Τι (άλλο) θα δούμε σήμερα;

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Τι (άλλο) θα δούμε σήμερα;"

Transcript

1 Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη6: Βαθμολόγηση. Στάθμιση όρων. Το μοντέλο διανυσματικού χώρου. 1 Κεφ. 6 Τι (άλλο) θα δούμε σήμερα; Βαθμολόγηση και κατάταξη εγγράφων Στάθμιση όρων (term weighting) Αναπαράσταση εγγράφων και ερωτημάτων ως διανύσματα 2 1

2 Κεφ. 6 Κατάταξη εγγράφων (Ranked retrieval) Μέχρι τώρα, τα ερωτήματα που είδαμε ήταν Boolean. Τα έγγραφα ήταν ταίριαζαν, είτε όχι Κατάλληλη για ειδικούς με σαφή κατανόηση των αναγκών τους και της συλλογής Επίσης, καλή για εφαρμογές: οι εφαρμογές μπορούν να επεξεργαστούν χιλιάδες αποτελεσμάτων. Αλλά, όχι κατάλληλη για την πλειοψηφία των χρηστών Είναι δύσκολο για τους περισσότερους χρήστες να διατυπώσουν Boolean ερωτήματα Οι περισσότεροι χρήστες δεν θέλουν να διαχειριστούν 1000s αποτελεσμάτων. Ιδιαίτερα στην περίπτωση των αναζητήσεων στο web 3 Το πρόβλημα της Boolean αναζήτησης: feast or famine Τα Boolean ερωτήματα συχνά έχουν είτε πολύ λίγα (=0) είτε πάρα πολλά (1000s) αποτελέσματα. Ερώτημα 1: standard user dlink ,000 hits Ερώτημα2: standard user dlink650 no card found : 0 hits Χρειάζεται επιδεξιότητα για να διατυπωθεί μια ερώτηση που έχει ως αποτέλεσμα ένα διαχειρίσιμο αριθμό ταιριασμάτων AND πολύ λίγα -OR πάρα πολλά Κεφ

3 Μοντέλα διαβαθμισμένης ανάκτησης Αντί ενός συνόλουεγγράφων που ικανοποιούν το ερώτημα, η διαβαθμισμένη ανάκτηση (ranked retrieval) επιστρέφει μια διάταξητων (κορυφαίων) για την ερώτηση εγγράφων της συλλογής Ερωτήματα ελεύθερου κειμένου (Free text queries): Αντί για μια γλώσσα ερωτημάτων με τελεστές και εκφράσεις, συνήθως το ερώτημα είναι μία ή περισσότερες λέξεις σε μια φυσική γλώσσα 5 Κεφ. 6 Το πρόβλημα «Feast or famine» δεν υφίσταται πια Όταν το σύστημα παράγει ένα διατεταγμένο σύνολο αποτελεσμάτων, τα μεγάλα σύνολα δεν αποτελούν πρόβλημα Δείχνουμε απλώς τα κορυφαία (top)k ( 10) αποτελέσματα Δεν παραφορτώνουμε το χρήστη Προϋπόθεση: ο αλγόριθμος διάταξης δουλεύει σωστά 6 3

4 Βαθμολόγηση ως η βάση της διαβαθμισμένης ανάκτησης Κεφ. 6 Θέλουμε να επιστρέψουμε τα αποτελέσματα διατεταγμένα με βάση το πόσο πιθανό είναι να είναι χρήσιμα στο χρήστη Πως διατάσουμε-διαβαθμίζουμε τα έγγραφα μιας συλλογής με βάση ένα ερώτημα Αναθέτουμε ένα βαθμό (score) ας πούμε στο [0, 1] σε κάθε έγγραφο Αυτός ο βαθμός μετρά πόσο καλά το έγγραφο ταιριάζει (match) με το ερώτημα 7 Βαθμός ταιριάσματος ερωτήματοςεγγράφου Κεφ. 6 Χρειαζόμαστε ένα τρόπο για να αναθέσουμε ένα βαθμό σε κάθε ζεύγος ερωτήματος(q)/εγγράφου(d) score(d, q) Αν ο όρος του ερωτήματος δεν εμφανίζεται στο έγγραφο, τότε ο βαθμός θα πρέπει να είναι 0 Όσο πιο συχνά εμφανίζεται ο όρος του ερωτήματος σε ένα έγγραφο, τόσο μεγαλύτερος θα πρέπει να είναι ο βαθμός Θα εξετάσουμε κάποιες εναλλακτικές για αυτό 8 4

5 Κεφ. 6 Προσπάθεια 1: Συντελεστής Jaccard Υπενθύμιση: συνηθισμένη μέτρηση της επικάλυψης δύο συνόλων AκαιB jaccard(a,b) = A B / A B jaccard(a,a) = 1 jaccard(a,b) = 0if A B = 0 Τα Aκαι Bδεν έχουν απαραίτητα το ίδιο μέγεθος Πάντα αναθέτει έναν αριθμό μεταξύ του 0 και του 1 9 Συντελεστής Jaccard: Παράδειγμα βαθμολόγησης Κεφ. 6 Ποιος είναι o βαθμός ταιριάσματος ερωτήματοςεγγράφου με βάση το συντελεστή Jaccardγια τα παρακάτω; Ερώτημα (q): ides of march Έγγραφο 1 (d1): caesar died in march Έγγραφο 2 (d2): the long march 10 5

6 Κεφ. 6 Προβλήματα με τη βαθμολογία με Jaccard Δεν λαμβάνει υπ όψιν την συχνότητα όρου (term frequency): πόσες φορές εμφανίζεται ο όρος στο έγγραφο Αγνοεί το γεγονός πως οι σπάνιοι όροι περιέχουν περισσότερη πληροφορία από ό,τιοι συχνοί. Ποιο πλήρη τρόπο κανονικοποιήσης του μήκους: A I B / A U B 11 Κεφ. 6.2 Δυαδική μήτρα σύμπτωσης (binary termdocument incidence matrix) Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth Antony Brutus Caesar Calpurnia Cleopatra mercy worser Κάθε έγγραφο αναπαρίσταται ως ένα δυαδικό διάνυσμα {0,1} V (την αντίστοιχη στήλη) 12 6

7 Κεφ. 6.2 Ο πίνακας με μετρητές Θεωρούμε τον αριθμό (πλήθος) των εμφανίσεων ενός όρου σε ένα έγγραφο: Κάθε έγγραφο είναι ένα διάνυσμα μετρητών στο N v : μια στήλη παρακάτω Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth Antony Brutus Caesar Calpurnia Cleopatra mercy worser Bag of words model Η διανυσματική αναπαράσταση δεν εξετάζει τη διάταξη των λέξεων σε ένα έγγραφο John is quicker than Maryκαι Mary is quicker than John Έχουν τα ίδια διανύσματα Αυτό λέγεται μοντέλου σάκου λέξεων (bag of words model). 14 7

