Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R"

Transcript

1 Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο.

2 Περιεχόμενα Εισαγωγή στο Στατιστικό Πακέτο R Περιγραφική Στατιστική Προσομοίωση Στατιστική Συμπερασματολογία Ένα Δείγμα Δύο Ανεξάρτητα Δείγματα Δείγματα κατά Ζεύγη Ποσοστά Έλεγχος Καλής Προσαρμογής Πίνακες Συνάφειας 2 2. Ανάλυση Παλινδρόμησης Ανάλυση Διασποράς 2

3 Τι είναι Στατιστική Στατιστική είναι η επιστήμη που ασχολείται με τη συλλογή, παρουσίαση και εν συνεχεία εξαγωγή συμπερασμάτων παρατηρήσεων που υπόκεινται σε τυχαίες μεταβολές. Στατιστική είναι η επιστήμη της αβεβαιότητας, πως μπορούμε να την ποσοτικοποιήσουμε και να την περιορίσουμε. Ο λόγος ύπαρξης αυτής της αβεβαιότητας έχει να κάνει με την ακόλουθη διαπίστωση: πειράματα τα οποία επαναλαμβάνονται κάτω από ίδιες (όπως πιστεύουμε) συνθήκες δεν μας δίνουν πάντα το ίδιο αποτέλεσμα. Τέτοια πειράματα στα οποία δεν μπορούμε να γνωρίζουμε από πριν το αποτέλεσμά τους καλούνται πειράματα τύχης. 3

4 Τι είναι Στατιστική Γιαπαράδειγμαγιαναπάωοδικώςκάθεμέραστηδουλειάαπό το σπίτι, ποσότητες όπως ο αριθμός των κόκκινων φαναριών στα οποία πρέπει να περιμένω ή ο συνολικός χρόνος που θα κάνω για να φτάσω στη δουλειά ποικίλουν από μέρα σε μέρα, ακόμα και αν φεύγω από το σπίτι την ίδια πάντα ώρα και χρησιμοποιώ πάντα την ίδια διαδρομή. Στο παραπάνω παράδειγμα θα ήταν πολύ χρήσιμο να μπορούσα να καταλάβω ποιοι παράγοντες είναι η αιτία της μεταβλητότητας πουπαρατηρώστονχρόνοπουχρειάζεταιγια να πάω στη δουλειά έτσι ώστε στο μέλλον να μπορώ με ακρίβεια να προβλέψω τον χρόνο που θα χρειασθώ έως ότου φτάσω στη δουλειά. 4

5 Πειράματα Πειράματα Προσδιοριστικά (Αποτέλεσμα τελείως προβλέψιμο) Π.χ. Σε σώμα μάζας m, εφαρμόζουμε δύναμη F, τότε αυτό θα αποκτήσει επιτάχυνση γ = F/m όσες φορές και αν επαναλάβω το πείραμα κάτω από ίδιες συνθήκες. Τυχαία (Αποτέλεσμα μη προβλέψιμο) Π.χ. Έστω ότι διαθέτουμε 20 ανταλλακτικά μιας μηχανής. Η διάρκειαζωήςτουςδενείναιη ίδια ακόμα και κάτω από τις ίδιες συνθήκες. 5

6 Δεδομένα Δεδομένα: Πως μπορούμε λοιπόν να ποσοτικοποιήσουμε την αβεβαιότητα για το αποτέλεσμα ενός τυχαίου πειράματος; Ένας τρόπος είναι να επαναλάβουμε το πείραμα αυτό αρκετές φορές και να καταγράψουμε τις αριθμητικές τιμές που θα προκύψουν για την ποσότητα ή τις ποσότητες του πειράματος που μας ενδιαφέρουν. Έτσι θα έχουμε μια ιδέα για τη μεταβλητότητα των τιμών αυτών των ποσοτήτων και ίσως κατανοήσουμε την αιτία αυτής. Αυτές οι τιμές αποτελούν τα δεδομένα ή αλλιώς τις παρατηρήσεις μας. Συνήθως τα δεδομένα τα καταγράφουμε σε έναν πίνακα με στήλες όσες οι ποσότητες του πειράματος που μας ενδιαφέρουν και γραμμές όσες οι επαναλαμβανόμενες μετρήσεις που καταγράψαμε. 6

7 Δεδομένα Για παράδειγμα ο επόμενος πίνακας παρουσιάζει τα δεδομένα από το παράδειγμα της μετακίνησής μου από το σπίτι στην δουλειά. Το πείραμα έχει επαναληφθεί 10 φορές και η πρώτη στήλη του πίνακα εκφράζει τον χρόνο (σε λεπτά) της διαδρομής και η δεύτερη τον αριθμό των κόκκινων φαναριών που συνάντησα

8 Μεταβλητές - Παρατηρήσεις Οι γραμμές του προηγούμενου λοιπόν πίνακα παριστάνουν τις τιμές που προέκυψαν για κάθε ποσότητα του πειράματος που μας ενδιαφέρει έπειτα από κάθε επανάληψη και κάτω από τις ίδιες φαινομενικά συνθήκες (ίδια διαδρομή, ίδια ώρα αναχώρηση). Οι ποσότητες αυτές επειδή μεταβάλλονται κατά τυχαίο τρόπο καλούνται μεταβλητές και συμβολίζονται συνήθως με κεφαλαία γράμματα του λατινικού αλφάβητου. Ας καλέσουμε λοιπόν Υ τη μεταβλητή που εκφράζει τον χρόνο διαδρομής και Χ τη μεταβλητή που εκφράζει τον αριθμό των κόκκινων φαναριών που συναντάμε. Τα δεδομένα λοιπόν δεν είναι τίποτα άλλο από παρατηρήσεις των αριθμητικών τιμών που πήραν οι εν λόγω μεταβλητές επαναλαμβάνοντας το πείραμα 10 φορές. Οι επαναλήψεις είναι ισόνομες (ίδιες φαινομενικά συνθήκες), στον βαθμό που μπορούμε τουλάχιστον να πούμε, και ανεξάρτητες μεταξύ τους, δηλαδή το αποτέλεσμα μίας επανάληψης δεν επηρεάζεται από αυτό κάποιας άλλης επανάληψης. 8

9 Τυχαίο Δείγμα Απλή Τυχαία Δειγματοληψία: Οι μεταβλητές όπως τις ορίσαμε πριν είναι χαρακτηριστικά των μονάδων ενός συνόλου το οποίο το καλούμε πληθυσμό. Στο παράδειγμά μας ο πληθυσμός είναι οι διαδρομές που κάνω κάθε πρωί από το σπίτι στην δουλειά. Για να ποσοτικοποιήσουμε την αβεβαιότητά μας για την μεταβλητότητα των ποσοτήτων που μας ενδιαφέρουν, όπως είπαμε και πριν, επαναλαμβάνουμε το πείραμα αρκετές φορές, επιλέγουμε δηλαδή στοιχεία από τον πληθυσμό (δηλαδή διαδρομές) και παρατηρούμε τις τιμές που προκύπτουν για τις μεταβλητές που μας ενδιαφέρουν. Αυτή η ομάδα του πληθυσμού από την οποία συλλέγουμε την απαραίτητη πληροφορία καλείται δείγμα. Έχει ιδιαίτερη σημασία το παραγόμενο δείγμα να είναι αντιπροσωπευτικό του πληθυσμού, δηλαδή οι μεταβλητές που μας ενδιαφέρουν, αλλά και άλλα χαρακτηριστικά αυτού του πληθυσμού που επηρεάζουν τις τιμές που λαμβάνουν αυτές οι μεταβλητές, να συμπεριφέρονται με τον ίδιο τρόπο στο δείγμα και στον πληθυσμό. 9

10 Τυχαίο Δείγμα Ένα τέτοιο δείγμα λέγεται τότε τυχαίο, και μπορεί να προκύψει με την απλή τυχαία δειγματοληψία, κατά την οποία κάθε μονάδα του πληθυσμού έχει την ίδια πιθανότητα να συμπεριληφθεί στο δείγμα. Στο παράδειγμά μας θα ήταν π.χ. καλό στο δείγμα μας να είχαμε συμπεριλάβει διαδρομές από διαφορετικές μέρες της εβδομάδας (ίσως κάποιες μέρες έχει περισσότερη κίνηση από κάποιες άλλες μέρες), με διαφορετικές καιρικές συνθήκες, διαδρομές από μέρες με απεργία των μέσων μεταφοράς, κ.λ.π. 10

