Περιγραφική Στατιστική. Ακαδ. Έτος ο εξάμηνο. Κ. Πολίτης

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Περιγραφική Στατιστική. Ακαδ. Έτος 2012-2013 1 ο εξάμηνο. Κ. Πολίτης"

Transcript

1 Περιγραφική Στατιστική Ακαδ. Έτος ο εξάμηνο Κ. Πολίτης 1 2

2 Η στατιστική ασχολείται με τη συλλογή, οργάνωση, παρουσίαση και ανάλυση πληροφοριών. Οι πληροφορίες αυτές, πολύ συχνά αριθμητικές, ονομάζονται παρατηρήσεις, ή μετρήσεις ή δεδομένα. Συλλογή επιλογή ενός δείγματος από τον πληθυσμό (ένα ομοιογενές σύνολο ατόμων των οποίων εξετάζουμε κάποιο χαρακτηριστικό) Οργάνωση σήμερα σχεδόν πάντα με τη βοήθεια υπολογιστή Παρουσίαση με τη μορφή π.χ. κάποιου πίνακα, ή κάποιου διαγράμματος, χρησιμοποιώντας είτε το σύνολο των μετρήσεων από το δείγμα είτε κάποιο περιγραφικό μέτρο (π.χ. τον αριθμητικό μέσο) Επίσης Η επιλογή ενός δείγματος από κάποιο πληθυσμό αποτελεί αντικείμενο της δειγματοληψίας Για την οργάνωση των δεδομένων χρησιμοποιούμε κάποιο λογιστικό φύλλο (π.χ. Excel) ή κάποιο στατιστικό πακέτο (π.χ. Minitab, SPSS, Splus, BMDP κλπ) Με την παρουσίαση και περιγραφή των δεδομένων ασχολείται η Περιγραφική στατιστική Βασικό μαθηματικό εργαλείο της στατιστικής συμπερασματολογίας είναι η θεωρία πιθανοτήτων και ειδικότερα οι διάφορες κατανομές πιθανότητας Ανάλυση στατιστική συμπερασματολογία με τη χρήση κάποιου μοντέλου (π.χ. ότι ο πληθυσμός τον οποίο μελετάμε ακολουθεί κάποια κατανομή) 3 4

3 Στη στατιστική, ενας πληθυσμός που εξετάζουμε μπορεί να είναι Α. Πεπερασμένος ή άπειρος Β. Υπαρκτός ή ιδεατός Είδη στατιστικών στοιχείων Χρονοσειρές ή χρονικές σειρές (π.χ. οι διάφοροι οικονομικοί δείκτες) Διαστρωματικά στοιχεία (π.χ. απογραφές, έρευνες αγοράς κλπ) Μεικτά δεδομένα Κάποια πεδία εφαρμογών της στατιστικής σήμερα είναι Ιατρική, βιολογία, γενετική, φαρμακευτική, επιδημιολογία Ψυχολογία Οικονομία και χρηματοοικονομικά Ασφάλιση και ασφαλιστική επιστήμη Αθλητισμός Κοινωνιολογία Μηχανική Γεωργία Γεωλογία και άλλες (που συνδυάζουν τα δύο παραπάνω στοιχεία) 5 6

4 Στατιστική Βασικός σκοπός της περιγραφικής στατιστικής είναι η παρουσίαση των τιμών του δείγματος με τέτοιο τρόπο ώστε να μπορεί να γίνει μια πρώτη ερμηνεία των αποτελεσμάτων Περιγραφική στατιστική Συμπερασματολογία Μονοδιάστατη Διδιάστατη Εκτιμητική Έλεγχοι γ υποθέσεων Επίσης, είναι σημαντικό να μπορούν να ανιχνευτούν κάποια ιδιαίτερα χαρακτηριστικά των τιμών του δείγματος (άρα πιθανότατα και του πληθυσμού) τα οποία θα μελετηθούν αναλυτικά αργότερα διευρευνητική στατιστική. o Μέτρα κεντρικής τάσης o Μέτρα θέσης o Μέτρα κύμανσης (εύρους) o Μέτρα ασυμμετρίας και κύρτωσης Συσχέτιση Μέθοδοι για Ένα δείγμα Δύο δείγματα (ανεξάρτητα) Συσχετισμένα δείγματα Ν δείγματα Απαραμετρικές μέθοδοι Παλινδρόμηση 7 8

5 Παράδειγμα Ενδιαφερόμαστε να μελετήσουμε το ύψος των φοιτητών του Πα.Πει Ο πληθυσμός εδώ είναι το σύνολο των φοιτητών (κάθε φοιτητής αποτελεί μία στατιστική μονάδα) Η μεταβλητή, δηλαδή το χαρακτηριστικό γνώρισμα που μας ενδιαφέρει, είναι το ύψος Επειδή ο πληθυσμός είναι μεγάλος, και η ανάλυση όλων των στοιχείων του είναι δαπανηρή (και χρονοβόρα), πρώτο στάδιο για τη μελέτη είναι να επιλέξουμε ένα δείγμα από το σύνολο των φοιτητών. Στην περιγραφική ανάλυση που ακολουθεί, ένα πρώτο αριθμητικό μέτρο είναι ο αριθμητικός μέσος όρος των τιμών του δείγματος (δειγματικός μέσος) Άλλα απλά περιγραφικά στοιχεία είναι η μέγιστη τιμή του δείγματος η ελάχιστη τιμή του δείγματος το εύρος των τιμών του δείγματος (η διαφορά των δύο παραπάνω τιμών) η διάμεσος, δηλαδή η τιμή που είναι μεγαλύτερη από το 50% των τιμών του δείγματος η επικρατούσα τιμή, δηλαδή η τιμή που παρουσιάζεται περισσότερες φορές στο δείγμα Θεμελιώδης ιδιότητα ενός δείγματος είναι η αντιπροσωπευτικότητα (εδώ π.χ. ως προς το φύλο, το έτος φοίτησης κλπ) 9 10

6 Είδη δεδομένων (μεταβλητών) Κάθε χαρακτηριστικό του πληθυσμού που μελετάμε αποτελεί μια μεταβλητή. Οι τιμές που παίρνει αυτή η μεταβλητή σε ένα δείγμα αποτελούν τα δεδομένα μας. Οι μεταβλητές (αντ. τα δεδομένα) διακρίνονται σε: Ποσοτικές ή αριθμητικές Π.χ. ύψος, βάρος, ηλικία, αριθμός παιδιών σε μια οικογένεια, αριθμός φοιτητών σε ένα Τμήμα Παν/μίου, αριθμός ωρών που εργάζεται κάποιος σε μια εβδομάδα κλπ. Ποιοτικές (ή ονομαστικές) Π.χ. φύλο, είδος ασθένειας, ομάδα αίματος, οικογενειακή κατάσταση, ποδοσφαιρική ομάδα που υποστηρίζει κάποιος κλπ. Οι ποσοτικές μεταβλητές διακρίνονται σε: Συνεχείς, όταν η μεταβλητή μπορεί να πάρει οποιαδήποτε τιμή σε κάποιο διάστημα, λ.χ. το (0,1) ή το [0, ) Διακριτές, όταν η μεταβλητή παίρνει τιμές από ένα πεπερασμένο ή το πολύ αριθμήσιμο σύνολο (όπως π.χ. το σύνολο των ακεραίων). Έτσι, οι μεταβλητές o ύψος, βάρος, μήκος, αριθμός ωρών που εργάζεται κάποιος, ύψος μηνιαίου μισθού είναι συνεχείς ενώ οι μεταβλητές o ηλικία (σε έτη), αριθμός παιδιών σε μια οικογένεια, αριθμός φοιτητών σε ένα Τμήμα Παν/μίου, αριθμός τηλεφωνημάτων που δέχεται κάποιος σε μια μέρα είναι διακριτές 11 12

7 Οι ποιοτικές μεταβλητές διακρίνονται σε: Κατηγορικές (μη διατάξιμες), και Διατάξιμες Μια μεταβλητή είναι διατάξιμη όταν υπάρχει η δυνατότητα διάταξης των τιμών της. Παραδείγματα τέτοιων μεταβλητών είναι Η κατάσταση της υγείας ενός ασθενή (πολύ σοβαρή, σοβαρή, μέτρια, ομαλή) το επίπεδο εκπαίδευσης (πρωτοβάθμια, δευτεροβάθμια, πανεπιστημιακή κλπ) ο βαθμός ικανοποίησης κάποιου από ένα προϊόν (πάρα πολύ / πολύ / λίγο / καθόλου) Η παραπάνω διάκριση των μεταβλητών έχει σημασία τόσο για την περιγραφή / παρουσίαση, όσο και για την ανάλυση των δεδομένων, αφού γενικά υπάρχουν διαφορετικές μέθοδοι ανάλογα με το αν η μεταβλητή είναι o ποιοτική ή ποσοτική o συνεχής ή διακριτή Πάντως, αρκετά συχνά όταν έχουμε μια ποσοτική μεταβλητή που έχει μεγάλο πλήθος από δυνατές τιμές, την μετατρέπουμε σε ποιοτική Αν δεν υπάρχει διάταξη στις τιμές της μεταβλητής, τότε αυτή είναι κατηγορική

8 Παράδειγμα : ηλικία Αντί να εξετάσουμε την ακριβή ηλικία μιας ομάδας ατόμων (ενός δείγματος), μπορούμε να χωρίσουμε τα άτομα σε διάφορες ηλικιακές ομάδες, π.χ. έως 20 ετών από 20 έως 40 ετών από 40 έως 60 ετών άνω των 60 ετών Αυτό συμβαίνει όταν δε μας ενδιαφέρει η ακριβής ηλικία ενός ατόμου, αλλά ενδιαφερόμαστε κυρίως για τις διαφορές ανάμεσα στις διάφορες ηλικιακές ομάδες. Αριθμητικό παράδειγμα για διακριτά δεδομένα Μελετάμε τον αριθμό παιδιών ανά οικογένεια σε μια περιοχή της Αθήνας. Επιλέγουμε ένα δείγμα από 15 οικογένειες με τις εξής τιμές (δεδομένα) 1, 2, 4, 2, 2, 3, 5, 1, 1, 2, 4, 1, 1, 2, 2. Στο δείγμα υπάρχουν 5 οικογένειες με ένα παιδί, 6 οικογένειες με 2 παιδιά, 1 οικογένεια με 3 παιδιά 2 οικογένειες με 4 παιδιά, 1 οικογένεια με 5 παιδιά 15 16

9 Γραφική απεικόνιση των τιμών του δείγματος (ραβδόγραμμα) Κάποια απλά περιγραφικά χαρακτηριστικά Υπάρχουν συνολικά 5 x x 2+ 1 x x x 5 = 33 παιδιά στο δείγμα, οπότε ο αριθμητικός μέσος είναι 33/15=2, Για να βρούμε τη διάμεσο, διατάσσουμε τις τιμές σε αύξουσα σειρά 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 4, 4, 5. Η διάμεσος είναι η 8 η παρατήρηση, δηλαδή 2. Η επικρατούσα τιμή είναι επίσης 2. Επίσης Η ελάχιστη τιμή είναι 1 Η μέγιστη τιμή είναι 5 (το εύρος των τιμών του δείγματος είναι 4)

10 Τι συμπεράσματα μπορούμε να βγάλουμε με βάση τα παραπάνω; o Μπορούμε λ.χ. να συμπεράνουμε ότι η μέση τιμή για όλες τις Ελληνικές οικογένειες είναι 2,2; o Μπορούμε έστω να πούμε ότι η μέση τιμή του πληθυσμού τον οποίο εξετάζουμε (οι οικογένειες στη συγκεκριμένη περιοχή της Αθήνας) είναι 2,2; Απουσιάζει η τιμή μηδέν! Προφανώς η επιλογή του δείγματος έγινε ανάμεσα σε οικογένειες που έχουν τουλάχιστον ένα παιδί Άρα η οποιαδήποτε ανάλυση και συμπερασματολογία θα αφορά μόνο αυτόν τον πληθυσμό των οικογενειών (στη συγκεκριμένη περιοχή) Η απάντηση και στις δύο ερωτήσεις είναι προφανώς αρνητική. Εδώ η περιγραφική ανάλυση μας βοήθησε να εντοπίσουμε ένα πρόβλημα στη συλλογή των δεδομένων. Απλώς ο δειγματικός μέσος μας δίνει μια πρώτη εικόνα για το πού μπορεί να βρίσκεται η μέση τιμή του πληθυσμού, η οποία μπορεί να χρησιμοποιηθεί σα βάση για περαιτέρω ανάλυση εφόσον βέβαια το δείγμα μας είναι αντιπροσωπευτικό Εδώ, υπάρχει κάτι περίεργο στα συγκεκριμένα δεδομένα; 19 20