8 Συχνότητα όρου - Term frequency (tf) Η συχνότητα όρου tf t,d του όρου t σε ένα έγγραφο d ορίζεται ως αριθμός των φορών που το t εμφανίζεται στο d. Θέλουμε να χρησιμοποιήσουμε το tfόταν υπολογίζουμε το βαθμό ταιριάσματος ερωτήματος-εγγράφου. Αλλά πως; Φτάνει μόνο η συχνότητα.. Ένα έγγραφο με 10 εμφανίσεις ενός όρου είναι πιο σχετικό από ένα έγγραφο με 1 εμφάνιση του όρου.. Αλλά είναι 10 φορές πιο σχετικό; Η σχετικότητα (Relevance) δεν αυξάνει αναλογικά με τη συχνότητα όρου 15 Κεφ. 6.2 Στάθμιση με Log-συχνότητας Η στάθμιση με χρήση του λογάριθμου της συχνότητα (log frequency weight)του όρου tστοdείναι w t,d 1 + log 10 tf t,d, if tf t,d > 0 = 0, otherwise 0 0, 1 1, 2 1.3, 10 2, , etc. Ο βαθμός για ένα ζεύγος εγγράφου-ερωτήματος: άθροισμα όλων των κοινών όρων : + t q d score = (1 log tf, ) t d Ο βαθμός είναι 0 όταν κανένας από τους όρους του ερωτήματος δεν εμφανίζεται στο έγγραφο 16 8

9 Κεφ. 6.2 Παράδειγμα Ποιο είναι ο βαθμός για τα παρακάτω ζεύγη χρησιμοποιώντας jaccardκαι tf; q: [information on cars] d: all you ve ever wanted to know aboutcars q: [informationon cars] d: informationon trucks, informationon planes, informationon trains q: [redcars and red trucks] d: cops stop redcarsmore often 17 Κεφ Συχνότητα εγγράφων (Document frequency) Οι σπάνιοι όροι δίνουν περισσότερη πληροφορία από τους συχνούς όρους Θυμηθείτε τα stop words(διακοπτόμενες λέξεις) Θεωρείστε έναν όρο σε μια ερώτηση που είναι σπάνιος στη συλλογή (π.χ., arachnocentric) Το έγγραφο που περιέχει αυτόν τον όρο είναι πιο πιθανό να είναι πιο σχετικό με το ερώτημα από ένα έγγραφο που περιέχει ένα λιγότερο σπάνιο όρο του ερωτήματος Θέλουμε να δώσουμε μεγαλύτερο βάρος στους σπάνιους όρους αλλά πως; df 18 9

10 Κεφ Βάρος idf df t είναι η συχνότητα εγγράφων του t: ο αριθμός (πλήθος) των εγγράφων της συλλογής που περιέχουν το t df t είναι η αντίστροφη μέτρηση τηςπληροφορίας που παρέχει ο όρος t df t N Ορίζουμε την αντίστροφη συχνότητα εγγράφων idf (inverse document frequency) του t ως idft = log10 ( N/dft ) Χρησιμοποιούμε log (N/df t ) αντί για N/df t για να «ομαλοποιήσουμε» την επίδραση του idf. 19 Κεφ Παράδειγμα idf, έστω N = 1 εκατομμύριο term df t idf t calpurnia 1 6 animal sunday 1,000 3 fly 10,000 2 under 100,000 1 the 1,000,000 0 idft = log10 ( N/dft ) Κάθε όρος στη συλλογή έχει μια τιμή idf 20 10

11 Η επίδραση του idfστη διάταξη Το idf δεν επηρεάζει τη διάταξη ερωτημάτων με ένα όρο, όπως iphone Το idfεπηρεάζει μόνο τη διάταξη εγγράφων με τουλάχιστον δύο όρους Για το ερώτημα capricious person, η idfστάθμιση έχει ως αποτέλεσμα οι εμφανίσεις του capriciousνα μετράνε περισσότερο στην τελική διάταξη των εγγράφων από ότι οι εμφανίσεις του person. (ένα έγγραφο που περιέχει μόνο το capriciousείναι πιο σημαντικό από ένα που περιέχει μόνο το person) 21 Κεφ Συχνότητα συλλογής και εγγράφων Η συχνότητα συλλογής ενός όρου t είναι ο αριθμός των εμφανίσεων τουtστη συλλογή, μετρώντας και τις πολλαπλές εμφανίσεις Παράδειγμα: Word Collection frequency Document frequency insurance try Ποια λέξη είναι καλύτερος όρος αναζήτησης (και πρέπει να έχει μεγαλύτερο βάρος)? 22 11

12 Κεφ Στάθμιση tf-idf Το tf-idfβάρος ενός όρου είναι το γινόμενο του βάρους tfκαι του βάρους idf. w = log(1+ tft, d ) log10 ( N / df t, d t ) Το πιο γνωστό σχήμα διαβάθμισης στην ανάκτηση πληροφορίας Εναλλακτικά ονόματα: tf.idf, tf x idf Αυξάνει με τον αριθμό εμφανίσεων του όρου στο έγγραφο Αυξάνει με τη σπανιότητα του όρου στη συλλογή 23 Κεφ Βαθμός εγγράφου και ερώτησης Score(q,d)= Υπάρχουν πολλές άλλες παραλλαγές Πως υπολογίζεται το tf (με ή χωρίςlog) Αν δίνεται βάρος και στους όρους του ερωτήματος t q d tf.idf t,d 24 12

13 Κεφ. 6.2 Δυαδική μήτρα σύμπτωσης Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth Antony Brutus Caesar Calpurnia Cleopatra mercy worser Κάθε έγγραφο αναπαρίσταται ως ένα δυαδικό διάνυσμα {0,1} V (την αντίστοιχη στήλη) 25 Κεφ. 6.2 Ο πίνακας με μετρητές Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth Antony Brutus Caesar Calpurnia Cleopatra mercy worser Θεωρούμε τον αριθμό των εμφανίσεων ενός όρου σε ένα έγγραφο: Κάθε έγγραφο είναι ένα διάνυσμα μετρητών στο N v : 26 13

14 Ο πίνακας με βάρη Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth Antony Brutus Caesar Calpurnia Cleopatra mercy worser Θεωρούμε τοtf-idfβάρος του όρου: Κάθε έγγραφο είναι ένα διάνυσμα tf-idfβαρώνστο R v 27 Τα έγγραφα ως διανύσματα Έχουμε ένα V -διάστατο διανυσματικό χώρο Οι όροι είναι οι άξονες αυτού του χώρου Τα έγγραφα είναι σημεία ή διανύσματα σε αυτόν τον χώρο Πολύ μεγάλη διάσταση: δεκάδες εκατομμύρια διαστάσεις στην περίπτωση της αναζήτησης στο web Πολύ αραιά διανύσματα οι περισσότεροι όροι είναι

15 Τα ερωτήματα ως διανύσματα Βασική ιδέα 1: Εφαρμόζουμε το ίδιο και για τα ερωτήματα, δηλαδή, αναπαριστούμε και τα ερωτήματα ως διανύσματα στον ίδιο χώρο Βασική ιδέα 2:Διαβάθμιση των εγγράφων με βάση το πόσο κοντά είναι στην ερώτηση σε αυτό το χώρο Κοντινά = ομοιότητα διανυσμάτων Ομοιότητα αντίθετο της απόστασης 29 Ομοιότητα διανυσμάτων Πρώτη προσέγγιση: απόσταση μεταξύ δυο διανυσμάτων Ευκλείδεια απόσταση; Δεν είναι καλή ιδέα είναι μεγάληγια διανύσματα διαφορετικού μήκους 30 15

