Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών HY463 - Συστήματα Ανάκτησης Πληροφοριών Εαρινό Εξάμηνο. Φροντιστήριο 3.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών HY463 - Συστήματα Ανάκτησης Πληροφοριών Εαρινό Εξάμηνο. Φροντιστήριο 3."

Transcript

1 Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών HY6 - Συστήματα Ανάκτησης Πληροφοριών Εαρινό Εξάμηνο Φροντιστήριο Retrieval Models Άσκηση Θεωρείστε μια συλλογή κειμένων που περιέχει τα ακόλουθα έγγραφα: Έγγραφο : «Computer Games» Έγγραφο : «Computer Games Computer Games» Έγγραφο : «Games Theory and Computer» Έγγραφο : «Computer for Computer» Έγγραφο : «Cheap Games Computer Games» ) Δώστε τη διανυσματική παράσταση του κάθε εγγράφου με βάρη TF-IF. Θεωρείστε ότι η θέση της κάθε λέξης στα διανύσματα γίνεται κατά αλφαβητική σειρά. ) Θεωρείστε την επερώτηση =«Computer Games». Υπολογίστε το TF-IF διάνυσμα αυτής της επερώτησης και δώστε την διάταξη των εγγράφων που θα επιστρέψει ένα σύστημα που βασίζεται στο διανυσματικό μοντέλο. Σχεδιάστε το ανεστραμμένο ευρετήριο για αυτή τη συλλογή. Λύση ) Έγγραφο : «Computer Games» Έγγραφο : «Computer Games Computer Games» Έγγραφο : «Games Theory and Computer» Έγγραφο : «Computer for Computer» Έγγραφο : «Cheap Games Computer Games» And Cheap Computer for Games Theory MAXk{FREQ} F IF / / / / / / FREQ =το πλήθος των εμφανίσεων του όρου i στο έγγραφο j IF = N / F MAX k {FREQ } = συχνότητα της λέξης με τη μέγιστη συχνότητα στο κείμενο

2 TF-IF And Cheap Computer for Games Theory MAXk{FREQ} 0 0 /*/ 0 /*/ /*/ 0 /*/ 0 /*/ 0 /*/ 0 /*/ /*/ 0 0 /*/ /*/ /*/ /*/ 0 /*/ 0 F IF / / / / / / TF = FREQ / MAX k {FREQ } V = TF * IF i Οι διανυσματικές παραστάσεις των κειμένων είναι : V = {0, 0,, 0,., 0}, V =,6 V = {0, 0,, 0,., 0}, V =,6 V = {, 0,, 0,., }, V =,6 V = {0, 0,,., 0, 0}, V = 7, V = {0,., 0., 0,., 0}, V = 8,06 ) And Cheap Computer For Games Theory =Computer Games 0 0 /*/ 0 /*/ 0 IF / / / / / / = {0, 0,, 0,., 0}, =,6 V * =*+,*,=+,6=,6 V * =,6 V * =*0+*+,*,+*0=,6 V * = V * =0,*+,*,=,06

3 Με βάση τον παρπάνω τύπο, υπολογίζουμε το μέτρο ομοιότητας συνημίτονου για κάθε έγγραφο j R(, ) =,6/(,6*,6) / => R(, ) = R(, ) =,6/(,6*,6) / => R(, ) = R(, ) =,6/(,6*,6) / =,6/(,6906),6/,60667 => R(, ) = 0,9889 ½ = R(, ) = /(7,*,6) / =/(8,78) / = /,09 => R(, ) = 0,009 R(, ) =,06/(8,06*,6) / =,06/(0,6606) / =,06/, => R(, ) = 0,76099 Με βάση το διανυσματικό μοντέλο η διάταξη των εγγράφων είναι : < {, },,, > Θα περιμέναμε το έγγραφο να έρθει στη σειρά πριν το,επειδή περιέχει όλους τους όρους της επερώτησης, όμως περιέχει και τον όρο Theory ο οποίος εμφανίζεται μόνο σε αυτό το έγγραφο και αυτό επηρέασε το βάρος του. Ανεστραμμένο ευρετήριο Μία μορφή του ανεστραμμένου ευρετηρίου στο οποίο εμφανίζονται μόνο οι θέσεις των όρων είναι : Term < ocument Freuency, (ocument; Position) > Computer < ( ;), ( ;), ( ;), ( ;), ( ;), ( ;), ( ;)> Games < ( ;), ( ;), ( ;), ( ;), ( ;), ( ;) > Theory < ( ;) > Cheap < ( ;) > and < ( ;)> for < ( ;)> Μία άλλη μορφή του ανεστραμμένου ευρετηρίου στο οποίο εμφανίζεται το TF του κάθε όρου σε κάθε έγγραφο είναι :

4 Term < ocument : Term Freuency : { Position } > Computer < : : { } > < : : {, } > < : : { } > < : : {, } > < : 0. : { } > Games < :. : { } > < :. : {, } > < :. : { } > < :. : { } > Theory < : : { } > Cheap < :. : { } > and < : : { } > for < :. : { } > Άσκηση Έστω μια συλλογή από κείμενα, και έστω Α ένα διατεταγμένο υποσύνολο αυτής. Έστω ότι μας δίνουν το Α και μας ζητούν να βρούμε αν υπάρχει επερώτηση τ.ω. η απάντηση της να έχει στην αρχή της το διατεταγμένο σύνολο Α. Για παράδειγμα, αν A=<d, d, d> και βρούμε μια επερώτηση τ.ω. Answer() = <d, d, d, d8, > τότε αυτή είναι μια λύση του προβλήματος μας. Θεωρώντας ότι το σύστημα σας βασίζεται στο διανυσματικό μοντέλο, απαντήστε τα παρακάτω ερωτήματα. (α) Πως μπορούμε να βρούμε αν υπάρχει τέτοια επερώτηση; (β) Αν υπάρχει ποια είναι; (γ) Αν δεν υπάρχει τέτοια επερώτηση, πως θα χαλαρώνατε το πρόβλημα και τι θα μπορούσατε να επιστρέψετε; Μπορείτε να αναπτύξετε τις σκέψεις σας όσο θέλετε. Σημείωση: Προσέξτε ώστε το υπολογιστικό κόστος των λύσεων που θα προτείνετε για τα (α) και (β) να μην είναι απαγορευτικό. Λύση (α) Για να υπάρχει μία τέτοια επερώτηση θα πρέπει να ισχύουν οι δύο παρακάτω συνθήκες: (α) Έστω η επερώτηση που ψάχνουμε. Για να επιστρέφει η όλα τα έγγραφα του Α και μάλιστα με την σχετική διάταξη που έχουν στο Α, θα πρέπει το μέτρο ομοιότητας του συνημίτονου μεταξύ της και του πρώτου εγγράφου στο Α να είναι μεγαλύτερο από το μέτρο του δευτέρου εγγράφου και εκείνο μεγαλύτερο από του τρίτου εγγράφου κ.o.κ., και όλα να είναι μεγαλύτερα του μηδενός Δηλαδή αν Α = < d,d,d > τότε θα έπρεπε Sim (d, ) > Sim (d, ) > Sim (d, ) > 0 ()

5 (α) Για να μας επιστρέφει η όλα τα έγγραφα που ανήκουν στο Α, με την διάταξη που έχουν σε αυτό και πριν από οποιοδήποτε άλλο έγγραφο θα πρέπει όλα τα έγγραφα που μας επιστρέφει η επερώτηση και δεν ανήκουν στο Α, να έχουν μέτρο ομοιότητας του συνημίτονου μικρότερο από την τιμή του τελευταίου εγγράφου που ανήκει στο Α. Δηλαδή αν Α = < d,d,d > τότε θα έπρεπε Sim (d, ) > Sim (d, ) > Sim (d, ) > Sim (d x, ) για κάθε d x που δεν ανήκει στο Α. (β) Εύκολα μπορούμε να δείξουμε ότι αν ικανοποιούνται οι παραπάνω συνθήκες τότε το =d είναι μια επιθυμητή απάντηση (από τις ενδεχομένως πολλές). Ο έλεγχος της συνθήκης (α) είναι απλός και όχι ιδιαίτερα ακριβός. Συγκεκριμένα απαιτεί Α - υπολογισμούς βαθμού ομοιότητας. Ένας εύκολος τρόπος για να δούμε αν ισχύει η συνθήκη (α) είναι να υπολογίσουμε το Answer(d) και να δούμε εάν τα πρώτα A στοιχεία του είναι τα στοιχεία του Α. (γ) Μια χαλάρωση του προβλήματος είναι η εξής: Η συνθήκη (α) ικανοποιείται αλλά δεν ικανοποιείται η συνθήκη (α). Και σε αυτήν την περίπτωση το =d θα ήταν μια πιθανή λύση του προβλήματος. Απλά η απάντηση του θα μπορούσε θα είχε τη μορφή: Α() = < d, d, d6, d, d, d8, d9, d, d0, d7 > Μια άλλη χαλάρωση του προβλήματος θα ήταν να μειώσουμε το σύνολο των εγγράφων του συνόλου Α αρχίζοντας από το τέλος. Δηλαδή αντί για Α = < d, d, d > να δούμε αν υπάρχει λύση για το σύνολο Α = < d, d >. Αν δεν υπάρχει ούτε για το Α να δούμε αν υπάρχει για το Α =<d>. Για περισσότερα δείτε τις διαφάνειες του Μαθήματος (007) καθώς και το άρθρο: Άσκηση Στο μάθημα είδαμε δύο μοντέλα ανάκτησης του βασίζονται στη Θεωρία Ασαφών Συνόλων. To πρώτο θεωρεί βάρυνση TF*IF, ενώ το δεύτερο είναι εκείνο που προτάθηκε από τους [Ogawa, Morita, Kobayashi, 99]. Θεωρείστε έναν όρο t i ενός εγγράφου d j. Συγκρίνετε την συμπεριφορά των δύο αυτών μοντέλων για διάφορες περιπτώσεις, π.χ.: για μικρές και μεγάλες τιμές του tf, για μικρές και μεγάλες τιμές του idf i, για μικρές και μεγάλες τιμές του w αν προκύπτει από tf*idf. Λύση Για το πρώτο μοντέλο που βασίζεται σε βάρυνση ΤF-IF ξέρουμε ότι: d j = ( w,j, w,j,, w t,j ) όπου w i,j є [0,] R(d j, t i ) = μ ti (d j ) = w i,j = tf * idf i όπου tf = fre / MAX k { fre κj }, idf i = log ( N / df i ) και Ν ο αριθμός των εγγράφων. Για το μοντέλο που προτάθηκε από τους [Ogawa, Morita, and Kobayashi,99] ξέρουμε ότι: d j = ( w,j, w,j,, w t,j ) όπου w i,j є {0,} και

6 w i,j = όταν ο όρος t i εμφανίζεται στο κείμενο d j. (αλλιώς w i,j = 0) R(d j,t i ) = μ ti (d j ) το οποίο ορίζεται ως εξής: Αρχικά ορίζεται η εγγύτητα μεταξύ των όρων με τον εξής τύπο: c(i,j) = n(i,j) / ni + nj n(i,j) όπου n(i,j) : το πλήθος των εγγράφων που περιέχουν τον όρο k i και τον k l. ni : το πλήθος των εγγράφων που περιέχουν τον όρο k i. nj : το πλήθος των εγγράφων που περιέχουν τον όρο k l. Κατόπιν θέτουμε μ i (j) = Σ c(i,w), t w є d j μ i (j) = Π(- c(i,w) ), t w є d j Έστω ότι θέλουμε να κάνουμε μία επερώτηση σε μία σύλλογη εγγράφων και η επερώτηση αποτελείται από ένα όρο κ, δηλαδή = k. Μικρές τιμές tf Έστω ένα έγγραφο j. Αν το tf του όρου ki είναι μικρό, αυτό σημαίνει ότι ο όρος ki εμφανίζεται λίγες φορές στο έγγραφο αυτό άρα η κατάταξη του εγγράφου θα είναι χαμηλή σύμφωνα με το πρώτο μοντέλο ανάκτησης. Το δεύτερο μοντέλο ([Ogawa, Morita, Kobayashi, 99]) αγνοεί το πλήθος των εμφανίσεων ενός όρου σε ένα έγγραφο Λαμβάνει όμως υπόψη τον βαθμό συνεμφάνισης των όρων στη συλλογή. Αυτό σημαίνει ότι αν το έγγραφο j περιέχει πολλούς όρους οι οποίοι έχουν μεγάλη εγγύτητα (συνεμφάνιση) με τον όρο ki, τότε το έγγραφο αυτό μπορεί να σταθμιστεί υψηλά. Μεγάλες τιμές tf Έστω ένα έγγραφο j. Αν το tf του όρου ki είναι μεγάλο, αυτό σημαίνει ότι ο όρος ki εμφανίζεται πολλές φορές στο έγγραφο αυτό άρα η κατάταξη του εγγράφου θα είναι υψηλή σύμφωνα με το πρώτο μοντέλο ανάκτησης. Στο δεύτερο μοντέλο (που αγνοεί το tf) το έγγραφο αυτό θα μπορούσε να σταθμιστεί χαμηλά αν περιέχει λίγους όρους που έχουν εγγύτητα (συνεμφάνιση) με τον όρο ki. Μικρές τιμές idf i Αν το idf του όρου ki είναι μικρό αυτό σημαίνει ότι το πλήθος των εγγράφων που περιέχουν τον όρο ki είναι μεγάλο (αφού idf = Ν/df). Έστω ένα έγγραφο j που περιέχει τον όρο ki. Aν λαμβάναμε υπόψη μόνο το idf τότε το o μοντέλο, θα έδινε μικρό βαθμό συνάφειας στο έγγραφο j (καθώς και σε όλα τα υπόλοιπα έγγραφα). Αντίθετα το o μοντέλο ενδεχομένως να έδινε μεγαλύτερο βαθμό συνάφειας στο έγγραφο j διότι από τη στιγμή που ο όρος ki εμφανίζεται σε πολλά κείμενα μπορεί να έχει υψηλό βαθμό συνεμφάνισης με άλλους όρους που περιέχει το έγγραφο j. Μεγάλες τιμές idf i Αν το idf του όρου ki είναι μεγάλο αυτό σημαίνει ότι το πλήθος των εγγράφων που περιέχουν τον όρο ki είναι μικρό (αφού idf = Ν/df). Έστω ένα έγγραφο j που περιέχει τον όρο ki. Aν λαμβάναμε υπόψη μόνο το idf τότε το o μοντέλο, θα έδινε μεγάλο βαθμό συνάφειας στο έγγραφο j (καθώς και σε όλα τα υπόλοιπα έγγραφα). Αντίθετα το o μοντέλο ενδεχομένως να έδινε μικρότερο βαθμό συνάφειας στο έγγραφο j διότι από τη στιγμή που ο όρος ki εμφανίζεται σε λίγα κείμενα μπορεί να έχει μικρό βαθμό συνεμφάνισης με άλλους όρους που περιέχει το έγγραφο j.

7 Mικρές και μεγάλες τιμές του w Θα μπορούσαμε να διακρίνουμε τις παρακάτω περιπτώσεις: ) Μικρό TF*IF λόγω πολύ μικρού TF Έστω ένα έγγραφο j. Αν το tf του όρου ki είναι πολύ μικρό, αυτό σημαίνει ότι ο όρος ki εμφανίζεται πολύ λίγες φορές στο έγγραφο αυτό άρα η κατάταξη του εγγράφου θα είναι χαμηλή σύμφωνα με το πρώτο μοντέλο ανάκτησης. Το δεύτερο μοντέλο αγνοεί το πλήθος των εμφανίσεων ενός όρου σε ένα έγγραφο Λαμβάνει όμως υπόψη τον βαθμό συνεμφάνισης των όρων στη συλλογή. Αυτό σημαίνει ότι αν το έγγραφο j περιέχει πολλούς όρους οι οποίοι έχουν μεγάλη εγγύτητα (συνεμφάνιση) με τον όρο ki, τότε το έγγραφο αυτό μπορεί να σταθμιστεί υψηλά. ) Μικρό TF*IF λόγω πολύ μικρού IF Αν το idf του όρου ki είναι πολύ μικρό αυτό σημαίνει ότι το πλήθος των εγγράφων που περιέχουν τον όρο ki είναι πολύ μεγάλο (αφού idf = Ν/df). Έστω ένα έγγραφο j που περιέχει τον όρο ki. Aν λαμβάναμε υπόψη μόνο το idf τότε το o μοντέλο, θα έδινε πολύ μικρό βαθμό συνάφειας στο έγγραφο j (καθώς και σε όλα τα υπόλοιπα έγγραφα). Αντίθετα το o μοντέλο ενδεχομένως να έδινε πολύ μεγαλύτερο βαθμό συνάφειας στο έγγραφο j διότι από τη στιγμή που ο όρος ki εμφανίζεται σε πολλά κείμενα μπορεί να έχει υψηλό βαθμό συνεμφάνισης με άλλους όρους που περιέχει το έγγραφο j. ) Μικρό TF*IF λόγω μικρού ΤF και μικρού IF Έστω ένα έγγραφο j. Αν το tf του όρου ki είναι μικρό, αυτό σημαίνει ότι ο όρος ki εμφανίζεται λίγες φορές στο έγγραφο αυτό και αν το idf του όρου ki είναι μικρό αυτό σημαίνει ότι το πλήθος των εγγράφων που περιέχουν τον όρο ki είναι μεγάλο (αφού idf = Ν/df). Επομένως, το πρώτο μοντέλο θα έδινε μικρό βαθμό συνάφειας στο έγγραφο j. Αντίθετα το o μοντέλο ενδεχομένως να έδινε πολύ μεγαλύτερο βαθμό συνάφειας στο έγγραφο j διότι από τη στιγμή που ο όρος ki εμφανίζεται σε πολλά κείμενα μπορεί να έχει υψηλό βαθμό συνεμφάνισης με άλλους όρους που περιέχει το έγγραφο j. ) Μεγάλο TF*IF λόγω πολύ μεγάλου TF Έστω ένα έγγραφο j. Αν το tf του όρου ki είναι πολύ μεγάλο, αυτό σημαίνει ότι ο όρος ki εμφανίζεται πολλές φορές στο έγγραφο αυτό άρα η κατάταξη του εγγράφου θα είναι πολύ υψηλή σύμφωνα με το πρώτο μοντέλο ανάκτησης. Στο δεύτερο μοντέλο (που αγνοεί το tf) το έγγραφο αυτό θα μπορούσε να σταθμιστεί χαμηλά αν περιέχει λίγους όρους που έχουν εγγύτητα (συνεμφάνιση) με τον όρο ki. ) Μεγάλο TF*IF λόγω πολύ μεγάλου IF Αν το idf του όρου ki είναι πολύ μεγάλο αυτό σημαίνει ότι το πλήθος των εγγράφων που περιέχουν τον όρο ki είναι πολύ μικρό (αφού idf = Ν/df). Έστω ένα έγγραφο j που περιέχει τον όρο ki. Aν λαμβάναμε υπόψη μόνο το idf τότε το o μοντέλο, θα έδινε πολύ μεγάλο βαθμό συνάφειας στο έγγραφο j (καθώς και σε όλα τα υπόλοιπα έγγραφα). Αντίθετα το o

8 μοντέλο ενδεχομένως να έδινε πολύ μικρότερο βαθμό συνάφειας στο έγγραφο j διότι από τη στιγμή που ο όρος ki εμφανίζεται σε πολλά κείμενα μπορεί να έχει υψηλό βαθμό συνεμφάνισης με άλλους όρους που περιέχει το έγγραφο j. 6) Μεγάλο TF*IF λόγω μεγάλου ΤF και μεγάλου IF Έστω ένα έγγραφο j. Αν το tf του όρου ki είναι μεγάλο, αυτό σημαίνει ότι ο όρος ki εμφανίζεται πολλές φορές στο έγγραφο αυτό και αν το idf του όρου ki είναι μεγάλο αυτό σημαίνει ότι το πλήθος των εγγράφων που περιέχουν τον όρο ki είναι μικρό (αφού idf = Ν/df). Επομένως, το πρώτο μοντέλο θα έδινε μεγάλο βαθμό συνάφειας στο έγγραφο j. Αντίθετα το o μοντέλο ενδεχομένως να έδινε πολύ μικρότερο βαθμό συνάφειας στο έγγραφο j διότι από τη στιγμή που ο όρος ki εμφανίζεται σε λίγα κείμενα μπορεί να έχει μικρό βαθμό συνεμφάνισης με άλλους όρους που περιέχει το έγγραφο j. Άσκηση Θεωρείστε μια συλλογή κειμένων που περιέχει τα ακόλουθα έγγραφα: Έγγραφο : «New York Times» Έγγραφο : «New Times» Έγγραφο : «Financial Times» Έγγραφο : «High High Times» Έγγραφο : «New Financial Times» ) Δώστε τη διανυσματική παράσταση του κάθε εγγράφου με βάρη TF-IF (για ευκολία θεωρήστε ότι IF=N/F και όχι IF=log(N/F)). Θεωρείστε ότι η θέση της κάθε λέξης στα διανύσματα γίνεται αλφαβητικά. ) Θεωρείστε την επερώτηση =«high financial». Υπολογίστε το TF-IF διάνυσμα αυτής της επερώτησης και δώστε την διάταξη των εγγράφων που θα επιστρέψει ένα σύστημα που βασίζεται στο διανυσματικό μοντέλο. ) Θεωρείστε τις επερωτήσεις =«high AN financial» =«high OR financial» και δώστε τις απαντήσεις που θα επιστρέψει ένα σύστημα που βασίζεται στο Extended Boolean μοντέλο. Λύση ) Term Occurrence Table

9 FREQ = το πλήθος των εμφανίσεων του όρου i στο έγγραφο j N = IF = N/F MAX k { FREQ } = συχνότητα της λέξης με τη μέγιστη συχνότητα στο κείμενο Term Weight Table ) TF = FREQ / MAX k {FREQ } W = TF *IF i *d = (/,,0,0,0)*(0,0,/,,) = 0 *d = (/,,0,0,0)*(0,0,/,,0) = 0 *d = (/,,0,0,0)*(/,0,0,,0) = / *d = (/,,0,0,0)*(0,,0,/,0) = *d = (/,,0,0,0)*(/,0,/,,0) = / Άρα η διάταξη των εγγράφων που θα επιστρέψει η ερώτηση Q είναι:,,

10 ) Κανονικοποίηση των διανυσμάτων maxifi=: d =(0,0,/,,)/=(0,0,/,/,) d =(0,0,/,,0)/=(0,0,/,/,0) d =(/,0,0,,0)/=(/,0,0,/,0) d =(0,,0,/,0)/=(0,,0,/0,0) d =(/,0,/,,0)/=(/,0,/,/,0) Q = high AN financial Με βάση τον παραπάνω τύπο, υπολογίζουμε την ομοιότητα της επερώτησης Q με κάθε έγγραφο. Sim(,d ) = -srt(((-0)^+(-0)^)/) = 0 Sim(,d ) = -srt(((-0)^+(-0)^)/) = 0 Sim(,d ) = -srt(((-/)^+(-0)^)/) = 0. Sim(,d ) = -srt(((-0)^+(-)^)/) = 0.9 Sim(,d ) = -srt(((-/)^+(-0)^)/) = 0. Άρα η διάταξη των εγγράφων που θα επιστρέψει η ερώτηση Q είναι:,, Q= high OR financial Με βάση τον παραπάνω τύπο, υπολογίζουμε την ομοιότητα της επερώτησης Q με κάθε έγγραφο. Sim(,d ) = srt((0^+0^)/) = 0 Sim(,d ) = srt((0^+0^)/) = 0 Sim(,d ) = srt(((/)^+0^)/) = /(srt()) Sim(,d ) = srt((0^+^)/) = /(srt()) Sim(,d ) = srt(((/)^+0^)/) = /(srt())

11 Άρα η διάταξη των εγγράφων που θα επιστρέψει η ερώτηση Q είναι:,, Άσκηση (συνάρτηση διαβάθμισης) Θεωρείστε ένα Σύστημα Ανάκτησης Πληροφοριών (ΣΑΠ) από μια μεγάλη συλλογή κειμένων. Θέλουμε να δώσουμε τη δυνατότητα χρήσης του ΣΑΠ μέσω κινητού τηλεφώνου. Για το λόγο αυτό θέλουμε να ορίσουμε μια συνάρτηση διαβάθμισης (ranking function) η οποία να ευνοεί τα μικρά κείμενα, αφενός για να κρατήσουμε σε χαμηλά επίπεδα τον όγκο δεδομένων που θα μεταφέρονται και αφετέρου διότι οι χρήστες κινητών τηλεφώνων προτιμούν τα μικρά κείμενα (ένεκα του μικρού μεγέθους της οθόνης). Θεωρείστε ότι οι επερωτήσεις των χρηστών είναι σάκοι λέξεων (bag of words). Σχεδιάστε μια συνάρτηση διαβάθμισης για το σκοπό αυτό για κάθε μια από τις παρακάτω περιπτώσεις (α) Το ευρετήριο του ΣΑΠ έχει δυαδικά (0,) βάρη (όπως για παράδειγμα το ευρετήριο του Boolean μοντέλου) (β) Το ευρετήριο έχει βάρη TF-IF. Τεκμηριώστε τις προτάσεις σας (με αποδείξεις ή παραδείγματα). Λύση α) Θέλουμε να τροποποιήσουμε το Boolean μοντέλο έτσι ώστε να ευνοεί τα μικρότερα κείμενα. Η συνάρτηση που θα χρησιμοποιήσουμε είναι η R(d,) = d / d η οποία κανονικοποιεί την συνάρτηση που εκφράζει τη συσχέτιση ενός κειμένου με μια επερώτηση με βάση το μέγεθος του κειμένου. Γνωρίζουμε ότι R(d,) = d / d = d /( d + d\ ). Αν η τομή d είναι σταθερή, δηλαδή n έγγραφα έχουν την ίδια συνάφεια, τότε αυτό που έχει μεγαλύτερο μέγεθος θα διαβαθμιστεί πιο χαμηλά, διότι θα μεγαλώσει ο παρανομαστής άρα η συνάρτηση θα επιστρέψει μικρότερη τιμή διαβάθμισης. Στη γενική περίπτωση που έχουμε διαφορετικές συνάφειες τα μικρότερα έγγραφα ευνοούνται έναντι των μεγαλύτερων. Πειραματικά αυτό σημαίνει: = a b R(d,) = d / d d = a /= d = a c /=0. d = a c d /=0. d = a b c /=0.66 d = a b c d a / = 0. Διάταξη εγγράφων <d, d, d, d, d> β) Γενικεύουμε την ιδέα του (α) για την περίπτωση που έχουμε μη δυαδικά βάρη. Συγκεκριμένα μπορούμε να ορίσουμε: R(d,) = d* / d (όπου το * είναι το

12 εσωτερικό γινόμενο) όπου το εσωτερικό γινόμενο υπολογίζεται από τον τύπο: και τα w i,j =tf *idf i και w i, = tf i *idf i a b c MAX k {FREQ } F IF /= /=. /=. /=. A b C MAX k {FREQ } /*/= /*/= 0 /*/=. 0 /*/= 0 /*/=. /*/=. /*/= /*/=. /*/=. 0 /*/= /*/=. /*/=0.6 /*/=. Q /*/= /*/=. 0 0 F IF /= /=. /=. /=. W *Q = (,0,0,0)*(,.,0,0) = W *Q = (,0,.,0)*(,.,0,0) = W *Q = (,0,.,.)*(,.,0,0) = W *Q = (,.,.,0)*(,.,0,0) =7. W *Q = (,.,0.6,.)*(,.,0,0) =. Εφαρμόζουμε τη συνάρτηση για τον υπολογισμό της συνάφειας: R(,Q )=/= * Q / = R(,Q )=/=0. R(,Q )=/=0. R(,Q )=7./=.6 R(,Q )=./=0.8 Επομένως η διάταξη που επιστρέφει η συνάρτηση μας είναι η,,,,. Παρατηρούμε ότι από τα κείμενα που είναι ποιο σχετικά στο ερώτημα μας (δηλαδή περιέχουν και τους δύο όρους) ευνοήθηκε αυτό με το μικρότερο πλήθος όρων.

ΛΥΣΕΙΣ 2 ης ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ

ΛΥΣΕΙΣ 2 ης ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ ΛΥΣΕΙΣ 2 ης ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ Άσκηση 1 Θεωρείστε μια συλλογή κειμένων που περιέχει τα ακόλουθα 5 έγγραφα: Έγγραφο 1: «Computer Games» Έγγραφο 2: «Computer Games Computer Games» Έγγραφο 3: «Games Theory and

Διαβάστε περισσότερα

Προτεινόμενες Λύσεις 1 ης Σειράς Ασκήσεων (Αξιολόγηση της Αποτελεσματικότητας της Ανάκτησης & Μοντέλα Ανάκτησης)

Προτεινόμενες Λύσεις 1 ης Σειράς Ασκήσεων (Αξιολόγηση της Αποτελεσματικότητας της Ανάκτησης & Μοντέλα Ανάκτησης) Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών ΗΥ463 Συστήματα Ανάκτησης Πληροφοριών 28-29 Εαρινό Εξάμηνο Προτεινόμενες Λύσεις 1 ης Σειράς Ασκήσεων (Αξιολόγηση της Αποτελεσματικότητας της Ανάκτησης &

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #04 Εισαγωγή στα Μοντέλα Ανάκτησης Πληροφορίας Boolean Μοντέλο 1 Άδεια χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems. Μοντέλα Ανάκτησης Ι

HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems. Μοντέλα Ανάκτησης Ι Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Μοντέλα Ανάκτησης Ι (Retrieval Models) Γιάννης Τζίτζικας άλ ιάλεξη

Διαβάστε περισσότερα

ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ. Μάθημα 7 ο : Ανάκτηση πληροφορίας. Γεώργιος Πετάσης. Ακαδημαϊκό Έτος:

ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ. Μάθημα 7 ο : Ανάκτηση πληροφορίας. Γεώργιος Πετάσης. Ακαδημαϊκό Έτος: ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ Μάθημα 7 ο : Ανάκτηση πληροφορίας Γεώργιος Πετάσης Ακαδημαϊκό Έτος: 2012 2013 ΤMHMA MHXANIKΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ, Πανεπιστήμιο Πατρών, 2012 2013 Οι διαφάνειες αυτού του μαθήματος βασίζονται

Διαβάστε περισσότερα

6. Βαθμολόγηση, Στάθμιση Όρων, και το Μοντέλο Διανυσματικού Χώρου

6. Βαθμολόγηση, Στάθμιση Όρων, και το Μοντέλο Διανυσματικού Χώρου Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 6. Βαθμολόγηση, Στάθμιση Όρων, και το Μοντέλο Διανυσματικού Χώρου Ανάκτηση Πληροφοριών Χρήστος ουλκερίδης

Διαβάστε περισσότερα

Μοντέλα Ανάκτησης Ι (Retrieval Models)

Μοντέλα Ανάκτησης Ι (Retrieval Models) Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 006 Διάρθρωση HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Informaion Rerieval (IR) Sysems Μοντέλα Ανάκτησης Ι (Rerieval Models) Εισαγωγή στα Μοντέλα

Διαβάστε περισσότερα

Θα μιλήσουμε για ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ. Διαφάνειες του καθ. Γιάννη Τζίτζικα (Παν. Κρήτης) http://www.ics.forth.

Θα μιλήσουμε για ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ. Διαφάνειες του καθ. Γιάννη Τζίτζικα (Παν. Κρήτης) http://www.ics.forth. Θα μιλήσουμε για ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ Διαφάνειες του καθ. Γιάννη Τζίτζικα (Παν. Κρήτης) http://www.ics.forth.gr/~tzitzik/ Γιατοπιθανοτικότουκαθ. Απ. Παπαδόπουλου (Αριστοτέλειο Παν.) Κεφάλαιο 2

Διαβάστε περισσότερα

Διαχείριση εγγράφων. Αποθήκες και Εξόρυξη Δεδομένων Διδάσκων: Μ. Χαλκίδη

Διαχείριση εγγράφων. Αποθήκες και Εξόρυξη Δεδομένων Διδάσκων: Μ. Χαλκίδη Διαχείριση εγγράφων Αποθήκες και Εξόρυξη Δεδομένων Διδάσκων: Μ. Χαλκίδη Απεικόνιση κειμένων για Information Retrieval Δεδομένου ενός κειμένου αναζητούμε μια μεθοδολογία απεικόνισης του γραμματικού χώρου

Διαβάστε περισσότερα

Δημιουργία Ευρετηρίων Συλλογής Κειμένων

Δημιουργία Ευρετηρίων Συλλογής Κειμένων Γλωσσική Τεχνολογία Ακαδημαϊκό Έτος 2011-2012 - Project Σεπτεμβρίου Ημερομηνία Παράδοσης: Στην εξέταση του μαθήματος Εξέταση: Προφορική, στο τέλος της εξεταστικής. Θα βγει ανακοίνωση στο forum. Ομάδες

Διαβάστε περισσότερα

Information Retrieval

Information Retrieval Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη 7: Βαθμολόγηση. Στάθμιση όρων. Το μοντέλο διανυσματικού χώρου. 1 Κεφ. 6 Τι θα δούμε σήμερα; Βαθμολόγηση

Διαβάστε περισσότερα

Τι (άλλο) θα δούμε σήμερα;

Τι (άλλο) θα δούμε σήμερα; Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη6: Βαθμολόγηση. Στάθμιση όρων. Το μοντέλο διανυσματικού χώρου. 1 Κεφ. 6 Τι (άλλο) θα δούμε σήμερα;

Διαβάστε περισσότερα

4 η Σειρά ασκήσεων (Συμπίεση, Ομαδοποίηση, Ευρετηρίαση Πολυμέσων, Κατανεμημένη Ανάκτηση)

4 η Σειρά ασκήσεων (Συμπίεση, Ομαδοποίηση, Ευρετηρίαση Πολυμέσων, Κατανεμημένη Ανάκτηση) Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών HY463 -Συστήματα Ανάκτησης Πληροφοριών 2005-2006 Εαρινό Εξάμηνο 4 η Σειρά ασκήσεων (Συμπίεση, Ομαδοποίηση, Ευρετηρίαση Πολυμέσων, Κατανεμημένη Ανάκτηση)

Διαβάστε περισσότερα

ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ. Μάθημα 10 ο : Αποσαφήνιση εννοιών λέξεων. Γεώργιος Πετάσης. Ακαδημαϊκό Έτος:

ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ. Μάθημα 10 ο : Αποσαφήνιση εννοιών λέξεων. Γεώργιος Πετάσης. Ακαδημαϊκό Έτος: ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ Μάθημα 10 ο : Αποσαφήνιση εννοιών λέξεων Γεώργιος Πετάσης Ακαδημαϊκό Έτος: 2012 2013 ΤMHMA MHXANIKΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ, Πανεπιστήμιο Πατρών, 2012 2013 Οι διαφάνειες αυτού του μαθήματος

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

Η ακρίβεια ορίζεται σαν το πηλίκο των ευρεθέντων συναφών εγγράφων προς τα ευρεθέντα έγγραφα. Άρα για τα τρία συστήµατα έχουµε τις εξής τιµές:

Η ακρίβεια ορίζεται σαν το πηλίκο των ευρεθέντων συναφών εγγράφων προς τα ευρεθέντα έγγραφα. Άρα για τα τρία συστήµατα έχουµε τις εξής τιµές: Πανεπιστήµιο Κρήτης, Τµήµα Επιστήµης Υπολογιστών HY463 - Συστήµατα Ανάκτησης Πληροφοριών 2005-2006 Εαρινό Εξάµηνο 1 η Σειρά Ασκήσεων (Αξιολόγηση Αποτελεσµατικότητας Ανάκτησης) Άσκηση 1 (4 βαθµοί) Θεωρείστε

Διαβάστε περισσότερα

ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 2 του βιβλίου. 2 ο ΜΕΡΟΣ

ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ.  Κεφάλαιο 2 του βιβλίου. 2 ο ΜΕΡΟΣ ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ Διαφάνειες του καθ. Γιάννη Τζίτζικα (Παν. Κρήτης) http://www.ics.forth.gr/~tzitzik/ Για το πιθανοκρατικό του καθ. Απ. Παπαδόπουλου (Αριστοτέλειο Παν.) Κεφάλαιο 2 του βιβλίου

Διαβάστε περισσότερα

[1] είναι ταυτοτικά ίση με το μηδέν. Στην περίπτωση που το στήριγμα μιας συνάρτησης ελέγχου φ ( x)

[1] είναι ταυτοτικά ίση με το μηδέν. Στην περίπτωση που το στήριγμα μιας συνάρτησης ελέγχου φ ( x) [] 9 ΣΥΝΑΡΤΗΣΙΑΚΟΙ ΧΩΡΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Η «συνάρτηση» δέλτα του irac Η «συνάρτηση» δέλτα ορίζεται μέσω της σχέσης φ (0) αν 0 δ[ φ ] = φ δ dx = (9) 0 αν 0 όπου η φ είναι μια συνάρτηση που ανήκει

Διαβάστε περισσότερα

Information Retrieval

Information Retrieval Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη 8: Θέματα Υλοποίησης. Περίληψη Αποτελεσμάτων. 1 Κεφ. 6 Τι είδαμε στο προηγούμενο μάθημα Βαθμολόγηση

Διαβάστε περισσότερα

Διακριτός Μετασχηματισμός Fourier

Διακριτός Μετασχηματισμός Fourier Διακριτός Μετασχηματισμός Fourier 1 Διακριτός Μετασχηματισμός Fourier Ο μετασχηματισμός Fourier αποτελεί τον ακρογωνιαίο λίθο της επεξεργασίας σήματος αλλά και συχνή αιτία πονοκεφάλου για όσους πρωτοασχολούνται

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 6: ΓΡΑΜΜΙΚΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΟ ΤΙΣ ΠΑΡΑΔΟΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΗΡΑΚΛΕΙΟ

Διαβάστε περισσότερα

7. Υπολογισμός Βαθμολογιών σε ένα Πλήρες Σύστημα Αναζήτησης

7. Υπολογισμός Βαθμολογιών σε ένα Πλήρες Σύστημα Αναζήτησης Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 7. Υπολογισμός Βαθμολογιών σε ένα Πλήρες Σύστημα Αναζήτησης Ανάκτηση Πληροφοριών Χρήστος ουλκερίδης Τμήμα

Διαβάστε περισσότερα

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΚΕΦΑΛΑΙΟ Ο : ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ - ΕΝΟΤΗΤΕΣ :.... ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΜΕΘΟΔΟΛΟΓΙΑ : ΠΡΑΓΜΑΤΙΚΟ & ΦΑΝΤΑΣΤΙΚΟ ΜΕΡΟΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Έστω ένας μιγαδικός αριθμός,

Διαβάστε περισσότερα

ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ 2012

ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ 2012 ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ Δίνονται τα εξής πρότυπα: [ ] [ ] [ ] [ ] Άσκηση η (3 μονάδες) Χρησιμοποιώντας το κριτήριο της ομοιότητας να απορριφθεί ένα χαρακτηριστικό με βάση το συντελεστή συσχέτισης. (γράψτε ποιο

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 11: Διανύσματα (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων &

Διαβάστε περισσότερα

ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο

ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο 2014-2015 Πρώτη Σειρά Ασκήσεων (Υποχρεωτική, 25% του συνολικού βαθμού στο μάθημα) Ημερομηνία Ανακοίνωσης: 22/10/2014 Ημερομηνία Παράδοσης: Μέχρι 14/11/2014 23:59

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΣΥΝΑΡΤΗΣΙΑΚΟΙ ΧΩΡΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Διδάσκων : Επίκ Καθ Κολάσης Χαράλαμπος Άδειες Χρήσης

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού

Διαβάστε περισσότερα

Μηχανική Μάθηση: γιατί;

Μηχανική Μάθηση: γιατί; Μηχανική Μάθηση Μηχανική Μάθηση: γιατί; Απαραίτητη για να μπορεί ο πράκτορας να ανταπεξέρχεται σε άγνωστα περιβάλλοντα Δεν είναι δυνατόν ο σχεδιαστής να προβλέψει όλα τα ενδεχόμενα περιβάλλοντα. Χρήσιμη

Διαβάστε περισσότερα

BΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΕΞΕΤΑΣΗ ΦΕΒΡΟΥΑΡΙΟΥ 2005

BΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΕΞΕΤΑΣΗ ΦΕΒΡΟΥΑΡΙΟΥ 2005 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ BΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΕΞΕΤΑΣΗ ΦΕΒΡΟΥΑΡΙΟΥ 2005 ΛΥΣΕΙΣ Ι. Βασιλείου -----------------------------------------------------------------------------------------------------

Διαβάστε περισσότερα

Εντολή Δεδομένα Περιεχόμενα μετά την εκτέλεση 1 read(x) 122 x= 2 read(a,b,c) 133 244 355 a= b= c= 3 read(d,e) 166 277 3888

Εντολή Δεδομένα Περιεχόμενα μετά την εκτέλεση 1 read(x) 122 x= 2 read(a,b,c) 133 244 355 a= b= c= 3 read(d,e) 166 277 3888 ΕΡΩΤΗΣΕΙΣ 1. Να αναφέρετε μερικά από τα ιδιαίτερα χαρακτηριστικά της Pascal. 2. Ποιο είναι το αλφάβητο της Pascal; 3. Ποια είναι τα ονόματα-ταυτότητες και σε τι χρησιμεύουν; 4. Σε τι χρησιμεύει το συντακτικό

Διαβάστε περισσότερα

Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος

Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος Παράδειγμα Έστω το σύνολο V το σύνολο όλων των θετικών πραγματικών αριθμών εφοδιασμένο με την ακόλουθη πράξη της πρόσθεσης: y y με, y V και του πολλαπλασιασμού

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΟΥ Β ΛΥΚΕΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ 1. ΘΕΜΑ ΚΩΔΙΚΟΣ_18556 Δίνονται τα διανύσματα α και β με ^, και,. α Να

Διαβάστε περισσότερα

Information Retrieval

Information Retrieval Introduction to Information Retrieval ΜΥΕ003-ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη 6-7: Βαθμολόγηση. Στάθμιση όρων. Το μοντέλο διανυσματικού χώρου. 1 Κεφ. 6 Τι θα δούμε σήμερα;

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Τελικές εξετάσεις 3 Ιανουαρίου 27 Διάρκεια εξέτασης: 3 ώρες (2:-5:) ΘΕΜΑ ο

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

ΟΝΟΜΑΤΕΠΩΝΥΜΟ : Αντικείμενα: περιγραφική στατιστική, γραφήματα, συναρτήσεις βάσεων δεδομένων, συγκεντρωτικοί πίνακες

ΟΝΟΜΑΤΕΠΩΝΥΜΟ : Αντικείμενα: περιγραφική στατιστική, γραφήματα, συναρτήσεις βάσεων δεδομένων, συγκεντρωτικοί πίνακες Σχολή Διοίκησης και Οικονομίας (ΣΔΟ) Τμήμα Λογιστικής και Χρηματοοικονομικής Διδάσκων: Δρ. Γκόγκος Χρήστος Μάθημα: Πληροφορική ΙI (εργαστήριο) Ακαδημαϊκό έτος 2013-2014 εαρινό εξάμηνο ΟΝΟΜΑΤΕΠΩΝΥΜΟ : ΑΡΙΘΜΟΣ

Διαβάστε περισσότερα

ΤΕΤΡΑ ΙΑ ΑΝΑΛΥΣΗΣ Ε ΟΜΕΝΩΝ, ΤΕΥΧΟΣ 15 (σσ ) DATA ANALYSIS BULLETIN, ISSUE 15 (pp ) Ιεραρχική Ανάλυση

ΤΕΤΡΑ ΙΑ ΑΝΑΛΥΣΗΣ Ε ΟΜΕΝΩΝ, ΤΕΥΧΟΣ 15 (σσ ) DATA ANALYSIS BULLETIN, ISSUE 15 (pp ) Ιεραρχική Ανάλυση ΤΕΤΡΑ ΙΑ ΑΝΑΛΥΣΗΣ Ε ΟΜΕΝΩΝ, ΤΕΥΧΟΣ 15 (σσ. 81-89) DATA ANALYSIS BULLETIN, ISSUE 15 (pp. 81-89) Ιεραρχική Ανάλυση ηµήτριος Καραπιστόλης Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυµα Θεσσαλονίκης Περίληψη

Διαβάστε περισσότερα

Ασκήσεις2 8. ; Αληθεύει ότι το (1, 0, 1, 2) είναι ιδιοδιάνυσμα της f ; b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα της γραμμικής απεικόνισης 3 3

Ασκήσεις2 8. ; Αληθεύει ότι το (1, 0, 1, 2) είναι ιδιοδιάνυσμα της f ; b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα της γραμμικής απεικόνισης 3 3 Ασκήσεις 8 Ασκήσεις Ιδιοτιμές και ιδιοδιανύσματα Βασικά σημεία Ορισμός ιδιοτιμων και ιδιοδιανυσμάτων, υπολογισμός τους Σε διακεκριμένες ιδιοτιμές αντιστοιχούν γραμμικά ανεξάρτητα ιδιοδιανύσματα Αν ΑΧ=λΧ,

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1 Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 4 ης διάλεξης 4.1. (α) Αποδείξτε ότι αν η h είναι συνεπής, τότε h(n

Διαβάστε περισσότερα

ΛΥΣΗ ΤΗΣ ΔΕΥΤΕΡΗΣ ΑΣΚΗΣΗΣ Όλγα Γκουντούνα

ΛΥΣΗ ΤΗΣ ΔΕΥΤΕΡΗΣ ΑΣΚΗΣΗΣ Όλγα Γκουντούνα ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΜΑΘΗΜΑ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΑΚΑΔ. ΕΤΟΣ 2011-12 ΔΙΔΑΣΚΟΝΤΕΣ Ιωάννης Βασιλείου Καθηγητής Τιμολέων Σελλής Καθηγητής Άσκηση 1

Διαβάστε περισσότερα

5. Κβαντική Διερεύνηση - Κβαντικός αλγόριθμος του Grover

5. Κβαντική Διερεύνηση - Κβαντικός αλγόριθμος του Grover 5. Κβαντική Διερεύνηση - Κβαντικός αλγόριθμος του Grover Σύνοψη Στο κεφάλαιο αυτό παρουσιάζεται ο αλγόριθμος του Grover για τη διερεύνηση μη δομημένων βάσεων δεδομένων. Περιγράφονται οι τελεστές και το

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

Συνοπτική Μεθοδολογία Ασκήσεων IP Fragmentation. Ασκήσεις στο IP Fragmentation

Συνοπτική Μεθοδολογία Ασκήσεων IP Fragmentation. Ασκήσεις στο IP Fragmentation Συνοπτική Μεθοδολογία Ασκήσεων IP Fragmentation Οι σημειώσεις που ακολουθούν περιγράφουν τις ασκήσεις IP Fragmentation που θα συναντήσετε στο κεφάλαιο 3. Η πιο συνηθισμένη και βασική άσκηση αναφέρεται

Διαβάστε περισσότερα

ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΣΤΟΝ ΠΑΓΚΟΣΜΙΟ ΙΣΤΟ & ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ

ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΣΤΟΝ ΠΑΓΚΟΣΜΙΟ ΙΣΤΟ & ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΣΤΟΝ ΠΑΓΚΟΣΜΙΟ ΙΣΤΟ & ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ 5//013 ο ΓΛΩΣΣΑ ΚΑΙ ΑΝΑΖΗΤΗΣΗ ΠΛΗΡΟΦΟΡΙΑΣ Ενότητες Εισαγωγή Συστήματα Aνάκτησης πληροφορίας Κατασκευή ερωτημάτων Δεικτοδότηση Αναζήτηση στο

Διαβάστε περισσότερα

Μάθηση και Γενίκευση. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Μάθηση και Γενίκευση. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων Μάθηση και Γενίκευση Το Πολυεπίπεδο Perceptron (MultiLayer Perceptron (MLP)) Έστω σύνολο εκπαίδευσης D={(x n,t n )}, n=1,,n. x n =(x n1,, x nd ) T, t n =(t n1,, t np ) T Θα πρέπει το MLP να έχει d νευρώνες

Διαβάστε περισσότερα

Κινητές επικοινωνίες. Κεφάλαιο 7 Άσκηση επανάληψης Καθολική σχεδίαση δικτύου

Κινητές επικοινωνίες. Κεφάλαιο 7 Άσκηση επανάληψης Καθολική σχεδίαση δικτύου Κινητές επικοινωνίες Κεφάλαιο 7 Άσκηση επανάληψης Καθολική σχεδίαση δικτύου 1 Σχεδίαση συστήματος Η εταιρία μας θέλει να καλύψει με κυψελωτό σύστημα τηλεφωνίας μία πόλη επιφάνειας 20000 km 2 (συχνότητα

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

Αριθμήσιμα σύνολα. Μαθηματικά Πληροφορικής 5ο Μάθημα. Παραδείγματα αριθμήσιμων συνόλων. Οι ρητοί αριθμοί

Αριθμήσιμα σύνολα. Μαθηματικά Πληροφορικής 5ο Μάθημα. Παραδείγματα αριθμήσιμων συνόλων. Οι ρητοί αριθμοί Αριθμήσιμα σύνολα Μαθηματικά Πληροφορικής 5ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Ορισμός Πόσα στοιχεία έχει το σύνολο {a, b, r, q, x}; Οσα και το σύνολο {,,, 4, 5} που είναι

Διαβάστε περισσότερα

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΚΕΦΑΛΑΙΟ 1 ο -ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Απο το Ψηφιακό Σχολείο του ΥΠΠΕΘ Επιμέλεια: Συντακτική Ομάδα mathpgr Συντονιστής:

Διαβάστε περισσότερα

Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β.

Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β. Η έννοια της ακολουθίας Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β. Δηλαδή: f : A B Η ακολουθία είναι συνάρτηση.

Διαβάστε περισσότερα

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση) TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

Μοντελοποίηση. Μοντέλα IR που έχουν προταθεί και χρησιµοποιούνται από υπάρχοντα συστήµατα.

Μοντελοποίηση. Μοντέλα IR που έχουν προταθεί και χρησιµοποιούνται από υπάρχοντα συστήµατα. Μοντελοποίηση Μοντέλα I που έχουν προταθεί και χρησιµοποιούνται από υπάρχοντα συστήµατα. Ταξινόµηση Μοντέλων I etreval Browsng Κλασικά Μοντέλα Boolean Vector robablstc οµικά Μοντέλα Non-Overlappng Lsts

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...

