ΠΡΟΣ : ΚΟΙΝ: Α Τάξη Ημερήσιου Γενικού Λυκείου. Άλγεβρα

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΡΟΣ : ΚΟΙΝ: Α Τάξη Ημερήσιου Γενικού Λυκείου. Άλγεβρα"

Transcript

1 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ Δ/ΥΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Να διατηρηθεί μέχρι... Βαθμός Ασφαλείας... Μαρούσι Αριθ. Πρωτ /Γ2 Βαθ. Προτερ Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα: Πληροφορίες: Τηλέφωνο: ΠΡΟΣ : Δ/νσεις και Γραφεία Δ/θμιας Εκπ/σης Γραφεία Σχολικών Συμβούλων Γενικά Λύκεια (μέσω των Δ/νσεων και των Γραφείων Δ.Ε.) ΚΟΙΝ: Περιφερειακές Δ/νσεις Εκπ/σης Παιδαγωγικό Ινστιτούτο ΘΕΜΑ : Καθορισμός και διαχείριση διδακτέας ύλης Θετικών Μαθημάτων, των Α Β και Γ τάξεων Ημερήσιου και Εσπερινού Γενικού Λυκείου, για το σχολικό έτος Σας αποστέλλουμε τις παρακάτω οδηγίες για τη διδασκαλία των Θετικών Μαθημάτων της Α, Β τάξης Ημερήσιου και Α, Β, Γ τάξης Εσπερινού Γενικού Λυκείου. Α Τάξη Ημερήσιου Γενικού Λυκείου Άλγεβρα I. Εισαγωγή Η Άλγεβρα Α Λυκείου, αλλά και Β Λυκείου περιέχει σημαντικές έννοιες, όπως της απόλυτης τιμής, της συνάρτησης και της ανίσωσης, των τριγωνομετρικών συναρτήσεων κλπ, οι οποίες είναι απαραίτητες για την μετέπειτα μαθηματική εξέλιξη των μαθητών. Επειδή οι μαθητές αντιμετωπίζουν σοβαρά προβλήματα στην κατανόηση των παραπάνω εννοιών, προτείνεται να μην δοθεί βάρος σε θέματα που έχουν διδαχθεί στο Γυμνάσιο και να αφιερωθεί περισσότερος χρόνος στην εμπέδωση των νέων εννοιών μέσα από την ανάπτυξη πολλαπλών αναπαραστάσεων τους, καθώς και τη χρήση τους στην επίλυση προβλημάτων. Για την καλύτερη διαχείριση της ύλης η Τριγωνομετρία της Α Λυκείου να διδαχθεί στην αρχή της Β Λυκείου, ώστε να ολοκληρώνεται με μεγαλύτερη άνεση η διδασκαλία της ύλης της Α Λυκείου. Η συγκεκριμένη ύλη δεν θα αποτελεί εξεταστέα ύλη για τη Β Λυκείου. II. Διδακτέα ύλη

2 Από το βιβλίο «Άλγεβρα Α Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε.Δ.Β Εισαγωγικό κεφάλαιο (Δεν αποτελεί εξεταστέα ύλη) E.1. E.2. Το Λεξιλόγιο της Λογικής Σύνολα Κεφ. 1 ο : Οι Πραγματικοί Αριθμοί 1.1. Οι Πράξεις και οι Ιδιότητές τους (Συνοπτική παρουσίαση) 1.2. Διάταξη Πραγματικών Αριθμών (Συνοπτική παρουσίαση) 1.3. Απόλυτη Τιμή Πραγματικού Αριθμού Να μη διδαχθεί η Ιχ-χ 0 Ι<ρ χ (χ 0 -ρ, χ 0 +ρ) χ 0 -ρ<χ< χ 0 +ρ. Να διδαχθεί η ΙχΙ < θ -θ<χ<-θ. Να διδαχθεί μόνο ο ορισμός της απόστασης. Για καλύτερη εμπέδωση των ιδιοτήτων των απολύτων η επίλυση απλών εξισώσεων και α- νισώσεων (κεφάλαια 2 και 3) Ρίζες Πραγματικών Αριθμών Κεφ. 2 ο : Εξισώσεις 2.1. Εξισώσεις 1 ου Βαθμού 2.2. Η Εξίσωση xα ν = 2.3. Εξισώσεις 2 ου Βαθμού Κεφ. 3 ο : Ανισώσεις 3.2 Ανισώσεις 2 ου Βαθμού 3.3 Ανισώσεις Γινόμενο & Ανισώσεις Πηλίκο Κεφ. 4 ο : Βασικές Έννοιες των Συναρτήσεων 4.1. Η Έννοια της Συνάρτησης 4.2. Γραφική Παράσταση Συνάρτησης (Αφαιρούνται απόσταση σημείων και συμμετρία ως προς τη διχοτόμο) 4.3. Η Συνάρτηση fx αxβ ( ) =+ (Αφαιρούνται κλίση με το λόγο μεταβολής, σχετικές θέσεις δύο ευθειών) 4.4. Κατακόρυφη Οριζόντια Μετατόπιση Καμπύλης 4.5. Μονοτονία Ακρότατα Συμμετρίες Συνάρτησης Κεφ. 5 ο : Μελέτη Βασικών Συναρτήσεων 5.1. Μελέτη της Συνάρτησης : ( ) 2 fx αx = fx α = x 5.2. Μελέτη της Συνάρτησης : ( ) 5.3. Μελέτη της Συνάρτησης : 2 fx αxβxγ=++ ( ) Κεφ. 6 ο : Γραμμικά Συστήματα 2

3 6.1. Γραμμικά Συστήματα (Αφαιρούνται τα γραμμικά συστήματα 2 2) 6.2. Μη Γραμμικά Συστήματα 4 Διαχείριση Διδακτέας ύλης Εισαγ. Κεφάλαιο Δεν αποτελεί εξεταστέα ύλη. Να αφιερωθούν μόνο 2 ώρες για την διδασκαλία όποιων στοιχείων κρίνει απαραίτητα ο διδάσκων Κεφάλαιο 1 ο (Προτείνεται να διατεθούν 12 διδακτικές ώρες). Το κεφάλαιο αυτό αποτελείται κατά το μεγαλύτερο μέρος του από επανάληψη βασικών στοιχείων του αλγεβρικού λογισμού που έχουν ήδη διδαχθεί στο Γυμνάσιο. Για το λόγο αυτό, και προκειμένου να μην καθυστερήσει η διδασκαλία, ενδείκνυται η διεξαγωγή μιας διαγνωστικής δοκιμασίας με ερωτήσεις αντικειμενικού τύπου, ώστε ο διδάσκων να προσδιορίσει τις ανάγκες της τάξης του και να προσαρμόσει ανάλογα τη διδασκαλία του. Ειδικότερα: 1.1 (Προτείνεται να διατεθούν 4 διδακτικές ώρες). Τα περισσότερα είναι διδαγμένα στο γυμνάσιο. Να δοθεί προτεραιότητα σε ασκήσεις που συμπληρώνουν τη θεωρία και ενισχύουν την κατανόηση των διδασκομένων εννοιών. Γενικώς να διδάσκονται επιλεγμένες ασκήσεις με συγκεκριμένο στόχο η καθεμία, που θα τις επεξεργάζεται με ενεργητικό τρόπο ολόκληρη η τάξη (και όχι πολλές με ένα επιφανειακό τρόπο). Συγκεκριμένα να δοθεί ι- διαίτερη προσοχή στην ιδιότητα: α β=0 α=0 ή β=0 και στην α β 0 α 0 και β 0. Υπενθύμιση μόνο ιδιοτήτων δυνάμεων και βασικών ταυτοτήτων. Να γίνει η απόδειξη των νέων ταυτοτήτων α 3 ±β 3 = (που έχουν μεταφερθεί από το Γυμνάσιο), και εδώ να γίνει αναφορά στην ευθεία απόδειξη. Προτείνεται να γίνουν κατά προτεραιότητα οι ασκήσεις 3,4,5,6,7 Α Ομάδας και η 1 Β ομάδας 1.2 (Προτείνεται να διατεθούν 2 διδακτικές ώρες). Τα περισσότερα είναι διδαγμένα στο γυμνάσιο. Να γίνει εστίαση στις νέες ιδιότητες που δεν διδάχθηκαν στο Γυμνάσιο. Να γίνει η απόδειξη των α>β α ν >β ν και α=β α ν =β ν (με α, β θετικά). Εδώ να γίνει αναφορά στην απαγωγή σε άτοπο. Προτείνεται να γίνουν οι ασκήσεις από την Α ομάδα, με προτεραιότητα στις 5, (Προτείνεται να διατεθούν 3 διδακτικές ώρες). Να διδαχθεί η ιδιότητα: ΙχΙ < θ -θ<χ<θ και ΙχΙ > θ -χ<θ ή χ>θ και όχι η γενικότερη Ιχχ 0 Ι<ρ χ (χ 0 -ρ, χ 0 +ρ) χ 0 -ρ<χ< χ 0 +ρ. Να διδαχθεί ο ορισμός της απόστασης μόνο. Να δοθεί έμφαση στις γραφικές αναπαραστάσεις σε συγκεκριμένα μόνο παραδείγματα με χρήση της απόστασης σε εξισώσεις και ανισώσεις. Π χ η εξίσωση Ιχ-2Ι=3 σημαίνει: «ποιοι αριθμοί απέχουν από το 2 απόσταση ίση με 3» ή η ανίσωση Ιχ-2Ι<3 σημαίνει: «ποιοι είναι οι αριθμοί που απέχουν από το 2 απόσταση μικρότερη του 3;» 1. Τα προηγούμενα μπορούν να χρησιμοποιηθούν στην επίλυση της άσκησης 7. Για καλύτερη κατανόηση και εμπέδωση των ιδιοτήτων των απολύτων προτείνεται η ε- πίλυση εξισώσεων και ανισώσεων με απόλυτα από τα κεφάλαια 2 και 3. Προτείνεται να γίνουν κατά προτεραιότητα οι ασκήσεις Α Ομάδας. 1.4 (Προτείνεται να διατεθούν 3 διδακτικές ώρες). Οι 3 ιδιότητες-πορίσματα του σχολίου σελ μπορούν να αντιμετωπιστούν από τους ίδιους τους μαθητές στην τάξη ως ασκήσεις. Να διδαχθεί η δύναμη με ρητό εκθέτη που κάνει πιο εύκο- 1 d(x, 2)<3 Ix-2I<3-1<x<5 3

4 λη τη διαχείριση των ασκήσεων. Να δίνεται γενικά έμφαση στην εννοιολογική κατανόηση με τα παραδείγματα που ο καθηγητής θεωρεί ότι θα εξυπηρετήσουν αυτό το σκοπό. Στο πλαίσιο αυτό να γίνει επιλογή των κατάλληλων ερωτήσεων κατανόησης από το διδάσκοντα διότι είναι πάρα πολλές. Για καλύτερη κατανόηση και εμπέδωση των ιδιοτήτων προτείνεται η επίλυση αντίστοιχων εξισώσεων από το κεφάλαιο 2. Προτείνεται να γίνουν κατά προτεραιότητα οι ασκήσεις της Α ομάδας και η 5 της Β ομάδας. Κεφάλαιο 2 ο (Προτείνεται να διατεθούν 7 διδακτικές ώρες). Στο κεφάλαιο αυτό επιλύονται βασικά εξισώσεις πρώτου και δευτέρου βαθμού. Οι εξισώσεις αυτές και η επίλυση τους είναι ήδη γνωστές από το Γυμνάσιο, αλλά εδώ εξετάζονται στη γενική τους μορφή. Επιπλέον επιλύονται εξισώσεις που ανάγονται σε εξισώσεις πρώτου και δευτέρου βαθμού, όπως είναι οι εξισώσεις με απόλυτες τιμές και οι διτετράγωνες εξισώσεις, χωρίς όμως να αποτελούν ξεχωριστή ενότητα. Ως ιδιαίτερη περίπτωση εξετάζεται η εξίσωση xα ν =, της οποίας η λογική και η τεχνική επίλυσης διαφοροποιείται από τις εξισώσεις πρώτου και δευτέρου βαθμού. Ειδικότερα: 2.1 (Προτείνεται να διατεθούν 3 διδακτικές ώρες). Να δοθεί έμφαση στη γενική επίλυση της πρωτοβάθμιας, σε προβλήματα που λύνονται με πρωτοβάθμιες και σε απλές παραμετρικές εξισώσεις (το παράδειγμα και οι ασκήσεις του βιβλίου). Προτείνεται να γίνουν κατά προτεραιότητα οι ασκήσεις Α ομάδας και η 4 Β ομάδας. Η διατύπωση για την κατανόηση της παραμετρικής εξίσωσης μπορεί να γίνει ως εξής: πχ για την 3i: ποια είναι η λύση της εξίσωσης αν α) λ=1; β) αν λ=0; γ) αν λ=2 κλπ, δ) τι συμπέρασμα βγάζετε; μπορείτε να το γενικεύσετε; Αυτό θα διευκολύνει το μαθητή να κατανοήσει το ρόλο της παραμέτρου και τη διάκρισή της από τον άγνωστο. Στην 10 φαίνεται η δυνατότητα επίλυσης εξισώσεων με αναγωγή τους σε πρωτοβάθμιες με κατάλληλη παραγοντοποίηση και εφαρμογή της ιδιότητας α β=0 α=0 ή β=0. Απλές εξισώσεις με απόλυτα προτείνεται να διδαχθούν στις απόλυτες τιμές για καλύτερη κατανόηση και εμπέδωση των ιδιοτήτων των απολύτων. 2.2 (Προτείνεται να διατεθεί 1 διδακτική ώρα). Η επίλυση εξισώσεων της μορφής ν xα = θα περιοριστεί σε απλές εξισώσεις Α ομάδας. 2.3 (Προτείνεται να διατεθούν 3 διδακτικές ώρες). Η εξίσωση 2 ου βαθμού έχει διδαχθεί στο Γυμνάσιο. Συνεπώς να δοθεί έμφαση σε ασκήσεις που ε- νισχύουν τη νέα γνώση και στις διτετράγωνη και με απόλυτο που ανάγονται σε 2 ου βαθμού (παράδειγμα 1 και 3). Προτείνεται να γίνουν κατά προτεραιότητα οι ασκήσεις 3, 4 (με διαφορετική διατύπωση: πχ για την 4: α) να βρεθεί η Διακρίνουσα Δ της εξίσωσης, β) για ποιες τιμές του χ είναι Δ=0; γ) για ποιες τιμές του μ η εξίσωση έχει μια διπλή ρίζα;), 6, 7, 10,11,12,14,15 της Α ομάδας και οι 7,8,9 της Β ομάδας. Ειδικότερα: Κεφάλαιο 3 ο (Προτείνεται να διατεθούν 7 διδακτικές ώρες). 3.1 Σαν εισαγωγή στις δευτεροβάθμιες ανισώσεις να αρχίσει το μάθημα με τις ασκήσεις 4 και 11 (επανάληψη στις πρωτοβάθμιες) και με μια ακόμη άσκηση-πρόβλημα, από όπου να προκύπτει δευτεροβάθμια ανίσωση, οπότε θα φανεί η ανεπάρκεια της μεθόδου των πρωτοβάθμιων και η αναζήτηση μιας νέας μεθόδου για τις δευτεροβάθμιες. Προτείνεται η επίλυση απλών ανισώσεων με απόλυτα στις απόλυτες τιμές για καλύτερη κατανόηση και εμπέδωση των ιδιοτήτων των απολύτων τιμών. 3.2, 3.3 4

5 Προτείνεται οι ανισώσεις β βαθμού να συνδεθούν με τη γραφική παράσταση και να χρησιμοποιηθεί λογισμικό. Να δοθεί έμφαση στην εννοιολογική κατανόηση και όχι στην εξάντληση κάθε ειδικής (υπο)περίπτωσης. Οι ασκήσεις είναι πάρα πολλές και αυξάνουν υπερβολικά την ήδη τεράστια ύλη. Προτείνεται κατά προτεραιότητα να γίνουν οι ασκήσεις σελ από την Α ομάδα και από τη Β ομάδα οι 4 και 7. Από σελ κατά προτεραιότητα οι ασκήσεις Α ομάδας και μόνο οι 1,5,6 Β ομάδας. Από τις κατανόησης επειδή είναι πολλές να γίνει επιλογή από τον διδάσκοντα, κατά προτεραιότητα η IV. Κεφάλαιο 4 ο (Προτείνεται να διατεθούν 9 διδακτικές ώρες). Ο τρόπος παρουσίασης των εννοιών είναι αυστηρός και ενδέχεται να δημιουργήσει προβλήματα κατανόησης στους μαθητές Α Λυκείου. Συνεπώς στη σελ. 107 στην έννοια της γραφικής παράστασης συνάρτησης να δοθεί ένα συγκεκριμένο παράδειγμα, να κατασκευαστεί ο πίνακας τιμών, να σχεδιαστεί η γραφική παράσταση και στη συνέχεια να υπάρξει σύνδεση του παραδείγματος με τον ορισμό της γραφικής παράστασης. Προτείνεται η αποφυγή άσκοπου συμβολισμού και οι έννοιες να παρουσιάζονται επαγωγικά μέσα από παραδείγματα. Ειδικότερα: 4.1 Στην άσκηση 5 προτείνεται και το ερώτημα (iv) f(x)=g(x). 4.2 Δεν θα διδαχθούν «απόσταση σημείων και συμμετρία ως προς τη διχοτόμο» (διδάσκονται στη Β κατεύθυνση), η εφαρμογή σελ. 107 και οι αναφορές στην f. Να διδαχθεί η εφαρμογή σελ. 108 γιατί περιέχει σημαντικά στοιχεία όπως: ερμηνεία γραφικής παράστασης, σύνδεση αλγεβρικών και γραφικών μεθόδων και σύνδεση με εξίσωση και ανίσωση (με διαφορετική διατύπωση ερωτημάτων). Προτείνεται κατά προτεραιότητα να γίνουν οι ασκήσεις 8, 9 και 10. Στις ασκήσεις να γίνει χρήση της γνώσης από το γυμνάσιο και να σχεδιαστούν και οι γραφικές παραστάσεις (προτείνεται χρήση λογισμικού) για να γίνει σύνδεση μεταξύ αναπαραστάσεων και να φανεί η συμπληρωματικότητά τους. 4.3 Δεν θα διδαχθούν «κλίση με το λόγο μεταβολής, σχετικές θέσεις δύο ευθειών». Να διδαχθεί η γραφική παράσταση της f(x)=ixi (σελ. 115) και η εφαρμογή (σελ. 115) γιατί συνδέει γραφικές με αλγεβρικές μεθόδους. Ιδιότητες που σχετίζονται με τις παραμέτρους α και β μπορούν να γίνουν με χρήση λογισμικού. Να δοθεί έμφαση σε προβλήματα όπου αναδεικνύεται η αξία και η χρησιμότητα των μαθηματικών. Προτείνεται κατά προτεραιότητα να γίνουν οι ασκήσεις 5,6,7,8 Α ομάδας, σελ. 117 και έμφαση στις ασκήσεις (προβλήματα) Β ομάδας, σελ Η κατακόρυφη μεταφορά f(x)=φ(x)±c είναι ενδεχομένως πιο κατανοητή, αλλά η οριζόντια f(x)=φ(x±c) είναι πολύ πιο δύσκολη. Η κατανόηση της συναρτησιακής σχέσης φ(x-1), όπου πρέπει να τεθεί στο φ(x) στο x το x-1, είναι πολύ δύσκολη όπως φαίνεται από τη βιβλιογραφία. Ακόμα και στον συμβολισμό με συγκεκριμένες τιμές π χ φ(3) οι μαθητές έχουν μεγάλη δυσκολία. Κατά συνέπεια ο συμβολισμός f(x)=φ(x±c)±d ενδέχεται να προκαλέσει μεγάλη δυσκολία στους περισσότερους μαθητές. Να χρησιμοποιηθεί η γραφική παράσταση f(x)=ixi και μέσα από τις μετατοπίσεις της να προκύψουν οι άλλες μορφές. Εδώ η χρήση της τεχνολογίας μπορεί να υποστηρίξει τη σύνδεση ανάμεσα στις γραφικές παραστάσεις και τους τύπους και να διευκολύνει τους μαθητές σε μια γενίκευση. Κατά προτεραιότητα να γίνουν οι ασκήσεις 1,2,3,5 (με χρήση και της γραφικής παράστασης). 4.5 Μετά τους ορισμούς μονοτονίας, ακρότατων και συμμετρίας τα παραδείγματα που δίνονται να συμπληρωθούν και με τις αντίστοιχες γραφικές παραστάσεις (με χρήση ενδεχομένως λογισμικού) και να γίνει συσχέτιση. 5

6 Να μη διδαχθεί η άσκηση 5. Κεφάλαιο 5 ο (Προτείνεται να διατεθούν 7 διδακτικές ώρες). 5.1 (Προτείνεται να διατεθούν 2 διδακτικές ώρες). Πολλά στοιχεία έχουν διδαχθεί στο γυμνάσιο, να δοθεί έμφαση στα νέα στοιχεία. Να γίνει, αν είναι δυνατόν και χρήση λογισμικού. Να λυθούν κατά προτεραιότητα η άσκηση 4 της Α Ομάδας και η άσκηση 3 της Β Ομάδας. 5.2 (Προτείνεται να διατεθούν 2 διδακτικές ώρες). Πολλά στοιχεία έχουν διδαχθεί στο γυμνάσιο, να δοθεί έμφαση στα νέα στοιχεία. Να γίνει, αν είναι δυνατόν και χρήση λογισμικού. Να λυθούν κατά προτεραιότητα οι ασκήσεις 4, 5 και 6 της Α Ομάδας. 5.3 (Προτείνεται να διατεθούν 3 διδακτικές ώρες). Πολλά στοιχεία έχουν διδαχθεί στο γυμνάσιο, να δοθεί έμφαση στα νέα στοιχεία. Να γίνει, αν είναι δυνατόν και χρήση λογισμικού. Να λυθούν κατά προτεραιότητα οι ασκήσεις 3, και 4 της Α Ομάδας, τα προβλήματα της Β Ομάδας και η ερώτηση κατανόησης IV. Ειδικότερα: Κεφάλαιο 6 ο (Προτείνεται να διατεθούν 4 διδακτικές ώρες). 6.1 Διδάσκονται μόνο τα συστήματα 3 3 και οι αντίστοιχες ασκήσεις. 6.2 Να δοθεί έμφαση στη γραφική επίλυση και να υποστηριχθεί με λογισμικό. Να ζητείται πρώτα γραφικά μια εκτίμηση της λύσης και μετά να υπολογίζεται και αλγεβρικά. Να μη διδαχθούν οι ασκήσεις 4, 5 Β ομάδας. 6

7 Γεωμετρία I. Εισαγωγή Με αυτό τον διδακτικό προσανατολισμό και στο πλαίσιο των δυνατοτήτων που δίνονται από το υπάρχον αναλυτικό πρόγραμμα και το σχολικό βιβλίο, εξαιρέθηκαν από τη διδακτέα ύλη ενότητες που περιέχουν έννοιες γνωστές από το Γυμνάσιο (κεφάλαια 2 ο και 13 ο και 6.4 και 6.7), καθώς και τμήματα που δεν χρησιμοποιούνται στις επόμενες παραγράφους, ώστε να αναδειχθεί η σημασία τους ( 6.5 και 6.6 και εφαρμογή της 4.5). Οι ώρες που προκύπτουν από αυτή τη μείωση της ύλης να διατεθούν για τη βαθύτερη κατανόηση της αποδεικτικής διαδικασίας και της δομής της θεωρητικής γεωμετρίας. Στη συνέχεια της διδακτέας ύλης διατυπώνονται προτάσεις με βάση τα κεφάλαια και τις παραγράφους του βιβλίου που αφορούν τη διδακτική διαχείριση της ύλης, στην κατανομή των ωρών διδασκαλίας και τα σημεία στα οποία θεωρείται σημαντικό να δοθεί έμφαση. Επίσης, προτείνεται μία επιλογή ενδεικτικών ασκήσεων για την εμπέδωση των βασικών στοιχείων της κάθε παραγράφου. Οι προτάσεις έχουν ως αφετηρία την άποψη ότι κεντρικός στόχος της διδασκαλίας της Ευκλείδειας Γεωμετρίας πρέπει να είναι η επαφή των μαθητών με τη δομή μιας μαθηματικής θεωρίας και την αποδεικτική διαδικασία, που αποτελούν τη βάση για την ανάπτυξη της μαθηματικής σκέψης. II. Διδακτέα ύλη Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου Π., Κατσούλη Γ., Μαρκάκη Σ. και Σιδέρη Π. Κεφ. 1 ο : Εισαγωγή στην Ευκλείδεια Γεωμετρία 1.1. Το αντικείμενο της Ευκλείδειας Γεωμετρίας 1.2. Ιστορική αναδρομή στη γένεση και ανάπτυξη της Γεωμετρίας Κεφ. 3 ο : Τρίγωνα 3.1. Είδη και στοιχεία τριγώνων o Κριτήριο ισότητας τριγώνων (χωρίς την απόδειξη του θεωρήματος) o Κριτήριο ισότητας τριγώνων o Κριτήριο ισότητας τριγώνων 3.5. Ύπαρξη και μοναδικότητα καθέτου (χωρίς την απόδειξη του θεωρήματος) 3.6. Κριτήρια ισότητας ορθογώνιων τριγώνων (χωρίς τις αποδείξεις των θεωρημάτων I και II ) 3.7. Κύκλος - Μεσοκάθετος Διχοτόμος 3.8. Κεντρική συμμετρία 3.9. Αξονική συμμετρία Σχέση εξωτερικής και απέναντι γωνίας (χωρίς την απόδειξη του θεωρήματος) Ανισοτικές σχέσεις πλευρών και γωνιών Τριγωνική ανισότητα (χωρίς την απόδειξη του θεωρήματος και την εφαρμογή 4) Κάθετες και πλάγιες (χωρίς την απόδειξη του θεωρήματος II ) Σχετικές θέσεις ευθείας και κύκλου (χωρίς την απόδειξη του θεωρήματος) Εφαπτόμενα τμήματα Σχετικές θέσεις δύο κύκλων Απλές γεωμετρικές κατασκευές Βασικές κατασκευές τριγώνων Κεφ. 4 o : Παράλληλες ευθείες 4.1. Εισαγωγή 4.2. Τέμνουσα δύο ευθειών - Ευκλείδειο αίτημα (χωρίς την απόδειξη της πρότασης iv) 4.3. Κατασκευή παράλληλης ευθείας 4.4. Γωνίες με πλευρές παράλληλες 4.5. Αξιοσημείωτοι κύκλοι τριγώνου (χωρίς την εφαρμογή) 4.6. Άθροισμα γωνιών τριγώνου 4.7. Γωνίες με πλευρές κάθετες 7

8 4.8. Άθροισμα γωνιών κυρτού ν-γώνου Κεφ. 5 o : Παραλληλόγραμμα Τραπέζια 5.1. Εισαγωγή 5.2. Παραλληλόγραμμα 5.3. Ορθογώνιο 5.4. Ρόμβος 5.5. Τετράγωνο 5.6. Εφαρμογές στα τρίγωνα 5.7. Βαρύκεντρο τριγώνου 5.8. Το ορθόκεντρο τριγώνου (χωρίς την απόδειξη του θεωρήματος) 5.9. Μια ιδιότητα του ορθογώνιου τριγώνου Τραπέζιο Ισοσκελές τραπέζιο Αξιοσημείωτες ευθείες και κύκλοι τριγώνου Κεφ. 6 o : Εγγεγραμμένα σχήματα 6.1. Εισαγωγικά Ορισμοί 6.2. Σχέση εγγεγραμμένης και αντίστοιχης επίκεντρης (χωρίς την περίπτωση ii στην απόδειξη του θεωρήματος) 6.3. Γωνία χορδής και εφαπτομένης (χωρίς την εφαρμογή 1, σελ. 125) Κεφ. 7 o : Αναλογίες 7.1. Εισαγωγή 7.2. Διαίρεση ευθύγραμμου τµήµατος σε ν ίσα µέρη 7.3. Γινόμενο ευθύγραμμου τµήµατος µε αριθμό Λόγος ευθύγραµµων τµηµάτων 7.4. Ανάλογα ευθύγραμμα τµήµατα Αναλογίες 7.5. Μήκος ευθύγραμμου τµήµατος 7.6. Διαίρεση τµηµάτων εσωτερικά και εξωτερικά ως προς δοσμένο λόγο 7.7. Θεώρημα του Θαλή (χωρίς την απόδειξη του θεωρήματος) 7.8. Θεωρήματα των διχοτόμων τριγώνου III. Διαχείριση διδακτέας ύλης Κεφάλαιο 1 ο (Προτείνεται να διατεθεί 1διδακτική ώρα). Προτείνεται να γίνει αναφορά στις ελλείψεις της πρακτικής Γεωμετρίας και την ανάγκη της θεωρητικής Γεωμετρίας. Για παράδειγμα μπορεί να συζητηθεί η έλλειψη ακρίβειας στα αποτελέσματα μέσω της μέτρησης των γωνιών ενός τριγώνου από τους μαθητές ώστε να διαπιστωθεί ότι κάποιοι δεν βρίσκουν ακριβώς 180 μοίρες και η ανάγκη να απαντηθούν με βεβαιότητα ερωτήματα όπως γιατί από κάθε σημείο ευθείας άγεται μοναδική κάθετος προς την ευθεία αυτή. Να αναφερθούν οι πρωταρχικές έννοιες και τα αξιώματα αιτήματα. Κεφάλαιο 2 ο (Παραλείπεται). Το κεφάλαιο αυτό παραλείπεται επειδή αποτελεί επανάληψη γνώσεων του Γυμνασίου. Αν κατά την κρίση του διδάσκοντος το επίπεδο της τάξης απαιτεί να επαναληφθούν ορισμένα σημεία αυτού του κεφαλαίου μπορεί να αφιερώσει 1-2 ώρες για αυτή την επανάληψη. Κεφάλαιο 3 ο (Προτείνεται να διατεθούν 21 διδακτικές ώρες) (Προτείνεται να διατεθούν 5 διδακτικές ώρες). Το περιεχόμενο αυτών των παραγράφων έχει αρκετές ομοιότητες με την ύλη της Γ Γυμνασίου. 8

9 Προτείνεται να διδαχθούν όλα τα κριτήρια μαζί και μετά τα πορίσματα που προκύπτουν από αυτά. Η απόδειξη του κριτηρίου 1 μπορεί να παραλειφθεί γιατί έχει διδαχθεί ακριβώς η ίδια στην Γ Γυμνασίου. Οι αποδείξεις των κριτηρίων 2 και 3 προτείνεται να γίνουν για να κατανοήσουν οι μαθητές τη διαφορά της θεωρητικής απόδειξης από την πρακτική απόδειξη αυτών των κριτηρίων που είδαν στην Γ Γυμνασίου. Επίσης η απόδειξη του 2ου κριτηρίου γίνεται με την εις άτοπον απαγωγή που είναι βασική αποδεικτική μέθοδος. Στο 1ο κριτήριο προτείνεται να τονιστεί η αναγκαιότητα της υ- πόθεσης να είναι οι ίσες γωνίες περιεχόμενες στις ίσες πλευρές με τη χρήση κατάλληλου αντιπαραδείγματος. Τα πορίσματα 1 σελ. 37, 1 σελ. 40 και το 1 σελ. 45 (από επόμενες παραγράφους) είναι τα ίδια (το ύψος, η διάμεσος και η διχοτόμος που άγονται από την κορυφή ενός ισοσκελούς τριγώνου συμπίπτουν). Για αυτό μπορεί να γίνουν ως ένα πόρισμα. Το πόρισμα 2 σελ. 37 οι μαθητές θα το συναντήσουν στην παράγραφο 4.6 πόρισμα 4 σε πλήρη μορφή και άρα μπορεί να μην αναφερθεί. Το πόρισμα 3 σελ. 37 να συνδυαστεί με το πόρισμα 2 σελ. 40, το οποίο είναι ο αντίστροφος ισχυρισμός, και να διατυπωθεί με ενιαίο τρόπο ώστε να αναδειχθεί η διαδικασία απόδειξης ισοδυναμιών στη Γεωμετρία. Ομοίως για τα πορίσματα 4 σελ. 37 και 3 και 4 σελ. 41. Για τις ασκήσεις προτείνεται να δοθεί προτεραιότητα στην 3 σελ. 38, στην ερώτηση κατανόησης 1 σελ. 43, στις ασκήσεις εμπέδωσης 2 και 3 σελ. 43 (στην 3 μπορεί να σχολιαστεί ότι το τετράπλευρο είναι παραλληλόγραμμο κεφ. 5) και στις αποδεικτικές ασκήσεις 1 και 3 σελ. 43 (στην 3 μπορεί να αναφερθεί το σχόλιο, σελ.38) (Προτείνεται να διατεθούν 5 διδακτικές ώρες). Να μη διδαχθεί το πόρισμα 1 της σελίδας 45 το οποίο θα διδαχθεί στην παράγραφο 3.4, όπως α- ναφέρεται παραπάνω και τα σύνθετα θέματα της σελίδας 48. Να δοθεί βάρος στις αποδεικτικές ασκήσεις (Προτείνεται να διατεθεί 1 διδακτική ώρα). Η έννοια του γεωμετρικού τόπου είναι βασική για τη θεωρητική Γεωμετρία, αλλά και για άλλους κλάδους των μαθηματικών (για παράδειγμα στα Μαθηματικά κατεύθυνσης Β και Γ Λυκείου). Μαζί με τους βασικούς γεωμετρικούς τόπους της παραγράφου, να διδαχθεί παράδειγμα της 3.7 και να συζητηθεί στην τάξη το σχόλιο της σελίδας 50, που προετοιμάζει τους μαθητές για τις γεωμετρικές κατασκευές και δείχνει το σκεπτικό εύρεσης ενός γεωμετρικού τόπου, καθώς και η ερώτηση κατανόησης 1 της σελίδας 50. Οι παράγραφοι 3.8 και 3.9 που αναφέρονται στη συμμετρία, είναι θέμα που οι μαθητές έχουν αντιμετωπίσει διεξοδικά στο Γυμνάσιο. Επίσης το συμμετρικό ενός σημείου ως προς ευθεία που χρειάζεται στη Β Λυκείου έχει γίνει στην παράγραφο 2.14 (ερώτηση κατανόησης 1, σελ. 20). Αρκεί μια σύντομη υπενθύμιση των βασικών σημείων της θεωρίας και αν υπάρξει χρόνος επίλυση της άσκησης 5 που συνδέεται με τους γεωμετρικούς τόπους (Προτείνεται να διατεθούν 3 διδακτικές ώρες). Οι ανισοτικές σχέσεις είναι ένα κεφάλαιο που οι μαθητές δεν έχουν συναντήσει υπό αυτή τη μορφή στο Γυμνάσιο. Το θεώρημα της 3.10 (με απόδειξη εκτός ύλης) χρειάζεται για την απόδειξη του θεωρήματος της 4.2 που εξασφαλίζει την ύπαρξη παραλλήλων ευθειών. Με την απόδειξη του θεωρήματος της 3.11, αφενός οι μαθητές έρχονται σε επαφή με τη μοναδική εντός ύλης απόδειξη στις ανισοτικές σχέσεις και αφετέρου μέσα από το αντίστροφο, το πόρισμα 2 της 3.11 και το πόρισμα 1 της σελίδας 37 που έχουν διδαχθεί, συγκεντρώνονται οι ιδιότητες του ισοσκελούς τριγώνου. Σε αυτό το πνεύμα, προτείνεται να γίνουν οι εφαρμογές των σελίδων 55 και 56. Προτεινόμενες ασκήσεις: οι τρείς ερωτήσεις κατανόησης και, από τις ασκήσεις εμπέδωσης, οι 2, 8 και (Προτείνεται να διατεθεί 1 διδακτική ώρα). Το θεώρημα Ι να συνδεθεί με τον γεωμετρικό τόπο της μεσοκαθέτου (Προτείνεται να διατεθούν 4 διδακτικές ώρες). Προτείνεται να δοθεί ως άσκηση το πόρισμα της Επίσης να γίνει εισαγωγή στην έννοια της γεωμετρικής κατασκευής για την οποία μπορούν να αναφερθούν κάποια ιστορικά στοιχεία. Προτεινόμενες ασκήσεις: από τις ερωτήσεις κατανόησης της σελίδας 62 η 2 η, από τις ασκήσεις εμπέδωσης της σελίδας 63 οι 1 και 2, και από τις ασκήσεις εμπέδωσης των σελίδων 65, 66 οι 2 και (Προτείνεται να διατεθούν 2 διδακτικές ώρες). 9

10 Προτείνεται να γίνουν: το πρόβλημα 2 σελ. 67, 4 σελ.68, εφαρμογή σελ.68, και τα προβλήματα 2 (με το οποίο προετοιμάζονται για το 5ο αίτημα που θα ακολουθήσει) και 3 (που συνδέεται και με την τριγωνική ανισότητα) της 3.18 στο πνεύμα του Αναλυτικού Προγράμματος όπου αναφέρεται: «Θα επισημανθεί η αξία της κατασκευής με κανόνα και διαβήτη και θα αναφερθούν ιστορικά στοιχεία σχετικά με τη μέθοδο αυτή». Δε θα διδαχθούν οι γενικές ασκήσεις του Κεφαλαίου Κεφάλαιο 4 ο (Προτείνεται να διατεθούν 10 διδακτικές ώρες). Με το κεφάλαιο αυτό εισάγεται το 5ο αίτημα του Ευκλείδη. Εδώ μπορεί να αξιοποιηθεί διδακτικά η Ιστορία των Μαθηματικών με τη χρήση του ιστορικού σημειώματος στο τέλος του κεφαλαίου στο βιβλίο του μαθητή και τα ιστορικά στοιχεία που παρατίθενται στην αρχή του βιβλίου του καθηγητή (προτάσεις ισοδύναμες με το 5ο αίτημα, αναφορά σε κάποιες προσπάθειες απόδειξής του, αναφορά στη δημιουργία μη Ευκλείδειων Γεωμετριών) (Προτείνεται να διατεθούν 4 διδακτικές ώρες). Το τελευταίο πόρισμα της σελ. 78 έχει γίνει στην Η 4.4 μπορεί να γίνει ως εφαρμογή. 4.5 (Προτείνεται να διατεθούν 3 διδακτικές ώρες). Να μη γίνει η εφαρμογή της 4.5. Προτείνεται να διατεθούν 2 διδακτικές ώρες από τις 3 προτεινόμενες, ώστε να γίνουν οι ερωτήσεις κατανόησης και όποιες από τις ασκήσεις (εμπέδωσης ή αποδεικτικές) κρίνει ο διδάσκων. Να μη γίνουν τα σύνθετα θέματα, σελ (Προτείνεται να διατεθούν 3 διδακτικές ώρες). Προτείνεται να διατεθούν 2 διδακτικές ώρες από τις 3 προτεινόμενες, ώστε να γίνουν οι ερωτήσεις κατανόησης και από τις ασκήσεις εμπέδωσης οι 3-7. Να μη γίνουν τα σύνθετα θέματα 3-7, σελ. 88. Να μη γίνουν οι γενικές ασκήσεις του κεφαλαίου. Κεφάλαιο 5 ο (Προτείνεται να διατεθούν 16 διδακτικές ώρες) (Προτείνεται να διατεθούν 3 διδακτικές ώρες). Προτείνεται να διατεθούν 2 ώρες για τη θεωρία και 1 επιπλέον ώρα για εφαρμογές με επιλογή από τις ερωτήσεις και ασκήσεις του βιβλίου. Να μη γίνουν τα σύνθετα θέματα 1, 4, 5, σελ (Προτείνεται να διατεθούν 4 διδακτικές ώρες). Να μη γίνουν τα σύνθετα θέματα 1, 2, σελ (Προτείνεται να διατεθούν 2 διδακτικές ώρες). Προτείνεται να γίνουν και οι δύο εφαρμογές της σελίδας 106 (η εφαρμογή 2 θα συνδεθεί στη συνέχεια με την παράγραφο 7.2) (Προτείνεται να διατεθούν 2 διδακτικές ώρες). 5.9 (Προτείνεται να διατεθούν 2 διδακτικές ώρες). Προτείνεται να διατεθεί η 1 διδακτική ώρα από τις 2 προτεινόμενες για εφαρμογές με επιλογή από τις ερωτήσεις και ασκήσεις του βιβλίου. Να μη γίνουν τα σύνθετα θέματα 2, 4, 6, 7, σελ (Προτείνεται να διατεθούν 3 διδακτικές ώρες). Προτείνεται να διατεθεί η 1 διδακτική ώρα από τις 3 προτεινόμενες για εφαρμογές με επιλογή από τις ερωτήσεις και ασκήσεις του βιβλίου. Προτείνεται να γίνει η εφαρμογή της σελίδας 114, οι δραστηριότητες και η εργασία στο τέλος του κεφαλαίου. Να μη γίνουν τα σύνθετα θέματα 3, 4, 5, σελ Να μη γίνουν οι γενικές ασκήσεις του κεφαλαίου. Κεφάλαιο 6 ο 10

11 (Προτείνεται να διατεθούν 3 διδακτικές ώρες) (Προτείνεται να διατεθούν 3 διδακτικές ώρες). Προτείνεται να δοθεί έμφαση στις ασκήσεις εμπέδωσης 1-5. Να μη γίνουν τα σύνθετα θέματα 2, 3, σελ Να μη γίνουν οι γενικές ασκήσεις του κεφαλαίου. Κεφάλαιο 7 ο (Προτείνεται να διατεθούν 10 διδακτικές ώρες) (Προτείνεται να διατεθούν 5 διδακτικές ώρες). Στις παραγράφους αυτές γίνεται πρώτη φορά λόγος για σύμμετρα και ασύμμετρα ευθύγραμμα τμήματα. Η έννοια της ασυμμετρίας μπορεί να βοηθήσει σημαντικά τους μαθητές να ξεκαθαρίσουν την έννοια του αρρήτου αριθμού. Η ανάπτυξη της ύλης στο σχολικό βιβλίο (θεωρία, παρατηρήσεις, σημειώσεις) είναι πλήρης και αν διδαχθεί προσεκτικά θα βοηθήσει τους μαθητές σε σημαντικές περιοχές της Γεωμετρίας που ακολουθεί (Θεώρημα Θαλή, όμοια τρίγωνα) και της Άλγεβρας (η έννοια του πραγματικού αριθμού). Προτείνεται να δοθεί έμφαση στις ερωτήσεις κατανόησης. Επίσης, οι τύποι της παραγράφου 7.6 να μην απομνημονευθούν. 7.7 (Προτείνεται να διατεθούν 4 διδακτικές ώρες). Προτείνεται να γίνουν τα δύο προβλήματα της σελίδας 154 και να δοθεί έμφαση στις ερωτήσεις κατανόησης 1-3 και στις ασκήσεις εμπέδωσης 3-7. Να μη γίνουν τα σύνθετα θέματα, σελ (Προτείνεται να διατεθεί 1 διδακτική ώρα). Να μη γίνουν τα σύνθετα θέματα, σελ Να μη γίνουν οι γενικές ασκήσεις του κεφαλαίου. 11

12 Φυσική Διδακτέα Ύλη Διαχείριση διδακτέας ύλης Απαραίτητες εισαγωγικές γνώσεις. Προτεινόμενες ώρες διδασκαλίας 2-3 Β. Μονόμετρα και διανυσματικά μεγέθη. Σελ Στο 1ο μάθημα «γνωριμίας» μπορεί να χρησιμοποιηθεί υλικό από τις σελ που αναφέρονται στην ιστορία, τη μέθοδο, τη σχέση των ΦΕ με τις άλλες επιστήμες, την κοινωνία και τη τεχνολογία. Γ. Το διεθνές σύστημα μονάδων S.I. Σελ Δ. Διαστάσεις. Σελ.19 Ε. Η έννοια του χρόνου. Σελ ΣΤ. Το μέγεθος των αντικειμένων και οι μονάδες μέτρησής τους. Σελ Ζ. Η μάζα και η πυκνότητα. Σελ Η. Η μεταβολή και ο ρυθμός μεταβολής. Σελ Θ. Γραφικές παραστάσεις. Σελ Εργαστηριακή δραστηριότητα. 1η Εργ. Άσκηση Μέτρηση μήκους, χρόνου, μάζας και δύναμης ή ανάλογη δραστηριότητα Ύλη και κίνηση. Σελ Ευθύγραμμη κίνηση. Προτεινόμενες ώρες διδασκαλίας Ο προσδιορισμός της θέσης ενός σωματίου. Σελ Οι έννοιες της χρονικής στιγμής, του συμβάντος και της χρονικής διάρκειας. Σελ Η μετατόπιση σωματίου πάνω σε άξονα. Σελ Η έννοια της ταχύτητας στην ευθύγραμμη ομαλή κίνηση. Σελ Η έννοια της μέσης ταχύτητας. Σελ Η έννοια της στιγμιαίας ταχύτητας. Σελ Η έννοια της επιτάχυνσης στην ευθύγραμμη ομαλά μεταβαλλόμενη κίνηση. Σελ Οι εξισώσεις προσδιορισμού της ταχύτητας και της θέσης ενός κινητού στην ευθύγραμμη ο- μαλά μεταβαλλόμενη κίνηση. Σελ Ένθετο: Το θεώρημα MERTON. Σελ Ερωτήσεις, Ασκήσεις - Προβλήματα. Σελ Περιορισμός της πολυπλοκότητας και του φορμαλισμού των ασκήσεων στο πλαίσιο του σχ. βιβλίου. Εργαστηριακή δραστηριότητα. Εργαστηριακή άσκηση 2. Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης (2α) με χαρτοταινία και Multilog. 12

13 1.2.1 Η έννοια της δύναμης. Σελ Ένθετο: Ελαστική παραμόρφωση. Σελ Δυναμική σε μία διάσταση Προτεινόμενες ώρες διδασκαλίας Σύνθεση συγγραμικών δυνάμεων. Σελ Ο πρώτος νόμος του Νεύτωνα. Σελ Ο δεύτερος νόμος του Νεύτωνα ή Θεμελιώδης νόμος της Μηχανικής. Σελ Η έννοια του βάρους. Σελ Η έννοια της μάζας. Σελ Ένθετο: Η αδρανειακή μάζα αλλάζει. Σελ Η ελεύθερη πτώση των σωμάτων. Σελ Ένθετο: Η πειραματική μέθοδος. Σελ Ένθετο: Μήκος φρεναρίσματος και απόσταση ασφαλείας. Σελ Ένθετο: Οι ζώνες ασφαλείας και οι αερόσακοι. Σελ Ερωτήσεις, Ασκήσεις Προβλήματα. Σελ Όχι ερωτήσεις, ασκήσεις ή επιμέρους ερωτήματα τα οποία αναφέρονται σε ύλη που έχει αφαιρεθεί. 1.3 Δυναμική στο επίπεδο. Προτεινόμενες ώρες διδασκαλίας Τρίτος νόμος του Νεύτωνα. Νόμος Δράσης Αντίδρασης. Σελ Δυνάμεις από επαφή και από απόσταση. Σελ Σύνθεση δυνάμεων στο επίπεδο. Σελ Ανάλυση δύναμης σε συνιστώσες. Σελ Σύνθεση πολλών ομοεπιπέδων δυνάμεων. Σελ Ισορροπία ομοεπιπέδων δυνάμεων. Σελ Ο νόμος της τριβής. Σελ Οριζόντια βολή. Σελ Να διδαχθεί ως παράδειγμα εφαρμογής της αρχής ανεξαρτησίας των κινήσεων. Αφαιρούνται οι ασκήσεις της οριζόντιας βολής ώστε να υπάρξει χρόνος για τη διδασκαλία ενοτήτων που λόγω έλλειψης χρόνου δε διδάσκονται επαρκώς Ο δεύτερος νόμος του Νεύτωνα σε διανυσματική και σε αλγεβρική μορφή. Σελ Ομαλή κυκλική κίνηση. Σελ

14 Κεντρομόλος δύναμη. Σελ Μερικές περιπτώσεις κεντρομόλου δύναμης. Σελ Να διδαχθούν μόνο οι περιπτώσεις Α και Β και ανάλογα να περιοριστούν οι ασκήσεις. Να μη διδαχθούν οι περιπτώσεις Γ και Δ. Να μη διδαχθούν τα παραδείγματα 1, 2 στις σελ Αφαιρούνται ώστε να υπάρξει χρόνος για τη διδασκαλία ενοτήτων που λόγω έλλειψης χρόνου δεν διδάσκονται επαρκώς. Ένθετο: Από τον Αριστοτέλη στο Νεύτωνα. Σελ Ερωτήσεις Ασκήσεις σελ Όχι ερωτήσεις, ασκήσεις ή επιμέρους ερωτήματα τα οποία αναφέρονται σε ύλη που έχει αφαιρεθεί. Να μη γίνει η άσκηση 14. Εργαστηριακή δραστηριότητα Τριβή ολίσθησης σε κεκλιμένο επίπεδο με τη χρήση του Μultilog ή την κλασική μέθοδο (Εργ. ά- σκηση7). 1.4 Βαρύτητα. Προτεινόμενες ώρες διδασκαλίας Νόμος της παγκόσμιας έλξης. Πεδίο βαρύτητας. Σελ Να μη διδαχθεί η υποενότητα β το βαρυτικό πεδίο. 2.1 Διατήρηση της ορμής. Προτεινόμενες ώρες διδασκαλίας Η έννοια του συστήματος. Εσωτερικές και εξωτερικές δυνάμεις. Σελ Το φαινόμενο της κρούσης. Σελ Η έννοια της ορμής. Σελ Η δύναμη και η μεταβολή της ορμής. Σελ Η αρχή διατήρησης της ορμής. Σελ Εφαρμογές της διατήρησης της ορμής. Σελ Ερωτήσεις Ασκήσεις. Σελ Όχι ερωτήσεις, ασκήσεις ή επιμέρους ερωτήματα τα οποία αναφέρονται σε ύλη που έχει αφαιρεθεί. Να μην γίνουν οι ερωτήσεις 14, 15 και οι ασκήσεις 7, 13, 17. Στην ερώτηση 10 να γίνει η διόρθωση «και ποιο στη - Δp Δt = f(t)» Η έννοια του έργου. Σελ Διατήρηση της μηχανικής ενέργειας. Προτεινόμενες ώρες διδασκαλίας Έργο βάρους και μεταβολή της κινητικής ενέργειας. Σελ

15 2.2.3 Η δυναμική ενέργεια. Σελ Nα μη διδαχθεί από τη τελευταία παράγραφο της σελ. 228 «Η Δυναμική ενέργεια U είναι αποτέλεσμα. της αλληλεπίδρασης», έως το τέλος της σελ Η μηχανική ενέργεια. Σελ Να μη διδαχθεί το τμήμα της σελ. 232 από το «Ποσοτικά η διατήρηση» έως το τέλος της ενότητας Συντηρητικές δυνάμεις. Σελ Η ισχύς. Σελ Η τριβή και η μηχανική ενέργεια. Σελ. 239 Ένθετο: Τι είναι η ενέργεια; Σελ. 241 Ερωτήσεις, Ασκήσεις - Προβλήματα. Σελ..247 Όχι ερωτήσεις, ασκήσεις ή επιμέρους ερωτήματα τα οποία αναφέρονται σε ύλη που έχει αφαιρεθεί. Εργαστηριακή δραστηριότητα Να γίνει η Εργ. Ασκ. 9. Μελέτη και έλεγχος της διατήρησης της μηχανικής ενέργειας στην ελεύθερη πτώση σώματος. Σημείωση: Τα ένθετα επιλέγονται ανάλογα με τις δυνατότητες και τα ενδιαφέροντα των μαθητών. Σύνολο ωρών :

16 Χημεία Θα διδαχθεί το βιβλίο «Χημεία» Α Λυκείου των Λιοδάκη Σ., Γάκη Δ., Θεοδωρόπουλου Δ., Θεοδωρόπουλου Π. και Κάλλη Α. Το βιβλίο συνοδεύεται από Εργαστηριακό οδηγό για το/η μαθητή/ρια, Τετράδιο Εργαστηριακών Ασκήσεων, Εποπτικό υλικό και Βιβλίο για τον/ην καθηγητή/ρια, στο οποίο αναγράφονται αναλυτικά οδηγίες για τη διδασκαλία του μαθήματος. Σύνολο ελάχιστων προβλεπομένων διδακτικών ωρών σαράντα (40). Από το ανωτέρω εκπαιδευτικό υλικό προτείνεται να διδαχθούν: ΚΕΦΑΛΑΙΟ 1: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ (2 ΩΡΕΣ) Εισαγωγή, 1.1 μέχρι και 1.5 (σελ. 3-40) «Βασικές έννοιες» ΟΧΙ, εκτός από το τμήμα της ενότητας 1.5 «Διαλύματα-Περιεκτικότητες διαλυμάτων» σελίδες 20, 21 και 22, το οποίο προτείνεται να διδαχθεί στο 4 ο Κεφάλαιο πριν από την παράγραφο 4.3. Επισημαίνεται ότι ο/η εκπαιδευτικός, έχοντας γνώμονα το διαγνωστικό έλεγχο στην ύλη του Γυμνασίου στην αρχή της σχολικής περιόδου, μπορεί να αφιερώσει 1-2 διδακτικές ώρες για να καλύψει ενδεχόμενες ελλείψεις των μαθητών/ριών. ΚΕΦΑΛΑΙΟ 2: ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΔΕΣΜΟΙ (13 ΩΡΕΣ) Εισαγωγή 2.1 μέχρι και 2.4 (σελ ) ΝΑΙ Προτείνεται να μην δοθεί ιδιαίτερη έμφαση στην ονοματολογία των ενώσεων (υποενότητα 2.4), αλλά να επισημανθούν οι βασικές αρχές της. 1 η Εργαστηριακή άσκηση: Μετά το Κεφάλαιο 2 να πραγματοποιηθεί σύμφωνα με τον Εργαστηριακό οδηγό το πείραμα 3 «Πυροχημική ανίχνευση μετάλλων» (σελ του Εργαστηριακού Οδηγού). ΚΕΦΑΛΑΙΟ 3: ΟΞΕΑ-ΒΑΣΕΙΣ-ΑΛΑΤΑ-ΟΞΕΙΔΙΑ (12 ΩΡΕΣ) Εισαγωγή 3, 3.1, 3.2, (σελ. 83-μέση 89) ΝΑΙ. Τμήμα της υποενότητας 3.2.2, «Το ph (πε-χα)» (σελ. μέση 89-91) ΟΧΙ. 3.3 (σελ ) ΝΑΙ. 3.4 (σελ ) ΝΑΙ. 3.5 (σελ ) ΝΑΙ. 3.6 (σελ ) ΝΑΙ. Ένθετο «Γνωρίζεις ότι Το ph του στομάχου και τα αντιόξινα» (σελ. 110) ΝΑΙ. 2 η Εργαστηριακή άσκηση: Μετά το Κεφάλαιο 3 να πραγματοποιηθεί σύμφωνα με τον Εργαστηριακό Οδηγό το πείραμα 6 «Χημικές αντιδράσεις και ποιοτική ανάλυση ιόντων» (σελ του Εργαστηριακού Οδηγού). ΚΕΦΑΛΑΙΟ 4. ΣΤΟΙΧΕΙΟΜΕΤΡΙΑ (13 ΩΡΕΣ) Εισαγωγή, 4.1, 4.3, 4.4 (σελ , ) ΝΑΙ. Προτείνεται να διδαχθεί πρώτα η παράγραφος 4.1 «Βασικές έννοιες για τους χημικούς υπολογισμούς: σχετική ατομική μάζα, σχετική μοριακή μάζα, mol, αριθμός Avogadro, γραμμομοριακός ό- γκος» (σελ ). Στη συνέχεια, να ακολουθήσει η υποενότητα του 1 ου Κεφαλαίου «Διαλύματα Περιεκτικότητες διαλυμάτων» (σελ ), και κατόπιν να ακολουθήσουν οι παράγραφοι 4.3 «Συγκέντρωση διαλύματος - Αραίωση, ανάμειξη διαλυμάτων» (σελ ) και 4.4 «Στοιχειομετρικοί υπολογισμοί» ( ). 16

17 4.2 (σελ ) «Καταστατική εξίσωση των αερίων» ΟΧΙ. 3 η Εργαστηριακή άσκηση: Μετά το Κεφάλαιο 4 να πραγματοποιηθεί σύμφωνα με τον Εργαστηριακό οδηγό το πείραμα 7 «Παρασκευή διαλύματος ορισμένης συγκέντρωσης Αραίωση διαλυμάτων» (σελ του Εργαστηριακού Οδηγού). ΚΕΦΑΛΑΙΟ 5: ΠΥΡΗΝΙΚΗ ΧΗΜΕΙΑ (σελ ) «Πυρηνική χημεία» ΟΧΙ. 17

18 Τεχνολογία 1. Εισαγωγή Το μάθημα της Τεχνολογίας στην Α Λυκείου έχει σκοπό να βοηθήσει τον μαθητή να αντιληφθεί τις διαδικασίες, με τις οποίες διαμορφώθηκε το τεχνητό περιβάλλον στο οποίο ζει και να εξοικειωθεί με την τεχνολογική έρευνα που αποτελεί τον κύριο παράγοντα της τεχνολογικής εξέλιξης. Κατά συνέπεια, οι εκπαιδευτικές διαδικασίες και πρακτικές θα πρέπει να είναι διαφορετικές, σε σχέση με τα παραδοσιακά μαθήματα. Η μέθοδος «έρευνα και πειραματισμός» που παρουσιάζεται στο πρώτο μέρος του βιβλίου, δεν έχει σκοπό να απομνημονεύσουν οι μαθητές συγκεκριμένη ύλη, κατά τον παραδοσιακό τρόπο, αλλά να αποτελέσει έναν οδηγό για εξοικείωση των μαθητών με την ερευνητική διαδικασία που θα εφαρμόσουν σε ένα τεχνολογικό πρόβλημα που θα επιλέξουν. 2. Προτεινόμενες παρεμβάσεις Το Δεύτερο Μέρος του σχολικού βιβλίου δεν διδάσκεται. Το αξιοποιούν οι μαθητές και οι μαθήτριες μόνον ως πηγή πληροφόρησης εφόσον το χρειάζονται στο ερευνητικό τους θέμα σε συνδυασμό με όποια άλλη πρόσθετη πηγή πληροφόρησης επιθυμούν. 3. Διδακτικές προσεγγίσεις Για την αποτελεσματικότερη διεξαγωγή του μαθήματος: Τα στάδια της διαδικασίας της έρευνας διδάσκονται μέσα από εργασίες και εφαρμογές που πραγματοποιούν οι μαθητές και οι μαθήτριες στην τάξη. Το κύριο μέρος των ερευνητικών διαδικασιών και των εργασιών που έχουν αναλάβει πρέπει να πραγματοποιείται στην τάξη. Οι τελικές εργασίες των μαθητών μπορεί να είναι απλές πειραματικές έρευνες, στο σχολικό εργαστήριο. Μέσω της κατασκευής δοκιμίων για τα πειράματα αναπτύσσουν και πρακτικές δεξιότητες. Να τηρείται φάκελος μαθητή, όπου καταχωρίζεται σε έντυπη ή ηλεκτρονική μορφή η σταδιακή πορεία κάθε μαθητή στο μάθημα για όλη τη σχολική χρονιά, σύμφωνα με τις δραστηριότητες που προβλέπει η μέθοδος «έρευνα και πειραματισμός». Σε περίπτωση που δεν υπάρχει οργανωμένο εργαστήριο Τεχνολογίας, θα πρέπει να καταβάλλεται προσπάθεια ώστε το μάθημα να διδάσκεται σε συγκεκριμένη αίθουσα διδασκαλίας, η ο- ποία να διαθέτει κατάλληλο εξοπλισμό (πάγκους, φοριαμούς κ.λπ.) και υπολογιστές συνδεδεμένους στο Διαδίκτυο. Ο διδάσκων μπορεί να κάνει χρήση, κατά περίπτωση, και των υπολοίπων εργαστηρίων του σχολείου, όπως Πληροφορικής και Φυσικών Επιστημών, υπό την προϋπόθεση ότι τηρεί τους κανονισμούς των εργαστηρίων. 18

19 Εφαρμογές πληροφορικής Α ΛΥΚΕΙΟΥ (Μάθημα Επιλογής) Ενότητα ΠΣ Ο Κόσμος της Πληροφορικής Διερευνώ - Δημιουργώ - Ανακαλύπτω Πληροφορική και Σύγχρονος Κόσμος Περιεχόμενο Γενική επισκόπηση των εφαρμογών της Πληροφορικής Κατηγορίες υπολογιστών Το υλικό των υπολογιστών Το λογισμικό συστήματος Το λογισμικό εφαρμογών Προγραμματιστικά περιβάλλοντα Πληροφοριακά Συστήματα Συνθετικές εργασίες με λογισμικό ε- φαρμογών γενικής χρήσης εκπαιδευτικό λογισμικό Συνθετικές εργασίες με προγραμματιστικά περιβάλλοντα Όλα αλλάζουν... Νέες επαγγελματικές προοπτικές Κεφ. 1 Κεφ (αναφορά) Βιβλίο Μαθητή Προτεινόμενες διδακτικές ώ- ρες Δεν θα διδαχθεί Δεν θα διδαχθεί (Εισαγωγή) 1 Κεφ. 7 4 Κεφ. 8 Δεν θα διδαχθεί Κεφ. 9 2 Παρατηρήσεις Οι σχετικές έννοιες έχουν διαπραγματευτεί στο Γυμνάσιο και είναι οικείες στους μαθητές από τις εμπειρίες της καθημερινής ζωής τους. Οι σχετικές έννοιες έχουν διαπραγματευτεί στο γυμνάσιο και είναι οικείες στους μαθητές. Οι μαθητές έχουν γνωρίσει το υλικό μέρος των υπολογιστών στη Β Γυμνασίου. Για το λόγο αυτό προτείνεται να αφιερωθούν δύο (2) διδακτικές ώρες για την ε- πισκόπηση του κεφαλαίου, η οποία θα βοηθήσει τους μαθητές να ανακαλέσουν και να ενισχύσουν τις προϋπάρχουσες γνώσεις τους. Στο Γυμνάσιο έχουν γίνει αναφορές στο λογισμικό συστήματος και εφαρμογών. Προτείνεται μια ανασκόπηση χωρίς να επαναληφθούν πολλές λεπτομέρειες τεχνικού χαρακτήρα. Η ενότητα αυτή αναφέρεται, κυρίως, στο δομημένο προγραμματισμό. Προτείνεται η υλοποίηση παραδειγμάτων αλγορίθμων στο εργαστήριο υπολογιστών. Οι έννοιες που διαπραγματεύεται το κεφάλαιο αυτό είναι δύσκολες και δυσνόητες για το γνωστικό υπόβαθρο των μαθητών. Δημιουργία συνθετικών εργασιών ατομικών ή ομαδικών χρησιμοποιώντας λογισμικό εφαρμογών γενικής χρήσης και, όπου υπάρχει δυνατότητα, σχετικό εκπαιδευτικό λογισμικό. Σχεδιασμός και ανάπτυξη αλγορίθμων. Υλοποίηση αλγορίθμων σε προγραμματιστικά περιβάλλοντα. Προτείνεται η υλοποίηση ομαδοσυνεργατικών δραστηριοτήτων και συνθετικών εργασιών. 19

20 Β Τάξη Ημερήσιου Γενικού Λυκείου Μ α θ ή μ α τ α Γ ε ν ι κ ή ς Π α ι δ ε ί α ς Άλγεβρα Γενικής Παιδείας I. Διδακτέα ύλη A) Από το βιβλίο «Άλγεβρα Α Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε.Δ.Β Κεφ. 7 ο : Τριγωνομετρία (Δεν αποτελεί εξεταστέα ύλη) 7.1. Τριγωνομετρικοί Αριθμοί Γωνίας 7.2. Βασικές Τριγωνομετρικές Ταυτότητες 7.3. Αναγωγή στο 1o Τεταρτημόριο B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε.Δ.Β Κεφ. 1 ο : Τριγωνομετρία 1.1. Οι τριγωνομετρικές συναρτήσεις 1.2. Βασικές τριγωνομετρικές εξισώσεις Κεφ. 2ο: Πολυώνυμα - Πολυωνυµικές εξισώσεις 2.1. Πολυώνυμα 2.2. Διαίρεση πολυωνύμων 2.3. Πολυωνυμικές εξισώσεις 2.4. Εξισώσεις που ανάγονται σε πολυωνυμικές. Κεφ. 3 ο : Πρόοδοι 3.1. Ακολουθίες 3.2. Αριθμητική πρόοδος 3.3. Γεωμετρική πρόοδος 3.4. Ανατοκισμός Ίσες καταθέσεις Χρεολυσία 3.5. Άθροισμα άπειρων όρων γεωμετρικής προόδου Κεφ. 4 ο : Εκθετική και Λογαριθμική συνάρτηση 4.1. Εκθετική συνάρτηση 4.2. Λογάριθμοι (χωρίς την απόδειξη της αλλαγής βάσης) 4.3. Λογαριθμική συνάρτηση (να διδαχθούν μόνο οι λογαριθμικές συναρτήσεις με βάση το 10 και το e.). II. Διαχείριση διδακτέας ύλης 20

21 Κεφάλαιο 7 ο Άλγεβρας Α Λυκείου (Προτείνεται να διατεθούν 6 διδακτικές ώρες) 7.1 Να δοθεί έμφαση στην έννοια του ακτινίου, στη σύνδεσή του με τις μοίρες και την αναπαράστασή του στον τριγωνομετρικό κύκλο. 7.2 Προτείνεται να μη διδαχθούν οι ταυτότητες 4. Επίσης, να γίνει επιλογή από τις ασκήσεις 1-6 και από τις της Α Ομάδας. 7.3 Προτείνεται να μη δοθούν προς λύση οι ασκήσεις της Β Ομάδας. Κεφάλαιο 1 ο (Προτείνεται να διατεθούν 10 διδακτικές ώρες) 1.1 Προτείνεται να γίνουν κατά προτεραιότητα οι ασκήσεις 1, 3, 4, 5, 6 και 7(i, ii) της Α Ομάδας και οι 1, 2 και 3 της Β ομάδας. 1.2 Προτείνεται να μη γίνουν η άσκηση 11(ii) της Α Ομάδας και όλες οι ασκήσεις της Β ομάδας. Κεφάλαιο 2 ο (Προτείνεται να διατεθούν 13 διδακτικές ώρες) 2.1 Προτείνεται να γίνουν κατά προτεραιότητα ασκήσεις οι 1 και 2 (i, ii, iii) της Α Ομάδας και οι 2 και 3 της Β Ομάδας. 2.2 Προτείνεται να γίνουν κατά προτεραιότητα οι ασκήσεις 1 (i, iv), 2, 3 και 10 της Α Ομάδας και να μη γίνουν οι ασκήσεις της Β Ομάδας. 2.3 Α) Να μη δοθεί έμφαση στην τυπική διατύπωση του θεωρήματος (σελ. 77), αλλά στη γεωμετρική ερμηνεία του, στο παράδειγμα που ακολουθεί και στην άσκηση 8. Β) Επιπλέον, προτείνεται να γίνουν κατά προτεραιότητα οι ασκήσεις 1, 4, 5, 6 και 8 της Α Ομάδας και τα προβλήματα της Β Ομάδας, τα οποία οδηγούν στην επίλυση πολυωνυμικών εξισώσεων. 2.4 Α) Να δοθεί έμφαση στο γεγονός ότι η ύψωση των μελών μιας εξίσωσης στο τετράγωνο δεν οδηγεί πάντα σε ισοδύναμη εξίσωση. Αυτό μπορεί να γίνει και με τη βοήθεια των παρακάτω γραφικών παραστάσεων που αναφέρονται στο παράδειγμα 2, σελ. 82. Γραφική λύση της 2 2 xx= Γραφική λύση της xx= (2) Β) Επιπλέον, προτείνεται να μη γίνουν οι ασκήσεις 3 και 4 της Β Ομάδας. 21

22 Κεφάλαιο 3 ο (Προτείνεται να διατεθούν 11 διδακτικές ώρες ) 3.1 Προτείνεται να μη γίνουν οι ασκήσεις της Β Ομάδας. 3.2 Προτείνεται να γίνουν κατά προτεραιότητα οι ασκήσεις 1(i, ii, iii), 2(ii), 3(i, ii), 4(i), 5(i), 8(iii, iv), 9(i), 11(i), και 12 της Α Ομάδας και οι 4, 5, 11, 12, 14, και 16 της Β Ομάδας 3.3 Προτείνεται να γίνουν κατά προτεραιότητα οι ασκήσεις 1(i, ii), 2(ii), 3(i), 4(i), 5(ii), 6, 9(i, ii), 10(i, ii), 11(i), 12 και 13 της Α Ομάδας και οι 13 και 14 της Β Ομάδας. 3.4 Α) Προτείνεται οι τύποι να δίνονται στους μαθητές για την επίλυση ασκήσεων, ώστε να μην αποτελέσουν αντικείμενο απομνημόνευσης. Προτείνεται, επίσης, να χρησιμοποιούνται υπολογιστές τσέπης. Β) Επιπλέον, προτείνεται να μη γίνουν οι ασκήσεις Β Ομάδας. 3.5 Προτείνεται να γίνουν κατά προτεραιότητα οι ασκήσεις της Α Ομάδας και μόνο η 3 της Β Ομάδας Κεφάλαιο 4 ο (Προτείνεται να διατεθούν 12 διδακτικές ώρες) 4.1 Προτείνεται να δοθεί έμφαση στα προβλήματα της Β Ομάδας, με προτεραιότητα στα 6, 7 και Προτείνεται να γίνουν κατά προτεραιότητα οι ασκήσεις της Α Ομάδας με έμφαση στα προβλήματα και οι 2, 3, 5 της Β Ομάδας. Προτείνεται να μη γίνουν οι ασκήσεις 6, 7 και 8 της Β Ομάδας. 4.3 Α) Προτείνεται να διδαχθούν μόνο οι συναρτήσεις fxx ()log = και fxx ()ln=. Β) Επιπλέον, προτείνεται να γίνουν κατά προτεραιότητα οι ασκήσεις 2, 5, 6, 7 και 8 της Α Ομάδας και οι 1(i, iii), 3, 5, 7 και 8 της Β Ομάδας. Ασκήσεις Γ Ομάδας: Να μη διδάσκονται ασκήσεις Γ ομάδας. 22

23 Γεωμετρία Γενικής Παιδείας I. Διδακτέα ύλη Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των. Αργυρόπουλου Η, Βλάμου Π., Κατσούλη Γ., Μαρκάκη Σ. και Σιδέρη Π. Κεφ. 8 ο : Ομοιότητα (Δεν αποτελεί εξεταστέα ύλη) 8.1. Όμοια ευθύγραμμα σχήματα 8.2. Κριτήρια ομοιότητας (χωρίς τις αποδείξεις των θεωρημάτων ΙΙ και ΙΙΙ και τις εφαρμογές 1 και 2) Κεφ. 9 ο : Μετρικές σχέσεις 9.1. Ορθές προβολές 9.2. Το Πυθαγόρειο θεώρημα 9.3. Γεωμετρικές κατασκευές 9.4. Γενίκευση του Πυθαγόρειου θεωρήματος (χωρίς την απόδειξη του θεωρήματος ΙΙ ) 9.5. Θεωρήματα Διαμέσων 9.7. Τέμνουσες κύκλου Κεφ. 10 ο : Εμβαδά Πολυγωνικά χωρία Εμβαδόν ευθύγραμμου σχήματος - Ισοδύναμα ευθύγραµµα σχήματα Εμβαδόν βασικών ευθύγραμμων σχημάτων Άλλοι τύποι για το εμβαδόν τριγώνου (χωρίς την απόδειξη του τύπου ΙΙΙ) Λόγος εμβαδών όμοιων τριγώνων πολυγώνων Μετασχηματισμός πολυγώνου σε ισοδύναμό του Κεφ. 11 ο : Μέτρηση Κύκλου Ορισμός κανονικού πολυγώνου Ιδιότητες και στοιχεία κανονικών πολυγώνων (χωρίς τις αποδείξεις των θεωρημάτων) Εγγραφή βασικών κανονικών πολυγώνων σε κύκλο και στοιχεία τους (χωρίς τις εφαρμογές 2,3) Προσέγγιση του μήκους του κύκλου µε κανονικά πολύγωνα Μήκος τόξου Προσέγγιση του εμβαδού κύκλου µε κανονικά πολύγωνα Εμβαδόν κυκλικού τοµέα και κυκλικού τµήµατος Τετραγωνισμός κύκλου Κεφ. 12 ο : Ευθείες και επίπεδα στο χώρο (Διδακτέα αλλά όχι εξεταστέα ύλη) Εισαγωγή Η έννοια του επιπέδου και ο καθορισμός του Σχετικές θέσεις ευθειών και επιπέδων Ευθείες και επίπεδα παράλληλα - Θεώρημα του Θαλή Γωνία δύο ευθειών - ορθογώνιες ευθείες (χωρίς τις αποδείξεις των θεωρημάτων Ι, ΙΙ, και ΙΙΙ) Απόσταση σημείου από επίπεδο - απόσταση δύο παράλληλων επιπέδων (να δοθούν μόνο οι ορισμοί και οι εφαρμογές χωρίς αποδείξεις) Δίεδρη γωνία αντίστοιχη επίπεδη μιας δίεδρης κάθετα επίπεδα (χωρίς τις αποδείξεις των θεωρημάτων ΙΙ και ΙΙΙ) Προβολή σημείου και ευθείας σε επίπεδο - Γωνία ευθείας και επιπέδου II. Διαχείριση διδακτέας ύλης 23

24 Κεφάλαιο 8 ο (Προτείνεται να διατεθούν 7 διδακτικές ώρες) (Προτείνεται να διατεθούν 7 διδακτικές ώρες). Επειδή είναι το 1ο κεφάλαιο της Β Λυκείου ίσως χρειασθεί, κατά την κρίση του διδάσκοντος, να γίνει μία γρήγορη επανάληψη στις αναλογίες και το Θεώρημα του Θαλή που διδαχθήκαν στην Α Λυκείου. Η εφαρμογή 4 της παραγράφου 8.2 θα χρειασθεί στη συνέχεια για να αποδειχθεί τύπος για το εμβαδόν τριγώνου. Το κεφάλαιο προσφέρεται για τη συζήτηση εφαρμογών που ήδη θίγονται στο σχολικό βιβλίο (μέτρηση ύψους απρόσιτων σημείων, χρήση εξάντα). Να μη γίνουν οι εφαρμογές 1 και 3 και τα σύνθετα θέματα 1, 2 και 3, σελ Να μη γίνουν και οι γενικές ασκήσεις του κεφαλαίου. Κεφάλαιο 9 ο (Προτείνεται να διατεθούν 10 διδακτικές ώρες) (Προτείνεται να διατεθούν 2 διδακτικές ώρες). Στις παραγράφους αυτές η άσκοπη ασκησιολογία αλγεβρικού χαρακτήρα δε συνεισφέρει στην κατανόηση της Γεωμετρίας. Προτείνεται να γίνει το σχόλιο της εφαρμογής ως σύνδεση με την επόμενη παράγραφο. Να μη γίνουν τα σύνθετα θέματα 4, 6, σελ (Προτείνεται να διατεθούν 2 διδακτικές ώρες). Στην παράγραφο αυτή είναι σκόπιμο να διατεθεί χρόνος ώστε να σχολιαστεί το ιστορικό σημείωμα για την ανακάλυψη των ασύμμετρων μεγεθών και να γίνουν και οι 3 κατασκευές (υποτείνουσα και κάθετη πλευρά ορθογωνίου τριγώνου, μέση ανάλογος, άρρητα πολλαπλάσια ευθύγραμμου τμήματος που δίνουν και τον τρόπο κατασκευής ευθυγράμμων τμημάτων με μήκος τετραγωνική ρίζα φυσικού αφορμή για μία σύντομη συζήτηση για τη δυνατότητα κατασκευής ή μη των αρρήτων) (Προτείνεται να διατεθούν 3 διδακτικές ώρες). Στην παράγραφο 9.4 προτείνεται να μην αναλωθεί επιπλέον διδακτικός χρόνος για άσκοπη ασκησιολογία αλγεβρικού τύπου. Τα θεωρήματα των διαμέσων (παράγραφος 9.5) μπορούν να διδαχθούν ως εφαρμογές των θεωρημάτων της οξείας και αμβλείας γωνίας (χωρίς τις ασκήσεις τους), αφού και η παράγραφος 9.6 (γεωμετρικοί τόποι) που στηρίζονται στα θεωρήματα των διαμέσων είναι εκτός ύλης. Επίσης, εφαρμογές των θεωρημάτων των διαμέσων υπάρχουν σε ασκήσεις των επόμενων παραγράφων. Να μη γίνουν τα σύνθετα θέματα της σελίδας (Προτείνεται να διατεθούν 3 διδακτικές ώρες). Προτείνεται να δοθεί έμφαση στην 3η εφαρμογή και στο σχόλιό της (κατασκευή χρυσής τομής, ο λόγος φ). Από τις ασκήσεις μία επιλογή θα μπορούσε να είναι η εξής: οι ερωτήσεις κατανόησης, από τις α- σκήσεις εμπέδωσης οι 1 και 4 και από τις αποδεικτικές οι 1 και 3. Τα σύνθετα θέματα θα μπορούσαν να εξαιρεθούν από την ύλη καθώς και οι γενικές ασκήσεις. Η δραστηριότητα 2 σελ. 205 θα μπορούσε να συνεισφέρει στην κατανόηση της 1-1 αντιστοιχίας μεταξύ των σημείων της ευθείας και των πραγματικών αριθμών. Να μη γίνουν τα σύνθετα θέματα 3, 4, σελ. 204 και οι γενικές ασκήσεις του κεφαλαίου. Κεφάλαιο 10 ο (Προτείνεται να διατεθούν 11 διδακτικές ώρες) (Προτείνεται να διατεθούν 4 διδακτικές ώρες). Οι διαθέσιμες ώρες αυξάνονται προκειμένου να γίνουν και οι 3 εφαρμογές (με την παρατήρηση της 2) και οι 2 δραστηριότητες των σελ. 215 και 217. Επίσης θα μπορούσε να γίνει η απόδειξη του Πυθαγορείου θεωρήματος μέσω εμβαδών, όπως παρατίθεται στα στοιχεία του Ευκλείδη και αναφέρεται στο ιστορικό σημείωμα της σελ Προτεινόμενες ασκήσεις: οι ερωτήσεις κατανόησης, από τις ασκήσεις εμπέδωσης οι 3 και 6 και από τις αποδεικτικές ασκήσεις οι 1, 4, 7 και 8. Να μη γίνουν τα σύνθετα θέματα 1 και 5, σελ

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010.

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010. Β Τάξη Ηµερήσιου Γενικού Λυκείου Μ α θ ή µ α τ α Γ ε ν ι κ ή ς Π α ι δ ε ί α ς Άλγεβρα Γενικής Παιδείας I. ιδακτέα ύλη A) Από το βιβλίο «Άλγεβρα Α Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ.

Διαβάστε περισσότερα

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012.

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ B ----- Να διατηρηθεί μέχρι... Βαθμός

Διαβάστε περισσότερα

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδακτέα - εξεταστέα ύλη των µαθηµάτων Β τάξης Ηµερησίου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδακτέα - εξεταστέα ύλη των µαθηµάτων Β τάξης Ηµερησίου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. /νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Δημήτρης Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών. Λαμία, 19 Απριλίου 2013 Αριθ. Πρωτ.: 317. Προς:

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Δημήτρης Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών. Λαμία, 19 Απριλίου 2013 Αριθ. Πρωτ.: 317. Προς: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΝΟΜΟΥ ΦΘΙΩΤΙΔΑΣ

Διαβάστε περισσότερα

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Καθορισμός και διαχείριση διδακτέας ύλης των Μαθηματικών των Επαγγελματικών Λυκείων, για το σχολικό έτος 2013-14

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Καθορισμός και διαχείριση διδακτέας ύλης των Μαθηματικών των Επαγγελματικών Λυκείων, για το σχολικό έτος 2013-14 Βαθμός Ασφαλείας: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΠΕΡΙΦ. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΜΕ ΕΔΡΑ

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ. Α' τάξης Γενικού Λυκείου

ΑΛΓΕΒΡΑ. Α' τάξης Γενικού Λυκείου ΑΛΓΕΒΡΑ Α' τάξης Γενικού Λυκείου ΣΥΓΓΡΑΦΕΙΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Σβέρκος Ανδρέας ΟΜΑΔΑ ΑΝΑΜΟΡΦΩΣΗΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Μαθηματικά Α Τάξης Γυμνασίου

Μ Α Θ Η Μ Α Τ Ι Κ Α Μαθηματικά Α Τάξης Γυμνασίου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη:

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ. Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας:

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ. Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /Θ Ι Σ ΕΚΠ/ΣΗΣ ----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 580 Μαρούσι Ιστοσελίδα:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ I ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΠΑΛ 2010-2011

ΜΑΘΗΜΑΤΙΚΑ I ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΠΑΛ 2010-2011 ΜΑΘΗΜΑΤΙΚΑ I ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΠΑΛ 2010-2011 ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ ΠΡΩΤΟΒΑΘΜΙΑΣ ΚΑΙ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΤΜΗΜΑ Β Τηλ: 210 344 2478 FAX:

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

Η ΠΑΡΟΥΣΙΑ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ

Η ΠΑΡΟΥΣΙΑ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ Η ΠΑΡΟΥΣΙΑ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ 4 Η Ευκλείδεια Γεωμετρία στην εκπαίδευση και στην κοινωνία. Κώστας Μαλλιάκας, Καθηγητής Δ.Ε., 1 ο ΓΕΛ Ρόδου, kmath@otenet.gr

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και ΕΣΠΕΡΙΝΟΥ ΕΠΑ.Λ.

ΦΥΣΙΚΗ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και ΕΣΠΕΡΙΝΟΥ ΕΠΑ.Λ. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ---- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ B ----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη:

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Βαθµός Ασφαλείας... ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµάτων του Γενικού Λυκείου.

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Βαθµός Ασφαλείας... ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµάτων του Γενικού Λυκείου. ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Βαθµός Ασφαλείας... ENIAIOΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α' Αν. Παπανδρέου 37, 15180 Μαρούσι Πληροφορίες : Αν. Πασχαλίδου Τηλέφωνο : 210-34.42.238

Διαβάστε περισσότερα

ΘΕΜΑ: ιαχείριση διδακτέας - εξεταστέας ύλης των Μαθηµατικών Γ τάξης Ηµερήσιου και τάξης Εσπερινού Γενικού Λυκείου, για το σχολικό έτος 2010 2011.

ΘΕΜΑ: ιαχείριση διδακτέας - εξεταστέας ύλης των Μαθηµατικών Γ τάξης Ηµερήσιου και τάξης Εσπερινού Γενικού Λυκείου, για το σχολικό έτος 2010 2011. ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠΑΙ ΕΥΣΗΣ /ΥΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Να διατηρηθεί µέχρι... Βαθµός Ασφαλείας...

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΑ ΕΡΓΑΛΕΙΑ Για να κάνουμε Γεωμετρία χρειαζόμαστε εργαλεία κατασκευής, εργαλεία μετρήσεων και εργαλεία μετασχηματισμών.

Διαβάστε περισσότερα

Η διδασκαλία της λογικής και της απόδειξης στο Λύκειο ΕΙΣΑΓΩΓΗ

Η διδασκαλία της λογικής και της απόδειξης στο Λύκειο ΕΙΣΑΓΩΓΗ Η διδασκαλία της λογικής και της απόδειξης στο Λύκειο Μαθηματικών Δυτικής Θεσσαλονίκης gthom@otenet.gr ΕΙΣΑΓΩΓΗ Έχουν γίνει αρκετές απόπειρες στο παρελθόν για τη διδασκαλία στοιχείων της μαθηματικής λογικής

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΑΝΑΒΑΘΜΙΣΗΣ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΕΡΓΟΥ

ΜΕΛΕΤΗ ΑΝΑΒΑΘΜΙΣΗΣ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΕΡΓΟΥ ΚΕΕΠΕ ΤΟΜΕΑΣ ΙΙ.2.Α ΤΟΜΕΑΣ ΕΚΠΑΙΔΕΥΣΗΣ «ΤΟ ΣΥΓΧΡΟΝΟ ΣΧΟΛΕΙΟ» Δημητρίου Γ. Κούρτη ΜΕΛΕΤΗ ΑΝΑΒΑΘΜΙΣΗΣ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΕΡΓΟΥ ΒΑΣΙΚΟΙ ΣΥΝΤΕΛΕΣΤΕΣ ΠΟΙΟΤΙΚΗΣ ΑΝΑΒΑΘΜΙΣΗΣ ΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΙΛΟΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ

Διαβάστε περισσότερα

ΔΗΜΗΤΡΙΟΣ ΣΠΑΘΑΡΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ www.pe03.gr. didefth.gr

ΔΗΜΗΤΡΙΟΣ ΣΠΑΘΑΡΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ www.pe03.gr. didefth.gr . ΔΗΜΗΤΡΙΟΣ ΣΠΑΘΑΡΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ www.pe03.gr. Δημήτριος Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών, Φθιώτιδας και Ευρυτανίας www.pe03.gr ΠΡΟΛΟΓΟΣ Ο οδηγός αυτός απευθύνεται στους εκπαιδευτικούς

Διαβάστε περισσότερα

Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών. Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01

Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών. Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01 Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01 Τα ερωτήματα που προκύπτουν από την εισαγωγή της Φυσικής στην Α γυμνασίου είναι :

Διαβάστε περισσότερα

μαθηματικά β γυμνασίου

μαθηματικά β γυμνασίου μαθηματικά β γυμνασίου Κάθε αντίτυπο φέρει την υπογραφή ενός εκ των συγγραφέων Σειρά: Γυμνάσιο, Θετικές Επιστήμες Μαθηματικά Β Γυμνασίου, Βασίλης Διολίτσης Ιωάννα Κοσκινά Νικολέττα Μπάκου Θεώρηση Κειμένου:

Διαβάστε περισσότερα

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και 1. ΕΙΣΑΓΩΓΗ Όλα τα είδη ερωτήσεων που αναφέρονται στο «Γενικό Οδηγό για την Αξιολόγηση των µαθητών στην Α Λυκείου» µπορούν να χρησιµοποιηθούν στα Μαθηµατικά, τόσο στην προφορική διδασκαλία/εξέταση, όσο

Διαβάστε περισσότερα

Άλγεβρα Γενικής Παιδείας (Β Ημερησίου και Γ Εσπερινού Γενικού Λυκείου)

Άλγεβρα Γενικής Παιδείας (Β Ημερησίου και Γ Εσπερινού Γενικού Λυκείου) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Βαθμός Ασφαλείας: Να διατηρηθεί

Διαβάστε περισσότερα

Άλγεβρα Γενικής Παιδείας (Β Ημερησίου και Γ Εσπερινού Γενικού Λυκείου)

Άλγεβρα Γενικής Παιδείας (Β Ημερησίου και Γ Εσπερινού Γενικού Λυκείου) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Βαθμός Ασφαλείας: Να διατηρηθεί

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Άλγεβρα Γενικής Παιδείας

ΜΑΘΗΜΑΤΙΚΑ Άλγεβρα Γενικής Παιδείας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: Αθήνα, 01-10-2013 Αρ. Πρωτ. 139607/Γ2 ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ

Διαβάστε περισσότερα

Οδηγός Διαχείρισης του εκπαιδευτικού υλικού για τη Φυσική Α Λυκείου

Οδηγός Διαχείρισης του εκπαιδευτικού υλικού για τη Φυσική Α Λυκείου Οδηγός Διαχείρισης του εκπαιδευτικού υλικού για τη Φυσική Α Λυκείου Το εκπαιδευτικό υλικό το οποίο αντιστοιχεί στο νέο Αναλυτικό Πρόγραμμα Σπουδών Φυσικής Α Λυκείου αποτελείται από: 1. Το βιβλίο μαθητή

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Άλγεβρα Γενικής Παιδείας

ΜΑΘΗΜΑΤΙΚΑ Άλγεβρα Γενικής Παιδείας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ----- ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη:

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 113 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΘΕΩΡΙΑ Θα ασχοληθούμε με την εγγραφή μερικών βασικών κανονικών πολυγώνων σε κύκλο και θα υπολογίσουμε

Διαβάστε περισσότερα

Να υπολογίζουν αποστάσεις με τη βοήθεια ημ. και συν. Να είναι σε θέση να χρησιμοποιούν τους τριγωνομετρικούς πίνακες στους υπολογισμούς τους.

Να υπολογίζουν αποστάσεις με τη βοήθεια ημ. και συν. Να είναι σε θέση να χρησιμοποιούν τους τριγωνομετρικούς πίνακες στους υπολογισμούς τους. ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΩΝ Νίκος Γ. Τόμπρος Ενότητα : ΤΡΙΓΩΝΟΜΕΤΡΙΑ Περιεχόμενα ενότητας Τριγωνομετρικοί οξείας γωνίας αριθμοί Διδακτικοί στόχοι Διδακτικές οδηγίες - επισημάνσεις Πρέπει οι μαθητές να γνωρίζουν:

Διαβάστε περισσότερα

Β Γυμνασίου 22/6/2015. Οι δείκτες Επιτυχίας και δείκτες Επάρκειας Β Γυμνασίου για το μάθημα της Φυσικής

Β Γυμνασίου 22/6/2015. Οι δείκτες Επιτυχίας και δείκτες Επάρκειας Β Γυμνασίου για το μάθημα της Φυσικής Β Γυμνασίου /6/05 Οι δείκτες Επιτυχίας και δείκτες Επάρκειας Β Γυμνασίου για το μάθημα της Φυσικής Β Γυμνασίου /6/05 Δείκτες Επιτυχίας (Γνώσεις και υπό έμφαση ικανότητες) Παρεμφερείς Ικανότητες (προϋπάρχουσες

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β. Προηγούµενες και απαραίτητες γνώσεις

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β. Προηγούµενες και απαραίτητες γνώσεις Μαρτάκης Μάρτης Μαθηµατικός του 1 ου ΓΕΛ Ρόδου 1 ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β Προηγούµενες και απαραίτητες γνώσεις 1. σε ορθογώνιο τρίγωνο µε 30 ο, η απέναντι 30 ο κάθετη είναι το µισό της υποτείνουσας α και αντίστροφα.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Άλγεβρα Γενικής Παιδείας

ΜΑΘΗΜΑΤΙΚΑ Άλγεβρα Γενικής Παιδείας ΜΑΘΗΜΑΤΙΚΑ Άλγεβρα Γενικής Παιδείας (Β Ημερησίου και Γ Εσπερινού Γενικού Λυκείου) I. Διδακτέα ύλη Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» Κεφ. 1ο: Γραμμικά Συστήματα 1.1 Γραμμικά Συστήματα 1.2 Μη Γραμμικά

Διαβάστε περισσότερα

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Φυσική Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α, Β ΤΑΞΕΙΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΕΠΑΛ ΚΕΝΤΡΙΚΗ ΕΠΙΣΤΗΜΟΝΙΚΗ ΕΠΙΤΡΟΠΗ ΤΡΑΠΕΖΑΣ

Διαβάστε περισσότερα

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Εισαγωγή Η ιδέα της χρησιμοποίησης ενός συστήματος συντεταγμένων για τον προσδιορισμό της θέσης ενός σημείου πάνω σε μια επιφάνεια προέρχεται από την Γεωγραφία και ήταν γνωστή στους

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

ΘΕΜΑ: «Εργαστηριακές δραστηριότητες μαθημάτων Φυσικών Επιστημών στα Γυμνάσια, Γενικά Λύκεια και ΕΠΑ.Λ. για το σχολικό έτος 2011-2012.

ΘΕΜΑ: «Εργαστηριακές δραστηριότητες μαθημάτων Φυσικών Επιστημών στα Γυμνάσια, Γενικά Λύκεια και ΕΠΑ.Λ. για το σχολικό έτος 2011-2012. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΥΜΒΟΥΛΕΥΤΙΚΟΥ ΕΠΑΓΓΕΛΜΑΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΚΑΙ ΠΡΟΣ: ΕΚΠ/ΚΩΝ

Διαβάστε περισσότερα

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο

Διαβάστε περισσότερα

Β Τάξη Ημερήσιου Γενικού Λυκείου. Μ α θ ή μ α τ α Γ ε ν ι κ ή ς Π α ι δ ε ί α ς. Άλγεβρα Γενικής Παιδείας

Β Τάξη Ημερήσιου Γενικού Λυκείου. Μ α θ ή μ α τ α Γ ε ν ι κ ή ς Π α ι δ ε ί α ς. Άλγεβρα Γενικής Παιδείας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Να διατηρηθεί μέχρι... Βαθμός Ασφαλείας...

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

ΑΞΙΟΛΟΓΗΣΗ ΤΟΥ ΜΑΘΗΤΗ

ΑΞΙΟΛΟΓΗΣΗ ΤΟΥ ΜΑΘΗΤΗ ΑΞΙΟΛΟΓΗΣΗ ΤΟΥ ΜΑΘΗΤΗ ΓΕΝΙΚΑ Βασικός στόχος είναι η ανατροφοδότηση της εκπαιδευτικής διαδικασίας και ο εντοπισμός των μαθησιακών ελλείψεων με σκοπό τη βελτίωση της παρεχόμενης σχολικής εκπαίδευσης. Ειδικότερα

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

ΘΕΜΑ: Οδηγίες για τη διδασκαλία Φυσικής, Χημείας και Βιολογίας της Α τάξης ΓΕ.Λ. και της Α και Β Εσπερινού ΓΕ.Λ. για το σχ.

ΘΕΜΑ: Οδηγίες για τη διδασκαλία Φυσικής, Χημείας και Βιολογίας της Α τάξης ΓΕ.Λ. και της Α και Β Εσπερινού ΓΕ.Λ. για το σχ. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Βαθμός Ασφαλείας: Να διατηρηθεί

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

Διδακτικές ενότητες Στόχος

Διδακτικές ενότητες Στόχος Η διδασκαλία του τριγωνομετρικού κύκλου με τον παραδοσιακό τρόπο στον πίνακα, είναι μία διαδικασία όχι εύκολα κατανοητή για τους μαθητές, με αποτέλεσμα τη μηχανική παπαγαλίστικη χρήση των τύπων της τριγωνομετρίας.

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4.

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4. ΠΑΡΑΡΤΗΜΑ Α Γεωμετρικές κατασκευές Σκοπός των σημειώσεων αυτών είναι να υπενθυμίζουν γεωμετρικές κατασκευές, που θα φανούν ιδιαίτερα χρήσιμες στο μάθημα της παραστατικής γεωμετρίας, της προοπτικής, αξονομετρίας

Διαβάστε περισσότερα

«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε.

«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. «Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. Μπολοτάκης Γιώργος Μαθηματικός, Επιμορφωτής Β επιπέδου, Διευθυντής Γυμνασίου Αγ. Αθανασίου Δράμας, Τραπεζούντος 7, Άγιος Αθανάσιος,

Διαβάστε περισσότερα

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Εισαγωγή Είναι γνωστό ότι για το Πυθαγόρειο θεώρημα έχουν

Διαβάστε περισσότερα

Αφαίρεση και Γενίκευση στα Μαθηματικά

Αφαίρεση και Γενίκευση στα Μαθηματικά 1 Αφαίρεση και Γενίκευση στα Μαθηματικά Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ3 www.p-theodoropoulos.gr ΠΕΡΙΛΗΨΗ Στην εργασία αυτή εξετάζεται εντός του πλαισίου της Διδακτικής των

Διαβάστε περισσότερα

ΣΧΕΣΗ ΘΕΩΡΗΜΑΤΩΝ ΘΑΛΗ ΚΑΙ ΠΥΘΑΓΟΡΑ

ΣΧΕΣΗ ΘΕΩΡΗΜΑΤΩΝ ΘΑΛΗ ΚΑΙ ΠΥΘΑΓΟΡΑ ΣΧΣΗ ΘΩΡΗΜΤΩΝ ΘΛΗ ΚΙ ΠΥΘΟΡ ισαγωγή ηµήτρης Ι Μπουνάκης dimitrmp@schgr Οι δυο µεγάλοι Έλληνες προσωκρατικοί φιλόσοφοι, Θαλής (περίπου 630-543 πχ) και Πυθαγόρας (580-500 πχ) άφησαν, εκτός των άλλων, στην

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

Η ΧΡΗΣΗ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΩΣ ΕΡΓΑΛΕΙΟ ΚΑΤΑΝΟΗΣΗΣ

Η ΧΡΗΣΗ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΩΣ ΕΡΓΑΛΕΙΟ ΚΑΤΑΝΟΗΣΗΣ Η ΧΡΗΣΗ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΩΣ ΕΡΓΑΛΕΙΟ ΚΑΤΑΝΟΗΣΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ 4 Η Ευκλείδεια Γεωμετρία στην εκπαίδευση και στην κοινωνία. Τάσος Σωτηράκης, Καθηγητής Δ.Ε., 3 ο ΓΕΛ Ρόδου, tasotirakis@gmail.com

Διαβάστε περισσότερα

Κατασκευή προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων

Κατασκευή προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων Κατασκευή προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων Ιωάννης Λιακόπουλος 1, Χαράλαμπος Λυπηρίδης 2 1 Μαθητής B Λυκείου, Εκπαιδευτήρια «Ο Απόστολος Παύλος» liakopoulosjohn0@gmail.com, 2 Μαθητής

Διαβάστε περισσότερα

Υποθετικές προτάσεις και λογική αλήθεια

Υποθετικές προτάσεις και λογική αλήθεια Υποθετικές προτάσεις και λογική αλήθεια Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Περίληψη Στην εργασία αυτή επιχειρείται μια ερμηνεία της λογικής αλήθειας

Διαβάστε περισσότερα

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ Κοίταξε τις µεθόδους, τις λυµένες ασκήσεις και τις ασκήσεις προς λύση των ενοτήτων 6, 7 του βοηθήµατος Μεθοδολογία Άλγεβρας και Στοιχείων Πιθανοτήτων Α Γενικού Λυκείου των Ευσταθίου Μ. και Πρωτοπαπά Ελ.

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

Κεφάλαιο 9 Ο κύκλος Ορισμός. Ο κύκλος (Κ, r) με κέντρο Κ και ακτίνα r είναι το σχήμα που αποτελείται από όλα τα σημεία του επιπέδου που απέχουν απόσταση r από το σημείο Κ. Σχήμα 9.1: Στοιχεία ενός κύκλου.

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων

Διαβάστε περισσότερα

ΘΕΜΑ : «ιδακτικό υλικό Μαθηµατικών Γ Γυµνασίου» Aγαπητοί συνάδελφοι,

ΘΕΜΑ : «ιδακτικό υλικό Μαθηµατικών Γ Γυµνασίου» Aγαπητοί συνάδελφοι, ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ /ΝΣΗ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΚΡΗΤΗΣ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ.Ε. Ν. ΗΡΑΚΛΕΙΟΥ ηµήτριος Μπουνάκης Σχολικός Σύµβουλος Μαθηµατικών

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11. ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΘΕΩΡΙΑ 1 (Ορισμός κανονικού πολυγώνου) Ένα πολύγωνο λέγεται κανονικό, όταν έχει όλες τις πλευρές

Διαβάστε περισσότερα

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Τι ονομάζουμε κίνηση ενός κινητού; 2. Τι ονομάζουμε τροχιά ενός κινητού; 3. Τι ονομάζουμε υλικό σημείο; 4. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 2013 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ Βαγγέλης Α Νικολακάκης Μαθηματικός http://cutemaths.wordpress.com/ ΛΙΓΑ ΛΟΓΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 20,

Διαβάστε περισσότερα

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ.. ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Αν είναι δυο μη μηδενικά διανύσματα τότε ονομάζουμε εσωτερικό γινόμενο των και τον αριθμό : όπου φ είναι η γωνία των

Διαβάστε περισσότερα

Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων

Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων Νίκος Γ. Τόμπρος ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΩΝ Ενότητα : ΟΜΟΙΟΤΗΤΑ (ΛΟΓΟΣ ΑΝΑΛΟΓΙΑ) Σκοποί: Η ανάπτυξη ενδιαφέροντος για το θέμα, η εξοικείωση με τη χρήση τεχνολογίας, η παρότρυνση για αναζήτηση πληροφοριών (εδώ σε

Διαβάστε περισσότερα

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου

Διαβάστε περισσότερα

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα.

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. ΘΕΜΑ Α Παράδειγμα 1 Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. Α2. Για τον προσδιορισμό μιας δύναμης που ασκείται σε ένα σώμα απαιτείται να

Διαβάστε περισσότερα

ΧΡΟΝΟΜΕΤΡΗΤΗΣ ΒΑΣΙΚΗ ΣΥΣΚΕΥΗ ΣΤΗΝ ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΓΝΩΡΙΜΙΑ ΜΕ ΤΟΝ ΧΡΟΝΟΜΕΤΡΗΤΗ

ΧΡΟΝΟΜΕΤΡΗΤΗΣ ΒΑΣΙΚΗ ΣΥΣΚΕΥΗ ΣΤΗΝ ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΓΝΩΡΙΜΙΑ ΜΕ ΤΟΝ ΧΡΟΝΟΜΕΤΡΗΤΗ ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ ΧΡΟΝΟΜΕΤΡΗΤΗΣ ΒΑΣΙΚΗ ΣΥΣΚΕΥΗ ΣΤΗΝ ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΓΝΩΡΙΜΙΑ ΜΕ ΤΟΝ ΧΡΟΝΟΜΕΤΡΗΤΗ Τι είναι ο χρονομετρητής ; Ο χρονομετρητής : αξιοποιείται στους

Διαβάστε περισσότερα

1.1.5 Η έννοια της ταχύτητας στην ευθύγραμμη ομαλή κίνηση

1.1.5 Η έννοια της ταχύτητας στην ευθύγραμμη ομαλή κίνηση ΦΥΣΙΚΗ Α ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΟΛΙΝΔΡΟΥ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014-2015 1.1 Ευθύγραμμη κίνηση 1.1.1 Ύλη και κίνηση 35 1.1.2 Ο προσδιορισμός της θέσης ενός σωματίου 36 1.1.3 Οι έννοιες της

Διαβάστε περισσότερα

Βιολογία επιλογής Β τάξης Γενικού Λυκείου

Βιολογία επιλογής Β τάξης Γενικού Λυκείου Βιολογία επιλογής Β τάξης Γενικού Λυκείου Με βάση το ισχύον Αναλυτικό Πρόγραμμα Σπουδών για τη Βιολογία Θετικής Κατεύθυνσης, της Β τάξης του Γενικού Λυκείου, από την διδακτέα ύλη, όπως αυτή παρουσιάζεται

Διαβάστε περισσότερα

Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου

Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Δρ. Βασίλειος Σάλτας 1, Αλέξης Ηλιάδης 2, Ιωάννης Μουστακέας 3 1 Διδάκτωρ Διδακτικής Μαθηματικών, Επιστημονικός Συνεργάτης ΑΣΠΑΙΤΕ Σαπών coin_kav@otenet.gr

Διαβάστε περισσότερα

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel.

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Έντυπο Α Φύλλα εργασίας Μαθητή Διαμαντής Κώστας Τερζίδης Σωτήρης 31/1/2008 Φύλλο εργασίας 1. Ομάδα: Ημερομηνία:

Διαβάστε περισσότερα

6. Εγγεγραμμένα Σχήματα. Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr

6. Εγγεγραμμένα Σχήματα. Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr 6. Εγγεγραμμένα Σχήματα Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr 1 Επίκεντρη γωνία Μια γωνία λέγεται επίκεντρη γωνία ενός κύκλου αν η κορυφή της είναι το κέντρο του κύκλου. Το τόξο ΑΓΒ που

Διαβάστε περισσότερα

Σενάριο τεσσάρων 2ωρων μαθημάτων διδασκαλίας της Γ Λυκείου στα Μαθηματικά Κατεύθυνσης

Σενάριο τεσσάρων 2ωρων μαθημάτων διδασκαλίας της Γ Λυκείου στα Μαθηματικά Κατεύθυνσης Σενάριο τεσσάρων 2ωρων μαθημάτων διδασκαλίας της Γ Λυκείου στα Μαθηματικά Κατεύθυνσης Τίτλος σεναρίου: Διερεύνηση Θεωρήματος Bolzano (Θ.Β.) και Ενδιάμεσων Τιμών (Θ.Ε.Τ.) Τάξη : Γ Λυκείου Θετικής και Τεχνολογικής

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ μονόμετρα. διανυσματικά Η μάζα ενός σώματος αποτελεί το μέτρο της αδράνειάς του, πυκνότητα ενός υλικού d = m/v

ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ μονόμετρα. διανυσματικά Η μάζα ενός σώματος αποτελεί το μέτρο της αδράνειάς του, πυκνότητα ενός υλικού d = m/v ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ Υπάρχουν φυσικά μεγέθη που ορίζονται πλήρως, όταν δοθεί η αριθμητική τιμή τους και λέγονται μονόμετρα.. Μονόμετρα μεγέθη είναι ο χρόνος, η μάζα, η θερμοκρασία, η πυκνότητα, η ενέργεια,

Διαβάστε περισσότερα

Μ α θ ή μ α τ α Ε π ι λ ο γ ή ς

Μ α θ ή μ α τ α Ε π ι λ ο γ ή ς Μ α θ ή μ α τ α Ε π ι λ ο γ ή ς «Εφαρμογές Υπολογιστών» Β ή Γ Γενικού Λυκείου Λαμβάνοντας υπόψη το Πρόγραμμα Σπουδών (ΠΣ) του μαθήματος, το Αναλυτικό Πρόγραμμα Σπουδών Πληροφορικής του Γυμνασίου αλλά και

Διαβάστε περισσότερα

ΕΡΓΑΛΕΙΑ ΚΑΙ ΠΡΑΚΤΙΚΕΣ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΗΣ ΠΕΡΙΟΔΙΚΟΤΗΤΑΣ: Ο ρόλος των οπτικών αναπαραστάσεων (OA)

ΕΡΓΑΛΕΙΑ ΚΑΙ ΠΡΑΚΤΙΚΕΣ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΗΣ ΠΕΡΙΟΔΙΚΟΤΗΤΑΣ: Ο ρόλος των οπτικών αναπαραστάσεων (OA) ΕΡΓΑΛΕΙΑ ΚΑΙ ΠΡΑΚΤΙΚΕΣ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΗΣ ΠΕΡΙΟΔΙΚΟΤΗΤΑΣ: Ο ρόλος των οπτικών αναπαραστάσεων (OA) ΕΙΣΑΓΩΓΗ Θεωρώντας ότι η διδακτική σας εμπειρία είναι πολύτιμη στην έρευνά μας θα σας παρακαλούσαμε

Διαβάστε περισσότερα

ProapaitoÔmenec gn seic.

ProapaitoÔmenec gn seic. ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία

Διαβάστε περισσότερα

ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΡΙΣΜΟΙ ΑΠΟΔΕΙΞΕΙΣ ΕΡΩΤΗΣΕΙΣ : ΣΩΣΤΟ ΛΑΘΟΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ : ΜΙΓΑΔΙΚΟΙ

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015. ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:...

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015. ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:... ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΒΑΘΜΟΣ ΗΜΕΡΟΜΗΝΙΑ: 5/06/2015 ΤΑΞΗ: A Αριθμητικά... ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:... Ολογράφως:...

Διαβάστε περισσότερα

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ 1. ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στόχος Να γνωρίζουν οι μαθητές: να αξιοποιούν το σύμβολο της συνεπαγωγής και της ισοδυναμίας να αξιοποιούν τους συνδέσμους «ή», «και» ΕΙΣΑΓΩΓΗ Η συννενόηση μεταξύ των ανθρώπων

Διαβάστε περισσότερα

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις Γεωµετρία Α Γυµνασίου Ορισµοί Ιδιότητες Εξηγήσεις Ευθεία γραµµή Ορισµός δεν υπάρχει. Η απλούστερη από όλες τις γραµµές. Κατασκευάζεται µε τον χάρακα (κανόνα) πάνω σε επίπεδο. 1. ύο σηµεία ορίζουν την θέση

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΞ ΑΡΙΣΤΕΡΩΝ ΚΑΙ ΕΚ ΔΕΞΙΩΝ ΣΥΓΓΡΑΦΕΑΣ: ΚΟΥΤΙΔΗΣ ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

Μ α θ ή µ α τ α Γ ε ν ι κ ή ς Π α ι δ ε ί α ς

Μ α θ ή µ α τ α Γ ε ν ι κ ή ς Π α ι δ ε ί α ς ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, Βαθµός Ασφαλείας: Να διατηρηθεί µέχρι: Βαθ. Προτεραιότητας: ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Αθήνα,

Διαβάστε περισσότερα

Διδάσκοντας Φυσικές Επιστήμες στο Γυμνάσιο και στο Λύκειο

Διδάσκοντας Φυσικές Επιστήμες στο Γυμνάσιο και στο Λύκειο Το Πυθαγόρειο θεώρημα: μία διάσημη μαθηματική σχέση στον εργαστηριακό πάγκο της Φυσικής Παναγιώτης Μουρούζης Το Πυθαγόρειο θεώρημα, το οποίο συνήθως περιγράφεται φορμαλιστικά από μία σχέση της μορφής 2

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΜΗΧΑΝΙΚΗΣ

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΜΗΧΑΝΙΚΗΣ ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΜΗΧΑΝΙΚΗΣ Θέση, μετατόπιση και διάστημα Όταν ένα σημειακό αντικείμενο κινείται ευθύγραμμα, για να μελετήσουμε την κίνησή του θεωρούμε σαν σύστημα αναφοράς έναν άξονα χ χ. Στην αρχή του

Διαβάστε περισσότερα

5.6 5.9. 1. Θεώρηµα, Ε µέσα των ΑΒ, ΑΓ Ε = //

5.6 5.9. 1. Θεώρηµα, Ε µέσα των ΑΒ, ΑΓ Ε = // 1 5.6 5.9 ΘΩΡΙ 1., µέσα των, = //. µέσο της και // µέσο της 3. = και ////Ζ = Ζ Ζ. Ο γ. τόπος της µεσοπαράλληλης Έστω ε η µεσοπαράλληλη των ε 1, ε. Τότε ισχύουν : i) άθε σηµείο της ε ισαπέχει από τις ε

Διαβάστε περισσότερα

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Φώτης Κουνάδης Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ ΕΚ ΟΤΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΛΙΒΑΝΗ ΑΘΗΝΑ 2007 Σειρά:

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ. Α' τάξης Γενικού Λυκείου

ΑΛΓΕΒΡΑ. Α' τάξης Γενικού Λυκείου ΑΛΓΕΒΡΑ Α' τάξης Γενικού Λυκείου ΣΥΓΓΡΑΦΕΙΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Σβέρκος Ανδρέας ΟΜΑΔΑ ΑΝΑΜΟΡΦΩΣΗΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 2 ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 2 ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 4 Λύσεις των θεμάτων Έκδοση η

Διαβάστε περισσότερα

εκπαίδευση Μαθηματικά Γ Λυκείου Κατεύθυνσης Λύκειο Ιδαλίου - Π.Ι. Κύπρου Μιχάλης

εκπαίδευση Μαθηματικά Γ Λυκείου Κατεύθυνσης Λύκειο Ιδαλίου - Π.Ι. Κύπρου Μιχάλης Ενσωμάτωση των ΤΠΕ στην εκπαίδευση Μαθηματικά Γ Λυκείου Κατεύθυνσης Λύκειο Ιδαλίου - Π.Ι. Κύπρου Τιμοθέου Σάββας & Χριστοφορίδης Μιχάλης Μελέτη και γραφική Παράσταση Συνάρτησης Τμήμα:Γ6 ( με 18 μαθητές)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 25/5/2015 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ: ΘΕΜΑ Α: ΘΕΜΑ Β:

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 25/5/2015 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ: ΘΕΜΑ Α: ΘΕΜΑ Β: . Σχολικό βιβλίο σελ.9. Σχολικό βιβλίο σελ.88 3. Σχολικό βιβλίο σελ.5. α) Λ Β. β) Σ γ) Λ δ) Σ ε) Σ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 5/5/5 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ: ΘΕΜΑ Α: ΘΕΜΑ Β: Έστω z=+yi. Κάνοντας πράξεις στη

Διαβάστε περισσότερα