16 Γιατί η απόσταση δεν είναι καλή ιδέα Η Ευκλείδεια απόσταση μεταξύ τουqκαι τουd 2 είναι μεγάλη αν και η κατανομή των όρων είναι παρόμοια 31 Χρήση της γωνίας αντί της απόστασης Έστω ένα έγγραφο d. Ως άσκηση, υποθέστε ότι κάνουμε append το d στον εαυτό του και έστω d το κείμενο που προκύπτει. Σημασιολογικά το d και τοd έχουν το ίδιο περιεχόμενο Η Ευκλείδεια απόσταση μεταξύ τους μπορεί να είναι πολύ μεγάλη Η γωνία όμως είναι 0 (αντιστοιχεί στη μεγαλύτερη ομοιότητα) => χρήση της γωνίας 32 16

17 Από γωνίες σε συνημίτονα Οι παρακάτω έννοιες είναι ισοδύναμες: Διαβάθμιση των εγγράφων σε φθίνουσαδιάταξη με βάση τη γωνία μεταξύ του εγγράφου και του ερωτήματος Διαβάθμιση των εγγράφων σε αύξουσαδιάταξη με βάση το συνημίτονο της γωνίας μεταξύ του εγγράφου και του ερωτήματος Συνημίτονο φθίνουσα συνάρτηση στο διάστημα [0 o, 180 o ] 33 Από γωνίες σε συνιμήτονα 34 17

18 cosine(query,document) Dot product r r r r q d cos( q, d ) = r r = q d Unit vectors q r r d r r = q d i V qi i= 1 V = 1 2 q d i i V i= 1 d 2 i q i είναι το tf-idf βάρος του όρου i στην ερώτηση d i είναι το tf-idf βάρος του όρου i στο έγγραφο cos(q,d) is the cosine similarity of q and d or, equivalently, the cosine of the angle between q and d. 35 Κανονικοποίηση του μήκους Ένα διάνυσμα μπορεί να κανονικοποιηθεί διαιρώντας τα στοιχεία του α με το μήκος του, με χρήση τηςl 2 νόρμας: r 2 x = x Διαιρώντας ένα διάνυσμα με την L 2 νόρμα το κάνει μοναδιαίο Για παράδειγμα το d and d (d και μετά d) έχουν τα ίδια διανύσματα μετά την κανονικοποίηση μήκους Ως αποτέλεσμα, μικρά και μεγάλα έγγραφα έχουν συγκρίσιμα βάρη 2 i i 36 18

19 Συνημίτονο για κανονικοποιημένα διανύσματα Για διανύσματα που έχουμε κανονικοποιήσειτο μήκος τους (length-normalized vectors) το συνημίτονο είναι απλώς το εσωτερικό γινόμενο (dot or scalar product): cos( q r, d r )= q r d r = V i=1 q i d i 37 Ομοιότητα συνημιτόνου 38 19

20 Παράδειγμα Ποια είναι οι ομοιότητα μεταξύ των έργων SaS: Sense and Sensibility PaP: Pride and Prejudice, and WH: Wuthering Heights? term SaS PaP WH affection jealous gossip wuthering Συχνότητα όρων (μετρητές) Για απλοποίηση δε θα χρησιμοποιήσουμε τα idfβάρη 39 Παράδειγμα (συνέχεια) Log frequency weighting After length normalization term SaS PaP WH affection jealous gossip wuthering term SaS PaP WH affection jealous gossip wuthering cos(sas,pap) cos(sas,wh) 0.79 cos(pap,wh) 0.69 Why do we have cos(sas,pap) > cos(sas,wh)? 40 20

21 Computing cosine scores 41 Κεφ. 6.4 Παραλλαγές της tf-idf στάθμισης 42 21

22 Κεφ. 6.4 Στάθμιση ερωτημάτων και εγγράφων Πολλές μηχανές αναζήτησης σταθμίζουνε διαφορετικά τις ερωτήσεις από τα έγγραφα Συμβολισμό: ddd.qqq,με χρήση των ακρονύμωντου πίνακα Συχνό σχήμα : lnc.ltc Έγγραφο: logarithmic tf(l as first character), no idf, cosine normalization Γιατί; Ερώτημα: logarithmic tf(l in leftmost column), idf(t στη δεύτερη στήλη), no normalization 43 Κεφ. 6.4 Παράδειγμα: lnc.ltc Έγγραφο: car insurance auto insurance Ερώτημα: best car insurance Term Query Document Pro d tfraw tf-wt df idf wt n liz e tf-raw tf-wt wt n liz e auto best car insurance Doc length = Score = =

23 Περίληψη βαθμολόγησης στο διανυσματικό χώρο Αναπαράσταση του ερωτήματος ως ένα διαβαθμισμένο tf-idf διάνυσμα Αναπαράσταση κάθε εγγράφου ως ένα διαβαθμισμένο tf-idf διάνυσμα Υπολόγισε το συνημίτονο για κάθε ζεύγος ερωτήματος, εγγράφου Διάταξε τα έγγραφα με βάση αυτό το βαθμό Επέστρεψε τα κορυφαία Κ (π.χ., Κ =10) έγγραφα στο χρήστη 45 ΤΕΛΟΣ 5 ου Μαθήματος Ερωτήσεις? Χρησιμοποιήθηκε κάποιο υλικό των: Pandu Nayak and Prabhakar Raghavan, CS276:Information Retrieval and Web Search(Stanford) Hinrich Schütze and Christina Lioma, Stuttgart IIR class 46 23

Information Retrieval

Information Retrieval Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη 7: Βαθμολόγηση. Στάθμιση όρων. Το μοντέλο διανυσματικού χώρου. 1 Κεφ. 6 Τι θα δούμε σήμερα; Βαθμολόγηση

Διαβάστε περισσότερα

6. Βαθμολόγηση, Στάθμιση Όρων, και το Μοντέλο Διανυσματικού Χώρου

6. Βαθμολόγηση, Στάθμιση Όρων, και το Μοντέλο Διανυσματικού Χώρου Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 6. Βαθμολόγηση, Στάθμιση Όρων, και το Μοντέλο Διανυσματικού Χώρου Ανάκτηση Πληροφοριών Χρήστος ουλκερίδης

Διαβάστε περισσότερα

Information Retrieval

Information Retrieval Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη 5(α): Συμπίεση Ευρετηρίου 1 ΣΤΑΤΙΣΤΙΚΑ ΣΥΛΛΟΓΗΣ 2 Κεφ. 5 Στατιστικά στοιχεία Πόσο μεγάλο είναι το

Διαβάστε περισσότερα

Information Retrieval

Information Retrieval Introduction to Information Retrieval ΜΥΕ003-ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη 6-7: Βαθμολόγηση. Στάθμιση όρων. Το μοντέλο διανυσματικού χώρου. 1 Κεφ. 6 Τι θα δούμε σήμερα;

Διαβάστε περισσότερα

Information Retrieval

Information Retrieval Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη 8: Θέματα Υλοποίησης. Περίληψη Αποτελεσμάτων. 1 Κεφ. 6 Τι είδαμε στο προηγούμενο μάθημα Βαθμολόγηση