Διαβάστε περισσότερα

Information Retrieval

Information Retrieval Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη 6: Θέματα Υλοποίησης. Περίληψη Αποτελεσμάτων. 1 Κεφ. 6 Τι είδαμε στο προηγούμενο μάθημα Βαθμολόγηση

Διαβάστε περισσότερα

Θέματα. Θέμα 1 Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (10 μονάδες)

Θέματα. Θέμα 1 Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (10 μονάδες) Θέματα Θέμα 1 Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (10 μονάδες) Β. Είναι Σωστή ή Λάθος καθεμιά από τις παρακάτω προτάσεις ; Θέμα α. Αν x

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ C ΣΕΙΡΑ 1 η

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ C ΣΕΙΡΑ 1 η Δημοκρίτειο Πανεπιστήμιο Θράκης Πολυτεχνική Σχολή Τμήμα Μηχανικών Παραγωγής & Διοίκησης Ακαδ. έτος 2015-2016 Τομέας Συστημάτων Παραγωγής Εξάμηνο Β Αναπληρωτής Καθηγητής Στέφανος Δ. Κατσαβούνης ΜΑΘΗΜΑ :

Διαβάστε περισσότερα

Query-Driven Indexing for Scalable Peer-to-Peer Text Retrieval. Gleb Skobeltsyn, Toan Luu, Ivana Podnar Zarko, Martin Rajman, Karl Aberer

Query-Driven Indexing for Scalable Peer-to-Peer Text Retrieval. Gleb Skobeltsyn, Toan Luu, Ivana Podnar Zarko, Martin Rajman, Karl Aberer Query-Driven Indexing for Scalable Peer-to-Peer Text Retrieval Gleb Skobeltsyn, Toan Luu, Ivana Podnar Zarko, Martin Rajman, Karl Aberer Περιγραφή του προβλήματος Ευρετηριοποίηση μεγάλων συλλογών εγγράφων

Διαβάστε περισσότερα

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη;

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; Κινηματική είναι ο κλάδος της Φυσικής που έχει ως αντικείμενο τη μελέτη της κίνησης. Στην Κινηματική

Διαβάστε περισσότερα

Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ

Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ 2.1 Περιγραφή της Κίνησης 1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; Κινηματική είναι ο κλάδος της Φυσικής που έχει ως αντικείμενο τη μελέτη της κίνησης.

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Διανυσματικοί Χώροι (1) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Διανυσματικοί Χώροι (1) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΝΟΤΗΤΑ: Διανυσματικοί Χώροι (1) ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons

Διαβάστε περισσότερα

Κεφάλαιο Χώρος, Διανύσματα, Διανυσματικές εξισώσεις, Συστήματα Συντεταγμένων.

Κεφάλαιο Χώρος, Διανύσματα, Διανυσματικές εξισώσεις, Συστήματα Συντεταγμένων. Χώρος Διανύσματα Κεφάλαιο Χώρος, Διανύσματα, Διανυσματικές εξισώσεις, Συστήματα Συντεταγμένων. Καρτεσιανές συντεταγμένες και διανύσματα στο χώρο. Στο σύστημα καρτεσιανών (ή ορθογώνιων) συντεταγμένων κάθε

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ

ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 4// ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ α) Για δεδομένη αρχική ταχύτητα υ, με ποια γωνία

Διαβάστε περισσότερα

Συμπίεση Δεδομένων

Συμπίεση Δεδομένων Συμπίεση Δεδομένων 2014-2015 Κβάντιση Δρ. Ν. Π. Σγούρος 2 Άσκηση 5.1 Για ένα σήμα που έχει τη σ.π.π. του σχήματος να υπολογίσετε: μήκος του δυαδικού κώδικα για Ν επίπεδα κβάντισης για σταθερό μήκος λέξης;

Διαβάστε περισσότερα

Επεξεργασία Ερωτήσεων

Επεξεργασία Ερωτήσεων Εισαγωγή Επεξεργασία Ερωτήσεων ΜΕΡΟΣ 1 Γενική Εικόνα του Μαθήματος 1. Μοντελοποίηση (Μοντέλο Ο/Σ, Σχεσιακό, Λογικός Σχεδιασμός) 2. Προγραμματισμός (Σχεσιακή Άλγεβρα, SQL) ημιουργία/κατασκευή Εισαγωγή εδομένων

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ

Γενικά Μαθηματικά ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6 η : Μερική Παράγωγος ΙΙ Λουκάς Βλάχος Καθηγητής Αστροφυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ HY3. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΠΙΛΥΣΗ ΜΗ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Π. ΤΣΟΜΠΑΝΟΠΟΥΛΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ. & ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ Βασικά σημεία Μη γραμμικές εξισώσεις με πραγματικές ρίζες. Μέθοδος

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. Η έννοια του μιγαδικού Το σύνολο των μιγαδικών. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

ΣΗΜΕΙΩΣΕΙΣ. Η έννοια του μιγαδικού Το σύνολο των μιγαδικών. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

Posting File. D i. tf key1 [position1 position2 ] D j tf key2... D l.. tf keyl

Posting File. D i. tf key1 [position1 position2 ] D j tf key2... D l.. tf keyl ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΗΥ463 Συστήµατα Ανάκτησης Πληροφοριών Εργασία: Ανεστραµµένο Ευρετήριο Εισαγωγή Σκοπός της εργασίας είναι η δηµιουργία ενός ανεστραµµένου ευρετηρίου για τη µηχανή αναζήτησης Μίτος, το

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τμήμα Επιστήμης Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τμήμα Επιστήμης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τμήμα Επιστήμης Υπολογιστών «Γραμμική Άλγεβρα» (ΗΥ119) Χειμερινό Εξάμηνο 009-010 Διδάσκων: Ι. Τσαγράκης 6 Ο ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ Άσκηση 1: Δείξτε ότι η απεικόνιση τον ker f. Είναι η

Διαβάστε περισσότερα

Α.Τ.ΕΙ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΠΟΛΥΜΕΣΩΝ. ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΗΤΩΝ ΝΕΥΡΩΝΙΚΩΝ ΔΙΚΤΥΩΝ

Α.Τ.ΕΙ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΠΟΛΥΜΕΣΩΝ. ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΗΤΩΝ ΝΕΥΡΩΝΙΚΩΝ ΔΙΚΤΥΩΝ Α.Τ.ΕΙ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΠΟΛΥΜΕΣΩΝ. ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΗΤΩΝ ΝΕΥΡΩΝΙΚΩΝ ΔΙΚΤΥΩΝ ΑΝΤΑΓΩΝΙΣΤΙΚΗ ΕΚΜΑΘΗΣΗ ΤΑ ΔΙΚΤΥΑ KOHONEN A. ΕΙΣΑΓΩΓΗ Στα προβλήματα που έχουμε αντιμετωπίσει μέχρι τώρα

Διαβάστε περισσότερα

Λογικά Διανύσματα. >>x = -3/2*pi : pi/100 : 3/2*pi; >>y = tan(x); >>plot(x, y)

Λογικά Διανύσματα. >>x = -3/2*pi : pi/100 : 3/2*pi; >>y = tan(x); >>plot(x, y) Λογικά Διανύσματα Τα λογικά διανύσματα του Matlab είναι πολύ χρήσιμα εργαλεία. Για παράδειγμα ας υποθέσουμε ότι θέλουμε να κάνουμε την γραφική παράσταση της tan(x) στο διάστημα από -3π/2 μέχρι 3π/2. >>x

Διαβάστε περισσότερα

Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc

Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1 1. Πότε τα σώματα θεωρούνται υλικά σημεία; Αναφέρεται παραδείγματα. Στη φυσική πολλές φορές είναι απαραίτητο να μελετήσουμε τα σώματα χωρίς να λάβουμε υπόψη τις διαστάσεις τους. Αυτό

Διαβάστε περισσότερα

3. Γραμμικά Συστήματα

3. Γραμμικά Συστήματα 3. Γραμμικά Συστήματα Ασκήσεις 3. Αποδείξτε ότι το γινόμενο δύο άνω τριγωνικών πινάκων είναι άνω τριγωνικός πίνακας. Επίσης, στην περίπτωση που ένας άνω τριγωνικός πίνακας U 2 R n;n είναι αντιστρέψιμος,

Διαβάστε περισσότερα

d dx ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ

d dx ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ α) Η παράγωγος μιας συνάρτησης = f() σε ένα σημείο 0 εκφράζει το ρυθμό μεταβολής της συνάρτησης (ή τον παράγωγο αριθμό) στο σημείο 0. β) Γραφικά, η παράγωγος της συνάρτησης στο σημείο

Διαβάστε περισσότερα

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου Ι Άσκηση 1: Θεωρήστε δύο ορθοκανονικά διανύσματα ψ 1 και ψ και υποθέστε ότι αποτελούν βάση σε ένα χώρο δύο διαστάσεων. Θεωρήστε επίσης ένα τελαστή T που ορίζεται στο χώρο

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C Κεφάλαιο 1 Εισαγωγικές έννοιες Στο κεφάλαιο αυτό θα αναφερθούμε σε ορισμένες έννοιες, οι οποίες ίσως δεν έχουν άμεση σχέση με τους διανυσματικούς χώρους, όμως θα χρησιμοποιηθούν αρκετά κατά τη μελέτη τόσο

Διαβάστε περισσότερα

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων Κεφάλαιο 2 Διανύσματα και Συστήματα Συντεταγμένων Διανύσματα Διανυσματικά μεγέθη Φυσικά μεγέθη που έχουν τόσο αριθμητικές ιδιότητες όσο και ιδιότητες κατεύθυνσης. Σε αυτό το κεφάλαιο, θα ασχοληθούμε με

Διαβάστε περισσότερα

Εισαγωγή. Γενική Εικόνα του Μαθήµατος. Το εσωτερικό ενός Σ Β. Εισαγωγή. Εισαγωγή Σ Β Σ Β. Αρχεία ευρετηρίου Κατάλογος συστήµατος Αρχεία δεδοµένων

Εισαγωγή. Γενική Εικόνα του Μαθήµατος. Το εσωτερικό ενός Σ Β. Εισαγωγή. Εισαγωγή Σ Β Σ Β. Αρχεία ευρετηρίου Κατάλογος συστήµατος Αρχεία δεδοµένων Βάσεις εδοµένων 2003-2004 Ευαγγελία Πιτουρά 1 ΜΕΡΟΣ 1 Γενική Εικόνα του Μαθήµατος Επεξεργασία Ερωτήσεων Μοντελοποίηση (Μοντέλο Ο/Σ, Σχεσιακό, Λογικός Σχεδιασµός) Προγραµµατισµός (Σχεσιακή Άλγεβρα, SQL)

Διαβάστε περισσότερα

Αντικείμενα 5 ου εργαστηρίου

Αντικείμενα 5 ου εργαστηρίου 1.2 Σχολή Διοίκησης και Οικονομίας (ΣΔΟ) Τμήμα Λογιστικής και Χρηματοοικονομικής Διδάσκων: Δρ. Γκόγκος Χρήστος Μάθημα: Πληροφορική Ι (εργαστήριο) Ακαδημαϊκό έτος: 2013-2014 Εξάμηνο Α Αντικείμενα 5 ου εργαστηρίου

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος 6/6/06 Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) 0 Δίνεται ο πίνακας A =. Nα υπολογίσετε την βαθμίδα του και να βρείτε τη διάσταση και από μία βάση α) του μηδενοχώρου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β. ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ Γ. Π. Β. ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.) (Μαθηματικός) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

21 a 22 a 2n. a m1 a m2 a mn

21 a 22 a 2n. a m1 a m2 a mn Παράρτημα Α Βασική γραμμική άλγεβρα Στην ενότητα αυτή θα παρουσιαστούν με συνοπτικό τρόπο βασικές έννοιες της γραμμικής άλγεβρας. Ο στόχος της ενότητας είναι να αποτελέσει ένα άμεσο σημείο αναφοράς και

Διαβάστε περισσότερα

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; Μονόμετρα ονομάζονται τα μεγέθη τα οποία, για να τα προσδιορίσουμε πλήρως, αρκεί να γνωρίζουμε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ

ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ 6. Βέλτιστες προσεγγίσεις σε ευκλείδειους χώρους Στο κεφάλαιο αυτό θα ασχοληθούµε µε προσεγγίσεις που ελαχιστοποιούν αποστάσεις σε διανυσµατικούς χώρους, µε νόρµα που προέρχεται

Διαβάστε περισσότερα

Υπολογιστική Νοημοσύνη. Μάθημα 13: Αναδρομικά Δίκτυα - Recurrent Networks

Υπολογιστική Νοημοσύνη. Μάθημα 13: Αναδρομικά Δίκτυα - Recurrent Networks Υπολογιστική Νοημοσύνη Μάθημα 13: Αναδρομικά Δίκτυα - Recurrent Networks Γενικά Ένα νευρωνικό δίκτυο λέγεται αναδρομικό, εάν υπάρχει έστω και μια σύνδεση από έναν νευρώνα επιπέδου i προς έναν νευρώνα επιπέδου

Διαβάστε περισσότερα

Ευθύγραμμες Κινήσεις

Ευθύγραμμες Κινήσεις Οι παρακάτω σημειώσεις διανέμονται υπό την άδεια: Creaive Commons Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 4.0 Διεθνές. 1 Θέση και Σύστημα αναφοράς Στην καθημερινή μας ζωή για να περιγράψουμε

Διαβάστε περισσότερα

ιασπορά πληροφορίας βασισµένη σε σηµασιολογικές συσχετίσεις

ιασπορά πληροφορίας βασισµένη σε σηµασιολογικές συσχετίσεις ιασπορά πληροφορίας βασισµένη σε σηµασιολογικές συσχετίσεις Κατζαγιαννάκη Γ. Ειρήνη Ηλέκτρα Μεταπτυχιακή Εργασία Τµήµα Επιστήµης Υπολογιστών Πανεπιστήµιο Κρήτης Περίληψη Σε ένα σύστηµα επιλεκτικής διασποράς

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #2

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #2 ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος 2001-2002 ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #2 «Προγραμματισμός Η/Υ» - Τετράδιο Εργαστηρίου #2 2 Γενικά Στο Εργαστήριο αυτό θα αναλύσουμε τη χρήση της βασικής εντολής ελέγχου ροής

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 6η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Μοντέλα Ανάκτησης IΙ (Retrieval Models)

Μοντέλα Ανάκτησης IΙ (Retrieval Models) Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2008 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Μοντέλα Ανάκτησης IΙ (Retrieval Models) Γιάννης Τζίτζικας ιάλεξη

Διαβάστε περισσότερα

2.6 ΑΘΡΟΙΣΜΑ ΚΑΙ ΔΙΑΦΟΡΑ ΔΙΑΝΥΣΜΑΤΩΝ

2.6 ΑΘΡΟΙΣΜΑ ΚΑΙ ΔΙΑΦΟΡΑ ΔΙΑΝΥΣΜΑΤΩΝ ΜΕΡΟΣ 2.6 ΘΡΟΙΣΜ ΚΙ ΙΦΟΡ ΙΝΥΣΜΤΩΝ 293 2.6 ΘΡΟΙΣΜ ΚΙ ΙΦΟΡ ΙΝΥΣΜΤΩΝ Άθροισμα διανυσμάτων Το άθροισμα διανυσμάτων ρίσκεται με δύο τρόπους. Η μέθοδος του πολυγώνου Μεταφέρουμε τα διανύσµατα που χρειάζεται

Διαβάστε περισσότερα

Σχέσεις. Διμελής Σχέση. ΣτοΊδιοΣύνολο. Αναπαράσταση

Σχέσεις. Διμελής Σχέση. ΣτοΊδιοΣύνολο. Αναπαράσταση Διμελής Σχέση Σχέσεις Διδάσκοντες: Φ. Αφράτη, Δ. Επιμέλεια διαφανειών: Δ. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διατεταγμένο ζεύγος (α, β): Δύο αντικείμενα

Διαβάστε περισσότερα

Προσδιορισμός ενός επίπεδου απλού αρμονικού κύματος από τις ταλαντώσεις σημείων του

Προσδιορισμός ενός επίπεδου απλού αρμονικού κύματος από τις ταλαντώσεις σημείων του A A N A B P Y T A ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΠΙΠΕΔΑ ΑΠΛΑ ΑΡΜΟΝΙΚΑ ΚΥΜΑΤΑ 9 5 0 Προσδιορισμός ενός επίπεδου απλού αρμονικού κύματος από τις ταλαντώσεις σημείων του Περιεχόμενα Εισαγωγή και παραδείγματα

Διαβάστε περισσότερα

ΚΑΤΑΚΟΡΥΦΗ ΒΟΛΗ: ΜΕΛΕΤΗ ΜΕ ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ

ΚΑΤΑΚΟΡΥΦΗ ΒΟΛΗ: ΜΕΛΕΤΗ ΜΕ ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ 490 ΚΑΤΑΚΟΡΥΦΗ ΒΟΛΗ: ΜΕΛΕΤΗ ΜΕ ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ Θεόδωρος Πολίτης Φυσικός, Εκπαιδευτικός Δευτεροβάθμιας Εκπ/σης politis@mail.gr ΠΕΡΙΛΗΨΗ Αφετηρία για την κατασκευή της δραστηριότητας ήταν η δυσκολία

Διαβάστε περισσότερα

Ανάκτηση πληροφορίας

Ανάκτηση πληροφορίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ανάκτηση πληροφορίας Ενότητα 6: Ο Αντεστραμμένος Κατάλογος Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα