Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R"

Transcript

1 Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο.

2 Περιεχόμενα Εισαγωγή στο Στατιστικό Πακέτο R Περιγραφική Στατιστική Προσομοίωση Στατιστική Συμπερασματολογία Ένα Δείγμα Δύο Ανεξάρτητα Δείγματα Δείγματα κατά Ζεύγη Ποσοστά Έλεγχος Καλής Προσαρμογής Πίνακες Συνάφειας 2 2. Ανάλυση Παλινδρόμησης Ανάλυση Διασποράς 2

3 Τι είναι Στατιστική Στατιστική είναι η επιστήμη που ασχολείται με τη συλλογή, παρουσίαση και εν συνεχεία εξαγωγή συμπερασμάτων παρατηρήσεων που υπόκεινται σε τυχαίες μεταβολές. Στατιστική είναι η επιστήμη της αβεβαιότητας, πως μπορούμε να την ποσοτικοποιήσουμε και να την περιορίσουμε. Ο λόγος ύπαρξης αυτής της αβεβαιότητας έχει να κάνει με την ακόλουθη διαπίστωση: πειράματα τα οποία επαναλαμβάνονται κάτω από ίδιες (όπως πιστεύουμε) συνθήκες δεν μας δίνουν πάντα το ίδιο αποτέλεσμα. Τέτοια πειράματα στα οποία δεν μπορούμε να γνωρίζουμε από πριν το αποτέλεσμά τους καλούνται πειράματα τύχης. 3

4 Τι είναι Στατιστική Γιαπαράδειγμαγιαναπάωοδικώςκάθεμέραστηδουλειάαπό το σπίτι, ποσότητες όπως ο αριθμός των κόκκινων φαναριών στα οποία πρέπει να περιμένω ή ο συνολικός χρόνος που θα κάνω για να φτάσω στη δουλειά ποικίλουν από μέρα σε μέρα, ακόμα και αν φεύγω από το σπίτι την ίδια πάντα ώρα και χρησιμοποιώ πάντα την ίδια διαδρομή. Στο παραπάνω παράδειγμα θα ήταν πολύ χρήσιμο να μπορούσα να καταλάβω ποιοι παράγοντες είναι η αιτία της μεταβλητότητας πουπαρατηρώστονχρόνοπουχρειάζεταιγια να πάω στη δουλειά έτσι ώστε στο μέλλον να μπορώ με ακρίβεια να προβλέψω τον χρόνο που θα χρειασθώ έως ότου φτάσω στη δουλειά. 4

5 Πειράματα Πειράματα Προσδιοριστικά (Αποτέλεσμα τελείως προβλέψιμο) Π.χ. Σε σώμα μάζας m, εφαρμόζουμε δύναμη F, τότε αυτό θα αποκτήσει επιτάχυνση γ = F/m όσες φορές και αν επαναλάβω το πείραμα κάτω από ίδιες συνθήκες. Τυχαία (Αποτέλεσμα μη προβλέψιμο) Π.χ. Έστω ότι διαθέτουμε 20 ανταλλακτικά μιας μηχανής. Η διάρκειαζωήςτουςδενείναιη ίδια ακόμα και κάτω από τις ίδιες συνθήκες. 5

6 Δεδομένα Δεδομένα: Πως μπορούμε λοιπόν να ποσοτικοποιήσουμε την αβεβαιότητα για το αποτέλεσμα ενός τυχαίου πειράματος; Ένας τρόπος είναι να επαναλάβουμε το πείραμα αυτό αρκετές φορές και να καταγράψουμε τις αριθμητικές τιμές που θα προκύψουν για την ποσότητα ή τις ποσότητες του πειράματος που μας ενδιαφέρουν. Έτσι θα έχουμε μια ιδέα για τη μεταβλητότητα των τιμών αυτών των ποσοτήτων και ίσως κατανοήσουμε την αιτία αυτής. Αυτές οι τιμές αποτελούν τα δεδομένα ή αλλιώς τις παρατηρήσεις μας. Συνήθως τα δεδομένα τα καταγράφουμε σε έναν πίνακα με στήλες όσες οι ποσότητες του πειράματος που μας ενδιαφέρουν και γραμμές όσες οι επαναλαμβανόμενες μετρήσεις που καταγράψαμε. 6

7 Δεδομένα Για παράδειγμα ο επόμενος πίνακας παρουσιάζει τα δεδομένα από το παράδειγμα της μετακίνησής μου από το σπίτι στην δουλειά. Το πείραμα έχει επαναληφθεί 10 φορές και η πρώτη στήλη του πίνακα εκφράζει τον χρόνο (σε λεπτά) της διαδρομής και η δεύτερη τον αριθμό των κόκκινων φαναριών που συνάντησα

8 Μεταβλητές - Παρατηρήσεις Οι γραμμές του προηγούμενου λοιπόν πίνακα παριστάνουν τις τιμές που προέκυψαν για κάθε ποσότητα του πειράματος που μας ενδιαφέρει έπειτα από κάθε επανάληψη και κάτω από τις ίδιες φαινομενικά συνθήκες (ίδια διαδρομή, ίδια ώρα αναχώρηση). Οι ποσότητες αυτές επειδή μεταβάλλονται κατά τυχαίο τρόπο καλούνται μεταβλητές και συμβολίζονται συνήθως με κεφαλαία γράμματα του λατινικού αλφάβητου. Ας καλέσουμε λοιπόν Υ τη μεταβλητή που εκφράζει τον χρόνο διαδρομής και Χ τη μεταβλητή που εκφράζει τον αριθμό των κόκκινων φαναριών που συναντάμε. Τα δεδομένα λοιπόν δεν είναι τίποτα άλλο από παρατηρήσεις των αριθμητικών τιμών που πήραν οι εν λόγω μεταβλητές επαναλαμβάνοντας το πείραμα 10 φορές. Οι επαναλήψεις είναι ισόνομες (ίδιες φαινομενικά συνθήκες), στον βαθμό που μπορούμε τουλάχιστον να πούμε, και ανεξάρτητες μεταξύ τους, δηλαδή το αποτέλεσμα μίας επανάληψης δεν επηρεάζεται από αυτό κάποιας άλλης επανάληψης. 8

9 Τυχαίο Δείγμα Απλή Τυχαία Δειγματοληψία: Οι μεταβλητές όπως τις ορίσαμε πριν είναι χαρακτηριστικά των μονάδων ενός συνόλου το οποίο το καλούμε πληθυσμό. Στο παράδειγμά μας ο πληθυσμός είναι οι διαδρομές που κάνω κάθε πρωί από το σπίτι στην δουλειά. Για να ποσοτικοποιήσουμε την αβεβαιότητά μας για την μεταβλητότητα των ποσοτήτων που μας ενδιαφέρουν, όπως είπαμε και πριν, επαναλαμβάνουμε το πείραμα αρκετές φορές, επιλέγουμε δηλαδή στοιχεία από τον πληθυσμό (δηλαδή διαδρομές) και παρατηρούμε τις τιμές που προκύπτουν για τις μεταβλητές που μας ενδιαφέρουν. Αυτή η ομάδα του πληθυσμού από την οποία συλλέγουμε την απαραίτητη πληροφορία καλείται δείγμα. Έχει ιδιαίτερη σημασία το παραγόμενο δείγμα να είναι αντιπροσωπευτικό του πληθυσμού, δηλαδή οι μεταβλητές που μας ενδιαφέρουν, αλλά και άλλα χαρακτηριστικά αυτού του πληθυσμού που επηρεάζουν τις τιμές που λαμβάνουν αυτές οι μεταβλητές, να συμπεριφέρονται με τον ίδιο τρόπο στο δείγμα και στον πληθυσμό. 9

10 Τυχαίο Δείγμα Ένα τέτοιο δείγμα λέγεται τότε τυχαίο, και μπορεί να προκύψει με την απλή τυχαία δειγματοληψία, κατά την οποία κάθε μονάδα του πληθυσμού έχει την ίδια πιθανότητα να συμπεριληφθεί στο δείγμα. Στο παράδειγμά μας θα ήταν π.χ. καλό στο δείγμα μας να είχαμε συμπεριλάβει διαδρομές από διαφορετικές μέρες της εβδομάδας (ίσως κάποιες μέρες έχει περισσότερη κίνηση από κάποιες άλλες μέρες), με διαφορετικές καιρικές συνθήκες, διαδρομές από μέρες με απεργία των μέσων μεταφοράς, κ.λ.π. 10

11 Τρόποι Επιλογής Αντιπροσωπευτικού Δείγματος Απλή Τυχαία Δειγματοληψία. Κάθε μονάδα του πληθυσμού έχει την ίδια πιθανότητα να συμπεριληφθεί στο δείγμα. Συστηματική Δειγματοληψία. Η επιλογή του δείγματος γίνεται από μια αριθμημένη λίστα των μονάδων του πληθυσμού, π.χ. επιλέγουμε 1 μονάδα ανά 20 μονάδες του πληθυσμού. Στρωματοποιημένη Δειγματοληψία. Ο πληθυσμός χωρίζεται σε διάφορες μη αλληλοεπικαλυπτόμενες ομάδες (στρώματα) με βάση κάποιο κοινό χαρακτηριστικό (μεταβλητή), το οποίο είναι έντονα διαφοροποιημένο από ομάδα σε ομάδα και σχετίζεται άμεσα με το υπό εξέταση χαρακτηριστικό του πληθυσμού, και προβαίνουμε σε απλή τυχαία δειγματοληψία για κάθε ομάδα χωριστά. Αν θέλουμε π.χ. να μελετήσουμε την επίδοση των φοιτητών στο μάθημα Στατιστικής, μπορούμε να χωρίσουμε τον πληθυσμό με βάση το φύλο έτσι ώστε στο δείγμα μας να συμπεριλάβουμε και άντρες και γυναίκες. Κατά συστάδες Δειγματοληψία. Ο πληθυσμός χωρίζεται σε συστάδες, π.χ. με βάση γεωγραφικά κριτήρια, και απλά τυχαία δείγματα επιλέγονται από κάθε συστάδα. Στο παράδειγμα με την επίδοση τον φοιτητών μπορούμε να χωρίσουμε π.χ. τον πληθυσμό στα διάφορα τμήματα που γίνεται το μάθημα. Πολυεπίπεδη δειγματοληψία. Επιλογή δειγμάτων από δείγματα, στο παραπάνω παράδειγμα επιλέγουμε τυχαία πανεπιστήμια, μετά τμήματα και μετά φοιτητές. 11

12 Μέγεθος δείγματος Πόσο μεγάλο πρέπει να είναι το μέγεθος του δείγματος; Το μέγεθος εξαρτάται από τη μεταβλητότητα της εξεταζόμενης μεταβλητής, όσο μικρότερη τόσο μικρότερο μέγεθος χρειαζόμαστε. Αν επιθυμούμε μεγαλύτερη ακρίβεια (μικρότερα τυπικά σφάλματα) στις εκτιμήσεις μας χρειαζόμαστε μεγαλύτερο μέγεθος δείγματος. Το είδος της Στατιστικής Ανάλυσης, πιο πολύπλοκη στατιστική ανάλυση απαιτεί πιο μεγάλο δείγμα. Απαντώντας στα παραπάνω ερωτήματα υπάρχουν έτοιμοι μαθηματικοί τύποι (για τις απλές στατιστικές αναλύσεις) που μας δίνουν το ελάχιστο μέγεθος δείγματος που χρειαζόμαστε για συγκεκριμένη ακρίβεια στις εκτιμήσεις. 12

13 Επαγωγική Στατιστική - Πρόβλεψη Κύριος στόχος μιας στατιστικής μελέτης είναι να διερευνήσουμε ένα φαινόμενο με βάση τα δεδομένα του δείγματος, και από το δείγμα να εξάγουμε συμπεράσματα για τον υπό μελέτη πληθυσμό. Η διερεύνηση αυτή καλείται επαγωγική στατιστική ή στατιστική συμπερασματολογία. Συνήθως ενδιαφερόμαστε να εκτιμήσουμε ένα άγνωστο μέγεθος που συνοψίζει κατά κάποιον τρόπο τις τιμές της μεταβλητής στον πληθυσμό, π.χ. τον μέσο χρόνο διαδρομής μέχρι την δουλειά. Τέτοια μεγέθη καλούνται παράμετροι. Η εκτίμηση τέτοιων παραμέτρων γίνεται με την βοήθεια εκτιμητριών οι οποίες είναι κατάλληλα επιλεγμένες συναρτήσεις των παρατηρήσεων που έχουμε, των τιμών δηλαδή του δείγματος. Οι συναρτήσεις αυτές καλούνται δειγματοσυναρτήσεις ή στατιστικές συναρτήσεις. Επίσης αρκετές φορές σε μια στατιστική μελέτη έχουμε το πρόβλημα της πρόβλεψης μιας μεταβλητής (μεταβλητή απόκρισης) όταν γνωρίζουμε τις τιμές κάποιας ή κάποιων άλλων μεταβλητών (επεξηγηματικές μεταβλητές). Ως παράδειγμα μπορεί να ενδιαφερόμαστε για το βαθμό επίδρασης της επεξηγηματικής μεταβλητής Χ (αριθμός κόκκινων φαναριών που συναντώ στην διαδρομή μου) στην μεταβλητή απόκρισης Υ (χρόνος διαδρομής). 13

14 Είδη Μεταβλητών Μεταβλητές: Ανάλογα με τις τιμές που μια μεταβλητή μπορεί να πάρει μπορεί να ταξινομηθεί ως κατηγορική ήως ποσοτική. Ονομάζεται κατηγορική μια μεταβλητή η οποία με κατάλληλη κωδικοποίηση εκφράζει καταστάσεις, π.χ. το επάγγελμα. Μια κατηγορική μεταβλητή μπορεί να είναι ονομαστική, όπου οι κατηγορίες δεν μπορούν να συγκριθούν ή να διαβαθμιστούν (π.χ. χρώμα ματιών) ή διάταξης όπου υπάρχει σαφής διαβάθμιση (π.χ. μέτρια, καλή και άριστη φυσική κατάσταση ενός ατόμου). Ονομάζεται ποσοτική μια μεταβλητή η οποία εκφράζει ποσότητα, π.χ. βάρος ατόμου. Μια ποσοτική μεταβλητή μπορεί να είναι διακριτή όπου το σύνολο τιμών της είναι υποσύνολο των φυσικών αριθμών (π.χ. αριθμός κόκκινων φαναριών που συναντάμε στην διαδρομή μας) ή συνεχής όπου το σύνολο των τιμών της είναι ένα διάστημα (π.χ. διάρκεια διαδρομής). 14

15 Είδη Μεταβλητών Μεταβλητή Κατηγορική Ποσοτική Ονομαστική Διάταξης Συνεχής Διακριτή 15

16 Πιθανότητες Πιθανότητες: Η Θεωρία Πιθανοτήτων αποτελεί το Μαθηματικό Εργαλείο της Στατιστικής. Είναι η μαθηματική γλώσσα όπου ο κόσμος χρησιμοποιεί για να ποσοτικοποιήσει την αβεβαιότητά του για το αποτέλεσμα ενός τυχαίου πειράματος. Αν π.χ. τα φανάρια που συναντώ στην διαδρομή μου για την δουλειά είναι 3, τότε η πιθανότητα να είναι και τα τρία κόκκινα είναι 1/8. Οι μεταβλητές όπως τις ορίσαμε πριν δεν είναι τίποτα άλλο από τυχαίες μεταβλητές (τ.μ.), οι οποίες προέρχονται από μια κατανομή. Αν γνωρίζουμε την κατανομή τους, τότε η στατιστική μας μελέτη εστιάζεται στην εκτίμηση διαφόρων ποσοτήτων αυτής της κατανομής (παράμετροι) και καλείται παραμετρική. Στην αντίθετη περίπτωση η στατιστική μελέτη καλείται απαραμετρική ή μη-παραμετρική. 16

17 Πιθανότητες / Στατιστική Πιθανότητες / Στατιστική: Υπάρχει μια ουσιαστική διαφορά μελετώντας προβλήματα πιθανοτήτων και στατιστικής. Η χρήση των πιθανοτήτων αφορούν εφαρμογές παραγωγικών συλλογισμών. Στα προβλήματα πιθανοτήτων γνωρίζουμε τις παραμέτρους των κατανομών και μελετάμε την συμπεριφορά των τ.μ., π.χ. αν ένα νόμισμα είναι δίκαιο (δηλαδή η πιθανότηταναφέρουμεκεφαλήήγράμματαείναι1/2) ποια είναι η πιθανότητα να φέρουμε 5 κεφαλές μετά από 10 ρίψεις του νομίσματος; Αντίθετα στα προβλήματα στατιστικής χρησιμοποιούμε επαγωγικές διαδικασίες, μαθαίνουμε δηλαδή με βάση την υπάρχουσα εμπειρία. Π.χ. αν σε 10 ρίψεις ενός νομίσματος ήρθαν 5 κεφαλές εκτιμήστε την πιθανότηταναφέρουμεκεφαλή; 17

18 Πιθανότητες / Στατιστική Μπορούμε δηλαδή να πούμε ότι στις πιθανότητες γνωρίζουμε τι συμβαίνει στο σύνολο (πληθυσμός) και βγάζουμε συμπεράσματα για ένα τμήμα αυτού του συνόλου (δείγμα), ενώ στη στατιστική με βάση την γνώση που αποκτούμε από ένα τμήμα (δείγμα) βγάζουμε συμπεράσματα για το σύνολο (πληθυσμός). ΔΕΙΓΜΑ ΔΕΙΓΜΑ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΠΛΗΘΥΣΜΟΣ ΠΛΗΘΥΣΜΟΣ 18

19 Στάδια Στατιστικών Μελετών Στάδια Στατιστικών Μελετών: 1. Ερευνητικό Ερώτημα. Πληροφορίες και σχετική βιβλιογραφία. Εδώ θέτουμε το πρόβλημα που έχουμε και τον σκοπό την στατιστικής ανάλυσης που θα επακολουθήσει. 2. Δειγματοληψία. Με βάση το παραπάνω ερευνητικό ερώτημα, προσδιορίζουμε τον πληθυσμό και τις μεταβλητές που μας ενδιαφέρουν και συλλέγουμε κατάλληλο δείγμα. 3. Κωδικοποίηση και μεταφορά δεδομένων σε Η/Υ. Για την ευκολότερη στατιστική ανάλυση ίσως χρειασθεί να γίνει κωδικοποίηση μεταβλητών, δηλαδή αντιστοίχηση κωδικών (συνήθως αριθμών) σε κατηγορικές μεταβλητές. Επίσης τα δεδομένα συνήθως μεταφέρονται σε κάποιο στατιστικό πακέτο, με την βοήθεια του οποίου θα γίνει η στατιστική μελέτη, ενώ είναι σημαντικό να γίνει έλεγχος της λογικότητας των τιμών και χειρισμός τυχών ελλειπουσών τιμών. 19

20 Στάδια Στατιστικών Μελετών 4. Περιγραφική Στατιστική. Συνοπτική παρουσίαση των δεδομένων που προήλθαν από το δείγμα, συνήθως με αριθμητικούς δείκτες και γραφήματα, έτσι ώστε να μπορούν να εξαχθούν διάφορα συμπεράσματα σχετικά με το δείγμα. 5. Στατιστικό Μοντέλο. Χρησιμοποιώντας κοινή λογική, προηγούμενες αντίστοιχες μελέτες και τα αποτελέσματα από την περιγραφική στατιστική διατυπώνουμε ένα λογικό στατιστικό μοντέλο για τα δεδομένα. Το στατιστικό μοντέλο αφορά π.χ. την επιλογή της κατανομής της υπό μελέτης μεταβλητής του πληθυσμού, ή τον τρόπο (π.χ. γραμμικά) σύνδεσης των επεξηγηματικών μεταβλητών με την μεταβλητή απόκρισης σε προβλήματα πρόβλεψης. Συνήθως προσαρμόζουμε το μοντέλο στα δεδομένα και προβαίνουμε σε ελέγχους καταλληλότητας του. 6. Στατιστική Συμπερασματολογία. Με την βοήθεια του τυχαίου δείγματος και του επιλεγμένου μοντέλου εκτιμούμε τις παραμέτρους του πληθυσμού που μας ενδιαφέρουν. 7. Παρουσίαση Αποτελεσμάτων Ερμηνεία αυτών. 20

21 Στάδια Στατιστικών Μελετών Κύρια Στάδια Στατιστικής Μελέτης ΔΕΙΓΜΑΤΟΛΗΨΙΑ {Πληθυσμός} {Τυχαίο Δείγμα} ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ {Συνοπτική Παρουσίαση του Δείγματος} 21

22 Μεθοδολογία Στατιστικής Συμπερασματολογίας Βασική μεθοδολογία της στατιστικής συμπερασμοτολογίας: Έστω ότι ενδιαφερόμαστε για το χαρακτηριστικό Υ του πληθυσμού Ω, π.χ. έστω Υ η διάρκεια της διαδρομής μέχρι την δουλειά μου. Όπως αναφέραμε το εν λόγω χαρακτηριστικό είναι μια τυχαία μεταβλητή και έστω f η σ.π.π. του. Έστω ότι ενδιαφερόμαστε να εκτιμήσουμε την μέση τιμή της διαδρομής, την άγνωστη παράμετρο δηλαδή θ = Ε[Υ]. Για το λόγο αυτόν συλλέγουμε ένα τυχαίο δείγμα μεγέθους n, και έστω y 1,,y n οι παρατηρήσεις, και ας υποθέσουμε ότι χρησιμοποιούμε την στατιστική συνάρτηση (δειγματικός μέσος) 1 n y n y 1 i = για την εκτίμηση του θ. 22

23 Μεθοδολογία Στατιστικής Συμπερασματολογίας Η τιμή της παραπάνω στατιστικής συνάρτησης αποτελεί και την εκτίμησή μας για το θ. Αλλά τι σφάλμα έχουμε σ αυτή την εκτίμηση. Αν είχαμε πάρει άλλο τυχαίο δείγμα τον ίδιο δειγματικό μέσο θα είχαμε παρατηρήσει; Η δειγματοληπτική κατανομή αναφέρεται στην κατανομή της στατιστικής συνάρτησης που προκύπτει από απείρως επαναλαμβανόμενες δειγματοληψίες. Επειδή η τιμή y αλλάζει από δείγμα σε δείγμα θεωρούμε ότι απλά έχουμε παρατηρήσει μια τιμή από τις πολλές που μπορεί να πάρει η τ.μ. Y. Η επαγωγική στατιστική στηρίζεται στην τυχαιότητα του δείγματος και στην κατανομή αυτού. Το τυχαίο δείγμα δεν είναι τίποτα άλλο από μια συλλογή ανεξάρτητων και ισόνομων τυχαίων μεταβλητών Y 1,...,Y n όπου κάθε μία ξεχωριστά ακολουθεί την κατανομή f του χαρακτηριστικού Y. Διαλέγοντας ένα συγκεκριμένο τυχαίο δείγμα απλά παρατηρούμε τις τιμές y 1,,y n που έτυχε να λάβουν οι εν λόγω τυχαίες μεταβλητές στο συγκεκριμένο δείγμα. 23

24 Μεθοδολογία Στατιστικής Συμπερασματολογίας Όμοια κάθε στατιστική συνάρτηση που χρησιμοποιούμε για να εκτιμήσουμε μια άγνωστη παράμετρο θ του πληθυσμού είναι μια τυχαία μεταβλητή, ως συνάρτηση τυχαίων μεταβλητών, και εμείς μόνο παρατηρούμε μια της τιμής που προέκυψε από το συγκεκριμένο δείγμα που συλλέξαμε. Άρα χρησιμοποιούμε μια μεταβλητή ποσότητα (στατιστική συνάρτηση), της οποίας έχουμε παρατηρήσει την τιμή που έλαβε στο τυχαίο δείγμα που διαθέτουμε, για να εκτιμήσουμε μια άγνωστη αλλά σταθερή ποσότητα (παράμετρος) του πληθυσμού. 24

25 Εφαρμογές Στατιστικής Ιατρική Οικονομετρία Μηχανική Διοίκηση Επιχειρήσεων Αθλητισμός Κοινωνικές Επιστήμες Βιολογία 25

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua. Μέρος Β /Στατιστική Μέρος Β Στατιστική Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) Από τις Πιθανότητες στη Στατιστική Στα προηγούμενα, στο

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων

Διαβάστε περισσότερα

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. 7 ο ΜΑΘΗΜΑ ΚΕΦΑΛΑΙΟ 2 ΣΤΑΤΙΣΤΙΚΗ Σκοπός Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. Προσδοκώμενα αποτελέσματα Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου

Διαβάστε περισσότερα

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τοµέας Μαθηµατικών, Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόµενα Εισαγωγή στη

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ

ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ 1o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ: ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδες Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

Περιγραφική Στατιστική. Ακαδ. Έτος 2012-2013 1 ο εξάμηνο. Κ. Πολίτης

Περιγραφική Στατιστική. Ακαδ. Έτος 2012-2013 1 ο εξάμηνο. Κ. Πολίτης Περιγραφική Στατιστική Ακαδ. Έτος 2012-2013 1 ο εξάμηνο Κ. Πολίτης 1 2 Η στατιστική ασχολείται με τη συλλογή, οργάνωση, παρουσίαση και ανάλυση πληροφοριών. Οι πληροφορίες αυτές, πολύ συχνά αριθμητικές,

Διαβάστε περισσότερα

Βασικές έννοιες της Στατιστικής: Πληθυσμός - Δείγμα

Βασικές έννοιες της Στατιστικής: Πληθυσμός - Δείγμα Βασικές έννοιες της Στατιστικής: Πληθυσμός - Δείγμα Στατιστική είναι ο κλάδος των μαθηματικών που εμβαθύνει σε μεθόδους συλλογής δεδομένων, οργάνωσης, παρουσίασης των δεδομένων και εξαγωγής συμπερασμάτων

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

Θεματολογία. Δεδομένα και αβεβαιότητα. Αντικείμενο της Στατιστικής. Βασικές έννοιες. Δεδομένα και αβεβαιότητα. Στατιστική Ι

Θεματολογία. Δεδομένα και αβεβαιότητα. Αντικείμενο της Στατιστικής. Βασικές έννοιες. Δεδομένα και αβεβαιότητα. Στατιστική Ι Ενότητα η : Εισαγωγή στη Στατιστική Θεματολογία Στατιστική Ι Ενότητα : Εισαγωγή Δρ. Χρήστος Εμμανουηλίδης Επίκουρος Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Αντικείμενο της Στατιστικής : μεταβλητές,πληθυσμός,

Διαβάστε περισσότερα

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

Σ Τ Α Τ Ι Σ Τ Ι Κ Η 2. 1. Β Α Σ Ι Κ Ε Σ Ε Ν Ν Ο Ι Ε Σ.

Σ Τ Α Τ Ι Σ Τ Ι Κ Η 2. 1. Β Α Σ Ι Κ Ε Σ Ε Ν Ν Ο Ι Ε Σ. Σ Τ Α Τ Ι Σ Τ Ι Κ Η Στατιστική έρευνα : Πρόκειται για ένα σύνολο αρχών και μεθοδολογιών με αντικείμενο : 1) το σχεδιασμό της διαδικασίας συλλογής δεδομένων. Κλάδος της στατιστικής που ασχολείται : Σχεδιασμός

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία 4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 5 Συλλογή Δεδομένων & Δειγματοληψία

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 5 Συλλογή Δεδομένων & Δειγματοληψία ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Δειγματικές Κατανομές

Δειγματικές Κατανομές Δειγματικές Κατανομές Στατιστική συνάρτηση ή στατιστική Δειγματική κατανομή - Εκτιμητής Τα άγνωστα στοιχεία του πληθυσμού λέγονται παράμετροι. Τα συμπεράσματα για μια παράμετρο εξάγονται με τη βοήθεια

Διαβάστε περισσότερα

Στατιστική. Βασικές έννοιες

Στατιστική. Βασικές έννοιες Στατιστική Βασικές έννοιες Τι είναι Στατιστική; ή μήπως είναι: Στατιστική είναι ο κλάδος των εφαρμοσμένων επιστημών, η οποία βασίζεται σ ένα σύνολο αρχών και μεθοδολογιών που έχουν σκοπό: Το σχεδιασμό

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β ηµήτρης Κουγιουµτζής http://users.auth.gr/dkugiu/teach/civilengineer E mail: dkugiu@gen.auth.gr 1/11/2009 2 Περιεχόµενα 1 ΠΕΡΙΓΡΑΦΙΚΗ

Διαβάστε περισσότερα

Δισδιάστατη ανάλυση. Για παράδειγμα, έστω ότι 11 άτομα δήλωσαν ότι είναι άγαμοι (Α), 26 έγγαμοι (Ε), 12 χήροι (Χ) και 9 διαζευγμένοι (Δ).

Δισδιάστατη ανάλυση. Για παράδειγμα, έστω ότι 11 άτομα δήλωσαν ότι είναι άγαμοι (Α), 26 έγγαμοι (Ε), 12 χήροι (Χ) και 9 διαζευγμένοι (Δ). Δισδιάστατη ανάλυση Πίνακες διπλής εισόδου Σε πολλές περιπτώσεις μελετάμε περισσότερες από μία μεταβλητές ταυτόχρονα. Π.χ. μία έρευνα που έγινε σε ένα δείγμα 58 ατόμων περιείχε τις ερωτήσεις «ποια είναι

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Όπως θα δούμε αργότερα στη Στατιστική Συμπερασματολογία, λέγοντας ότι «από έναν πληθυσμό παίρνουμε ένα τυχαίο δείγμα μεγέθους» εννοούμε ανεξάρτητες τυχαίες μεταβλητές,,..., που

Διαβάστε περισσότερα

ΙΕΚ ΞΑΝΘΗΣ. Μάθημα : Στατιστική Ι. Υποενότητα : Τρόποι και μέθοδοι δειγματοληψίας

ΙΕΚ ΞΑΝΘΗΣ. Μάθημα : Στατιστική Ι. Υποενότητα : Τρόποι και μέθοδοι δειγματοληψίας ΙΕΚ ΞΑΝΘΗΣ Μάθημα : Στατιστική Ι Υποενότητα : Τρόποι και μέθοδοι δειγματοληψίας Επαμεινώνδας Διαμαντόπουλος Ιστοσελίδα : http://users.sch.gr/epdiaman/ Email : epdiamantopoulos@yahoo.gr 1 Στόχοι της υποενότητας

Διαβάστε περισσότερα

ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΓΕΩΡΓΙΟΣ ΛΑΓΟΥΜΙΝΤΖΗΣ, ΒΙΟΧΗΜΙΚΟΣ, PHD ΙΑΤΡΙΚΗΣ

ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΓΕΩΡΓΙΟΣ ΛΑΓΟΥΜΙΝΤΖΗΣ, ΒΙΟΧΗΜΙΚΟΣ, PHD ΙΑΤΡΙΚΗΣ ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΓΕΩΡΓΙΟΣ ΛΑΓΟΥΜΙΝΤΖΗΣ, ΒΙΟΧΗΜΙΚΟΣ, PHD ΙΑΤΡΙΚΗΣ ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ Οι τεχνικές δειγματοληψίας είναι ένα σύνολο μεθόδων που επιτρέπει να μειώσουμε το μέγεθος των δεδομένων που

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες ΕΙΣΑΓΩΓΗ Βασικές έννοιες Σε ένα ερωτηματολόγιο έχουμε ένα σύνολο ερωτήσεων. Μπορούμε να πούμε ότι σε κάθε ερώτηση αντιστοιχεί μία μεταβλητή. Αν θεωρήσουμε μια ερώτηση, τα άτομα δίνουν κάποιες απαντήσεις

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ Στα πλαίσια της ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑΣ προσπαθούµε να προσεγγίσουµε τα χαρακτηριστικά ενός συνόλου (πληθυσµός) δια της µελέτης των χαρακτηριστικών αυτών επί ενός µικρού

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 2ο Κανόνες Απαρίθμησης (συνέχεια) 2 ΙΣΤΟΣΕΛΙΔΑ ΜΕ ΔΙΑΦΑΝΕΙΕΣ, ΒΙΒΛΙΟ & ΔΕΙΓΜΑ ΘΕΜΑΤΩΝ www.unipi.gr/faculty/mkoutras/index.htm

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-122) Διάλεξη 1 Εισαγωγή

Στατιστική Ι (ΨΥΧ-122) Διάλεξη 1 Εισαγωγή (ΨΥΧ-122) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις αναρτημένες στο: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη 1 Εισαγωγή ΠΑΝΕΠΙΣΤΗΜΙΟ

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 1: Εισαγωγή στη Στατιστική Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ ΧΡΗΣΗΣ

Διαβάστε περισσότερα

Διαδικασία Ελέγχου Μηδενικών Υποθέσεων

Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Πέτρος Ρούσσος, Τμήμα Ψυχολογίας, ΕΚΠΑ Η λογική της διαδικασίας Ο σάκος περιέχει έναν μεγάλο αλλά άγνωστο αριθμό (αρκετές χιλιάδες) λευκών και μαύρων βόλων: 1 Το

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 6o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2015-2016 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ι θ α ν ό τ η τ ε ς Ι Πειραιάς 2008 Πιθανότητες Ι-Μ. Κούτρας 2 Δοκιμές Bernoulli Ας θεωρήσουμε μία ακολουθία (σειρά) πειραμάτων στην οποία ισχύουν τα επόμενα

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ Εισαγωγή στο P.A.S.W. Υποχρεωτικό μάθημα 4 ου εξαμήνου

Διαβάστε περισσότερα

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 8: Επαγωγική Στατιστική. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 8: Επαγωγική Στατιστική. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 8: Επαγωγική Στατιστική. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

4 Πιθανότητες και Στοιχεία Στατιστικής για Μηχανικούς

4 Πιθανότητες και Στοιχεία Στατιστικής για Μηχανικούς Πρόλογος Ο μηχανικός πρέπει να συνεχίσει να βελτιώνει την ποιότητα της δουλειάς του εάν επιθυμεί να είναι ανταγωνιστικός στην αγορά της χώρας του και γενικότερα της Ευρώπης. Μία σημαντική αναλογία σε αυτήν

Διαβάστε περισσότερα

Εισαγωγή στην Εκτιμητική

Εισαγωγή στην Εκτιμητική Εισαγωγή στην Εκτιμητική Πληθυσμός Εκτίμηση παραμέτρου πληθυσμού μ, σ 2, σ, p Δείγμα Υπολογισμός στατιστικού Ερώτηματα: Πόσο κοντά στην πραγματική τιμή της παραμέτρου του πληθυσμού βρίσκεται η εκτίμηση

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων 1 Μάθημα του A Εξαμήνου

Στατιστική Επιχειρήσεων 1 Μάθημα του A Εξαμήνου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ Τμήμα Λογιστικής & Χρηματοοικονομικής Στατιστική Επιχειρήσεων 1 Μάθημα του A Εξαμήνου Περιεχόμενα-Ύλη του Μαθήματος Περιγραφική Στατιστική: Είδη δεδομένων, Μετασχηματισμοί,

Διαβάστε περισσότερα

Διάλεξη 1 Βασικές έννοιες

Διάλεξη 1 Βασικές έννοιες Εργαστήριο SPSS Ψ-4201 (ΕΡΓ) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις αναρτημένες στο: Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ σ. 2 Α. ΕΡΕΥΝΑ ΚΑΙ ΕΠΕΞΕΡΓΑΣΙΑ Ε ΟΜΕΝΩΝ 2

ΕΙΣΑΓΩΓΗ σ. 2 Α. ΕΡΕΥΝΑ ΚΑΙ ΕΠΕΞΕΡΓΑΣΙΑ Ε ΟΜΕΝΩΝ 2 1 Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α ΕΙΣΑΓΩΓΗ σ. 2 Α. ΕΡΕΥΝΑ ΚΑΙ ΕΠΕΞΕΡΓΑΣΙΑ Ε ΟΜΕΝΩΝ 2 Β. ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΕΥΝΑ 1. Γενικά Έννοιες.. 2 2. Πρακτικός Οδηγός Ανάλυσης εδοµένων.. 4 α. Οδηγός Λύσεων στο πλαίσιο

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 7. Στατιστικός έλεγχος υποθέσεων

Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 7. Στατιστικός έλεγχος υποθέσεων (ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη 7 Στατιστικός έλεγχος υποθέσεων ΠΑΝΕΠΙΣΤΗΜΙΟ

Διαβάστε περισσότερα

Εισαγωγή στη θεωρία ακραίων τιμών

Εισαγωγή στη θεωρία ακραίων τιμών Εισαγωγή στη θεωρία ακραίων τιμών Αντικείμενο της θεωρίας ακραίων τιμών αποτελεί: Η ανάπτυξη και μελέτη στοχαστικών μοντέλων με σκοπό την επίλυση προβλημάτων που σχετίζονται με την εμφάνιση «πολύ μεγάλων»

Διαβάστε περισσότερα

ΣΠΟΥΔΑΣΤΗΡΙΟ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΠΑΣΠΕ ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΚΟΙΝΩΝΙΚΩΝ ΕΡΕΥΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΤΙΣ ΤΕΧΝΙΚΕΣ

ΣΠΟΥΔΑΣΤΗΡΙΟ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΠΑΣΠΕ ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΚΟΙΝΩΝΙΚΩΝ ΕΡΕΥΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΤΙΣ ΤΕΧΝΙΚΕΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΠΑΣΠΕ ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΚΟΙΝΩΝΙΚΩΝ ΕΡΕΥΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΤΙΣ ΤΕΧΝΙΚΕΣ ΤΩΝ ΚΟΙΝΩΝΙΚΩΝ ΕΡΕΥΝΩΝ Επιλογή κειμένων των καθηγητών: Μ. GRAWITZ Καθηγήτρια Κοινωνιολογίας

Διαβάστε περισσότερα

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες Πινάκες συνάφειας εξερεύνηση σχέσεων μεταξύ τυχαίων μεταβλητών. Είναι λογικό λοιπόν, στην ανάλυση των κατηγορικών δεδομένων να μας ενδιαφέρει η σχέση μεταξύ δύο ή περισσότερων κατηγορικών μεταβλητών. Έστω

Διαβάστε περισσότερα

Θεμελιώδεις Αρχές Επιστήμης και Μέθοδοι Έρευνας

Θεμελιώδεις Αρχές Επιστήμης και Μέθοδοι Έρευνας Θεμελιώδεις Αρχές Επιστήμης και Μέθοδοι Έρευνας Dr. Anthony Montgomery Επίκουρος Καθηγητής Εκπαιδευτικής & Κοινωνικής Πολιτικής antmont@uom.gr Θεμελιώδεις Αρχές Επιστήμης και Μέθοδοι Έρευνας Αυτό το μάθημα

Διαβάστε περισσότερα

ΆΣΚΗΣΗ 1 Η διάμεσος τιμή της ηλικίας των Ελλήνων το 1990 ήταν 30 έτη. Το 2001, η διάμεσος τιμή ήταν 33,1 (Πηγή:Ε.Σ.Υ.Ε.).

ΆΣΚΗΣΗ 1 Η διάμεσος τιμή της ηλικίας των Ελλήνων το 1990 ήταν 30 έτη. Το 2001, η διάμεσος τιμή ήταν 33,1 (Πηγή:Ε.Σ.Υ.Ε.). ΛΥΜΕΝΕΣ ΣΚΗΣΕΙΣ ΆΣΚΗΣΗ 1 Η διάμεσος τιμή της ηλικίας των Ελλήνων το 1990 ήταν 30 έτη. Το 2001, η διάμεσος τιμή ήταν 33,1 (Πηγή:Ε.Σ.Υ.Ε.). a. Τι μπορεί να συνέβη όταν η διάμεσος αυξήθηκε; Το γεγονός ότι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΕΝΟΤΗΤΕΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ (One-Way Analyss of Varance) Η ανάλυση

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ ΚΕΦΑΛΑΙΟ ΔΙΑΤΑΞΕΙΣ ΜΕΤΑΘΕΣΕΙΣ ΣΥΝΔΥΑΣΜΟΙ Εισαγωγή. Οι σχηματισμοί που προκύπτουν με την επιλογή ενός συγκεκριμένου αριθμού στοιχείων από το ίδιο σύνολο καλούνται διατάξεις αν μας ενδιαφέρει η σειρά καταγραφή

Διαβάστε περισσότερα

329 Στατιστικής Οικονομικού Παν. Αθήνας

329 Στατιστικής Οικονομικού Παν. Αθήνας 329 Στατιστικής Οικονομικού Παν. Αθήνας Σκοπός Το Τμήμα σκοπό έχει να αναδείξει επιστήμονες ικανούς να σχεδιάζουν, να αναλύουν και να επεξεργάζονται στατιστικές καθώς επίσης και να δημιουργούν προγράμματα

Διαβάστε περισσότερα

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες)

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες) Εργαστήριο Μαθηματικών & Στατιστικής Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ η Πρόοδος στο Μάθημα Στατιστική //7 ο Θέμα α) Περιγράψτε τη σχέση Θεωρίας Πιθανοτήτων και Στατιστικής. β) Αν Α, Β ενδεχόμενα του δειγματικού χώρου Ω

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ Πιθανότητες και Στατιστική

ΕΙΣΑΓΩΓΗ Πιθανότητες και Στατιστική ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ Πιθανότητες και Στατιστική Ο μεγάλος Γάλλος μαθηματικός Laplace έγραψε ότι οι Πιθανότητες δεν είναι τίποτα άλλο παρά η μετατροπή της κοινής λογικής σε μαθηματικές εκφράσεις. Η χρήση

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr

Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr Ποσοτικές Μέθοδοι Εισηγητής: Ν.Κυρίτσης MBA Ph.D. Candidate e-mail: kyritsis@ist.edu.gr Εισαγωγή στη Στατιστική Διδακτικοί Στόχοι Μέτρα Σχετικής Διασποράς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή Η Τυποποιημένες

Διαβάστε περισσότερα

Λήψη αποφάσεων κατά Bayes

Λήψη αποφάσεων κατά Bayes Λήψη αποφάσεων κατά Bayes Σημειώσεις μαθήματος Thomas Bayes (1701 1761) Στυλιανός Χατζηδάκης ECE 662 Άνοιξη 2014 1. Εισαγωγή Οι σημειώσεις αυτές βασίζονται στο μάθημα ECE662 του Πανεπιστημίου Purdue και

Διαβάστε περισσότερα

Κεφάλαιο 2 Πιθανότητες. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς

Κεφάλαιο 2 Πιθανότητες. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς Κεφάλαιο 2 Πιθανότητες Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς 2-2 2 Πιθανότητες Χρησιμοποιώντας την Στατιστική Βασικοί ορισμοί: Ενδεχόμενα, Δειγματικός χώρος και Πιθανότητες

Διαβάστε περισσότερα

Θεμελιώδεις αρχές επιστήμης και μέθοδοι έρευνας

Θεμελιώδεις αρχές επιστήμης και μέθοδοι έρευνας A. Montgomery Θεμελιώδεις αρχές επιστήμης και μέθοδοι έρευνας Καρολίνα Δουλουγέρη, ΜSc Υποψ. Διαδάκτωρ Σήμερα Αναζήτηση βιβλιογραφίας Επιλογή μεθοδολογίας Ερευνητικός σχεδιασμός Εγκυρότητα και αξιοπιστία

Διαβάστε περισσότερα

ΟΚΙΜΑΣΙΕΣ χ 2 (CHI-SQUARE)

ΟΚΙΜΑΣΙΕΣ χ 2 (CHI-SQUARE) ΔΟΚΙΜΑΣΙΕΣ χ (CI-SQUARE) ΟΚΙΜΑΣΙΕΣ χ (CI-SQUARE). Εισαγωγή Οι στατιστικές δοκιμασίες που μελετήσαμε μέχρι τώρα ονομάζονται παραμετρικές (paramtrc) διότι χαρακτηρίζονται από υποθέσεις σχετικές είτε για

Διαβάστε περισσότερα

Sampling Tools (ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ) Του Σπουδαστή ΛΙΩΛΗ ΧΑΡΑΛΑΜΠΟΥ

Sampling Tools (ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ) Του Σπουδαστή ΛΙΩΛΗ ΧΑΡΑΛΑΜΠΟΥ Sampling Tools (ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ) Του Σπουδαστή ΛΙΩΛΗ ΧΑΡΑΛΑΜΠΟΥ Στην εργασία αυτή αναπτύσσονται βασικές έννοιες μιας δειγματοληπτικής έρευνας, αναλύονται οι διαδικασίες και οι τρόποι διεξαγωγής της έρευνας,

Διαβάστε περισσότερα

Μεθοδολογία Έρευνας Κοινωνικών Επιστημών

Μεθοδολογία Έρευνας Κοινωνικών Επιστημών Μεθοδολογία Έρευνας Κοινωνικών Επιστημών Dr. Anthony Montgomery Επίκουρος Καθηγητής Εκπαιδευτικής & Κοινωνικής Πολιτικής antmont@uom.gr Ποιός είναι ο σκοπός του μαθήματος μας? Στο τέλος του σημερινού μαθήματος,

Διαβάστε περισσότερα

ΣΕΜΙΝΑΡΙΟ:Στατιστική περιγραφική εφαρμοσμένη στην ψυχοπαιδαγωγική Πούλιου Χριστίνα(5543) Κορρέ Πελαγία(5480) Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης

ΣΕΜΙΝΑΡΙΟ:Στατιστική περιγραφική εφαρμοσμένη στην ψυχοπαιδαγωγική Πούλιου Χριστίνα(5543) Κορρέ Πελαγία(5480) Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης ΣΕΜΙΝΑΡΙΟ:Στατιστική περιγραφική εφαρμοσμένη στην ψυχοπαιδαγωγική Πούλιου Χριστίνα(55) Κορρέ Πελαγία(580) Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Εαρινό εξάμηνο 0 Ρέθυμνο, 5/6/0 ΠΕΡΙΕΧΟΜΕΝΑ:. Εισαγωγή.

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων α) Σημειοεκτιμητική β) Εκτιμήσεις Διαστήματος ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Παράδειγμα

Διαβάστε περισσότερα

Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Έλεγχοι Υποθέσεων

Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Έλεγχοι Υποθέσεων Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Έλεγχοι Υποθέσεων Ένα Ερευνητικό Παράδειγμα Σκοπός της έρευνας ήταν να διαπιστωθεί εάν ο τρόπος αντίδρασης μιας γυναίκας απέναντι σε φαινόμενα

Διαβάστε περισσότερα

Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων

Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων Δρ. Τακβόρ Σουκισιάν Κύριος Ερευνητής ΕΛΚΕΘΕ Forecasting is very dangerous, especially about the future --- Samuel Goldwyn 1 ΠΕΡΙΕΧΟΜΕΝΑ

Διαβάστε περισσότερα

Ποσοτική & Ποιοτική Ανάλυση εδομένων Βασικές Έννοιες. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη 2013-2014

Ποσοτική & Ποιοτική Ανάλυση εδομένων Βασικές Έννοιες. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη 2013-2014 Ποσοτική & Ποιοτική Ανάλυση εδομένων Βασικές Έννοιες Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη 2013-2014 Περιγραφική και Επαγωγική Στατιστική Η περιγραφική στατιστική

Διαβάστε περισσότερα

ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ 3 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑΤΑ

ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ 3 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑΤΑ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ 3 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑΤΑ ΘΕΜΑ 1 ο Τα δεδομένα της στήλης Grade (Αρχείο Excel, Φύλλο Ask1) αναφέρονται στη βαθμολογία 63 φοιτητών που έλαβαν μέρος σε

Διαβάστε περισσότερα

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα

Διαβάστε περισσότερα

Σεμινάριο ΕΚΠ65 ιπλωματικές Εργασίες Αθήνα, 11 Οκτωβρίου 2009

Σεμινάριο ΕΚΠ65 ιπλωματικές Εργασίες Αθήνα, 11 Οκτωβρίου 2009 Με δείγματα ευκολίας δεν γίνεται έρευνα: Η επιλογή των υποκειμένων της έρευνας Βιβή Βασάλα ΣΕΠ στο ΕΑΠ Ερωτήματα Πώς προσδιορίζονται τα όρια του ερευνητικού πληθυσμού; ; Ποιος είναι ο τρόπος-μέθοδος επιλογής

Διαβάστε περισσότερα

Β06Σ03 ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ

Β06Σ03 ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Β06Σ03 ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ Ενότητα 2: Επαγωγική-περιγραφική στατιστική, παραµετρικές

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Ονοματεπώνυμα Σπουδαστριών: Μποτονάκη Ειρήνη (5422), Καραλή Μαρία (5601) Μάθημα: Β06Σ03 Στατιστική

Διαβάστε περισσότερα

6. ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΚΑΤΑ ΟΜΑΔΕΣ (Cluster Sampling)

6. ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΚΑΤΑ ΟΜΑΔΕΣ (Cluster Sampling) 6. ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΚΑΤΑ ΟΜΑΔΕΣ (Cluster Sampling) Από την θεωρία που αναπτύχθηκε στα προηγούμενα κεφάλαια, φαίνεται ότι μια αλλαγή στον σχεδιασμό της δειγματοληψίας και, κατά συνέπεια, στην μέθοδο εκτίμησης

Διαβάστε περισσότερα

ΜΕ - 9900 ΕΠΕΑΕΚ: ΑΝΑΜΟΡΦΩΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥΔΩΝ ΤΟΥ ΤΕΦΑΑ ΠΘ ΑΥΤΕΠΙΣΤΑΣΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ & ΑΘΛΗΤΙΣΜΟΥ

ΜΕ - 9900 ΕΠΕΑΕΚ: ΑΝΑΜΟΡΦΩΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥΔΩΝ ΤΟΥ ΤΕΦΑΑ ΠΘ ΑΥΤΕΠΙΣΤΑΣΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ & ΑΘΛΗΤΙΣΜΟΥ ΕΠΕΑΕΚ: ΑΝΑΜΟΡΦΩΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥΔΩΝ ΤΟΥ ΤΕΦΑΑ ΠΘ ΑΥΤΕΠΙΣΤΑΣΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ & ΑΘΛΗΤΙΣΜΟΥ ΜΕ9900 ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Έρευνα και Συγγραφή Λέκτορας Διάλεξη

Διαβάστε περισσότερα

Κασταλία Σύστηµα στοχαστικής προσοµοίωσης υδρολογικών µεταβλητών

Κασταλία Σύστηµα στοχαστικής προσοµοίωσης υδρολογικών µεταβλητών Εθνικό Μετσόβιο Πολυτεχνείο Τοµέας Υδατικών Πόρων, Υδραυλικών και Θαλάσσιων Έργων Κασταλία Σύστηµα στοχαστικής προσοµοίωσης υδρολογικών µεταβλητών. Κουτσογιάννης Α. Ευστρατιάδης Φεβρουάριος 2002 Εισαγωγή

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑ.Λ. (ΟΜΑ Α Β ) ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΔΕΥΤΕΡΑ, 22 ΑΠΡΙΛΙΟΥ 201 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

Τεχνικές Έρευνας. Εισήγηση 10 η Κατασκευή Ερωτηματολογίων

Τεχνικές Έρευνας. Εισήγηση 10 η Κατασκευή Ερωτηματολογίων Τεχνικές Έρευνας Ε. Ζέτου Ε εξάμηνο 2010-2011 Εισήγηση 10 η Κατασκευή Ερωτηματολογίων ΣΚΟΠΟΣ Η συγκεκριμένη εισήγηση έχει σαν σκοπό να δώσει τις απαραίτητες γνώσεις στο/στη φοιτητή/τρια για τον τρόπο διεξαγωγής

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ Η μελέτη διαφόρων στοχαστικών φαινομένων μπορεί γενικά να γίνει χρησιμοποιώντας

ΕΙΣΑΓΩΓΗ Η μελέτη διαφόρων στοχαστικών φαινομένων μπορεί γενικά να γίνει χρησιμοποιώντας ΕΙΣΑΓΩΓΗ Η μελέτη διαφόρων στοχαστικών φαινομένων μπορεί γενικά να γίνει χρησιμοποιώντας κυρίως τρεις μεθόδους:. Αναλυτικές Μέθοδοι: πραγματοποιείται κατάλληλη μαθηματική μοντελοποίηση του στοχαστικού

Διαβάστε περισσότερα

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για 2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για τον καθορισμό του καλύτερου υποσυνόλου από ένα σύνολο

Διαβάστε περισσότερα

Στατιστική Ι- Βασικές Εννοιες

Στατιστική Ι- Βασικές Εννοιες Στατιστική Ι- Βασικές Εννοιες Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 1 Οκτωβρίου 2015 Περιγραφή 1 Περιγραφή του Στατιστικού προβλήματος Ορισμός της

Διαβάστε περισσότερα

3. ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratified Random Sampling)

3. ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratified Random Sampling) 3 ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratfed Radom Samplg) Είναι προφανές από τα τυπικά σφάλματα των εκτιμητριών των προηγούμενων παραγράφων, ότι ένας τρόπος να αυξηθεί η ακρίβεια τους είναι να αυξηθεί

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ. ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ. ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΓΙΑΝΝΗΣ ΦΑΝΟΥΡΓΙΑΚΗΣ ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΣΥΝΕΡΓΑΤΗΣ ΤΕΙ ΚΡΗΤΗΣ ΔΟΜΗ ΠΑΡΟΥΣΙΑΣΗΣ 1. Εισαγωγή

Διαβάστε περισσότερα

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n..

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n.. Μέτρα Κινδύνου για Δίτιμα Κατηγορικά Δεδομένα Σε αυτή την ενότητα θα ορίσουμε δείκτες μέτρησης του κινδύνου εμφάνισης μίας νόσου όταν έχουμε δίτιμες κατηγορικές μεταβλητές. Στην πιο απλή περίπτωση μας

Διαβάστε περισσότερα

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Μαθηματικά (Άλγεβρα - Γεωμετρία) Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α, Β ΤΑΞΕΙΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΕΠΑΛ ΚΕΝΤΡΙΚΗ

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ ΚΕΦΑΛΑΙΟ 5 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ Α. Περίπτωση Ενός Πληθυσμού Έστω ότι μελετάμε μια ακολουθία ανεξαρτήτων δοκιμών κάθε μία από τις οποίες οδηγεί είτε σε επιτυχία είτε σε αποτυχία με σταθερή

Διαβάστε περισσότερα

ειγµατοληψία ΜΕΘΟ ΟΛΟΓΙΑ ΤΗΣ ΕΡΕΥΝΑΣ Μέρη της Έρευνας Μέθοδος Πώς ερευνήθηκε το πρόβληµα? Μέθοδος

ειγµατοληψία ΜΕΘΟ ΟΛΟΓΙΑ ΤΗΣ ΕΡΕΥΝΑΣ Μέρη της Έρευνας Μέθοδος Πώς ερευνήθηκε το πρόβληµα? Μέθοδος ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ & ΑΘΛΗΤΙΣΜΟΥ ΕΠΕΑΕΚ: ΑΝΑΜΟΡΦΩΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΤΟΥ ΤΕΦΑΑ ΠΘ ΑΥΤΕΠΙΣΤΑΣΙΑ ΜΕΘΟ ΟΛΟΓΙΑ ΤΗΣ ΕΡΕΥΝΑΣ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙ ΕΙΑΣ & ΘΡΗΣΚΕΥΜΑΤΩΝ

Διαβάστε περισσότερα

3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ

3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ 3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ Πρόβλημα: Ένας ραδιοφωνικός σταθμός ενδιαφέρεται να κάνει μια ανάλυση για τους πελάτες του που διαφημίζονται σ αυτόν για να εξετάσει την ποσοστιαία μεταβολή των πωλήσεων

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη και την επιστημονική μέθοδο

Εισαγωγή στην επιστήμη και την επιστημονική μέθοδο Εισαγωγή στην επιστήμη και την επιστημονική μέθοδο I. Τι είναι η επιστήμη; A. Ο στόχος της επιστήμης είναι να διερευνήσει και να κατανοήσει τον φυσικό κόσμο, για να εξηγήσει τα γεγονότα στο φυσικό κόσμο,

Διαβάστε περισσότερα

ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ

ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ ΠΕΡΙΕΧOΜΕΝΑ Πρόλογος στη δεύτερη έκδοση Πρόλογος στην πρώτη έκδοση Εισαγωγή Τι είναι η μεθοδολογία έρευνας Οι μέθοδοι έρευνας ΜEΡOΣ A : ΓNΩΡΙΜΙΑ ΜΕ ΤΗΝ ΕΠΙΣΤΗΜOΝΙΚΗ ΕΡΓΑΣΙΑ ΚΕΦΑΛΑΙO 1: Γενικά για την επιστημονική

Διαβάστε περισσότερα

ΣΕΜΙΝΑΡΙΟ: Β06Σ03 «Στατιστική περιγραφική εφαρμοσμένη στην ψυχοπαιδαγωγική» ΘΕΜΑ ΕΡΓΑΣΙΑΣ:

ΣΕΜΙΝΑΡΙΟ: Β06Σ03 «Στατιστική περιγραφική εφαρμοσμένη στην ψυχοπαιδαγωγική» ΘΕΜΑ ΕΡΓΑΣΙΑΣ: ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2011-2012 ΣΕΜΙΝΑΡΙΟ: Β06Σ03 «Στατιστική περιγραφική εφαρμοσμένη στην ψυχοπαιδαγωγική» Διδάσκων: Κ. Χρήστου

Διαβάστε περισσότερα

Ορισµένοι ερευνητές υποστηρίζουν ότι χρειαζόµαστε µίνιµουµ 30 περιπτώσεις για να προβούµε σε κάποιας µορφής ανάλυσης των δεδοµένων.

Ορισµένοι ερευνητές υποστηρίζουν ότι χρειαζόµαστε µίνιµουµ 30 περιπτώσεις για να προβούµε σε κάποιας µορφής ανάλυσης των δεδοµένων. ειγµατοληψία Καθώς δεν είναι εφικτό να παίρνουµε δεδοµένα από ολόκληρο τον πληθυσµό που µας ενδιαφέρει, διαλέγουµε µια µικρότερη οµάδα που θεωρούµε ότι είναι αντιπροσωπευτική ολόκληρου του πληθυσµού. Τέσσερις

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΙΟΛΟΓΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΙΟΛΟΓΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΙΟΛΟΓΙΑ Εξάμηνο Υ/Ε Ώρες Θεωρίας Ώρες Ασκήσης Διδακτικές μονάδες ECTS A Υ 3 3 4 6 Διδάσκουσα Μ. Αλεξίου Χατζάκη, Επίκ. Καθηγήτρια Γεν. Βιολογίας. Aντικειμενικοί στόχοι του μαθήματος Οι στόχοι

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΕΛΕΓΧΟΥΣ ΥΠΟΘΕΣΕΩΝ

ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΕΛΕΓΧΟΥΣ ΥΠΟΘΕΣΕΩΝ .Φουσκάκης- Ασκήσεις στους Ελέγχους Υποθέσεων ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΕΛΕΓΧΟΥΣ ΥΠΟΘΕΣΕΩΝ ) Με µια νέα µέθοδο προσδιορισµού του σηµείου τήξης (σ.τ.) µετάλλων προέκυψαν οι παρακάτω µετρήσεις για το µαγγάνιο: 67,

Διαβάστε περισσότερα

2. ΑΠΛΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Simple Random Sampling)

2. ΑΠΛΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Simple Random Sampling) . ΑΠΛΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Simple Radom Samplig) Η στοιχειωδέστερη μορφή δειγματοληψίας κατά πιθανότητα είναι η απλή τυχαία δειγματοληψία. Το σχήμα αυτό χρησιμοποιείται ευρύτατα, κυρίως λόγω της απλότητάς

Διαβάστε περισσότερα

Κεφάλαιο Ένα Τι είναι η Στατιστική;

Κεφάλαιο Ένα Τι είναι η Στατιστική; Κεφάλαιο Ένα Τι είναι η Στατιστική; Copyright 2009 Cengage Learning 1.1 Τι είναι η Στατιστική; «Στατιστική είναι ένας τρόπος για την αναζήτηση πληροφοριών μέσα σε δεδομένα» Copyright 2009 Cengage Learning

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΜΗΧΑΝΙΚΗ

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΜΗΧΑΝΙΚΗ ΦΥΣ 114 ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΜΗΧΑΝΙΚΗ Φθινόπωρο 2014 Διδάσκων/Υπεύθυνος: Φώτης Πτωχός e-mail: fotis@ucy.ac.cy Τηλ: 22.89.2837 Γραφείο: B235 web-page: http://www2.ucy.ac.cy/~fotis/phy114/phy114.htm ΦΥΣ

Διαβάστε περισσότερα