Διαβάστε περισσότερα

Information Retrieval

Information Retrieval Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη 6: Θέματα Υλοποίησης. Περίληψη Αποτελεσμάτων. 1 Κεφ. 6 Τι είδαμε στο προηγούμενο μάθημα Βαθμολόγηση

Διαβάστε περισσότερα

Περίληψη διαβάθμισης

Περίληψη διαβάθμισης Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διαλέξεις6-7: Επανάληψη Διάταξης Εγγράφων. Θέματα Υλοποίησης. Περίληψη Αποτελεσμάτων. 1 Κεφ. 6 Περίληψη διαβάθμισης

Διαβάστε περισσότερα

Εύρεση & Διαχείριση Πληροφορίας στον Παγκόσµιο Ιστό. Διδάσκων Δημήτριος Κατσαρός

Εύρεση & Διαχείριση Πληροφορίας στον Παγκόσµιο Ιστό. Διδάσκων Δημήτριος Κατσαρός Εύρεση & Διαχείριση Πληροφορίας στον Παγκόσµιο Ιστό Διδάσκων Δημήτριος Κατσαρός Διάλεξη 10η: 31/03/2014 1 Problem with Boolean search: feast or famine Ch. 6 Boolean queries often result in either too few

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #04 Εισαγωγή στα Μοντέλα Ανάκτησης Πληροφορίας Boolean Μοντέλο 1 Άδεια χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Προτεινόμενες Λύσεις 1 ης Σειράς Ασκήσεων (Αξιολόγηση της Αποτελεσματικότητας της Ανάκτησης & Μοντέλα Ανάκτησης)

Προτεινόμενες Λύσεις 1 ης Σειράς Ασκήσεων (Αξιολόγηση της Αποτελεσματικότητας της Ανάκτησης & Μοντέλα Ανάκτησης) Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών ΗΥ463 Συστήματα Ανάκτησης Πληροφοριών 28-29 Εαρινό Εξάμηνο Προτεινόμενες Λύσεις 1 ης Σειράς Ασκήσεων (Αξιολόγηση της Αποτελεσματικότητας της Ανάκτησης &

Διαβάστε περισσότερα

Διαχείριση εγγράφων. Αποθήκες και Εξόρυξη Δεδομένων Διδάσκων: Μ. Χαλκίδη

Διαχείριση εγγράφων. Αποθήκες και Εξόρυξη Δεδομένων Διδάσκων: Μ. Χαλκίδη Διαχείριση εγγράφων Αποθήκες και Εξόρυξη Δεδομένων Διδάσκων: Μ. Χαλκίδη Απεικόνιση κειμένων για Information Retrieval Δεδομένου ενός κειμένου αναζητούμε μια μεθοδολογία απεικόνισης του γραμματικού χώρου

Διαβάστε περισσότερα

ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ. Μάθημα 7 ο : Ανάκτηση πληροφορίας. Γεώργιος Πετάσης. Ακαδημαϊκό Έτος:

ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ. Μάθημα 7 ο : Ανάκτηση πληροφορίας. Γεώργιος Πετάσης. Ακαδημαϊκό Έτος: ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ Μάθημα 7 ο : Ανάκτηση πληροφορίας Γεώργιος Πετάσης Ακαδημαϊκό Έτος: 2012 2013 ΤMHMA MHXANIKΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ, Πανεπιστήμιο Πατρών, 2012 2013 Οι διαφάνειες αυτού του μαθήματος βασίζονται

Διαβάστε περισσότερα

ΛΥΣΕΙΣ 2 ης ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ

ΛΥΣΕΙΣ 2 ης ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ ΛΥΣΕΙΣ 2 ης ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ Άσκηση 1 Θεωρείστε μια συλλογή κειμένων που περιέχει τα ακόλουθα 5 έγγραφα: Έγγραφο 1: «Computer Games» Έγγραφο 2: «Computer Games Computer Games» Έγγραφο 3: «Games Theory and

Διαβάστε περισσότερα

7. Υπολογισμός Βαθμολογιών σε ένα Πλήρες Σύστημα Αναζήτησης

7. Υπολογισμός Βαθμολογιών σε ένα Πλήρες Σύστημα Αναζήτησης Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 7. Υπολογισμός Βαθμολογιών σε ένα Πλήρες Σύστημα Αναζήτησης Ανάκτηση Πληροφοριών Χρήστος ουλκερίδης Τμήμα

Διαβάστε περισσότερα

Information Retrieval

Information Retrieval Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη 1: Εισαγωγή. Ανάκτηση Boole Κεφ. 1.1 Τι είναι η «Ανάκτηση Πληροφορίας»; Ανάγκη πληροφόρησης Βάση

Διαβάστε περισσότερα

ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΣΤΟΝ ΠΑΓΚΟΣΜΙΟ ΙΣΤΟ & ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ

ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΣΤΟΝ ΠΑΓΚΟΣΜΙΟ ΙΣΤΟ & ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΣΤΟΝ ΠΑΓΚΟΣΜΙΟ ΙΣΤΟ & ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ 5//013 ο ΓΛΩΣΣΑ ΚΑΙ ΑΝΑΖΗΤΗΣΗ ΠΛΗΡΟΦΟΡΙΑΣ Ενότητες Εισαγωγή Συστήματα Aνάκτησης πληροφορίας Κατασκευή ερωτημάτων Δεικτοδότηση Αναζήτηση στο

Διαβάστε περισσότερα

HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems. Μοντέλα Ανάκτησης Ι

HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems. Μοντέλα Ανάκτησης Ι Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Μοντέλα Ανάκτησης Ι (Retrieval Models) Γιάννης Τζίτζικας άλ ιάλεξη

Διαβάστε περισσότερα

Δημιουργία Ευρετηρίων Συλλογής Κειμένων

Δημιουργία Ευρετηρίων Συλλογής Κειμένων Γλωσσική Τεχνολογία Ακαδημαϊκό Έτος 2011-2012 - Project Σεπτεμβρίου Ημερομηνία Παράδοσης: Στην εξέταση του μαθήματος Εξέταση: Προφορική, στο τέλος της εξεταστικής. Θα βγει ανακοίνωση στο forum. Ομάδες

Διαβάστε περισσότερα

Information Retrieval

Information Retrieval Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη 3: Δομές για Λεξικά. Ανάκτηση Ανεκτική στα Σφάλματα (υποστήριξη *) 1 Ch. 2 Επανάληψη προηγούμενης

Διαβάστε περισσότερα

ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ. Μάθημα 10 ο : Αποσαφήνιση εννοιών λέξεων. Γεώργιος Πετάσης. Ακαδημαϊκό Έτος:

ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ. Μάθημα 10 ο : Αποσαφήνιση εννοιών λέξεων. Γεώργιος Πετάσης. Ακαδημαϊκό Έτος: ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ Μάθημα 10 ο : Αποσαφήνιση εννοιών λέξεων Γεώργιος Πετάσης Ακαδημαϊκό Έτος: 2012 2013 ΤMHMA MHXANIKΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ, Πανεπιστήμιο Πατρών, 2012 2013 Οι διαφάνειες αυτού του μαθήματος

Διαβάστε περισσότερα

Introduction to Information Retrieval

Introduction to Information Retrieval Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη 1: Εισαγωγή. Ανάκτηση Boole Κεφ. 1.1 Τι είναι η «Ανάκτηση Πληροφορίας»; Ανάγκη πληροφόρησης Βάση

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανύσματα Ευθείες - Επίπεδα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Διάνυσμα ή Διανυσματικό μέγεθος (Vector) Μέγεθος που

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Λανθάνουσα Σημασιολογική Ανάλυση (Latent Semantic Analysis) Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Μοντέλα Ανάκτησης Ι (Retrieval Models)

Μοντέλα Ανάκτησης Ι (Retrieval Models) Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 006 Διάρθρωση HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Informaion Rerieval (IR) Sysems Μοντέλα Ανάκτησης Ι (Rerieval Models) Εισαγωγή στα Μοντέλα

Διαβάστε περισσότερα

Information Retrieval

Information Retrieval Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη 4: Ανάκτηση Ανεκτική στα Σφάλματα 1 Κεφ. 3 Τι είδαμε στο προηγούμενο μάθημα Δομές δεδομένων για Λεξικά

Διαβάστε περισσότερα

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση) TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών

Διαβάστε περισσότερα

Εύρεση & ιαχείριση Πληροφορίας στον Παγκόσµιο Ιστό. Συµπίεση Ευρετηρίου. Term weighting. ιδάσκων ηµήτριος Κατσαρός, Ph.D.

Εύρεση & ιαχείριση Πληροφορίας στον Παγκόσµιο Ιστό. Συµπίεση Ευρετηρίου. Term weighting. ιδάσκων ηµήτριος Κατσαρός, Ph.D. Εύρεση & ιαχείριση Πληροφορίας στον Παγκόσµιο Ιστό ιδάσκων ηµήτριος Κατσαρός, Ph.D. @ Τµ. Μηχανικών Η/Υ, Τηλεπικοινωνιών & ικτύων Πανεπιστήµιο Θεσσαλίας ιάλεξη 3η: 28/02/2007 1 Συµπίεση Ευρετηρίου & Term

Διαβάστε περισσότερα

Μοντελοποίηση. Μοντέλα IR που έχουν προταθεί και χρησιµοποιούνται από υπάρχοντα συστήµατα.

Μοντελοποίηση. Μοντέλα IR που έχουν προταθεί και χρησιµοποιούνται από υπάρχοντα συστήµατα. Μοντελοποίηση Μοντέλα I που έχουν προταθεί και χρησιµοποιούνται από υπάρχοντα συστήµατα. Ταξινόµηση Μοντέλων I etreval Browsng Κλασικά Μοντέλα Boolean Vector robablstc οµικά Μοντέλα Non-Overlappng Lsts

Διαβάστε περισσότερα

Ανάκληση Πληποφοπίαρ. Information Retrieval. Διδάζκων Δημήηριος Καηζαρός

Ανάκληση Πληποφοπίαρ. Information Retrieval. Διδάζκων Δημήηριος Καηζαρός Ανάκληση Πληποφοπίαρ Information Retrieval Διδάζκων Δημήηριος Καηζαρός Διάλεξη 6η: 08/03/2016 1 Διόρθωση πληκτρολόγησης 2 Sec. 3.3 Διόρθωση πληκτρολόγησης Δυο κύριες χρήσεις Διόρθωση εγγράφων που θα εισαχθούν

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

Ανάκτηση πληροφορίας

Ανάκτηση πληροφορίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ανάκτηση πληροφορίας Ενότητα 6: Ο Αντεστραμμένος Κατάλογος Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013 stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ Στέλιος Τζωρτζάκης 1 3 4 Ο διανυσματικός χώρος των φυσικών καταστάσεων Η έννοια

Διαβάστε περισσότερα

Θα μιλήσουμε για ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ. Διαφάνειες του καθ. Γιάννη Τζίτζικα (Παν. Κρήτης) http://www.ics.forth.

Θα μιλήσουμε για ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ. Διαφάνειες του καθ. Γιάννη Τζίτζικα (Παν. Κρήτης) http://www.ics.forth. Θα μιλήσουμε για ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ Διαφάνειες του καθ. Γιάννη Τζίτζικα (Παν. Κρήτης) http://www.ics.forth.gr/~tzitzik/ Γιατοπιθανοτικότουκαθ. Απ. Παπαδόπουλου (Αριστοτέλειο Παν.) Κεφάλαιο 2

Διαβάστε περισσότερα

Εισαγωγή στους Υπολογιστές

Εισαγωγή στους Υπολογιστές Εισαγωγή στους Υπολογιστές Ενότητα #2: Αναπαράσταση δεδομένων Αβεβαιότητα και Ακρίβεια Καθ. Δημήτρης Ματαράς Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Αναπαράσταση δεδομένων (Data Representation), Αβεβαιότητα

Διαβάστε περισσότερα

EFFICIENT TOP-K QUERYING OVER SOCIAL-TAGGING NETWORKS

EFFICIENT TOP-K QUERYING OVER SOCIAL-TAGGING NETWORKS EFFICIENT TOP-K QUERYING OVER SOCIAL-TAGGING NETWORKS Ralf Schenkel, Tom Crecelious, Mouna Kacimi, Sebastian Michel, Thomas Neumann, Josiane Xavier Parreira, Gerhard Weikum ΠΡΟΒΛΗΜΑ Εύρεση ενός αποτελεσματικού

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας. Διδάσκων: Φοίβος Μυλωνάς. Διάλεξη #03

Ανάκτηση Πληροφορίας. Διδάσκων: Φοίβος Μυλωνάς. Διάλεξη #03 Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #03 Βασικές έννοιες Ανάκτησης Πληροφορίας Δομή ενός συστήματος IR Αναζήτηση με keywords ευφυής

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Μέθοδοι Εξόρυξης Κειμένου για Ομαδοποίηση Ιδεών ΔΙΠΛΩΜΑΤΙΚΗ

Διαβάστε περισσότερα

Συστήματα συντεταγμένων

Συστήματα συντεταγμένων Συστήματα συντεταγμένων Χρησιμοποιούνται για την περιγραφή της θέσης ενός σημείου στον χώρο. Κοινά συστήματα συντεταγμένων: Καρτεσιανό (x, y, z) Πολικό (r, θ) Καρτεσιανό σύστημα συντεταγμένων Οι άξονες

Διαβάστε περισσότερα

Συστήματα Αρίθμησης. Συστήματα Αρίθμησης 1. PDF created with FinePrint pdffactory Pro trial version

Συστήματα Αρίθμησης. Συστήματα Αρίθμησης 1. PDF created with FinePrint pdffactory Pro trial version Συστήματα Αρίθμησης Στην καθημερινή μας ζωή χρησιμοποιούμε το δεκαδικό σύστημα αρίθμησης. Στο σύστημα αυτό χρησιμοποιούμε δέκα διαφορετικά σύμβολα τα :,, 2, 3, 4, 5, 6,7 8, 9. Για τον αριθμό 32 θα χρειαστούμε

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών

Εισαγωγή στην επιστήμη των υπολογιστών Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 3ο Αναπαράσταση Αριθμών www.di.uoa.gr/~organosi 1 Δεκαδικό και Δυαδικό Δεκαδικό σύστημα 2 3 Δεκαδικό και Δυαδικό Δυαδικό Σύστημα

Διαβάστε περισσότερα

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Εισαγωγή στην Επεξεργασία Ερωτήσεων Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Επεξεργασία Ερωτήσεων Θα δούμε την «πορεία» μιας SQL ερώτησης (πως εκτελείται) Ερώτηση SQL Ερώτηση ΣΒΔ Αποτέλεσμα Βάσεις

Διαβάστε περισσότερα

Ανάπτυξη συστήματος ερωταποκρίσεων για αρχεία ελληνικών εφημερίδων

Ανάπτυξη συστήματος ερωταποκρίσεων για αρχεία ελληνικών εφημερίδων Ανάπτυξη συστήματος ερωταποκρίσεων για αρχεία ελληνικών εφημερίδων Οικονομικό Πανεπιστήμιο Αθηνών Πρόγραμμα Μεταπτυχιακών Σπουδών «Επιστήμη των Υπολογιστών» Διπλωματική Εργασία Μαρία-Ελένη Κολλιάρου 2

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Ενότητα 3 Λειτουργίες σε Bits, Αριθμητικά Συστήματα Χρήστος Γκουμόπουλος Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Φύση υπολογιστών Η

Διαβάστε περισσότερα

[1] είναι ταυτοτικά ίση με το μηδέν. Στην περίπτωση που το στήριγμα μιας συνάρτησης ελέγχου φ ( x)

[1] είναι ταυτοτικά ίση με το μηδέν. Στην περίπτωση που το στήριγμα μιας συνάρτησης ελέγχου φ ( x) [] 9 ΣΥΝΑΡΤΗΣΙΑΚΟΙ ΧΩΡΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Η «συνάρτηση» δέλτα του irac Η «συνάρτηση» δέλτα ορίζεται μέσω της σχέσης φ (0) αν 0 δ[ φ ] = φ δ dx = (9) 0 αν 0 όπου η φ είναι μια συνάρτηση που ανήκει

Διαβάστε περισσότερα

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ HY3. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ Π. ΤΣΟΜΠΑΝΟΠΟΥΛΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μέθοδος ελαχίστων τετραγώνων Τα σφάλματα

Διαβάστε περισσότερα

Ανάκτηση Δεδομένων (Information Retrieval)

Ανάκτηση Δεδομένων (Information Retrieval) Ανάκτηση Δεδομένων (Information Retrieval) Παύλος Εφραιμίδης Βάσεις Δεδομένων Ανάκτηση Δεδομένων 1 Information Retrieval (1) Βάσεις Δεδομένων: Περιέχουν δομημένη πληροφορία: Πίνακες Ανάκτηση Πληροφορίας

Διαβάστε περισσότερα

ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ. Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου

ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ. Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου Κ. ΝΑΣΟΠΟΥΛΟΣ - Α. ΧΡΗΣΤΙ ΟΥ Κ. ΝΑΣΟΠΟΥΛΟΣ - Α. ΧΡΗΣΤΙ ΟΥ Οκτώβριος 011 MATLAB

Διαβάστε περισσότερα

ιασπορά πληροφορίας βασισµένη σε σηµασιολογικές συσχετίσεις

ιασπορά πληροφορίας βασισµένη σε σηµασιολογικές συσχετίσεις ιασπορά πληροφορίας βασισµένη σε σηµασιολογικές συσχετίσεις Κατζαγιαννάκη Γ. Ειρήνη Ηλέκτρα Μεταπτυχιακή Εργασία Τµήµα Επιστήµης Υπολογιστών Πανεπιστήµιο Κρήτης Περίληψη Σε ένα σύστηµα επιλεκτικής διασποράς

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος 6/6/06 Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) 0 Δίνεται ο πίνακας A =. Nα υπολογίσετε την βαθμίδα του και να βρείτε τη διάσταση και από μία βάση α) του μηδενοχώρου

Διαβάστε περισσότερα

Information Retrieval

Information Retrieval Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη 6: Συμπίεση Ευρετηρίου 1 Κεφ. 3 Τι είδαμε στο προηγούμενο μάθημα Κατασκευή ευρετηρίου Στατιστικά

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο. Εξαγωγή σχέσεων μεταξύ οντοτήτων από το αρχείο της εφημερίδας «ΤΑ ΝΕΑ» με χρήση τεχνικών μη-επιβλεπόμενης μάθησης

Εθνικό Μετσόβιο Πολυτεχνείο. Εξαγωγή σχέσεων μεταξύ οντοτήτων από το αρχείο της εφημερίδας «ΤΑ ΝΕΑ» με χρήση τεχνικών μη-επιβλεπόμενης μάθησης Εθνικό Μετσόβιο Πολυτεχνείο Σχολη Ηλεκτρολογων Μηχανικων και Μηχανικων Υπολογιστων Τομεας Τεχνολογιας Πληροφορικης και Υπολογιστων Εξαγωγή σχέσεων μεταξύ οντοτήτων από το αρχείο της εφημερίδας «ΤΑ ΝΕΑ»

Διαβάστε περισσότερα

21 a 22 a 2n. a m1 a m2 a mn

21 a 22 a 2n. a m1 a m2 a mn Παράρτημα Α Βασική γραμμική άλγεβρα Στην ενότητα αυτή θα παρουσιαστούν με συνοπτικό τρόπο βασικές έννοιες της γραμμικής άλγεβρας. Ο στόχος της ενότητας είναι να αποτελέσει ένα άμεσο σημείο αναφοράς και

Διαβάστε περισσότερα

Γραφικά Υπολογιστών: Βασικά Μαθηματικά

Γραφικά Υπολογιστών: Βασικά Μαθηματικά 1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Βασικά Μαθηματικά Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Εισαγωγή Ένα μεγάλο κομμάτι των γραφικών αφορά βασίζονται-

Διαβάστε περισσότερα

1.2 Συντεταγμένες στο Επίπεδο

1.2 Συντεταγμένες στο Επίπεδο 1 Συντεταγμένες στο Επίπεδο Τι εννοούμε με την έννοια άξονας; ΑΠΑΝΤΗΣΗ Πάνω σε μια ευθεία επιλέγουμε δύο σημεία και Ι έτσι ώστε το διάνυσμα OI να έχει μέτρο 1 και να βρίσκεται στην ημιευθεία O Λέμε τότε

Διαβάστε περισσότερα

Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 2013 Διάρκεια εξέτασης : 160 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών:

Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 2013 Διάρκεια εξέτασης : 160 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών: Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 23 Διάρκεια εξέτασης : 6 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών: Θέμα (,5 μονάδες) Στις εισόδους του ακόλουθου κυκλώματος c b a εφαρμόζονται οι κάτωθι κυματομορφές.

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ 1 Συνοπτική θεωρία Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα 2 ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ 1. Πότε ένας φυσικός αριθμός λέγεται άρτιος; Άρτιος

Διαβάστε περισσότερα

Δύο είναι οι κύριες αιτίες που μπορούμε να πάρουμε από τον υπολογιστή λανθασμένα αποτελέσματα εξαιτίας των σφαλμάτων στρογγυλοποίησης:

Δύο είναι οι κύριες αιτίες που μπορούμε να πάρουμε από τον υπολογιστή λανθασμένα αποτελέσματα εξαιτίας των σφαλμάτων στρογγυλοποίησης: Ορολογία bit (binary digit): δυαδικό ψηφίο. Τα δυαδικά ψηφία είναι το 0 και το 1 1 byte = 8 bits word: η θεμελιώδης μονάδα σύμφωνα με την οποία εκπροσωπούνται οι πληροφορίες στον υπολογιστή. Αποτελείται

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Επανάληψη: Μαθηματικά

Δυναμική Μηχανών I. Επανάληψη: Μαθηματικά Δυναμική Μηχανών I 2 1 Επανάληψη: Μαθηματικά 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Συμβολισμοί Μεταβλητών

Διαβάστε περισσότερα

2. Αποθήκευση της κβαντικής πληροφορίας

2. Αποθήκευση της κβαντικής πληροφορίας . Αποθήκευση της κβαντικής πληροφορίας Σύνοψη Στο κεφάλαιο αυτό θα περιγραφεί η μονάδα της κβαντικής πληροφορίας που είναι το κβαντικό t (utum t). Θα περιγραφούν φυσικά συστήματα τα οποία μπορούν να χρησιμοποιηθούν

Διαβάστε περισσότερα

ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη8α: Αξιολόγηση στην Ανάκτηση Πληροφοριών. Πως ξέρουμε αν τα αποτελέσματα είναι καλά

ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη8α: Αξιολόγηση στην Ανάκτηση Πληροφοριών. Πως ξέρουμε αν τα αποτελέσματα είναι καλά Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη8α: Αξιολόγηση στην Ανάκτηση Πληροφοριών. 1 Κεφ. 8 Τι θα δούμε σήμερα; Πως ξέρουμε αν τα αποτελέσματα

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων Ανάκτηση Πληροφοριών

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων Ανάκτηση Πληροφοριών Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 1. Ανάκτηση Boole Ανάκτηση Πληροφοριών Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων Γνωριμία ιδάσκων: Χρήστος

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων

Διαβάστε περισσότερα

Οι διαθέσιμες μέθοδοι σε γενικές γραμμές είναι:

Οι διαθέσιμες μέθοδοι σε γενικές γραμμές είναι: Χωρική Ανάλυση Ο σκοπός χρήσης των ΣΓΠ δεν είναι μόνο η δημιουργία μίας Β.Δ. για ψηφιακές αναπαραστάσεις των φαινομένων του χώρου, αλλά κυρίως, η βοήθειά του προς την κατεύθυνση της υπόδειξης τρόπων διαχείρισής

Διαβάστε περισσότερα

Συνοπτική Μεθοδολογία Ασκήσεων IP Fragmentation. Ασκήσεις στο IP Fragmentation

Συνοπτική Μεθοδολογία Ασκήσεων IP Fragmentation. Ασκήσεις στο IP Fragmentation Συνοπτική Μεθοδολογία Ασκήσεων IP Fragmentation Οι σημειώσεις που ακολουθούν περιγράφουν τις ασκήσεις IP Fragmentation που θα συναντήσετε στο κεφάλαιο 3. Η πιο συνηθισμένη και βασική άσκηση αναφέρεται

Διαβάστε περισσότερα

Σχέσεις. Διμελής Σχέση. ΣτοΊδιοΣύνολο. Αναπαράσταση

Σχέσεις. Διμελής Σχέση. ΣτοΊδιοΣύνολο. Αναπαράσταση Διμελής Σχέση Σχέσεις Διδάσκοντες: Φ. Αφράτη, Δ. Επιμέλεια διαφανειών: Δ. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διατεταγμένο ζεύγος (α, β): Δύο αντικείμενα

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων Κεφάλαιο 2 Διανύσματα και Συστήματα Συντεταγμένων Διανύσματα Διανυσματικά μεγέθη Φυσικά μεγέθη που έχουν τόσο αριθμητικές ιδιότητες όσο και ιδιότητες κατεύθυνσης. Σε αυτό το κεφάλαιο, θα ασχοληθούμε με

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

Περιεχόμενα. Πίνακας συμβόλων σελίδα 10 Πρόλογος 13

Περιεχόμενα. Πίνακας συμβόλων σελίδα 10 Πρόλογος 13 Περιεχόμενα Πίνακας συμβόλων σελίδα 10 Πρόλογος 13 1 Ανάκτηση Boole 21 1.1 Παράδειγμα προβλήματος ανάκτησης πληροφοριών 23 1.2 Μια πρώτη ματιά στη δημιουργία αντεστραμμένων ευρετηρίων 27 1.3 Επεξεργασία

Διαβάστε περισσότερα

Information Retrieval

Information Retrieval Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη 8: Ανάδραση στην Ανάκτηση Πληροφορίας. 1 Κεφ. 6 Τι είδαμε στο προηγούμενο μάθημα Πως θα αξιολογήσουμε

Διαβάστε περισσότερα

Εξαγωγή ζευγών ερώτησης απάντησης από forum και αυτόματη απάντηση νέων ερωτήσεων

Εξαγωγή ζευγών ερώτησης απάντησης από forum και αυτόματη απάντηση νέων ερωτήσεων Εξαγωγή ζευγών ερώτησης απάντησης από forum και αυτόματη απάντηση νέων ερωτήσεων Μιχαήλ Ν. Ζερβός std04079@di.uoa.gr Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

ETY-202. Ο γενικός φορμαλισμός Dirac ETY-202 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC. Στέλιος Τζωρτζάκης 21/11/2013

ETY-202. Ο γενικός φορμαλισμός Dirac ETY-202 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC. Στέλιος Τζωρτζάκης 21/11/2013 stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC Στέλιος Τζωρτζάκης Ο γενικός φορμαλισμός Dirac 1 3 4 Εικόνες και αναπαραστάσεις Επίσης μια πολύ χρήσιμη ιδιότητα

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανυσματικοί Χώροι Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Διανυσματικός Χώρος επί του F Αλγεβρική δομή που αποτελείται

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Κεφάλαιο Β.: Η Παράγωγος Συνάρτησης Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο Β.: Η Παράγωγος

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ ΧΩΡΟ Στη συνέχεια θα δοθούν ορισμένες βασικές έννοιες μαθηματικών και φυσικήςμηχανικής που είναι απαραίτητες για την κατανόηση του μαθήματος

Διαβάστε περισσότερα

Μαθηματικά Α Γυμνασίου. Επαναληπτικές Ασκήσεις

Μαθηματικά Α Γυμνασίου. Επαναληπτικές Ασκήσεις Μαθηματικά Α Γυμνασίου Επαναληπτικές Ασκήσεις.: Δυνάμεις φυσικών αριθμών.4: Ευκλείδεια διαίρεση - διαιρετότητα.: Χαρακτήρες διαιρετότητας - ΜΚΔ - ΕΚΠ - Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων Κεφάλαιο

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 11: Αριθμητική υπολοίπων-δυνάμεις Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΉΜΑ ΕΠΙΣΤΉΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 7 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: hp://ecla.uop.gr/coure/tst25 e-ail:

Διαβάστε περισσότερα

Διάλεξη 11: Αιτιότητα Διάταξη Γεγονότων. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 11: Αιτιότητα Διάταξη Γεγονότων. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 11: Αιτιότητα Διάταξη Γεγονότων ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Τι θα δούμε σήμερα Ορισμός του «Πριν- Από» (Happens- Before) Λογικά Ρολόγια Αλγόριθμος Χρονοσφραγίδων του Lamport Διανυσματικά

Διαβάστε περισσότερα

Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού

Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΟ ΚΕΝΤΡΟ Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού Μάθημα 9ο Aντώνης Σπυρόπουλος Σφάλματα στρογγυλοποίησης

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. Η Φυσική είναι πειραματική επιστήμη

ΦΥΣΙΚΗ. Η Φυσική είναι πειραματική επιστήμη ΦΥΣΙΚΗ Η Φυσική είναι πειραματική επιστήμη Μέσα από το πείραμα ψάχνουμε κανονικότητες και αρχές (θεωρίες, νόμοι) ΕρώτημαΠείραμαΑποτέλεσμαΘεωρία Νόμος Φυσική 1 ΦΥΣΙΚΗ Φυσική 2 ΦΥΣΙΚΗ Η Φυσική χρησιμοποιεί

Διαβάστε περισσότερα

Τεχνικές ταξινόµησης αποτελεσµάτων µηχανών αναζήτησης µε βάση την ιστορία του χρήστη

Τεχνικές ταξινόµησης αποτελεσµάτων µηχανών αναζήτησης µε βάση την ιστορία του χρήστη Τεχνικές ταξινόµησης αποτελεσµάτων µηχανών αναζήτησης µε βάση την ιστορία του χρήστη Όνοµα: Νικολαΐδης Αντώνιος Επιβλέπων: Τ. Σελλής Περίληψη ιπλωµατικής Εργασίας Συνεπιβλέποντες: Θ. αλαµάγκας, Γ. Γιαννόπουλος

Διαβάστε περισσότερα

Μηχανισµοί & Εισαγωγή στο Σχεδιασµό Μηχανών Ακαδηµαϊκό έτος: Ε.Μ.Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 3.

Μηχανισµοί & Εισαγωγή στο Σχεδιασµό Μηχανών Ακαδηµαϊκό έτος: Ε.Μ.Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 3. ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕ ΙΑΣΜΟ ΜΗΧΑΝΩΝ - 3.1 - Cpright ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 2012. Με επιφύλαξη παντός δικαιώµατος. All rights reserved. Απαγορεύεται

Διαβάστε περισσότερα

Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου

Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου Ανάλυση αλγορίθμων Παράμετροι απόδοσης ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι πόροι, π.χ. μνήμη, επικοινωνία (π.χ. σε κατανεμημένα συστήματα) Προσπάθεια υλοποίησης Ανάλυση της απόδοσης Θεωρητική

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

Ερωτήσεις αντιστοίχισης

Ερωτήσεις αντιστοίχισης Ερωτήσεις αντιστοίχισης 1. ** Να αντιστοιχίσετε κάθε ευθεία που η εξίσωσή της βρίσκεται στη του πίνακα (Ι) µε τον συντελεστή της που βρίσκεται στη, συµπληρώνοντας τον πίνακα (ΙΙ) (α, β 0). 1. ε 1 : y =

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

Βάσεις Δεδομένων ΙΙ Ενότητα 9

Βάσεις Δεδομένων ΙΙ Ενότητα 9 Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Βάσεις Δεδομένων ΙΙ Ενότητα 9: Βάσεις δεδομένων κειμένου- Δομή διάλεξης Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 1: Εισαγωγή- Χαρακτηριστικά Παραδείγματα Αλγορίθμων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #11 Suffix Arrays Φοίβος Μυλωνάς fmylonas@ionio.gr Ανάκτηση Πληροφορίας 1 Άδεια χρήσης Το παρόν

Διαβάστε περισσότερα

Γλωσσικη τεχνολογια. Προεπεξεργασία Κειμένου

Γλωσσικη τεχνολογια. Προεπεξεργασία Κειμένου Γλωσσικη τεχνολογια Προεπεξεργασία Κειμένου Στόχος Επεξεργασίας Γραπτό κείμενο: Τρόπος επικοινωνίας Φέρει σημασιολογικό περιεχόμενο Αναζητούμε τρόπο να: Μετρήσουμε το πληροφοριακό περιεχόμενο Ποσοτικοποιήσουμε

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΤΕΛΙΚΗΣ ΦΑΣΗΣ

ΘΕΜΑΤΑ ΤΕΛΙΚΗΣ ΦΑΣΗΣ 6 ος ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Θέμα 1 ο : Άθροισμα ζευγών ΘΕΜΑΤΑ ΤΕΛΙΚΗΣ ΦΑΣΗΣ [30 Μονάδες] Δίνεται μία ακολουθία Ν ακέραιων αριθμών. Θέλουμε να μπορούμε να απαντάμε στο ερώτημα «υπάρχει ζεύγος

Διαβάστε περισσότερα

ΕΠΛ660 Ανάκτηση Πληροφοριών και Μηχανές Αναζήτησης

ΕΠΛ660 Ανάκτηση Πληροφοριών και Μηχανές Αναζήτησης ΕΠΛ660 Ανάκτηση Πληροφοριών και Μηχανές Αναζήτησης Introduction and Boolean Retrieval Διαδικαστικά Μεταπτυχιακό μάθημα Πληροφορικής Το μάθημα απευθύνεται επίσης σε: προπτυχιακούς φοιτητές (τελειόφοιτους)

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ AM: Δοµές Δεδοµένων Πτυχιακή Εξεταστική Ιούλιος 2014 Διδάσκων : Ευάγγελος Μαρκάκης 09.07.2014 ΥΠΟΓΡΑΦΗ ΕΠΟΠΤΗ: Διάρκεια εξέτασης : 2 ώρες

Διαβάστε περισσότερα

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x.

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x. Κεφάλαιο 4 Μήκη και ορθές γωνίες Μήκος διανύσµατος Στο επίπεδο, R 2, ϐρίσκουµε το µήκος ενός διανύσµατος x = (x 1, x 2 ) χρησιµοποιώντας το Πυθαγόρειο ϑεώρηµα : x 2 = x 2 1 + x 2 2. Στο χώρο R 3, εφαρµόζουµε

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Διανυσματικοί Χώροι (1) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Διανυσματικοί Χώροι (1) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΝΟΤΗΤΑ: Διανυσματικοί Χώροι (1) ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Τυχαίες μεταβλητές: Βασικές έννοιες Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (σε αντίθεση με τις

Διαβάστε περισσότερα

ΠΛΗ ΛΥΣΕΙΣ ΕΡΓ_2 ΣΕΛ. 1/11

ΠΛΗ ΛΥΣΕΙΣ ΕΡΓ_2 ΣΕΛ. 1/11 ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: Νοεμβρίου 007 Ημερομηνία παράδοσης της Εργασίας: 4 Δεκεμβρίου 007 Πριν από την λύση κάθε άσκησης καλό

Διαβάστε περισσότερα

Model) Retrieval Model)... 18

Model) Retrieval Model)... 18 Πανεπιστήμιο Πατρών Πολυτεχνική Σχολή Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής Αποδοτική Ιεραρχημένη Ανάκτηση Κοινωνικού Περιεχομένου με Χρήση Ταξονομιών Ετικετών Κοντοτάσιου Ιωάννα ΑΜ:

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα