΣΗ Κεφάλαιο 1 ΔΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ 1.1 ΟΡΙΣΜΟΙ, ΣΤΟΙΧΕΙΩΔΗΣ ΠΡΟΣΕΓΓΙΣΗ Στις θετικές επιστήμες και στις τεχνολογικές τους εφαρμογές συναντάμε συχνά μεγέθη που χαρακτηρίζονται μόνο από το μέτρο τους: τη μάζα,

Διαβάστε περισσότερα

Πίνακες Διασποράς. Χρησιμοποιούμε ένα πίνακα διασποράς T και μια συνάρτηση διασποράς h. Ένα στοιχείο με κλειδί k αποθηκεύεται στη θέση

Πίνακες Διασποράς. Χρησιμοποιούμε ένα πίνακα διασποράς T και μια συνάρτηση διασποράς h. Ένα στοιχείο με κλειδί k αποθηκεύεται στη θέση Πίνακες Διασποράς Χρησιμοποιούμε ένα πίνακα διασποράς T και μια συνάρτηση διασποράς h Ένα στοιχείο με κλειδί k αποθηκεύεται στη θέση κλειδί k T 0 1 2 3 4 5 6 7 U : χώρος πιθανών κλειδιών Τ : πίνακας μεγέθους

Διαβάστε περισσότερα

Τεχνικές ταξινόµησης αποτελεσµάτων µηχανών αναζήτησης µε βάση την ιστορία του χρήστη

Τεχνικές ταξινόµησης αποτελεσµάτων µηχανών αναζήτησης µε βάση την ιστορία του χρήστη Τεχνικές ταξινόµησης αποτελεσµάτων µηχανών αναζήτησης µε βάση την ιστορία του χρήστη Όνοµα: Νικολαΐδης Αντώνιος Επιβλέπων: Τ. Σελλής Περίληψη ιπλωµατικής Εργασίας Συνεπιβλέποντες: Θ. αλαµάγκας, Γ. Γιαννόπουλος

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Ανάκτηση Πληροφορίας Αποτίμηση Αποτελεσματικότητας Μέτρα Απόδοσης Precision = # σχετικών κειμένων που επιστρέφονται # κειμένων που επιστρέφονται Recall = # σχετικών κειμένων που επιστρέφονται # συνολικών

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ 3 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ

ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ 3 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ 3 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΑΣΚΗΣΗ Σύμφωνα με στοιχεία από το Πανεπιστήμιο της Οξφόρδης η πιθανότητα ένας φοιτητής να αποφοιτήσει μέσα σε 5 χρόνια από την ημέρα εγγραφής του στο

Διαβάστε περισσότερα

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα.

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα. i Π Ρ Ο Λ Ο Γ Ο Σ Το βιβλίο αυτό αποτελεί μια εισαγωγή στα βασικά προβλήματα των αριθμητικών μεθόδων της υπολογιστικής γραμμικής άλγεβρας (computational linear algebra) και της αριθμητικής ανάλυσης (numerical

Διαβάστε περισσότερα

4 η ΕΝΟΤΗΤΑ ΜΕΤΑΕΥΡΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ

4 η ΕΝΟΤΗΤΑ ΜΕΤΑΕΥΡΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 4 η ΕΝΟΤΗΤΑ ΜΕΤΑΕΥΡΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

7. Υπολογισμός Βαθμολογιών σε ένα Πλήρες Σύστημα Αναζήτησης

7. Υπολογισμός Βαθμολογιών σε ένα Πλήρες Σύστημα Αναζήτησης Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 7. Υπολογισμός Βαθμολογιών σε ένα Πλήρες Σύστημα Αναζήτησης Ανάκτηση Πληροφοριών Χρήστος ουλκερίδης Τμήμα

Διαβάστε περισσότερα

Διάνυσμα: έχει μέτρο, διεύθυνση και φορά

Διάνυσμα: έχει μέτρο, διεύθυνση και φορά Διάνυσμα: έχει μέτρο, διεύθυνση και φορά Πολλά φυσικά μεγέθη είναι διανυσματικά (π.χ. δύναμη, ταχύτητα, επιτάχυνση, γωνιακή ταχύτητα, ροπή, στροφορμή ) Συμβολισμός του διανύσματος: Συμβολισμός του μέτρου

Διαβάστε περισσότερα

Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή. Αφφινικοί Μετασχηματισμοί Αναπαράσταση Γεωμετρικών Μορφών

Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή. Αφφινικοί Μετασχηματισμοί Αναπαράσταση Γεωμετρικών Μορφών Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή Γεωμετρικός Πυρήνας Γεωμετρικός Πυρήνας Αφφινικοί Μετασχηματισμοί Αναπαράσταση Γεωμετρικών Μορφών Γεωμετρικός Πυρήνας Εξομάλυνση Σημεία Καμπύλες Επιφάνειες

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ 5. Εισαγωγή στη διανυσματική άλγεβρα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ 5. Εισαγωγή στη διανυσματική άλγεβρα ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ 5. Εισαγωγή στη διανυσματική άλγεβρα Φ. Καραντώνη, Δρ. Πολ. Μηχανικός Επίκουρος Καθηγήτρια 1 Σημαντική σημείωση Δεδομένου ότι θα διδαχθεί

Διαβάστε περισσότερα

Μαθηµατικά Β Λυκείου Θετικής - τεχνολογικής κατεύθυνσης. Διανύσματα ΚΑΤΗΓΟΡΙΑ 8. Εσωτερικό γινόµενο διανυσµάτων. Ασκήσεις προς λύση 1-50

Μαθηµατικά Β Λυκείου Θετικής - τεχνολογικής κατεύθυνσης. Διανύσματα ΚΑΤΗΓΟΡΙΑ 8. Εσωτερικό γινόµενο διανυσµάτων. Ασκήσεις προς λύση 1-50 Μαθηµατικά Β Λυκείου Θετικής - τεχνολογικής κατεύθυνσης Διανύσματα Εσωτερικό γινόµενο διανυσµάτων. ΚΑΤΗΓΟΡΙΑ 8 Ασκήσεις προς λύση 1-50 1. Θεωρούμε τα σημεία Α(1,2), Β(4,1). Να βρείτε σημείο Μ του άξονα

Διαβάστε περισσότερα

ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ. Μάθημα 10 ο : Αποσαφήνιση εννοιών λέξεων. Γεώργιος Πετάσης. Ακαδημαϊκό Έτος:

ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ. Μάθημα 10 ο : Αποσαφήνιση εννοιών λέξεων. Γεώργιος Πετάσης. Ακαδημαϊκό Έτος: ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ Μάθημα 10 ο : Αποσαφήνιση εννοιών λέξεων Γεώργιος Πετάσης Ακαδημαϊκό Έτος: 2012 2013 ΤMHMA MHXANIKΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ, Πανεπιστήμιο Πατρών, 2012 2013 Οι διαφάνειες αυτού του μαθήματος

Διαβάστε περισσότερα

Το εσωτερικό ενός Σ Β

Το εσωτερικό ενός Σ Β Επεξεργασία Ερωτήσεων 1 Εισαγωγή ΜΕΡΟΣ 1 Γενική Εικόνα του Μαθήµατος Μοντελοποίηση (Μοντέλο Ο/Σ, Σχεσιακό, Λογικός Σχεδιασµός) Προγραµµατισµός (Σχεσιακή Άλγεβρα, SQL) ηµιουργία/κατασκευή Εισαγωγή εδοµένων

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Διανύσματα στους Rn, Cn, διανύσματα στο χώρο (3) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Διανύσματα στους Rn, Cn, διανύσματα στο χώρο (3) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΝΟΤΗΤΑ: Διανύσματα στους Rn, Cn, διανύσματα στο χώρο (3) ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας Εισαγωγή

Ανάκτηση Πληροφορίας Εισαγωγή Ανάκτηση Πληροφορίας Εισαγωγή Απόστολος Παπαδόπουλος Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής Ακαδημαϊκό Έτος 2007-2008 Αντικείμενο IR Η Ανάκτηση Πληροφορίας (ΑΠ)

Διαβάστε περισσότερα

Μοντέλο φωτισμού Phong

Μοντέλο φωτισμού Phong ΚΕΦΑΛΑΙΟ 9. Στο προηγούμενο κεφάλαιο παρουσιάσθηκαν οι αλγόριθμοι απαλοιφής των πίσω επιφανειών και ακμών. Απαλοίφοντας λοιπόν τις πίσω επιφάνειες και ακμές ενός τρισδιάστατου αντικειμένου, μπορούμε να