11 Τρόποι Επιλογής Αντιπροσωπευτικού Δείγματος Απλή Τυχαία Δειγματοληψία. Κάθε μονάδα του πληθυσμού έχει την ίδια πιθανότητα να συμπεριληφθεί στο δείγμα. Συστηματική Δειγματοληψία. Η επιλογή του δείγματος γίνεται από μια αριθμημένη λίστα των μονάδων του πληθυσμού, π.χ. επιλέγουμε 1 μονάδα ανά 20 μονάδες του πληθυσμού. Στρωματοποιημένη Δειγματοληψία. Ο πληθυσμός χωρίζεται σε διάφορες μη αλληλοεπικαλυπτόμενες ομάδες (στρώματα) με βάση κάποιο κοινό χαρακτηριστικό (μεταβλητή), το οποίο είναι έντονα διαφοροποιημένο από ομάδα σε ομάδα και σχετίζεται άμεσα με το υπό εξέταση χαρακτηριστικό του πληθυσμού, και προβαίνουμε σε απλή τυχαία δειγματοληψία για κάθε ομάδα χωριστά. Αν θέλουμε π.χ. να μελετήσουμε την επίδοση των φοιτητών στο μάθημα Στατιστικής, μπορούμε να χωρίσουμε τον πληθυσμό με βάση το φύλο έτσι ώστε στο δείγμα μας να συμπεριλάβουμε και άντρες και γυναίκες. Κατά συστάδες Δειγματοληψία. Ο πληθυσμός χωρίζεται σε συστάδες, π.χ. με βάση γεωγραφικά κριτήρια, και απλά τυχαία δείγματα επιλέγονται από κάθε συστάδα. Στο παράδειγμα με την επίδοση τον φοιτητών μπορούμε να χωρίσουμε π.χ. τον πληθυσμό στα διάφορα τμήματα που γίνεται το μάθημα. Πολυεπίπεδη δειγματοληψία. Επιλογή δειγμάτων από δείγματα, στο παραπάνω παράδειγμα επιλέγουμε τυχαία πανεπιστήμια, μετά τμήματα και μετά φοιτητές. 11

12 Μέγεθος δείγματος Πόσο μεγάλο πρέπει να είναι το μέγεθος του δείγματος; Το μέγεθος εξαρτάται από τη μεταβλητότητα της εξεταζόμενης μεταβλητής, όσο μικρότερη τόσο μικρότερο μέγεθος χρειαζόμαστε. Αν επιθυμούμε μεγαλύτερη ακρίβεια (μικρότερα τυπικά σφάλματα) στις εκτιμήσεις μας χρειαζόμαστε μεγαλύτερο μέγεθος δείγματος. Το είδος της Στατιστικής Ανάλυσης, πιο πολύπλοκη στατιστική ανάλυση απαιτεί πιο μεγάλο δείγμα. Απαντώντας στα παραπάνω ερωτήματα υπάρχουν έτοιμοι μαθηματικοί τύποι (για τις απλές στατιστικές αναλύσεις) που μας δίνουν το ελάχιστο μέγεθος δείγματος που χρειαζόμαστε για συγκεκριμένη ακρίβεια στις εκτιμήσεις. 12

13 Επαγωγική Στατιστική - Πρόβλεψη Κύριος στόχος μιας στατιστικής μελέτης είναι να διερευνήσουμε ένα φαινόμενο με βάση τα δεδομένα του δείγματος, και από το δείγμα να εξάγουμε συμπεράσματα για τον υπό μελέτη πληθυσμό. Η διερεύνηση αυτή καλείται επαγωγική στατιστική ή στατιστική συμπερασματολογία. Συνήθως ενδιαφερόμαστε να εκτιμήσουμε ένα άγνωστο μέγεθος που συνοψίζει κατά κάποιον τρόπο τις τιμές της μεταβλητής στον πληθυσμό, π.χ. τον μέσο χρόνο διαδρομής μέχρι την δουλειά. Τέτοια μεγέθη καλούνται παράμετροι. Η εκτίμηση τέτοιων παραμέτρων γίνεται με την βοήθεια εκτιμητριών οι οποίες είναι κατάλληλα επιλεγμένες συναρτήσεις των παρατηρήσεων που έχουμε, των τιμών δηλαδή του δείγματος. Οι συναρτήσεις αυτές καλούνται δειγματοσυναρτήσεις ή στατιστικές συναρτήσεις. Επίσης αρκετές φορές σε μια στατιστική μελέτη έχουμε το πρόβλημα της πρόβλεψης μιας μεταβλητής (μεταβλητή απόκρισης) όταν γνωρίζουμε τις τιμές κάποιας ή κάποιων άλλων μεταβλητών (επεξηγηματικές μεταβλητές). Ως παράδειγμα μπορεί να ενδιαφερόμαστε για το βαθμό επίδρασης της επεξηγηματικής μεταβλητής Χ (αριθμός κόκκινων φαναριών που συναντώ στην διαδρομή μου) στην μεταβλητή απόκρισης Υ (χρόνος διαδρομής). 13

14 Είδη Μεταβλητών Μεταβλητές: Ανάλογα με τις τιμές που μια μεταβλητή μπορεί να πάρει μπορεί να ταξινομηθεί ως κατηγορική ήως ποσοτική. Ονομάζεται κατηγορική μια μεταβλητή η οποία με κατάλληλη κωδικοποίηση εκφράζει καταστάσεις, π.χ. το επάγγελμα. Μια κατηγορική μεταβλητή μπορεί να είναι ονομαστική, όπου οι κατηγορίες δεν μπορούν να συγκριθούν ή να διαβαθμιστούν (π.χ. χρώμα ματιών) ή διάταξης όπου υπάρχει σαφής διαβάθμιση (π.χ. μέτρια, καλή και άριστη φυσική κατάσταση ενός ατόμου). Ονομάζεται ποσοτική μια μεταβλητή η οποία εκφράζει ποσότητα, π.χ. βάρος ατόμου. Μια ποσοτική μεταβλητή μπορεί να είναι διακριτή όπου το σύνολο τιμών της είναι υποσύνολο των φυσικών αριθμών (π.χ. αριθμός κόκκινων φαναριών που συναντάμε στην διαδρομή μας) ή συνεχής όπου το σύνολο των τιμών της είναι ένα διάστημα (π.χ. διάρκεια διαδρομής). 14

15 Είδη Μεταβλητών Μεταβλητή Κατηγορική Ποσοτική Ονομαστική Διάταξης Συνεχής Διακριτή 15

16 Πιθανότητες Πιθανότητες: Η Θεωρία Πιθανοτήτων αποτελεί το Μαθηματικό Εργαλείο της Στατιστικής. Είναι η μαθηματική γλώσσα όπου ο κόσμος χρησιμοποιεί για να ποσοτικοποιήσει την αβεβαιότητά του για το αποτέλεσμα ενός τυχαίου πειράματος. Αν π.χ. τα φανάρια που συναντώ στην διαδρομή μου για την δουλειά είναι 3, τότε η πιθανότητα να είναι και τα τρία κόκκινα είναι 1/8. Οι μεταβλητές όπως τις ορίσαμε πριν δεν είναι τίποτα άλλο από τυχαίες μεταβλητές (τ.μ.), οι οποίες προέρχονται από μια κατανομή. Αν γνωρίζουμε την κατανομή τους, τότε η στατιστική μας μελέτη εστιάζεται στην εκτίμηση διαφόρων ποσοτήτων αυτής της κατανομής (παράμετροι) και καλείται παραμετρική. Στην αντίθετη περίπτωση η στατιστική μελέτη καλείται απαραμετρική ή μη-παραμετρική. 16

17 Πιθανότητες / Στατιστική Πιθανότητες / Στατιστική: Υπάρχει μια ουσιαστική διαφορά μελετώντας προβλήματα πιθανοτήτων και στατιστικής. Η χρήση των πιθανοτήτων αφορούν εφαρμογές παραγωγικών συλλογισμών. Στα προβλήματα πιθανοτήτων γνωρίζουμε τις παραμέτρους των κατανομών και μελετάμε την συμπεριφορά των τ.μ., π.χ. αν ένα νόμισμα είναι δίκαιο (δηλαδή η πιθανότηταναφέρουμεκεφαλήήγράμματαείναι1/2) ποια είναι η πιθανότητα να φέρουμε 5 κεφαλές μετά από 10 ρίψεις του νομίσματος; Αντίθετα στα προβλήματα στατιστικής χρησιμοποιούμε επαγωγικές διαδικασίες, μαθαίνουμε δηλαδή με βάση την υπάρχουσα εμπειρία. Π.χ. αν σε 10 ρίψεις ενός νομίσματος ήρθαν 5 κεφαλές εκτιμήστε την πιθανότηταναφέρουμεκεφαλή; 17