11 Πώς επηρεάζονται τα περιγραφικά μέτρα αν στο δείγμα προσθέσουμε μια καινούρια παρατήρηση, π.χ. μία οικογένεια με 10 παιδιά ; Το σύνολο των παιδιών σε 16 οικογένειες είναι τώρα 43, οπότε ο νέος αριθμητικός μέσος είναι 43/16= 2,7. Πηγές στατιστικής πληροφόρησης Αυτές χωρίζονται γενικά σε Πρωτογενείς πηγές Ο ερευνητής συλλέγει μόνος του τα δεδομένα, τα οποία μπορεί να είναι είτε απευθείας μετρήσεις, είτε απαντήσεις σε ερωτηματολόγια που έχουν διανεμηθεί (το δεύτερο κυρίως σε κοινωνικές έρευνες) Η διάμεσος και η επικρατούσα τιμή παραμένουν αμετάβλητες! Γενικά λέμε ότι ο αριθμητικός μέσος είναι ευαίσθητος σε ακραίες παρατηρήσεις, ενώ η διάμεσος και η επικρατούσα τιμή όχι. Δευτερογενείς πηγές Ο ερευνητής χρησιμοποιεί δεδομένα που είναι διαθέσιμα, πολύ συχνά σήμερα στο διαδίκτυο ή από υπηρεσίες στατιστικής πληροφόρησης, π.χ. o Ελληνική Στατιστική Αρχή (ΕΛ.ΣΤΑΤ., πρώην ΕΣΥΕ) o Τράπεζα της Ελλάδος o Ευρωπαϊκή Κεντρική Τράπεζα o Δημόσιες ή ιδιωτικές εταιρείες και οργανισμοί o Διεθνείς οργανισμοί (π.χ. Eurostat, OHE) 21 22

12 Παράδειγμα για την οργάνωση των δεδομένων Σε ένα ερωτηματολόγιο υπάρχουν οι εξής τρεις ερωτήσεις 1. ποιά είναι η οικογενειακή σας κατάσταση; άγαμος έγγαμος χήρος/α διαζευγμένος/η 2. ποια η άποψή σας για τα προϊόντα και τις υπηρεσίες που παρέχει η εταιρεία ΑΒΓ στους πελάτες της ; Η πρώτη ερώτηση είναι ένα παράδειγμα μιας κλειστής ερώτησης Η δεύτερη είναι μία ανοικτή ερώτηση Η τρίτη είναι μία ερώτηση πολλαπλών απαντήσεων (κάποιος μπορεί να έχει δοκιμάσει περισσότερες από μία οδοντόπαστες). 3. ποιά από τις παρακάτω οδοντόπαστες έχετε δοκιμάσει ; AIM Colgate Crest Sensodyne 23 24

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. 7 ο ΜΑΘΗΜΑ ΚΕΦΑΛΑΙΟ 2 ΣΤΑΤΙΣΤΙΚΗ Σκοπός Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. Προσδοκώμενα αποτελέσματα Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες ΕΙΣΑΓΩΓΗ Βασικές έννοιες Σε ένα ερωτηματολόγιο έχουμε ένα σύνολο ερωτήσεων. Μπορούμε να πούμε ότι σε κάθε ερώτηση αντιστοιχεί μία μεταβλητή. Αν θεωρήσουμε μια ερώτηση, τα άτομα δίνουν κάποιες απαντήσεις

Διαβάστε περισσότερα

Βασικές έννοιες της Στατιστικής: Πληθυσμός - Δείγμα

Βασικές έννοιες της Στατιστικής: Πληθυσμός - Δείγμα Βασικές έννοιες της Στατιστικής: Πληθυσμός - Δείγμα Στατιστική είναι ο κλάδος των μαθηματικών που εμβαθύνει σε μεθόδους συλλογής δεδομένων, οργάνωσης, παρουσίασης των δεδομένων και εξαγωγής συμπερασμάτων

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς )

ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς ) Πληθυσμός (populaton) ονομάζεται ένα σύνολο, τα στοιχεία του οποίου εξετάζουμε ως προς τα χαρακτηριστικά τους. Μεταβλητές (varables ) ονομάζονται τα χαρακτηριστικά ως προς τα οποία εξετάζουμε έναν πληθυσμό.

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Μ.Ν. Ντυκέν, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. Ε. Αναστασίου, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. ΔΙΑΛΕΞΗ 02 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Βόλος, 2015-2016 1 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ (Descriptive)

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ

ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ 1o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ: ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδες Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων

Διαβάστε περισσότερα

Στατιστική. Βασικές έννοιες

Στατιστική. Βασικές έννοιες Στατιστική Βασικές έννοιες Τι είναι Στατιστική; ή μήπως είναι: Στατιστική είναι ο κλάδος των εφαρμοσμένων επιστημών, η οποία βασίζεται σ ένα σύνολο αρχών και μεθοδολογιών που έχουν σκοπό: Το σχεδιασμό

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-122) Διάλεξη 2

Στατιστική Ι (ΨΥΧ-122) Διάλεξη 2 (ΨΥΧ-122) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: lzabetak@dpem.tuc.gr Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ 28210 37323 Διάλεξη 2 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : ,

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : , Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η :1-0-017, 3-0-017 Διδάσκουσα: Κοντογιάννη Αριστούλα Σκοπός του μαθήματος Η παρουσίαση

Διαβάστε περισσότερα

Παράδειγμα. Χρονολογικά δεδομένα. Οι πωλήσεις μιας εταιρείας ανά έτος για το διάστημα (σε χιλιάδες $)

Παράδειγμα. Χρονολογικά δεδομένα. Οι πωλήσεις μιας εταιρείας ανά έτος για το διάστημα (σε χιλιάδες $) Χρονολογικά δεδομένα Ένα διάγραμμα που παριστάνει την εξέλιξη των τιμών μιας μεταβλητής στο χρόνο χρονόγραμμα (ή χρονοδιάγραμμα). Κύρια μέθοδος παρουσίασης χρονολογικών δεδομένων είναι η πολυγωνική γραμμή

Διαβάστε περισσότερα

Δισδιάστατη ανάλυση. Για παράδειγμα, έστω ότι 11 άτομα δήλωσαν ότι είναι άγαμοι (Α), 26 έγγαμοι (Ε), 12 χήροι (Χ) και 9 διαζευγμένοι (Δ).

Δισδιάστατη ανάλυση. Για παράδειγμα, έστω ότι 11 άτομα δήλωσαν ότι είναι άγαμοι (Α), 26 έγγαμοι (Ε), 12 χήροι (Χ) και 9 διαζευγμένοι (Δ). Δισδιάστατη ανάλυση Πίνακες διπλής εισόδου Σε πολλές περιπτώσεις μελετάμε περισσότερες από μία μεταβλητές ταυτόχρονα. Π.χ. μία έρευνα που έγινε σε ένα δείγμα 58 ατόμων περιείχε τις ερωτήσεις «ποια είναι

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C Επιμέλεια: Κ Μυλωνάκης ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΕΡΩΤΗΣΗ Τι ονομάζεται πραγματική συνάρτηση με πεδίο ορισμού το Α; Έστω Α ένα υποσύνολο του R Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία

Διαβάστε περισσότερα

Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος

Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος Χρησιμοποιείται μόνο όταν οι τιμές της μεταβλητής έχουν ένα σταθερό άθροισμα (συνήθως 100%, όταν μιλάμε για σχετικές συχνότητες) Είναι χρήσιμο μόνο

Διαβάστε περισσότερα

Βασικές έννοιες. Παραδείγµατα: Το σύνολο των φοιτητών που είναι εγγεγραµµένοι

Βασικές έννοιες. Παραδείγµατα: Το σύνολο των φοιτητών που είναι εγγεγραµµένοι Τι είναι η Στατιστική? Η ΣΤΑΤΙΣΤΙΚΗ ορίζεται σήµερα ως η επιστήµη που σχετίζεται µε τις επιστηµονικές µεθόδους συλλογής, παρουσίασης, αξιολόγησης και γενίκευσης (: εξαγωγής συµπερασµάτων) της πληροφορίας.

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 1: Εισαγωγή στη Στατιστική Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ ΧΡΗΣΗΣ

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 A εξάμηνο 2009-2010 Περιγραφική Στατιστική Ι users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής κατά

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2013-2014 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητή: ένα χαρακτηριστικό ή ιδιότητα που μπορεί να πάρει διαφορετικές τιμές

Διαβάστε περισσότερα

ΜΕΤΡΑ ΚΕΝΤΡΙΚΗΣ ΤΑΣΗΣ

ΜΕΤΡΑ ΚΕΝΤΡΙΚΗΣ ΤΑΣΗΣ Μέτρα Περιγραφικής Στατιστικής Πληθυσμιακοί παράμετροι: τα αριθμητικά μεγέθη που εκφράζουν τις στατιστικές ιδιότητες ενός πληθυσμού (που προσδιορίζουν / περιγράφουν τη φυσιογνωμία και τη δομή του) Στατιστικά

Διαβάστε περισσότερα

E-Class. https://mediasrv.aua.gr/eclass/modules/document/?course=aoa137

E-Class. https://mediasrv.aua.gr/eclass/modules/document/?course=aoa137 Προτεινόμενα Βιβλία E-Class https://mediasrv.aua.gr/eclass/modules/document/?course=aoa137 Γιατί χρειαζόμαστε την Στατιστική Εκλογικές Δημοσκοπήσεις Έρευνα Αγοράς Αθλητική Στατιστική Μεταβολή: +21.58 Χαμηλό

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων 1 Μάθημα του A Εξαμήνου

Στατιστική Επιχειρήσεων 1 Μάθημα του A Εξαμήνου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ Τμήμα Λογιστικής & Χρηματοοικονομικής Στατιστική Επιχειρήσεων 1 Μάθημα του A Εξαμήνου Περιεχόμενα-Ύλη του Μαθήματος Περιγραφική Στατιστική: Είδη δεδομένων, Μετασχηματισμοί,

Διαβάστε περισσότερα

Ποσοτική & Ποιοτική Ανάλυση εδομένων Βασικές Έννοιες. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη 2013-2014

Ποσοτική & Ποιοτική Ανάλυση εδομένων Βασικές Έννοιες. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη 2013-2014 Ποσοτική & Ποιοτική Ανάλυση εδομένων Βασικές Έννοιες Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη 2013-2014 Περιγραφική και Επαγωγική Στατιστική Η περιγραφική στατιστική

Διαβάστε περισσότερα

Περιεχόμενα. Γιατί Ένας Manager Πρέπει να Ξέρει Στατιστική. Περιεχόμενα. Η Ανάπτυξη και Εξέλιξη της Σύγχρονης Στατιστικής

Περιεχόμενα. Γιατί Ένας Manager Πρέπει να Ξέρει Στατιστική. Περιεχόμενα. Η Ανάπτυξη και Εξέλιξη της Σύγχρονης Στατιστικής Chapter 1 Student Lecture Notes 1-1 Ανάλυση Δεδομένων και Στατιστική για Διοικήση Επιχειρήσεων [Basic Business Statistics (8 th Edition)] Κεφάλαιο 1 Εισαγωγή και Συλλογή Δεδομένων Περιεχόμενα Γιατί ένας

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ στο τέλος του εξαμήνου με ΑΝΟΙΧΤΑ βιβλία ΕΞΕΤΑΣΕΙΣ ο καθένας θα πρέπει να έχει το ΔΙΚΟ του βιβλίο ΔΕΝ θα μπορείτε να ανταλλάσετε βιβλία ή να

ΕΞΕΤΑΣΕΙΣ στο τέλος του εξαμήνου με ΑΝΟΙΧΤΑ βιβλία ΕΞΕΤΑΣΕΙΣ ο καθένας θα πρέπει να έχει το ΔΙΚΟ του βιβλίο ΔΕΝ θα μπορείτε να ανταλλάσετε βιβλία ή να N161 _ (262) Στατιστική στη Φυσική Αγωγή Βιβλία ή 1 ΕΞΕΤΑΣΕΙΣ στο τέλος του εξαμήνου με ΑΝΟΙΧΤΑ βιβλία ΕΞΕΤΑΣΕΙΣ ο καθένας θα πρέπει να έχει το ΔΙΚΟ του βιβλίο ΔΕΝ θα μπορείτε να ανταλλάσετε βιβλία ή να

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική Μάθημα του Β Εξαμήνου

Εισαγωγή στη Στατιστική Μάθημα του Β Εξαμήνου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ Τμήμα Διοίκησης Επιχειρήσεων (Α.Ν.) Εισαγωγή στη Στατιστική Μάθημα του Β Εξαμήνου Περιεχόμενα-Ύλη του Μαθήματος Περιγραφική Στατιστική: Είδη δεδομένων, Μετασχηματισμοί,

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3.

ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3. .. ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3. Ποιες μεταβλητές λέγονται ποσοτικές; 4. Πότε μια ποσοτική μεταβλητή

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2015-2016 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

Σκοπός του μαθήματος

Σκοπός του μαθήματος Σκοπός του μαθήματος Στο μάθημα αυτό γίνεται εφαρμογή, με τη βοήθεια του υπολογιστή και τη χρήση του στατιστικού προγράμματος S.P.S.S., της στατιστικής θεωρίας που αναπτύχθηκε στα μαθήματα «Εισαγωγή στη

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Nα χαρακτηρίσετε τις προτάσεις που ακλουθούν γράφοντας στο τετράδιο σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε

Διαβάστε περισσότερα

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR

Διαβάστε περισσότερα

HELLENIC OPEN UNIVERSITY School of Social Sciences ΜΒΑ Programme. Επιλογή δείγματος. Κατερίνα Δημάκη

HELLENIC OPEN UNIVERSITY School of Social Sciences ΜΒΑ Programme. Επιλογή δείγματος. Κατερίνα Δημάκη HELLENIC OPEN UNIVERSITY School of Social Sciences ΜΒΑ Programme Επιλογή δείγματος Κατερίνα Δημάκη Αν. Καθηγήτρια Τμήμα Στατιστικής Οικονομικό Πανεπιστήμιο Αθηνών 1 Τρόποι Συλλογής Δεδομένων Απογραφική

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΟΛΗΨΙΑ. Ματσάγκος Ιωάννης-Μαθηματικός

ΔΕΙΓΜΑΤΟΛΗΨΙΑ. Ματσάγκος Ιωάννης-Μαθηματικός 1 ΔΕΙΓΜΑΤΟΛΗΨΙΑ -Είναι γνωστό, ότι στη Στατιστική, όταν χρησιμοποιούμε τον όρο πληθυσμός, δηλώνουμε, το σύνολο των ατόμων ή αντικειμένων, στα οποία αναφέρονται οι παρατηρήσεις μας Τα στοιχεία του συνόλου

Διαβάστε περισσότερα

1) ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ - ΑΤΑΞΙΝΟΜΗΤΑ ΔΕΔΟΜΕΝΑ

1) ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ - ΑΤΑΞΙΝΟΜΗΤΑ ΔΕΔΟΜΕΝΑ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 205-206 ΔΙΔΑΣΚΟΝΤΕΣ ΔΗΜΗΤΡΗΣ ΚΑΛΛΙΒΩΚΑΣ, ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ ) ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ - ΑΤΑΞΙΝΟΜΗΤΑ ΔΕΔΟΜΕΝΑ ΑΣΚΗΣΗ Τα παρακάτω δεδομένα αναφέρονται στη

Διαβάστε περισσότερα

2 ο Εξάμηνο του Ακαδημαϊκού Έτους ΟΔ 055 ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΙΣ ΚΟΙΝΩΝΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Διδασκαλία: κάθε Τετάρτη 12:00-15:00 Ώρες διδασκαλίας (3)

2 ο Εξάμηνο του Ακαδημαϊκού Έτους ΟΔ 055 ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΙΣ ΚΟΙΝΩΝΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Διδασκαλία: κάθε Τετάρτη 12:00-15:00 Ώρες διδασκαλίας (3) Τμήμα Οργάνωσης και Διαχείρισης Αθλητισμού 2 ο Εξάμηνο του Ακαδημαϊκού Έτους 2015-2016 ΟΔ 055 ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΙΣ ΚΟΙΝΩΝΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Διδασκαλία: κάθε Τετάρτη 12:00-15:00 Ώρες διδασκαλίας (3) Αντώνης Κ.

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ Εισαγωγή στο P.A.S.W. Υποχρεωτικό μάθημα 4 ου εξαμήνου

Διαβάστε περισσότερα

1 Ο ΓΥΜΝΑΣΙΟ ΠΕΥΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑ : ΤΕΧΝΟΛΟΓΙΑ ΕΚΠΑΙΔΕΥΤΙΚΟΣ : Τρασανίδης Γεώργιος, διπλ. Ηλεκ/γος Μηχανικός Μsc ΠΕ12 05

1 Ο ΓΥΜΝΑΣΙΟ ΠΕΥΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑ : ΤΕΧΝΟΛΟΓΙΑ ΕΚΠΑΙΔΕΥΤΙΚΟΣ : Τρασανίδης Γεώργιος, διπλ. Ηλεκ/γος Μηχανικός Μsc ΠΕ12 05 1 Ο ΓΥΜΝΑΣΙΟ ΠΕΥΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑ : ΤΕΧΝΟΛΟΓΙΑ ΕΚΠΑΙΔΕΥΤΙΚΟΣ : Τρασανίδης Γεώργιος, διπλ. Ηλεκ/γος Μηχανικός Μsc ΠΕ12 05 2. ΜΕΤΑΒΛΗΤΕΣ -ΣΧΕΣΕΙΣ ΜΕΤΑΞΥ ΜΕΤΑΒΛΗΤΩΝ Όλες οι έρευνες αναφέρονται σε μεταβλητές

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 7: Παρουσίαση δεδομένων-περιγραφική στατιστική Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

Κεφάλαιο Τέσσερα Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής

Κεφάλαιο Τέσσερα Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής Κεφάλαιο Τέσσερα Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής Copyright 2009 Cengage Learning 4.1 Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής Δείκτες Κεντρικής Θέσης [Αριθμητικός] Μέσος, Διάμεσος, Επικρατούσα

Διαβάστε περισσότερα

Ερευνητική υπόθεση. Η ερευνητική υπόθεση αναφέρεται σε μια συγκεκριμένη πρόβλεψη σχετικά με τη σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές.

Ερευνητική υπόθεση. Η ερευνητική υπόθεση αναφέρεται σε μια συγκεκριμένη πρόβλεψη σχετικά με τη σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές. Ερευνητική υπόθεση Η ερευνητική υπόθεση αναφέρεται σε μια συγκεκριμένη πρόβλεψη σχετικά με τη σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές. Στα πειραματικά ερευνητικά σχέδια, η ερευνητική υπόθεση αναφέρεται

Διαβάστε περισσότερα

Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Πληθυσμός: Το συνόλου του οποίου τα στοιχεία εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά τους.

Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Πληθυσμός: Το συνόλου του οποίου τα στοιχεία εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά τους. 1 Κεφάλαιο. ΣΤΑΤΙΣΤΙΚΗ Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική: ένα σύνολο αρχών και μεθοδολογιών για: το σχεδιασμό της διαδικασίας συλλογής δεδομένων τη συνοπτική και αποτελεσματική παρουσίασή τους την ανάλυση

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ

ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ Στατιστικά περιγραφικά μέτρα Τα στατιστικά περιγραφικά μέτρα είναι αντιπροσωπευτικές τιμές οι οποίες περιγράφουν με τρόπο ποσοτικό την κατανομή μιας μεταβλητής. Λειτουργούν

Διαβάστε περισσότερα

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 1: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται βασικές

Διαβάστε περισσότερα

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα Ορισμός τυχαίας μεταβλητής Τυχαία μεταβλητή λέγεται η συνάρτηση

Διαβάστε περισσότερα

Θεματολογία. Δεδομένα και αβεβαιότητα. Αντικείμενο της Στατιστικής. Βασικές έννοιες. Δεδομένα και αβεβαιότητα. Στατιστική Ι

Θεματολογία. Δεδομένα και αβεβαιότητα. Αντικείμενο της Στατιστικής. Βασικές έννοιες. Δεδομένα και αβεβαιότητα. Στατιστική Ι Ενότητα η : Εισαγωγή στη Στατιστική Θεματολογία Στατιστική Ι Ενότητα : Εισαγωγή Δρ. Χρήστος Εμμανουηλίδης Επίκουρος Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Αντικείμενο της Στατιστικής : μεταβλητές,πληθυσμός,

Διαβάστε περισσότερα

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Εκεί που είμαστε Κεφάλαια 7 και 8: Οι διωνυμικές,κανονικές, εκθετικές κατανομές και κατανομές Poisson μας επιτρέπουν να κάνουμε διατυπώσεις πιθανοτήτων γύρω από το Χ

Διαβάστε περισσότερα

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρμοσμένες Επιστήμες Στατιστικός Πληθυσμός και Δείγμα Το στατιστικό

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Χειμερινό εξάμηνο 2010-2011 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436 Περιγραφική Στατιστική Ι users.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής

Διαβάστε περισσότερα

Σ Τ Α Τ Ι Σ Τ Ι Κ Η 2. 1. Β Α Σ Ι Κ Ε Σ Ε Ν Ν Ο Ι Ε Σ.

Σ Τ Α Τ Ι Σ Τ Ι Κ Η 2. 1. Β Α Σ Ι Κ Ε Σ Ε Ν Ν Ο Ι Ε Σ. Σ Τ Α Τ Ι Σ Τ Ι Κ Η Στατιστική έρευνα : Πρόκειται για ένα σύνολο αρχών και μεθοδολογιών με αντικείμενο : 1) το σχεδιασμό της διαδικασίας συλλογής δεδομένων. Κλάδος της στατιστικής που ασχολείται : Σχεδιασμός

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΒΙΝΤΕΟ ΣΤΑΤΙΣΤΙΚΗ

ΕΠΑΝΑΛΗΠΤΙΚΟ ΒΙΝΤΕΟ ΣΤΑΤΙΣΤΙΚΗ ΕΠΑΝΑΛΗΠΤΙΚΟ ΒΙΝΤΕΟ ΣΤΑΤΙΣΤΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Άσκηση 1: Μια τράπεζα ενδιαφέρεται να μελετήσει την αποταμιευτική συμπεριφορά των πελατών της. Θεωρείται ως δεδομένο ότι η ετήσια αποταμίευση των πελατών της

Διαβάστε περισσότερα

εμπορικών επιχειρήσεων» ΦΕΒΡΟΥΑΡΙΟΣ 2013

εμπορικών επιχειρήσεων» ΦΕΒΡΟΥΑΡΙΟΣ 2013 «Περιοδική έρευνα πεδίου σε αντιπροσωπευτικό δείγμα ΜΜ εμπορικών επιχειρήσεων» ΦΕΒΡΟΥΑΡΙΟΣ 2013 Ενίσχυση της επιστημονικής και επιχειρησιακής ικανότητας και της τεκμηρίωσης της ΕΣΕΕ κωδικός ΟΠΣ: 296250

Διαβάστε περισσότερα

Στατιστική: Δειγματοληψία X συλλογή δεδομένων. Περιγραφική στατιστική V πίνακες, γραφήματα, συνοπτικά μέτρα

Στατιστική: Δειγματοληψία X συλλογή δεδομένων. Περιγραφική στατιστική V πίνακες, γραφήματα, συνοπτικά μέτρα ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ Α Δημήτρης Κουγιουμτζής e-mail: dkugiu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://users.auth.gr/~dkugiu/teach/civiltrasport/ide.html Στατιστική: Δειγματοληψία

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ 1 ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1. Ένα σηµείο Α(χ, ψ) ανήκει στη γραφική παράσταση της f αν f(ψ)=χ. 2. Αν µια συνάρτηση είναι γνησίως αύξουσα σε ένα διάστηµα A,

Διαβάστε περισσότερα

ΑΠΟΤΕΛΕΣΜΑΤΑ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΔΙΔΑΚΤΙΚΟΥ ΕΡΓΟΥ ΤΩΝ ΥΠΟΧΡΕΩΤΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΧΕΙΜΕΡΙΝΟΥ ΕΞΑΜΗΝΟΥ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ

ΑΠΟΤΕΛΕΣΜΑΤΑ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΔΙΔΑΚΤΙΚΟΥ ΕΡΓΟΥ ΤΩΝ ΥΠΟΧΡΕΩΤΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΧΕΙΜΕΡΙΝΟΥ ΕΞΑΜΗΝΟΥ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΑΠΟΤΕΛΕΣΜΑΤΑ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΔΙΔΑΚΤΙΚΟΥ ΕΡΓΟΥ ΤΩΝ ΥΠΟΧΡΕΩΤΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΧΕΙΜΕΡΙΝΟΥ ΕΞΑΜΗΝΟΥ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2011-2012 Κατά τη διάρκεια παρακολούθησης των μαθημάτων του χειμερινού εξαμήνου του ακαδημαϊκού

Διαβάστε περισσότερα

Επιστημονική Επιμέλεια Γιάνης Κυριόπουλος, Δημήτρης Ζάβρας, Ελευθερία Καραμπλή, Βασιλική Τσιάντου

Επιστημονική Επιμέλεια Γιάνης Κυριόπουλος, Δημήτρης Ζάβρας, Ελευθερία Καραμπλή, Βασιλική Τσιάντου Επιστημονική Επιμέλεια Γιάνης Κυριόπουλος, Δημήτρης Ζάβρας, Ελευθερία Καραμπλή, Βασιλική Τσιάντου Επωνυμία εταιρείας ΚΑΠΑ RESEARCH A.E. ΑΡ. ΜΗΤΡ : 5 Επωνυμία εντολέα ΕΛΛΗΝΟΑΜΕΡΙΚΑΝΙΚΟ ΕΠΙΜΕΛΗΤΗΡΙΟ Σκοπός

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ. 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής;

ΚΕΦΑΛΑΙΟ. 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής; Μαθηµατικά και Στοιχεία Στατιστικής ΚΕΦΑΛΑΙΟ ο 1 : ιαφορικός Λογισµός 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής; 2. Έστω µια

Διαβάστε περισσότερα

Στατιστική και Θεωρία Πιθανοτήτων (ΓΓ04) ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Εαρινό Εξάμηνο

Στατιστική και Θεωρία Πιθανοτήτων (ΓΓ04) ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Εαρινό Εξάμηνο Εαρινό εξάμηνο 2009-2010 Στατιστική και Θεωρία Πιθανοτήτων (ΓΓ04) ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Εαρινό Εξάμηνο 2009-2010 Στατιστική και Θεωρία Πιθανοτήτων users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr

Διαβάστε περισσότερα

ΙΝ.ΕΜ.Υ. Ε.Σ.Ε.Ε. «Έρευνα Πεδίου σε αντιπροσωπευτικό δείγμα Μικρομεσαίων Εμπορικών. Επιχειρήσεων» Χρονοσειρά δεδομένων 3 ο κύμα (Επικαιροποίηση Νο2)

ΙΝ.ΕΜ.Υ. Ε.Σ.Ε.Ε. «Έρευνα Πεδίου σε αντιπροσωπευτικό δείγμα Μικρομεσαίων Εμπορικών. Επιχειρήσεων» Χρονοσειρά δεδομένων 3 ο κύμα (Επικαιροποίηση Νο2) ΙΝ.ΕΜ.Υ. Ε.Σ.Ε.Ε. «Έρευνα Πεδίου σε αντιπροσωπευτικό δείγμα Μικρομεσαίων Εμπορικών Χρονοσειρά δεδομένων 3 ο κύμα (Επικαιροποίηση Νο2) Επιχειρήσεων» ΠΑΡΑΔΟΤΕΟ Νο 4 Ιούλιος 2013 Με τη συγχρηματοδότηση της

Διαβάστε περισσότερα

Παράμετροι που επηρεάζουν την εργασιακή ικανοποίηση των νοσηλευτών σε στρατιωτικό και πολιτικό νοσοκομείο των Αθηνών. Αναζήτηση αιτιών διαφοροποίησης

Παράμετροι που επηρεάζουν την εργασιακή ικανοποίηση των νοσηλευτών σε στρατιωτικό και πολιτικό νοσοκομείο των Αθηνών. Αναζήτηση αιτιών διαφοροποίησης ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΔΙΟΙΚΗΣΗ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ» ΔΙΑΤΡΙΒΗ ΕΠΙΠΕΔΟΥ ΜΑΣΤΕΡ Παράμετροι που επηρεάζουν την εργασιακή ικανοποίηση των νοσηλευτών σε στρατιωτικό

Διαβάστε περισσότερα

ΙΕΚ ΞΑΝΘΗΣ. Μάθημα : Στατιστική Ι. Υποενότητα : Περιγραφική Στατιστική

ΙΕΚ ΞΑΝΘΗΣ. Μάθημα : Στατιστική Ι. Υποενότητα : Περιγραφική Στατιστική ΙΕΚ ΞΑΝΘΗΣ Μάθημα : Στατιστική Ι Υποενότητα : Περιγραφική Στατιστική Επαμεινώνδας Διαμαντόπουλος Ιστοσελίδα : http://users.sch.gr/epdiaman/ Email : epdiamantopoulos@yahoo.gr 1 Στόχοι της υποενότητας Μετά

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΠΛΗΘΥΣΜΟΙ ΔΕΙΓΜΑΤΑ ΠΑΡΟΥΣΙΑΣΗ ΔΕΔΟΜΕΝΩΝ Περιγραφική Στατιστική Με τις στατιστικές μεθόδους επιδιώκεται: - η συνοπτική αλλά πλήρης και κατατοπιστική παρουσίαση των ευρημάτων μιας

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι Ανάλυσης στις Κοινωνικές Επιστήμες

Ποσοτικές Μέθοδοι Ανάλυσης στις Κοινωνικές Επιστήμες ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ποσοτικές Μέθοδοι Ανάλυσης στις Ενότητα 5: Ανάλυση στοιχείων. Θεόδωρος Χατζηπαντελής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

«Καθοριστικοί παράγοντες της αποτελεσματικότητας της από στόμα-σε-στόμα επικοινωνίας στις ιστοσελίδες κοινωνικής δικτύωσης»

«Καθοριστικοί παράγοντες της αποτελεσματικότητας της από στόμα-σε-στόμα επικοινωνίας στις ιστοσελίδες κοινωνικής δικτύωσης» «Καθοριστικοί παράγοντες της αποτελεσματικότητας της από στόμα-σε-στόμα επικοινωνίας στις ιστοσελίδες κοινωνικής δικτύωσης» Ονοματεπώνυμο: Ταχταρά Κατερίνα Σειρά: 8 η Επιβλέπων Καθηγητής: Βρεχόπουλος Αδάμ

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 1: ΑΣΚΗΣΕΙΣ Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ ΧΡΗΣΗΣ Το παρόν

Διαβάστε περισσότερα

Τεχνικές Έρευνας. Εισήγηση 10 η Κατασκευή Ερωτηματολογίων

Τεχνικές Έρευνας. Εισήγηση 10 η Κατασκευή Ερωτηματολογίων Τεχνικές Έρευνας Ε. Ζέτου Ε εξάμηνο 2010-2011 Εισήγηση 10 η Κατασκευή Ερωτηματολογίων ΣΚΟΠΟΣ Η συγκεκριμένη εισήγηση έχει σαν σκοπό να δώσει τις απαραίτητες γνώσεις στο/στη φοιτητή/τρια για τον τρόπο διεξαγωγής

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι. Περιγραφική Στατιστική 1

Στατιστική Επιχειρήσεων Ι. Περιγραφική Στατιστική 1 Στατιστική Επιχειρήσεων Ι Περιγραφική Στατιστική 1 2 Πληθυσμός ή στατιστικός πληθυσμός Ονομάζεται η κατανομή των τιμών μιας τ.μ., δηλαδή η κατανομή των τιμών που παίρνει ένα χαρακτηριστικό μιας ομάδας

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr

Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr Ποσοτικές Μέθοδοι Εισηγητής: Ν.Κυρίτσης MBA Ph.D. Candidate e-mail: kyritsis@ist.edu.gr Εισαγωγή στη Στατιστική Διδακτικοί Στόχοι Μέτρα Σχετικής Διασποράς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή Η Τυποποιημένες

Διαβάστε περισσότερα

SPSS. Βασικά στοιχεία

SPSS. Βασικά στοιχεία SPSS Βασικά στοιχεία Εισαγωγικά Στοιχεία SPSS (Statistical Package for Social Sciences) Χρησιμοποιείται σε έρευνες των Κοινωνικών Επιστημών ημιουργήθηκε στο Πανεπιστήμιο του Stanford Το 1975 ιδρύεται η

Διαβάστε περισσότερα

Είδη Μεταβλητών. κλίµακα µέτρησης

Είδη Μεταβλητών. κλίµακα µέτρησης ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρµοσµένες Επιστήµες Στατιστικός Πληθυσµός και Δείγµα Το στατιστικό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ- ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Εργασία για το σεµινάριο «Στατιστική περιγραφική εφαρµοσµένη στην ψυχοπαιδαγωγική(β06σ03)» ΤΙΤΛΟΣ: «ΜΕΛΕΤΗ ΠΕΡΙΓΡΑΦΙΚΗΣ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΕΜΙΝΑΡΙΟ:Β06 03 Στατιστική περιγραφική εφαρμοσμένη στην Ψυχοπαιδαγωγική ΘΕΜΑ: Μεταβλητές: ορισμοί, ποιοτικές μεταβλητές, ποσοτικές μεταβλητές,

Διαβάστε περισσότερα

Στατιστική ανάλυση αποτελεσμάτων

Στατιστική ανάλυση αποτελεσμάτων HELLENIC OPEN UNIVERSITY School of Social Sciences ΜΒΑ Programme Στατιστική ανάλυση αποτελεσμάτων Βασίλης Αγγελής Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Πανεπιστήμιο Αιγαίου Κατερίνα Δημάκη Αν. Καθηγήτρια

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ 2016 (version ) είναι: ( ) f =

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ 2016 (version ) είναι: ( ) f = ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ 16 (version 9-6-16) 1. A Να δώσετε τον ορισμό της παραγώγου μιας συνάρτησης σε ένα σημείο x του πεδίο ορισμού της. Απάντηση: Παράγωγος μιας συνάρτησης σε ένα σημείο x του πεδίο

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 3

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 3 (ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com ιαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ ιάλεξη 3 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ Ρέθυμνο,

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι Ανάλυσης στις Κοινωνικές Επιστήμες

Ποσοτικές Μέθοδοι Ανάλυσης στις Κοινωνικές Επιστήμες ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ποσοτικές Μέθοδοι Ανάλυσης στις Κοινωνικές Επιστήμες Ενότητα 1: Εισαγωγή. Θεόδωρος Χατζηπαντελής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΣΠΟΥΔΑΣΤΗΡΙΟ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΠΑΣΠΕ ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΚΟΙΝΩΝΙΚΩΝ ΕΡΕΥΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΤΙΣ ΤΕΧΝΙΚΕΣ

ΣΠΟΥΔΑΣΤΗΡΙΟ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΠΑΣΠΕ ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΚΟΙΝΩΝΙΚΩΝ ΕΡΕΥΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΤΙΣ ΤΕΧΝΙΚΕΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΠΑΣΠΕ ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΚΟΙΝΩΝΙΚΩΝ ΕΡΕΥΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΤΙΣ ΤΕΧΝΙΚΕΣ ΤΩΝ ΚΟΙΝΩΝΙΚΩΝ ΕΡΕΥΝΩΝ Επιλογή κειμένων των καθηγητών: Μ. GRAWITZ Καθηγήτρια Κοινωνιολογίας

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο. Τομέας Βιομηχανικής Διοίκησης και Επιχειρησιακής Έρευνας. Έρευνα Αγοράς Μέρος 1 ο - Θεωρία και περιγραφικά μέτρα

Εθνικό Μετσόβιο Πολυτεχνείο. Τομέας Βιομηχανικής Διοίκησης και Επιχειρησιακής Έρευνας. Έρευνα Αγοράς Μέρος 1 ο - Θεωρία και περιγραφικά μέτρα Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Βιομηχανικής Διοίκησης και Επιχειρησιακής Έρευνας Έρευνα Αγοράς Μέρος 1 ο - Θεωρία και περιγραφικά μέτρα 1 Περιεχόμενα 1. Βασικές Έννοιες Έρευνας Αγοράς 2. Προσέγγιση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Ονοματεπώνυμα Σπουδαστριών: Μποτονάκη Ειρήνη (5422), Καραλή Μαρία (5601) Μάθημα: Β06Σ03 Στατιστική

Διαβάστε περισσότερα

329 Στατιστικής Οικονομικού Παν. Αθήνας

329 Στατιστικής Οικονομικού Παν. Αθήνας 329 Στατιστικής Οικονομικού Παν. Αθήνας Σκοπός Το Τμήμα σκοπό έχει να αναδείξει επιστήμονες ικανούς να σχεδιάζουν, να αναλύουν και να επεξεργάζονται στατιστικές καθώς επίσης και να δημιουργούν προγράμματα

Διαβάστε περισσότερα

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης 1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

28/11/2016. Στατιστική Ι. 9 η Διάλεξη (Περιγραφική Στατιστική)

28/11/2016. Στατιστική Ι. 9 η Διάλεξη (Περιγραφική Στατιστική) Στατιστική Ι 9 η Διάλεξη (Περιγραφική Στατιστική) 1 2 Πληθυσμός ή στατιστικός πληθυσμός Ονομάζεται η κατανομή των τιμών μιας τ.μ., δηλαδή η κατανομή των τιμών που παίρνει ένα χαρακτηριστικό μιας ομάδας

Διαβάστε περισσότερα

Στόχος της ψυχολογικής έρευνας:

Στόχος της ψυχολογικής έρευνας: Στόχος της ψυχολογικής έρευνας: Συστηματική περιγραφή και κατανόηση των ψυχολογικών φαινομένων. Η ψυχολογική έρευνα χρησιμοποιεί μεθόδους συστηματικής διερεύνησης για τη συλλογή, την ανάλυση και την ερμηνεία

Διαβάστε περισσότερα

Κεφάλαιο Δύο Γραφήματα και Πίνακες Περιγραφικές Τεχνικές

Κεφάλαιο Δύο Γραφήματα και Πίνακες Περιγραφικές Τεχνικές Κεφάλαιο Δύο Γραφήματα και Πίνακες Περιγραφικές Τεχνικές Copyright 2009 Cengage Learning 2.1 Εισαγωγή & Ανασκόπηση Η περιγραφική στατιστική ασχολείται με την αναδιάταξη, τη σύνοψη, και την παρουσίαση ενός

Διαβάστε περισσότερα

P(A ) = 1 P(A). Μονάδες 7

P(A ) = 1 P(A). Μονάδες 7 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 20 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που

Διαβάστε περισσότερα

ν ν = 6. όταν είναι πραγµατικός αριθµός.

ν ν = 6. όταν είναι πραγµατικός αριθµός. Συνάρτηση: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ λέγεται µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου Β. Γνησίως αύξουσα: σε ένα διάστηµα του πεδίου

Διαβάστε περισσότερα

Μελέτη απορρόφησης αποφοίτων του Α.Π.Θ. στην αγορά εργασίας

Μελέτη απορρόφησης αποφοίτων του Α.Π.Θ. στην αγορά εργασίας Μελέτη απορρόφησης του ΑΠΘ στην αγορά εργασίας των ετών 2005 & 2006 Μελέτη απορρόφησης του Α.Π.Θ. στην αγορά εργασίας Επιστημονικός Κλάδος: Ιατρική 1 Μελέτη απορρόφησης του ΑΠΘ στην αγορά εργασίας των

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων ΙΙ

Στατιστική Επιχειρήσεων ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #: Επαγωγική Στατιστική - Δειγματοληψία Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες

Διαβάστε περισσότερα

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Περιεχόμενα 1. Συσχέτιση μεταξύ δύο ποσοτικών

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΕΠΑ.Λ. Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΕΠΑ.Λ. Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΕΠΑ.Λ. 2013-2014 ΣΤΑΤΙΣΤΙΚΗ 1. Τι ονομάζουμε: i. πληθυσμό και μέγεθος πληθυσμού; (σελ. 59) ii. μεταβλητή; (σελ.59-60) 2. Ποιες μεταβλητές ονομάζονται ποσοτικές; (σελ.60)

Διαβάστε περισσότερα

Μ Ε Τ Ρ Α Δ Ι Α Σ Π Ο Ρ Α Σ.

Μ Ε Τ Ρ Α Δ Ι Α Σ Π Ο Ρ Α Σ. Μ Ε Τ Ρ Α Δ Ι Α Σ Π Ο Ρ Α Σ. π.χ. Βαθμολογία διαγωνίσματος σε τμήματα: Α : 7, 11,16, 16,,. Β : 11, 13, 16, 16, 17, 17. Παρατήρηση : Για τέτοιους λόγους χρειάζεται και η εξέταση κάποιων μέτρων διασποράς

Διαβάστε περισσότερα