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

d dx ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ

d dx ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ α) Η παράγωγος μιας συνάρτησης = f() σε ένα σημείο 0 εκφράζει το ρυθμό μεταβολής της συνάρτησης (ή τον παράγωγο αριθμό) στο σημείο 0. β) Γραφικά, η παράγωγος της συνάρτησης στο σημείο

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 18η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 18η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 18η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται: στο βιβλίο Machine Learning του T. Mitchell, McGraw- Hill, 1997,

Διαβάστε περισσότερα

ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΕΠΙΣΤΗΜΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ» ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΕΠΙΣΤΗΜΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ» ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΕΠΙΣΤΗΜΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ» ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Ανάπτυξη εφαρμογής

Διαβάστε περισσότερα

ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 73

ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 73 ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 73 ΚΕΦΑΛΑΙΟ 4 ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 4.. Εισαγωγή Στο παρόν κεφάλαιο θα μελετηθούν οι ελεύθερες ταλαντώσεις συστημάτων που περιγράφονται

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Διανύσματα στους Rn, Cn, διανύσματα στο χώρο (1) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Διανύσματα στους Rn, Cn, διανύσματα στο χώρο (1) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΝΟΤΗΤΑ: Διανύσματα στους, C, διανύσματα στο χώρο (1) ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση) TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών

Διαβάστε περισσότερα

8. Πολλαπλές μερικές παράγωγοι

8. Πολλαπλές μερικές παράγωγοι 94 8 Πολλαπλές μερικές παράγωγοι Οι μερικές παράγωγοι,,, αν υπάρχουν, μιας συνάρτησης : U R R ( U ανοικτό ) είναι αυτές συναρτήσεις από το U στο R, επομένως μπορεί να ορισθεί για αυτές η έννοια της μερικής

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Ηλεκτρικό πεδίο νόμος Gauss Νίκος Ν. Αρπατζάνης Εισαγωγή Ο νόµος του Gauss: Μπορεί να χρησιµοποιηθεί ως ένας εναλλακτικός τρόπος υπολογισµού της έντασης του ηλεκτρικού πεδίου. Βασίζεται

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2 ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2. ΜΑΘΗΜΑΤΙΚΩΝ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ

Διαβάστε περισσότερα

Επεξεργασία Ερωτήσεων

Επεξεργασία Ερωτήσεων Εισαγωγή Επεξεργασία Ερωτήσεων ΜΕΡΟΣ 1 Γενική Εικόνα του Μαθήματος 1. Μοντελοποίηση (Μοντέλο Ο/Σ, Σχεσιακό, Λογικός Σχεδιασμός) 2. Προγραμματισμός (Σχεσιακή Άλγεβρα, SQL) ημιουργία/κατασκευή Εισαγωγή εδομένων

Διαβάστε περισσότερα

Επεξεργασία Ερωτήσεων

Επεξεργασία Ερωτήσεων Εισαγωγή Επεξεργασία Ερωτήσεων Σ Β Βάση εδομένων Η ομή ενός ΣΒ Βάσεις Δεδομένων 2006-2007 Ευαγγελία Πιτουρά 1 Βάσεις Δεδομένων 2006-2007 Ευαγγελία Πιτουρά 2 Εισαγωγή Εισαγωγή ΜΕΡΟΣ 1 (Χρήση Σ Β ) Γενική

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο. Εξαγωγή σχέσεων μεταξύ οντοτήτων από το αρχείο της εφημερίδας «ΤΑ ΝΕΑ» με χρήση τεχνικών μη-επιβλεπόμενης μάθησης

Εθνικό Μετσόβιο Πολυτεχνείο. Εξαγωγή σχέσεων μεταξύ οντοτήτων από το αρχείο της εφημερίδας «ΤΑ ΝΕΑ» με χρήση τεχνικών μη-επιβλεπόμενης μάθησης Εθνικό Μετσόβιο Πολυτεχνείο Σχολη Ηλεκτρολογων Μηχανικων και Μηχανικων Υπολογιστων Τομεας Τεχνολογιας Πληροφορικης και Υπολογιστων Εξαγωγή σχέσεων μεταξύ οντοτήτων από το αρχείο της εφημερίδας «ΤΑ ΝΕΑ»

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΉΜΑ ΕΠΙΣΤΉΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 7 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: hp://ecla.uop.gr/coure/tst25 e-ail:

Διαβάστε περισσότερα

8. Πολλαπλές μερικές παράγωγοι

8. Πολλαπλές μερικές παράγωγοι 94 8 Πολλαπλές μερικές παράγωγοι Οι μερικές παράγωγοι,,, αν υπάρχουν, μιας συνάρτησης : U R R ( U ανοικτό είναι αυτές συναρτήσεις από το U στο R, επομένως μπορεί να ορισθεί για αυτές η έννοια της μερικής

Διαβάστε περισσότερα

Η ΚΛΑΣΙΚΗ ΘΕΩΡΗΣΗ ΤΟΥ ΧΩΡΟΥ ΚΑΙ ΤΟΥ ΧΡΟΝΟΥ

Η ΚΛΑΣΙΚΗ ΘΕΩΡΗΣΗ ΤΟΥ ΧΩΡΟΥ ΚΑΙ ΤΟΥ ΧΡΟΝΟΥ ΜΑΘΗΜΑ 2: Η ΚΛΑΣΙΚΗ ΘΕΩΡΗΣΗ ΤΟΥ ΧΩΡΟΥ ΚΑΙ ΤΟΥ ΧΡΟΝΟΥ Τίποτε δεν θεωρώ μεγαλύτερο αίνιγμα από το χρόνο και το χώρο Εντούτοις, τίποτε δεν με απασχολεί λιγότερο από αυτά επειδή ποτέ δεν τα σκέφτομαι Charles

Διαβάστε περισσότερα

Ανταγωνιστική Εκμάθηση Δίκτυα Kohonen. Κυριακίδης Ιωάννης 2013

Ανταγωνιστική Εκμάθηση Δίκτυα Kohonen. Κυριακίδης Ιωάννης 2013 Ανταγωνιστική Εκμάθηση Δίκτυα Kohonen Κυριακίδης Ιωάννης 2013 Εισαγωγή Στα προβλήματα που έχουμε αντιμετωπίσει μέχρι τώρα, υπήρχε μια διαδικασία εκπαίδευσης του δικτύου, κατά την οποία είχαμε διανύσματα

Διαβάστε περισσότερα

Μηχανική Μάθηση: γιατί;

Μηχανική Μάθηση: γιατί; Μηχανική Μάθηση Μηχανική Μάθηση: γιατί; Απαραίτητη για να μπορεί ο πράκτορας να ανταπεξέρχεται σε άγνωστα περιβάλλοντα Δεν είναι δυνατόν ο σχεδιαστής να προβλέψει όλα τα ενδεχόμενα περιβάλλοντα. Χρήσιμη

Διαβάστε περισσότερα

3. O ΑΛΓΟΡΙΘΜΟΣ ΤΟΥ PERCEPTRON

3. O ΑΛΓΟΡΙΘΜΟΣ ΤΟΥ PERCEPTRON 3. O ΑΛΓΟΡΙΘΜΟΣ ΤΟΥ PERCEPRON 3. ΕΙΣΑΓΩΓΗ: Το Perceptron είναι η απλούστερη μορφή Νευρωνικού δικτύου, το οποίο χρησιμοποιείται για την ταξινόμηση ενός ειδικού τύπου προτύπων, που είναι γραμμικά διαχωριζόμενα.

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2014 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2014 1 / 42 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

Κεφάλαιο 1. Εισαγωγή 1

Κεφάλαιο 1. Εισαγωγή 1 Κεφάλαιο 1. Εισαγωγή 1 1.1 Η ανάγκη για Ανάκτηση Πληροφορίας Η επιστήµη της Ανάκτησης Πληροφορίας (ΑΠ στο εξής), ασχολείται µε την αναπαράσταση, την αποθήκευση, την οργάνωση και την πρόσβαση σε πληροφοριακά

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Μηχανική Εικόνα: Isaac Newton: Θεωρείται πατέρας της Κλασικής Φυσικής, καθώς ξεκινώντας από τις παρατηρήσεις του Γαλιλαίου αλλά και τους νόμους του Κέπλερ για την κίνηση των πλανητών

Διαβάστε περισσότερα

Κανόνας της αλυσίδας. J ανοικτά διαστήματα) ώστε ( ), ( ) ( ) ( ) fog ' x = f ' g x g ' x, x I (2)

Κανόνας της αλυσίδας. J ανοικτά διαστήματα) ώστε ( ), ( ) ( ) ( ) fog ' x = f ' g x g ' x, x I (2) 8 Κανόνας της αλυσίδας Από τον Απειροστικό Λογισμό για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι: Αν g : I R R και f : J R R είναι συναρτήσεις ( όπου I, J ανοικτά διαστήματα ώστε, g( τότε η : I g I J

Διαβάστε περισσότερα

ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΙΑΝΥΣΜΑΤΟΣ

ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΙΑΝΥΣΜΑΤΟΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΙΑΝΥΣΜΑΤΟΣ Άξονας Έστω η ευθεία x x (σχ. 21) και τα σηµεία Ο, Ι πάνω σ αυτή, ώστε ΟΙ= i όπου i το µοναδιαίο διάνυσµα, δηλαδή ένα διάνυσµα που θεωρούµε ότι η φορά του είναι θετική και το µέτρο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΣΥΝΤΕΛΕΣΤΕΣ Συγγραφική Ομάδα Βλάμος Παναγιώτης Δρούτσας Παναγιώτης Πρέσβης Γεώργιος Ρεκούμης Κωνσταντίνος Φιλολογική Επιμέλεια Βελάγκου Ευγενία Σκίτσα Βρανάς Θεοδόσης Υπεύθυνος Παιδαγωγικού

Διαβάστε περισσότερα

Γραφικά Υπολογιστών: Βασικά Μαθηματικά

Γραφικά Υπολογιστών: Βασικά Μαθηματικά 1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Βασικά Μαθηματικά Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Εισαγωγή Ένα μεγάλο κομμάτι των γραφικών αφορά βασίζονται-

Διαβάστε περισσότερα

Εισαγωγή. Γενική Εικόνα του Μαθήµατος. Το εσωτερικό ενός Σ Β. Εισαγωγή. Εισαγωγή Σ Β Σ Β. Αρχεία ευρετηρίου Κατάλογος συστήµατος Αρχεία δεδοµένων

Εισαγωγή. Γενική Εικόνα του Μαθήµατος. Το εσωτερικό ενός Σ Β. Εισαγωγή. Εισαγωγή Σ Β Σ Β. Αρχεία ευρετηρίου Κατάλογος συστήµατος Αρχεία δεδοµένων Βάσεις εδοµένων 2003-2004 Ευαγγελία Πιτουρά 1 ΜΕΡΟΣ 1 Γενική Εικόνα του Μαθήµατος Επεξεργασία Ερωτήσεων Μοντελοποίηση (Μοντέλο Ο/Σ, Σχεσιακό, Λογικός Σχεδιασµός) Προγραµµατισµός (Σχεσιακή Άλγεβρα, SQL)

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας. Διδάσκων: Φοίβος Μυλωνάς. Διάλεξη #01

Ανάκτηση Πληροφορίας. Διδάσκων: Φοίβος Μυλωνάς. Διάλεξη #01 Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #01 Διαδικαστικά μαθήματος Εισαγωγικές έννοιες & Ορισμοί Συστήματα ανάκτησης πληροφορίας 1

Διαβάστε περισσότερα

Εισαγωγή Στις Αρχές Της Επιστήμης Των Η/Υ. Η έννοια του Προβλήματος - ΚΕΦΑΛΑΙΟ 2

Εισαγωγή Στις Αρχές Της Επιστήμης Των Η/Υ. Η έννοια του Προβλήματος - ΚΕΦΑΛΑΙΟ 2 Εισαγωγή Στις Αρχές Της Επιστήμης Των Η/Υ Η έννοια του Προβλήματος - ΚΕΦΑΛΑΙΟ 2 2. Η έννοια του προβλήματος 2 2. Η έννοια του προβλήματος 2.1 Το πρόβλημα στην επιστήμη των Η/Υ 2.2 Κατηγορίες προβλημάτων

Διαβάστε περισσότερα

Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης

Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης Σφαίρα σε ράγες: Η συνάρτηση Lagrange Ν. Παναγιωτίδης Έστω σύστημα δυο συγκλινόντων ραγών σε σχήμα Χ που πάνω τους κυλίεται σφαίρα ακτίνας. Θεωρούμε σύστημα συντεταγμένων με οριζόντιους τους άξονες και.

Διαβάστε περισσότερα

Ορθότητα Χωρική αποδοτικότητα. Βελτιστότητα. Θεωρητική ανάλυση Εμπειρική ανάλυση. Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1

Ορθότητα Χωρική αποδοτικότητα. Βελτιστότητα. Θεωρητική ανάλυση Εμπειρική ανάλυση. Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Ανάλυση Αλγορίθμων Θέματα Θέματα: Ορθότητα Χρονική αποδοτικότητα Χωρική αποδοτικότητα Βελτιστότητα Προσεγγίσεις: Θεωρητική ανάλυση Εμπειρική ανάλυση Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Θεωρητική

Διαβάστε περισσότερα

Εισαγωγή στους Υπολογιστές

Εισαγωγή στους Υπολογιστές Εισαγωγή στους Υπολογιστές Ενότητα #2: Αναπαράσταση δεδομένων Αβεβαιότητα και Ακρίβεια Καθ. Δημήτρης Ματαράς Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Αναπαράσταση δεδομένων (Data Representation), Αβεβαιότητα

Διαβάστε περισσότερα

Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1

Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1 Τετραγωνικό μοντέλο συνάρτησης Τετραγωνικά μοντέλα Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo Για συνάρτηση μιας

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη # 09 Ομαδοποίηση και Ταξινόμηση Κειμένων Φοίβος Μυλωνάς fmylonas@ionio.gr Ανάκτηση Πληροφορίας

Διαβάστε περισσότερα

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ.. ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Αν είναι δυο μη μηδενικά διανύσματα τότε ονομάζουμε εσωτερικό γινόμενο των και τον αριθμό : όπου φ είναι η γωνία των

Διαβάστε περισσότερα

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή: Δειγματοληψία Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ συμβολίζουμε την μέση τιμή: Επομένως στην δειγματοληψία πινάκων συνάφειας αναφερόμαστε στον

Διαβάστε περισσότερα

Α.Τ.Ε.Ι. ΜΑΚΕΔΟΝΙΑΣ Τμήμα πληροφορικής και επικοινωνιών. Συμπίεση ψηφιακών εικόνων με ανάλυση κύριων συνιστωσών και χρήση νευρωνικού δικτύου.

Α.Τ.Ε.Ι. ΜΑΚΕΔΟΝΙΑΣ Τμήμα πληροφορικής και επικοινωνιών. Συμπίεση ψηφιακών εικόνων με ανάλυση κύριων συνιστωσών και χρήση νευρωνικού δικτύου. ΑΤΕΙ ΜΑΚΕΔΟΝΙΑΣ Τμήμα πληροφορικής και επικοινωνιών Συμπίεση ψηφιακών εικόνων με ανάλυση κύριων συνιστωσών και χρήση νευρωνικού δικτύου Ψηφιακή είκόνα Η ψηφιακή εικόνα είναι ένα πεπερασμένο σύνολο περιοχών

Διαβάστε περισσότερα

ΦΥΕ 10, Γ. ΚΟΡ ΟΥΛΗΣ, ιανύσµατα 1/6. = + tβ r. zk και εξισώνουµε τις συνιστώσες των διανυσµάτων x(t) = 1+ 2t, y(t) = 1+ 3t, z(t) = 4 + t

ΦΥΕ 10, Γ. ΚΟΡ ΟΥΛΗΣ, ιανύσµατα 1/6. = + tβ r. zk και εξισώνουµε τις συνιστώσες των διανυσµάτων x(t) = 1+ 2t, y(t) = 1+ 3t, z(t) = 4 + t ΦΥΕ 10, Γ. ΚΟΡ ΟΥΛΗΣ, ιανύσµατα 1/6 ) Ευθεία Ευθεία διέρχεται από το σηµείο Α µε διάνυσµα θέσης = i j+ 4k το διάνυσµα β = 2i + 3j + k. και είναι παράλληλη προς Α = + tβ α β ιανυσµατική εξίσωση: Εισάγουµε

Διαβάστε περισσότερα

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Μερικές βασικές έννοιες διανυσματικού λογισμού ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ 1. Oρισμοί Διάνυσμα ονομάζεται η μαθηματική οντότητα που έχει διεύθυνση φορά και μέτρο.

Διαβάστε περισσότερα

Μαθηµατικοί Υπολογισµοί στην R

Μαθηµατικοί Υπολογισµοί στην R Κεφάλαιο 3 Μαθηµατικοί Υπολογισµοί στην R Ενα µεγάλο µέρος της ανάλυσης δεδοµένων απαιτεί διάφορους µαθηµατικούς υπολογισµούς. Αυτό το κεφάλαιο εισαγάγει τον αναγνώστη στις διάφορες δυνατότητες που έχει

Διαβάστε περισσότερα