18 Πιθανότητες / Στατιστική Μπορούμε δηλαδή να πούμε ότι στις πιθανότητες γνωρίζουμε τι συμβαίνει στο σύνολο (πληθυσμός) και βγάζουμε συμπεράσματα για ένα τμήμα αυτού του συνόλου (δείγμα), ενώ στη στατιστική με βάση την γνώση που αποκτούμε από ένα τμήμα (δείγμα) βγάζουμε συμπεράσματα για το σύνολο (πληθυσμός). ΔΕΙΓΜΑ ΔΕΙΓΜΑ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΠΛΗΘΥΣΜΟΣ ΠΛΗΘΥΣΜΟΣ 18

19 Στάδια Στατιστικών Μελετών Στάδια Στατιστικών Μελετών: 1. Ερευνητικό Ερώτημα. Πληροφορίες και σχετική βιβλιογραφία. Εδώ θέτουμε το πρόβλημα που έχουμε και τον σκοπό την στατιστικής ανάλυσης που θα επακολουθήσει. 2. Δειγματοληψία. Με βάση το παραπάνω ερευνητικό ερώτημα, προσδιορίζουμε τον πληθυσμό και τις μεταβλητές που μας ενδιαφέρουν και συλλέγουμε κατάλληλο δείγμα. 3. Κωδικοποίηση και μεταφορά δεδομένων σε Η/Υ. Για την ευκολότερη στατιστική ανάλυση ίσως χρειασθεί να γίνει κωδικοποίηση μεταβλητών, δηλαδή αντιστοίχηση κωδικών (συνήθως αριθμών) σε κατηγορικές μεταβλητές. Επίσης τα δεδομένα συνήθως μεταφέρονται σε κάποιο στατιστικό πακέτο, με την βοήθεια του οποίου θα γίνει η στατιστική μελέτη, ενώ είναι σημαντικό να γίνει έλεγχος της λογικότητας των τιμών και χειρισμός τυχών ελλειπουσών τιμών. 19

20 Στάδια Στατιστικών Μελετών 4. Περιγραφική Στατιστική. Συνοπτική παρουσίαση των δεδομένων που προήλθαν από το δείγμα, συνήθως με αριθμητικούς δείκτες και γραφήματα, έτσι ώστε να μπορούν να εξαχθούν διάφορα συμπεράσματα σχετικά με το δείγμα. 5. Στατιστικό Μοντέλο. Χρησιμοποιώντας κοινή λογική, προηγούμενες αντίστοιχες μελέτες και τα αποτελέσματα από την περιγραφική στατιστική διατυπώνουμε ένα λογικό στατιστικό μοντέλο για τα δεδομένα. Το στατιστικό μοντέλο αφορά π.χ. την επιλογή της κατανομής της υπό μελέτης μεταβλητής του πληθυσμού, ή τον τρόπο (π.χ. γραμμικά) σύνδεσης των επεξηγηματικών μεταβλητών με την μεταβλητή απόκρισης σε προβλήματα πρόβλεψης. Συνήθως προσαρμόζουμε το μοντέλο στα δεδομένα και προβαίνουμε σε ελέγχους καταλληλότητας του. 6. Στατιστική Συμπερασματολογία. Με την βοήθεια του τυχαίου δείγματος και του επιλεγμένου μοντέλου εκτιμούμε τις παραμέτρους του πληθυσμού που μας ενδιαφέρουν. 7. Παρουσίαση Αποτελεσμάτων Ερμηνεία αυτών. 20

21 Στάδια Στατιστικών Μελετών Κύρια Στάδια Στατιστικής Μελέτης ΔΕΙΓΜΑΤΟΛΗΨΙΑ {Πληθυσμός} {Τυχαίο Δείγμα} ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ {Συνοπτική Παρουσίαση του Δείγματος} 21

22 Μεθοδολογία Στατιστικής Συμπερασματολογίας Βασική μεθοδολογία της στατιστικής συμπερασμοτολογίας: Έστω ότι ενδιαφερόμαστε για το χαρακτηριστικό Υ του πληθυσμού Ω, π.χ. έστω Υ η διάρκεια της διαδρομής μέχρι την δουλειά μου. Όπως αναφέραμε το εν λόγω χαρακτηριστικό είναι μια τυχαία μεταβλητή και έστω f η σ.π.π. του. Έστω ότι ενδιαφερόμαστε να εκτιμήσουμε την μέση τιμή της διαδρομής, την άγνωστη παράμετρο δηλαδή θ = Ε[Υ]. Για το λόγο αυτόν συλλέγουμε ένα τυχαίο δείγμα μεγέθους n, και έστω y 1,,y n οι παρατηρήσεις, και ας υποθέσουμε ότι χρησιμοποιούμε την στατιστική συνάρτηση (δειγματικός μέσος) 1 n y n y 1 i = για την εκτίμηση του θ. 22

23 Μεθοδολογία Στατιστικής Συμπερασματολογίας Η τιμή της παραπάνω στατιστικής συνάρτησης αποτελεί και την εκτίμησή μας για το θ. Αλλά τι σφάλμα έχουμε σ αυτή την εκτίμηση. Αν είχαμε πάρει άλλο τυχαίο δείγμα τον ίδιο δειγματικό μέσο θα είχαμε παρατηρήσει; Η δειγματοληπτική κατανομή αναφέρεται στην κατανομή της στατιστικής συνάρτησης που προκύπτει από απείρως επαναλαμβανόμενες δειγματοληψίες. Επειδή η τιμή y αλλάζει από δείγμα σε δείγμα θεωρούμε ότι απλά έχουμε παρατηρήσει μια τιμή από τις πολλές που μπορεί να πάρει η τ.μ. Y. Η επαγωγική στατιστική στηρίζεται στην τυχαιότητα του δείγματος και στην κατανομή αυτού. Το τυχαίο δείγμα δεν είναι τίποτα άλλο από μια συλλογή ανεξάρτητων και ισόνομων τυχαίων μεταβλητών Y 1,...,Y n όπου κάθε μία ξεχωριστά ακολουθεί την κατανομή f του χαρακτηριστικού Y. Διαλέγοντας ένα συγκεκριμένο τυχαίο δείγμα απλά παρατηρούμε τις τιμές y 1,,y n που έτυχε να λάβουν οι εν λόγω τυχαίες μεταβλητές στο συγκεκριμένο δείγμα. 23

24 Μεθοδολογία Στατιστικής Συμπερασματολογίας Όμοια κάθε στατιστική συνάρτηση που χρησιμοποιούμε για να εκτιμήσουμε μια άγνωστη παράμετρο θ του πληθυσμού είναι μια τυχαία μεταβλητή, ως συνάρτηση τυχαίων μεταβλητών, και εμείς μόνο παρατηρούμε μια της τιμής που προέκυψε από το συγκεκριμένο δείγμα που συλλέξαμε. Άρα χρησιμοποιούμε μια μεταβλητή ποσότητα (στατιστική συνάρτηση), της οποίας έχουμε παρατηρήσει την τιμή που έλαβε στο τυχαίο δείγμα που διαθέτουμε, για να εκτιμήσουμε μια άγνωστη αλλά σταθερή ποσότητα (παράμετρος) του πληθυσμού. 24

25 Εφαρμογές Στατιστικής Ιατρική Οικονομετρία Μηχανική Διοίκηση Επιχειρήσεων Αθλητισμός Κοινωνικές Επιστήμες Βιολογία 25

ΙΕΚ ΞΑΝΘΗΣ. Μάθημα : Στατιστική Ι. Υποενότητα : Τρόποι και μέθοδοι δειγματοληψίας

ΙΕΚ ΞΑΝΘΗΣ. Μάθημα : Στατιστική Ι. Υποενότητα : Τρόποι και μέθοδοι δειγματοληψίας ΙΕΚ ΞΑΝΘΗΣ Μάθημα : Στατιστική Ι Υποενότητα : Τρόποι και μέθοδοι δειγματοληψίας Επαμεινώνδας Διαμαντόπουλος Ιστοσελίδα : http://users.sch.gr/epdiaman/ Email : epdiamantopoulos@yahoo.gr 1 Στόχοι της υποενότητας

Διαβάστε περισσότερα

Στατιστική. Βασικές έννοιες

Στατιστική. Βασικές έννοιες Στατιστική Βασικές έννοιες Τι είναι Στατιστική; ή μήπως είναι: Στατιστική είναι ο κλάδος των εφαρμοσμένων επιστημών, η οποία βασίζεται σ ένα σύνολο αρχών και μεθοδολογιών που έχουν σκοπό: Το σχεδιασμό

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες ΕΙΣΑΓΩΓΗ Βασικές έννοιες Σε ένα ερωτηματολόγιο έχουμε ένα σύνολο ερωτήσεων. Μπορούμε να πούμε ότι σε κάθε ερώτηση αντιστοιχεί μία μεταβλητή. Αν θεωρήσουμε μια ερώτηση, τα άτομα δίνουν κάποιες απαντήσεις

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ Στα πλαίσια της ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑΣ προσπαθούµε να προσεγγίσουµε τα χαρακτηριστικά ενός συνόλου (πληθυσµός) δια της µελέτης των χαρακτηριστικών αυτών επί ενός µικρού

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ Εισαγωγή στο P.A.S.W. Υποχρεωτικό μάθημα 4 ου εξαμήνου

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

Θεμελιώδεις Αρχές Επιστήμης και Μέθοδοι Έρευνας

Θεμελιώδεις Αρχές Επιστήμης και Μέθοδοι Έρευνας Θεμελιώδεις Αρχές Επιστήμης και Μέθοδοι Έρευνας Dr. Anthony Montgomery Επίκουρος Καθηγητής Εκπαιδευτικής & Κοινωνικής Πολιτικής antmont@uom.gr Θεμελιώδεις Αρχές Επιστήμης και Μέθοδοι Έρευνας Αυτό το μάθημα

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ Πιθανότητες και Στατιστική

ΕΙΣΑΓΩΓΗ Πιθανότητες και Στατιστική ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ Πιθανότητες και Στατιστική Ο μεγάλος Γάλλος μαθηματικός Laplace έγραψε ότι οι Πιθανότητες δεν είναι τίποτα άλλο παρά η μετατροπή της κοινής λογικής σε μαθηματικές εκφράσεις. Η χρήση

Διαβάστε περισσότερα

ΣΕΜΙΝΑΡΙΟ:Στατιστική περιγραφική εφαρμοσμένη στην ψυχοπαιδαγωγική Πούλιου Χριστίνα(5543) Κορρέ Πελαγία(5480) Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης

ΣΕΜΙΝΑΡΙΟ:Στατιστική περιγραφική εφαρμοσμένη στην ψυχοπαιδαγωγική Πούλιου Χριστίνα(5543) Κορρέ Πελαγία(5480) Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης ΣΕΜΙΝΑΡΙΟ:Στατιστική περιγραφική εφαρμοσμένη στην ψυχοπαιδαγωγική Πούλιου Χριστίνα(55) Κορρέ Πελαγία(580) Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Εαρινό εξάμηνο 0 Ρέθυμνο, 5/6/0 ΠΕΡΙΕΧΟΜΕΝΑ:. Εισαγωγή.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΕΝΟΤΗΤΕΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ (One-Way Analyss of Varance) Η ανάλυση

Διαβάστε περισσότερα

Κεφάλαιο 2 Πιθανότητες. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς

Κεφάλαιο 2 Πιθανότητες. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς Κεφάλαιο 2 Πιθανότητες Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς 2-2 2 Πιθανότητες Χρησιμοποιώντας την Στατιστική Βασικοί ορισμοί: Ενδεχόμενα, Δειγματικός χώρος και Πιθανότητες

Διαβάστε περισσότερα

329 Στατιστικής Οικονομικού Παν. Αθήνας

329 Στατιστικής Οικονομικού Παν. Αθήνας 329 Στατιστικής Οικονομικού Παν. Αθήνας Σκοπός Το Τμήμα σκοπό έχει να αναδείξει επιστήμονες ικανούς να σχεδιάζουν, να αναλύουν και να επεξεργάζονται στατιστικές καθώς επίσης και να δημιουργούν προγράμματα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50]

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 1η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Η καταληκτική ημερομηνία για την παραλαβή

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων

Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων Δρ. Τακβόρ Σουκισιάν Κύριος Ερευνητής ΕΛΚΕΘΕ Forecasting is very dangerous, especially about the future --- Samuel Goldwyn 1 ΠΕΡΙΕΧΟΜΕΝΑ

Διαβάστε περισσότερα

ΣΠΟΥΔΑΣΤΗΡΙΟ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΠΑΣΠΕ ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΚΟΙΝΩΝΙΚΩΝ ΕΡΕΥΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΤΙΣ ΤΕΧΝΙΚΕΣ

ΣΠΟΥΔΑΣΤΗΡΙΟ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΠΑΣΠΕ ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΚΟΙΝΩΝΙΚΩΝ ΕΡΕΥΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΤΙΣ ΤΕΧΝΙΚΕΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΠΑΣΠΕ ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΚΟΙΝΩΝΙΚΩΝ ΕΡΕΥΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΤΙΣ ΤΕΧΝΙΚΕΣ ΤΩΝ ΚΟΙΝΩΝΙΚΩΝ ΕΡΕΥΝΩΝ Επιλογή κειμένων των καθηγητών: Μ. GRAWITZ Καθηγήτρια Κοινωνιολογίας

Διαβάστε περισσότερα

Ποσοτικές ερευνητικές προσεγγίσεις

Ποσοτικές ερευνητικές προσεγγίσεις ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ (PROJECT) Ποσοτικές ερευνητικές προσεγγίσεις (Quantitative Approaches to Research) Δρ ΚΟΡΡΕΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΑΘΗΝΑ 2013 Ποσοτικές ερευνητικές προσεγγίσεις (Quantitative Research

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑ.Λ. (ΟΜΑ Α Β ) ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΔΕΥΤΕΡΑ, 22 ΑΠΡΙΛΙΟΥ 201 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr

Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr Ποσοτικές Μέθοδοι Εισηγητής: Ν.Κυρίτσης MBA Ph.D. Candidate e-mail: kyritsis@ist.edu.gr Εισαγωγή στη Στατιστική Διδακτικοί Στόχοι Μέτρα Σχετικής Διασποράς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή Η Τυποποιημένες

Διαβάστε περισσότερα

ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ 3 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑΤΑ

ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ 3 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑΤΑ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ 3 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑΤΑ ΘΕΜΑ 1 ο Τα δεδομένα της στήλης Grade (Αρχείο Excel, Φύλλο Ask1) αναφέρονται στη βαθμολογία 63 φοιτητών που έλαβαν μέρος σε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

ΟΚΙΜΑΣΙΕΣ χ 2 (CHI-SQUARE)

ΟΚΙΜΑΣΙΕΣ χ 2 (CHI-SQUARE) ΔΟΚΙΜΑΣΙΕΣ χ (CI-SQUARE) ΟΚΙΜΑΣΙΕΣ χ (CI-SQUARE). Εισαγωγή Οι στατιστικές δοκιμασίες που μελετήσαμε μέχρι τώρα ονομάζονται παραμετρικές (paramtrc) διότι χαρακτηρίζονται από υποθέσεις σχετικές είτε για

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 3-4 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 5] 3η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να φθάσουν

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Μ. ΑΡΒΑΝΙΤΙΔΟΥ- ΒΑΓΙΩΝΑ ΚΑΘΗΓΗΤΡΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Μ. ΑΡΒΑΝΙΤΙΔΟΥ- ΒΑΓΙΩΝΑ ΚΑΘΗΓΗΤΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Μ. ΑΡΒΑΝΙΤΙΔΟΥ- ΒΑΓΙΩΝΑ ΚΑΘΗΓΗΤΡΙΑ ΚΛΙΝΙΚΑ ΣΗΜΑΝΤΙΚΟ ΕΥΡΗΜΑ VS ΣΤΑΤΙΣΤΙΚΑ ΣΗΜΑΝΤΙΚΟ ΕΥΡΗΜΑ Ι 1. Η στατιστική σημαντικότητα αντανακλά την επίδραση

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων α) Σημειοεκτιμητική β) Εκτιμήσεις Διαστήματος ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Παράδειγμα

Διαβάστε περισσότερα

ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ

ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ ΠΕΡΙΕΧOΜΕΝΑ Πρόλογος στη δεύτερη έκδοση Πρόλογος στην πρώτη έκδοση Εισαγωγή Τι είναι η μεθοδολογία έρευνας Οι μέθοδοι έρευνας ΜEΡOΣ A : ΓNΩΡΙΜΙΑ ΜΕ ΤΗΝ ΕΠΙΣΤΗΜOΝΙΚΗ ΕΡΓΑΣΙΑ ΚΕΦΑΛΑΙO 1: Γενικά για την επιστημονική

Διαβάστε περισσότερα

Β06Σ03 ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ

Β06Σ03 ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Β06Σ03 ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ Ενότητα 2: Επαγωγική-περιγραφική στατιστική, παραµετρικές

Διαβάστε περισσότερα

ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ

ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ 22559 ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΔΗΜΟΚΡΑΤΙΑΣ ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ Αρ. Φύλλου 1561 17 Αυγούστου 2007 ΑΠΟΦΑΣΕΙΣ Αριθμ. 85038/Γ2 Αναλυτικό Πρόγραμμα Σπουδών του Τομέα Οικονομικών και Διοικητικών Υπηρεσιών

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΕΜΙΝΑΡΙΟ:Β06 03 Στατιστική περιγραφική εφαρμοσμένη στην Ψυχοπαιδαγωγική ΘΕΜΑ: Μεταβλητές: ορισμοί, ποιοτικές μεταβλητές, ποσοτικές μεταβλητές,

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

ΔΕΛΤΙΟ ΤΥΠΟΥ: ΕΡΕΥΝΑ ΕΙΣΟΔΗΜΑΤΟΣ ΚΑΙ ΣΥΝΘΗΚΩΝ ΔΙΑΒΙΩΣΗΣ ΤΩΝ ΝΟΙΚΟΚΥΡΙΩΝ, 2011:

ΔΕΛΤΙΟ ΤΥΠΟΥ: ΕΡΕΥΝΑ ΕΙΣΟΔΗΜΑΤΟΣ ΚΑΙ ΣΥΝΘΗΚΩΝ ΔΙΑΒΙΩΣΗΣ ΤΩΝ ΝΟΙΚΟΚΥΡΙΩΝ, 2011: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΡΧΗ Πειραιάς, 10 / 9 / 2014 Δ Ε Λ Τ Ι Ο Τ Υ Π Ο Υ ΕΡΕΥΝΑ ΕΙΣΟΔΗΜΑΤΟΣ ΚΑΙ ΣΥΝΘΗΚΩΝ ΔΙΑΒΙΩΣΗΣ ΤΩΝ ΝΟΙΚΟΚΥΡΙΩΝ: 2011 Από την Ελληνική Στατιστική Αρχή (ΕΛΣΤΑΤ) ανακοινώνονται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

Θεωρητικές Κατανομές Πιθανότητας

Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ

Διαβάστε περισσότερα

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 1 Τι είναι η Στατιστική;

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 1 Τι είναι η Στατιστική; ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες

Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες Σχετικές πληροφορίες: http://dlib.ionio.gr/~spver/seminars/statistics/ Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες Σπύρος Βερονίκης Τμήμα Αρχειονομίας - Βιβλιοθηκονομίας Θεματικές

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Διαστήματα Εμπιστοσύνης και Στατιστικοί Έλεγχοι Υποθέσεων Προβλήματα και Ασκήσεις

Διαστήματα Εμπιστοσύνης και Στατιστικοί Έλεγχοι Υποθέσεων Προβλήματα και Ασκήσεις Διαστήματα Εμπιστοσύνης και Στατιστικοί Έλεγχοι Υποθέσεων Προβλήματα και Ασκήσεις. Μια μηχανή εμφιάλωσης κρασιού γεμίζει φιάλες του μισού κιλού με ποσότητα κρασιού η οποία είναι κανονική τυχαία μεταβλητή

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών

Διαβάστε περισσότερα

Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι:

Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: Κατανοµές ειγµατοληψίας 1.Εισαγωγή Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: 1. Στατιστικής και 2. Κατανοµής ειγµατοληψίας

Διαβάστε περισσότερα

Η ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ ΚΕΦΑΛΑΙΟ 9

Η ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ ΚΕΦΑΛΑΙΟ 9 ΚΕΦΑΛΑΙΟ 9 Η ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ Η κανονική κατανομή ανακαλύφθηκε γύρω στο 720 από τον Abraham De Moivre στην προσπάθειά του να διαμορφώσει Μαθηματικά που να εξηγούν την τυχαιότητα. Γύρω στο 870, ο Βέλγος

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: Απριλίου 0 Ημερομηνία παράδοσης της Εργασίας: 8 Μαΐου 0 Πριν από τη

Διαβάστε περισσότερα

Περιεχόμενα. Πρώτος πρόλογος... 13 Δεύτερος Πρόλογος... 15 Αντί Προλόγου... 17 Εισαγωγικό σημείωμα επιμελητών... 25

Περιεχόμενα. Πρώτος πρόλογος... 13 Δεύτερος Πρόλογος... 15 Αντί Προλόγου... 17 Εισαγωγικό σημείωμα επιμελητών... 25 Περιεχόμενα Πρώτος πρόλογος... 13 Δεύτερος Πρόλογος... 15 Αντί Προλόγου... 17 Εισαγωγικό σημείωμα επιμελητών... 25 ΚΕΦΑΛΑΙΟ 1 Στόχος και στάδια διεξαγωγής της εμπειρικής κοινωνικής έρευνας... 27 1.1 Στόχοι

Διαβάστε περισσότερα

ΕΚΘΕΣΗ A1701/2014 ΟΡΓΑΝΟΛΗΠΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΔΕΙΓΜΑΤΟΣ ΥΔΡΟΜΕΛΟΥ

ΕΚΘΕΣΗ A1701/2014 ΟΡΓΑΝΟΛΗΠΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΔΕΙΓΜΑΤΟΣ ΥΔΡΟΜΕΛΟΥ EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ, ΤΟΜΕΑΣ IV ΤΟΜΕΑΣ ΣΥΝΘΕΣΗΣ & ΑΝΑΠΤΥΞΗΣ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΔΙΚΑΣΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΧΗΜΕΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ Ηρώων Πολυτεχνείου 5, Πολυτεχνειούπολη Ζωγράφου,

Διαβάστε περισσότερα

Μάθημα Αστικής Γεωγραφίας

Μάθημα Αστικής Γεωγραφίας Μάθημα Αστικής Γεωγραφίας Διδακτικό Έτος 2015-2016 Παραδόσεις Διδακτικής Ενότητας: Πληθυσμιακή πρόβλεψη Δούκισσας Λεωνίδας, Στατιστικός, Υποψ. Διδάκτορας, Τμήμα Γεωγραφίας, Χαροκόπειο Πανεπιστήμιο Σελίδα

Διαβάστε περισσότερα

Enhancing the Teaching and Learning of Early Statistical Reasoning in European Schools

Enhancing the Teaching and Learning of Early Statistical Reasoning in European Schools Enhancing the Teaching and Learning of Early Statistical Reasoning in European Schools SOCRATES-COMENIUS Action Project 226573-CP-1-2005-1-CY-COMENIUS-C21 Διδακτικό Σενάριο 9 Συγγραφική Ομάδα: Universidad

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 1η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50]

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 1η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να

Διαβάστε περισσότερα

Προσομοίωση ΚΕΦΑΛΑΙΟ 7

Προσομοίωση ΚΕΦΑΛΑΙΟ 7 ΚΕΦΑΛΑΙΟ 7 Προσομοίωση 7.1 Συστήματα και πρότυπα συστημάτων 7.2 Η διαδικασία της προσομοίωσης 7.3 Ανάπτυξη προτύπων διακριτών γεγονότων 7.4 Τυχαίοι αριθμοί 7.5 Δείγματα από τυχαίες μεταβλητές 7.6 Προσομοίωση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2010-11 Τρίτη Γραπτή Εργασία στη Στατιστική Γενικές οδηγίες

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

ΟΔΗΓΟΣ ΕΚΠΟΝΗΣΗΣ ΕΡΓΑΣΙΑΣ

ΟΔΗΓΟΣ ΕΚΠΟΝΗΣΗΣ ΕΡΓΑΣΙΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ & ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ "ΛΟΓΙΣΤΙΚΗ & ΕΛΕΓΚΤΙΚΗ" ΟΔΗΓΟΣ ΕΚΠΟΝΗΣΗΣ ΕΡΓΑΣΙΑΣ Κοζάνη, 2015 Πίνακας περιεχομένων 1) ΓΕΝΙΚΑ ΠΕΡΙ ΕΡΓΑΣΙΩΝ....

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

Ποσοτική & Ποιοτική Ανάλυση εδοµένων Βασικές Έννοιες. Παιδαγωγικό Τµήµα ηµοτικής Εκπαίδευσης ηµοκρίτειο Πανεπιστήµιο Θράκης Αλεξανδρούπολη 2014-2015

Ποσοτική & Ποιοτική Ανάλυση εδοµένων Βασικές Έννοιες. Παιδαγωγικό Τµήµα ηµοτικής Εκπαίδευσης ηµοκρίτειο Πανεπιστήµιο Θράκης Αλεξανδρούπολη 2014-2015 Ποσοτική & Ποιοτική Ανάλυση εδοµένων Βασικές Έννοιες Παιδαγωγικό Τµήµα ηµοτικής Εκπαίδευσης ηµοκρίτειο Πανεπιστήµιο Θράκης Αλεξανδρούπολη 2014-2015 Περιγραφική και Επαγωγική Στατιστική Η περιγραφική στατιστική

Διαβάστε περισσότερα

ΦΑΚΕΛΟΣ ΜΑΘΗΜΑΤΟΣ. Μάθημα: Χρήση Νέων Τεχνολογιών στην Κοινωνική Έρευνα. Παραδείγματα Εφαρμογών [Σεμινάριο]

ΦΑΚΕΛΟΣ ΜΑΘΗΜΑΤΟΣ. Μάθημα: Χρήση Νέων Τεχνολογιών στην Κοινωνική Έρευνα. Παραδείγματα Εφαρμογών [Σεμινάριο] ΦΑΚΕΛΟΣ ΜΑΘΗΜΑΤΟΣ Μάθημα: Χρήση Νέων Τεχνολογιών στην Κοινωνική Έρευνα. Παραδείγματα Εφαρμογών [Σεμινάριο] Διδάσκων: Ευστράτιος Παπάνης - Αντικείμενο του μαθήματος Ο κύριος σκοπός του μαθήματος είναι η

Διαβάστε περισσότερα

ΑΚΑΔΗΜΙΑ ΤΩΝ ΠΟΛΙΤΩΝ

ΑΚΑΔΗΜΙΑ ΤΩΝ ΠΟΛΙΤΩΝ ΑΚΑΔΗΜΙΑ ΤΩΝ ΠΟΛΙΤΩΝ Αστική Μη Κερδοσκοπική Εταιρεία- ISO 9001 Σαπφούς 3, 81100 Μυτιλήνη (1ος Όροφος) 2251054739 (09:00-14:30) academy@aigaion.org civilacademy.ucoz.org «ΠΡΟΓΡΑΜΜΑ ΜΕΘΟΔΟΛΟΓΙΑΣ ΕΡΕΥΝΑΣ

Διαβάστε περισσότερα

Θέμα: ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΙΣ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ΚΕΦΑΛΑΙΟ 7 ΒΙΒΛΙΟ KELLER

Θέμα: ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΙΣ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ΚΕΦΑΛΑΙΟ 7 ΒΙΒΛΙΟ KELLER ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου 1, 263 34 ΠΑΤΡΑ Τηλ.: 2610 369051, Φαξ: 2610 396184, email: mitro@teipat.gr Καθηγητής

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Πρόβλημα απουσιών στ)

ΑΣΚΗΣΕΙΣ Πρόβλημα απουσιών στ) ΑΣΚΗΣΕΙΣ. Ο διευθυντής προσωπικού μιας μεγάλης εταιρείας πιστεύει ότι ίσως υφίσταται κάποια σχέση μεταξύ των ημερών απουσίας και της ηλικίας των εργαζομένων. Με βάση την υπόθεση αυτή ενδιαφέρεται να κατασκευάσει

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2006-07 Τρίτη Γραπτή Εργασία στη Στατιστική Γενικές οδηγίες

Διαβάστε περισσότερα

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια)

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια) ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. Απλή γραµµική παλινδρόµηση Παράδειγµα 6: Χρόνος παράδοσης φορτίου ΜΑΘΗΜΑ

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΣΥΛΛΟΓΗΣ ΔΕΔΟΜΕΝΩΝ ΓΕΩΡΓΙΟΣ ΛΑΓΟΥΜΙΝΤΖΗΣ, ΒΙΟΧΗΜΙΚΟΣ, PHD ΙΑΤΡΙΚΗΣ

ΜΕΘΟΔΟΙ ΣΥΛΛΟΓΗΣ ΔΕΔΟΜΕΝΩΝ ΓΕΩΡΓΙΟΣ ΛΑΓΟΥΜΙΝΤΖΗΣ, ΒΙΟΧΗΜΙΚΟΣ, PHD ΙΑΤΡΙΚΗΣ ΜΕΘΟΔΟΙ ΣΥΛΛΟΓΗΣ ΔΕΔΟΜΕΝΩΝ ΓΕΩΡΓΙΟΣ ΛΑΓΟΥΜΙΝΤΖΗΣ, ΒΙΟΧΗΜΙΚΟΣ, PHD ΙΑΤΡΙΚΗΣ Τις επιστημονικές έρευνες μπορούμε να τις διακρίνουμε σε δύο μεγάλες κατηγορίες, τις ποσοτικές και τις ποιοτικές. Όπως καταλαβαίνει

Διαβάστε περισσότερα

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall 3..2 Ο Συντελεστής Συσχέτισης τ Του Kendall Ο συντελεστής συχέτισης τ του Kendall μοιάζει με τον συντελεστή ρ του Spearman ως προς το ότι υπολογίζεται με βάση την τάξη μεγέθους των παρατηρήσεων και όχι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ. 1.1 Γενικά

ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ. 1.1 Γενικά ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 1.1 Γενικά Η γραπτή επίδοση στις Πανελλήνιες εξετάσεις της Β και Γ τάξης Λυκείου έχει πολύ µεγάλη βαρύτητα για την εισαγωγή στην Τριτοβάθµια εκπαίδευση. Αυτό συµβαίνει επειδή ο γραπτός

Διαβάστε περισσότερα

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ ΚΕΦΑΛΑΙΟ 5 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ Α. Περίπτωση Ενός Πληθυσμού Έστω ότι μελετάμε μια ακολουθία ανεξαρτήτων δοκιμών κάθε μία από τις οποίες οδηγεί είτε σε επιτυχία είτε σε αποτυχία με σταθερή

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 2 Ο «ΣΤΑΤΙΣΤΙΚΗ»

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 2 Ο «ΣΤΑΤΙΣΤΙΚΗ» ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ Ο «ΣΤΑΤΙΣΤΙΚΗ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική είναι ο κλάδος των εφαρμοσμένων

Διαβάστε περισσότερα

εμπορικών επιχειρήσεων» ΦΕΒΡΟΥΑΡΙΟΣ 2013

εμπορικών επιχειρήσεων» ΦΕΒΡΟΥΑΡΙΟΣ 2013 «Περιοδική έρευνα πεδίου σε αντιπροσωπευτικό δείγμα ΜΜ εμπορικών επιχειρήσεων» ΦΕΒΡΟΥΑΡΙΟΣ 2013 Ενίσχυση της επιστημονικής και επιχειρησιακής ικανότητας και της τεκμηρίωσης της ΕΣΕΕ κωδικός ΟΠΣ: 296250

Διαβάστε περισσότερα

Πιθανότητες. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Πιθανότητες. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Πιθανότητες Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 2 Ενότητα 2 η Πιθανότητες Σκοπός Ο σκοπός της 2 ης ενότητας είναι οι μαθητές να αναγνωρίζουν ένα πείραμα τύχης

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA)

ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA) ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA). Εισαγωγή Η ανάλυση της διακύμανσης (ANalysis Of VAriance ANOVA) είναι μια στατιστική μεθόδος με την οποία η μεταβλητότητα που υπάρχει σ ένα σύνολο δεδομένων διασπάται στις

Διαβάστε περισσότερα

ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα

ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα q Θεωρία: Η απάντηση που ζητάτε είναι αποτέλεσμα μαθηματικών πράξεων και εφαρμογή τύπων. Το αποτέλεσμα είναι συγκεκριμένο q Πείραμα: Στηρίζεται

Διαβάστε περισσότερα

ΜΕΤΑ-ΑΝΑΛΥΣΗ (Meta-Analysis)

ΜΕΤΑ-ΑΝΑΛΥΣΗ (Meta-Analysis) ΚΕΦΑΛΑΙΟ 23 ΜΕΤΑ-ΑΝΑΛΥΣΗ (Meta-Analysis) ΕΙΣΑΓΩΓΗ Έχοντας παρουσιάσει τις βασικές έννοιες των ελέγχων υποθέσεων, θα ήταν, ίσως, χρήσιμο να αναφερθούμε σε μια άλλη περιοχή στατιστικής συμπερασματολογίας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΒΑΣΙΚΕΣ ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΚΑΙ ΑΝΑΛΥΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΩΝ ΜΕ ΧΡΗΣΗ ΕΛΕΓΧΩΝ (STUDENT S T).. 21

ΚΕΦΑΛΑΙΟ 1 ο ΒΑΣΙΚΕΣ ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΚΑΙ ΑΝΑΛΥΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΩΝ ΜΕ ΧΡΗΣΗ ΕΛΕΓΧΩΝ (STUDENT S T).. 21 Πίνακας Περιεχομένων Πρόλογος... 17 ΚΕΦΑΛΑΙΟ 1 ο ΒΑΣΙΚΕΣ ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΚΑΙ ΑΝΑΛΥΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΩΝ ΜΕ ΧΡΗΣΗ ΕΛΕΓΧΩΝ (STUDENT S T).. 21 (Basic Sampling Techniques and Questionnaire Analysis using

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Στόχοι Ο κύριος στόχος του μαθήματος είναι να βοηθήσει τους φοιτητές να αναπτύξουν πρακτικές

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c σταθερός πραγματικός αριθμός, να αποδείξετε με τη χρήση του

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ Χρήση τυχαίων µεταβλητών για την απεικόνιση εκβάσεων τυχαίου πειράµατος Κατανόηση της έννοιας κατανοµής πιθανοτήτων τυχαίας µεταβλητής Υπολογισµός της συνάρτηση κατανοµής πιθανοτήτων

Διαβάστε περισσότερα

Οργανώνοντας την έρευνα ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΑ ΤΗΝ ΕΚΠΟΝΗΣΗ ΜΙΑΣ ΕΡΕΥΝΗΤΙΚΗΣ ΕΡΓΑΣΙΑΣ

Οργανώνοντας την έρευνα ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΑ ΤΗΝ ΕΚΠΟΝΗΣΗ ΜΙΑΣ ΕΡΕΥΝΗΤΙΚΗΣ ΕΡΓΑΣΙΑΣ Οργανώνοντας την έρευνα ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΑ ΤΗΝ ΕΚΠΟΝΗΣΗ ΜΙΑΣ ΕΡΕΥΝΗΤΙΚΗΣ ΕΡΓΑΣΙΑΣ Προκαταρκτική έρευνα Διερευνήστε πριν απ όλα την περιοχή μέσα στην οποία μπορεί να βρεθεί ένα ερευνητικό ερώτημα. Τυπικές

Διαβάστε περισσότερα

Ποσοτική έρευνα. Γιώτα Παπαγεωργίου

Ποσοτική έρευνα. Γιώτα Παπαγεωργίου Ποσοτική έρευνα Γιώτα Παπαγεωργίου (Babbie, κεφ. 1,2 Bryman, kef. 1,2 Κυριαζή, κεφ. 2,3 Κατσίλλης, κεφ. 1 Martin, κεφ. 1 Mertens, κεφ. 11 Robson, κεφ. 4 de Vaus, kef. I). Σκοπός: Η κατανόηση και εξοικείωση

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 1 Δύο επιχειρήσεις Α και Β, μοιράζονται το μεγαλύτερο μερίδιο της αγοράς για ένα συγκεκριμένο προϊόν. Καθεμία σχεδιάζει τη νέα της στρατηγική για τον επόμενο χρόνο, προκειμένου να αποσπάσει πωλήσεις

Διαβάστε περισσότερα

2013-14 ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ ΕΠΙΣΗΜΑΝΣΕΙΣ ΘΕΜΑΤΑ ΤΟ Α ΘΕΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΘΕΜΑΤΑ. http://cutemaths.wordpress.

2013-14 ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ ΕΠΙΣΗΜΑΝΣΕΙΣ ΘΕΜΑΤΑ ΤΟ Α ΘΕΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΘΕΜΑΤΑ. http://cutemaths.wordpress. 3-4 ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ ΕΠΙΣΗΜΑΝΣΕΙΣ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΤΟ Α ΘΕΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΘΕΜΑΤΑ Βαγγέλης Α Νικολακάκης Μαθηματικός ttp://cutemats.wordpress.com/ ΛΙΓΑ ΛΟΓΙΑ Η παρούσα εργασία

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 04 Λύσεις των θεµάτων

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΡΧΗ

ΕΛΛΗΝΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΡΧΗ ΕΛΛΗΝΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΡΧΗ Πειραιάς, 11 Ιουλίου 20 ΔΕΛΤΙΟ ΤΥΠΟΥ ΕΡΕΥΝΑ ΕΡΓΑΤΙΚΟΥ ΔΥΝΑΜΙΚΟΥ: 20 Η Ελληνική Στατιστική Αρχή (ΕΛΣΤΑΤ) ανακοινώνει τον εποχικά προσαρμοσμένο δείκτη ανεργίας για τον Απρίλιο 20.

Διαβάστε περισσότερα

Στατιστικοί έλεγχοι για διακριτά δεδομένα

Στατιστικοί έλεγχοι για διακριτά δεδομένα Στατιστικοί έλεγχοι για διακριτά δεδομένα Διαστρωμάτωση Mantel-Haenszel test Γεωργία Σαλαντή Λέκτορας επιδημιολογίας Λεπτοσπείρωση Πιο πολλά κρούσματα στις αγροτικές περιοχές; Πόσο επί τις εκατό του πληθυσμού

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΠΙΘΑΝΟΤΗΤΕΣ

ΚΕΦΑΛΑΙΟ 1 Ο ΠΙΘΑΝΟΤΗΤΕΣ ΚΕΦΛΙΟ Ο ΠΙΘΝΟΤΗΤΕΣ. Εισαγωγή Στην Θεωρία Πιθανοτήτων, ξεκινάµε από το λεγόµενο πείραµα δηλαδή µια διαδικασία η οποία µπορεί να επαναληφθεί θεωρητικά άπειρες φορές, κάτω από τις ίδιες ουσιαστικά συνθήκες,

Διαβάστε περισσότερα

ΕΚΤΙΜΗΣΗ ΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΕΠΙ ΡΟΥΝ ΣΤΗ ΧΡΗΣΗ ΤΩΝ ΥΠΗΡΕΣΙΩΝ ΤΟΥ ΗΛΕΚΤΡΟΝΙΚΟΥ ΕΜΠΟΡΙΟΥ

ΕΚΤΙΜΗΣΗ ΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΕΠΙ ΡΟΥΝ ΣΤΗ ΧΡΗΣΗ ΤΩΝ ΥΠΗΡΕΣΙΩΝ ΤΟΥ ΗΛΕΚΤΡΟΝΙΚΟΥ ΕΜΠΟΡΙΟΥ ΕΚΤΙΜΗΣΗ ΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΕΠΙ ΡΟΥΝ ΣΤΗ ΧΡΗΣΗ ΤΩΝ ΥΠΗΡΕΣΙΩΝ ΤΟΥ ΗΛΕΚΤΡΟΝΙΚΟΥ ΕΜΠΟΡΙΟΥ 1 ΕΙΣΑΓΩΓΗ Με την ολοένα και ταχύτερη ανάπτυξη των τεχνολογιών και των επικοινωνιών και ιδίως τη ραγδαία, τα τελευταία

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΑΘΗΜΑ 3

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΑΘΗΜΑ 3 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΑΘΗΜΑ 3 Ηλίας Αθανασιάδης Αναπληρωτής καθηγητής Π.Τ..Ε. Παν. Αιγαίου 1.8. Αθροιστική κα τα νο μή Σε ορισμένες κατανομές παρουσιάζει ενδιαφέρον να παρακολουθούμε πώς

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 3ο Διατάξεις και μεταθέσεις 2 ΔΙΑΤΑΞΕΙΣ-ΜΕΤΑΘΕΣΕΙΣ- ΣΥΝΔΥΑΣΜΟΙ 2.1 Διατάξεις και μεταθέσεις 2.2 Κυκλικές διατάξεις

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Λύσεις των θεμάτων ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 04 Λύσεις των θεμάτων

Διαβάστε περισσότερα

ΕΠΙΔΡΑΣΗ ΤΗΣ ΟΙΚΟΝΟΜΙΚΗΣ ΚΡΙΣΗΣ ΣΤΙΣ ΑΓΟΡΑΣΤΙΚΕΣ ΤΑΣΕΙΣ ΤΩΝ ΕΛΛΗΝΩΝ ΚΑΤΑΝΑΛΩΤΩΝ ΑΠΟ ΤΟ ΔΙΑΔΙΚΤΥΟ

ΕΠΙΔΡΑΣΗ ΤΗΣ ΟΙΚΟΝΟΜΙΚΗΣ ΚΡΙΣΗΣ ΣΤΙΣ ΑΓΟΡΑΣΤΙΚΕΣ ΤΑΣΕΙΣ ΤΩΝ ΕΛΛΗΝΩΝ ΚΑΤΑΝΑΛΩΤΩΝ ΑΠΟ ΤΟ ΔΙΑΔΙΚΤΥΟ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Πτυχιακή Εργασία ΕΠΙΔΡΑΣΗ ΤΗΣ ΟΙΚΟΝΟΜΙΚΗΣ ΚΡΙΣΗΣ ΣΤΙΣ ΑΓΟΡΑΣΤΙΚΕΣ ΤΑΣΕΙΣ ΤΩΝ ΕΛΛΗΝΩΝ ΚΑΤΑΝΑΛΩΤΩΝ ΑΠΟ ΤΟ ΔΙΑΔΙΚΤΥΟ Γκιπάλη Δώρα, A.M. 7795 Καρρά

Διαβάστε περισσότερα

1-3 10 1-3 6 3-5 40 3-5 30 5-7 20 5-7 20 7-9 20 7-9 30 9-11 8 9-11 10 11-13 2 11-13 4 Σύνολο 100 Σύνολο 100

1-3 10 1-3 6 3-5 40 3-5 30 5-7 20 5-7 20 7-9 20 7-9 30 9-11 8 9-11 10 11-13 2 11-13 4 Σύνολο 100 Σύνολο 100 1. (Εξεταστ. Φεβ. 2004) Μια µεγάλη εταιρία θέλει να εξετάσει εάν το εκπαιδευτικό πρόγραµµα που ακολουθήσανε οι 100 πωλητές της ήταν αποτελεσµατικό (δηλαδή εάν αυξήθηκαν οι πωλήσεις). Οι δύο παρακάτω πίνακες

Διαβάστε περισσότερα

Q- ΔΙΑΓΡΑΜΜΑΤΑ ΓΙΑ ΤΗΝ ΠΑΡΑΜΕΤΡΟ p ΤΗΣ ΔΙΩΝΥΜΙΚΗΣ ΚΑΤΑΝΟΜΗΣ

Q- ΔΙΑΓΡΑΜΜΑΤΑ ΓΙΑ ΤΗΝ ΠΑΡΑΜΕΤΡΟ p ΤΗΣ ΔΙΩΝΥΜΙΚΗΣ ΚΑΤΑΝΟΜΗΣ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 20 ου Πανελληνίου Συνεδρίου Στατιστικής (2007), σελ 249-258 Q- ΔΙΑΓΡΑΜΜΑΤΑ ΓΙΑ ΤΗΝ ΠΑΡΑΜΕΤΡΟ p ΤΗΣ ΔΙΩΝΥΜΙΚΗΣ ΚΑΤΑΝΟΜΗΣ Μανώλης Μανατάκης Τμήμα Μηχανολόγων και Αεροναυπηγών

Διαβάστε περισσότερα

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2 ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΣΑΒΒΑΤΟ 14 MAΪΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ

Διαβάστε περισσότερα

ΔΙΕΡΕΥΝΗΣΗ ΜΕΘΟΔΩΝ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΚΙΝΗΤΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ ΘΕΡΜΙΚΗΣ ΑΠΕΝΕΡΓΟΠΟΙΗΣΗΣ

ΔΙΕΡΕΥΝΗΣΗ ΜΕΘΟΔΩΝ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΚΙΝΗΤΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ ΘΕΡΜΙΚΗΣ ΑΠΕΝΕΡΓΟΠΟΙΗΣΗΣ ΔΙΕΡΕΥΝΗΣΗ ΜΕΘΟΔΩΝ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΚΙΝΗΤΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ ΘΕΡΜΙΚΗΣ ΑΠΕΝΕΡΓΟΠΟΙΗΣΗΣ Μαρία Γιαννακούρου ΤΕΙ Αθηνών, Σχολή Τεχνολογίας Τροφίμων και Διατροφής, Τμήμα Τεχνολογίας Τροφίμων Νικόλαος Γ. Στοφόρος Γεωπονικό

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 16. Απλή Γραμμική Παλινδρόμηση και Συσχέτιση

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 16. Απλή Γραμμική Παλινδρόμηση και Συσχέτιση ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Μέθοδοι δειγματοληψίας, καθορισμός μεγέθους δείγματος, τύποι σφαλμάτων, κριτήρια εισαγωγής και αποκλεισμού

Μέθοδοι δειγματοληψίας, καθορισμός μεγέθους δείγματος, τύποι σφαλμάτων, κριτήρια εισαγωγής και αποκλεισμού Μέθοδοι δειγματοληψίας, καθορισμός μεγέθους δείγματος, τύποι σφαλμάτων, κριτήρια εισαγωγής και αποκλεισμού Γεσθημανή Μηντζιώρη MD, MSc, PhD Μονάδα Ενδοκρινολογίας της Αναπαραγωγής, Α Μαιευτική και Γυναικολογική

Διαβάστε περισσότερα

Η Κανονική Κατανομή κανονική κατανομή (normal distribution) Κεντρικό Οριακό Θεώρημα (Central Limit Theorem) συνδέει οποιαδήποτε άλλη κατανομή

Η Κανονική Κατανομή κανονική κατανομή (normal distribution) Κεντρικό Οριακό Θεώρημα (Central Limit Theorem) συνδέει οποιαδήποτε άλλη κατανομή Η Κανονική Κατανομή H κανονική κατανομή (ormal dstrbuto) θεωρείται η σπουδαιότερη κατανομή της Θεωρίας Πιθανοτήτων και της Στατιστικής. Οι λόγοι που εξηγούν την εξέχουσα θέση της, είναι βασικά δύο: ) Πολλές

Διαβάστε περισσότερα

ΕΤΑΙΡΙΚΗ ΕΙΚΟΝΑ ΚΑΙ ΧΟΡΗΓΙΑ :ΜΕΛΕΤΗ ΣΤΟΝ ΚΛΑΔΟ ΤΩΝ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΤΑΙΡΙΚΗ ΕΙΚΟΝΑ ΚΑΙ ΧΟΡΗΓΙΑ :ΜΕΛΕΤΗ ΣΤΟΝ ΚΛΑΔΟ ΤΩΝ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΕΤΑΙΡΙΚΗ ΕΙΚΟΝΑ ΚΑΙ ΧΟΡΗΓΙΑ :ΜΕΛΕΤΗ ΣΤΟΝ ΚΛΑΔΟ ΤΩΝ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΒΕΝΤΟΥΡΑ ΖΩΗ ΧΑΝΟΣ ΖΑΝΝΗΣ ΤΙ ΕΊΝΑΙ ΧΟΡΗΓΙΑ??? Η χορηγία ή αλλιώς sponsoring είναι μια λέξη η οποία έχει τις ρίζες

Διαβάστε περισσότερα