Αλγόριθμοι Εύρεσης Ομοιοτήτων Ακολουθιών
|
|
- Χριστόφορος Γαλάνη
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Αλγόριθμοι Εύρεσης Ομοιοτήτων Ακολουθιών Μέρος Ι: Στοιχίσεις ακολουθιών κατά ζεύγη Βασίλης Προμπονάς, PhD Ερευνητικό Εργαστήριο Βιοπληροφορικής Τμήμα Βιολογικών Επιστημών Νέα Παν/πολη, Γραφείο B161 Πανεπιστήμιο Κύπρου Ταχ.Κιβ , Λευκωσία ΚΥΠΡΟΣ τηλ: (εσωτ. 2879)
2 Σύνοψη Αλγόριθμοι Βασικοί Ορισμοί Στοιχεία Ανάλυσης Αλγοριθμικής Πολυπλοκότητας Σύγκριση ή Στοίχιση Ακολουθιών? Dot Matrix Plots Μέθοδοι Δυναμικού Προγραμματισμού Τοπικές Στοιχίσεις Ολικές Στοιχίσεις Πιάσε μια απ'όλα Συζήτηση
3 Αλγόριθμοι Ορισμός: Αλγόριθμος είναι μια καλά προσδιορισμένη διαδικασία για την επίλυση μιας κλάσης προβλημάτων: Συγκεκριμένα δεδομένα εισόδου Πεπερασμένο πλήθος βημάτων Επίλυση Προβλήματος Χαρακτηριστικά Αλγορίθμων Ορθότητα Αποδοτικότητα
4 Αλγόριθμοι ΙΙ Μας ενδιαφέρουν οι ΟΡΘΟΙ αλγόριθμοι [πάντα???] Αξιολόγηση της Αποδοτικότητας Πρακτική Εφαρμογή Ασυμπτωτική Συμπεριφορά συναρτήσει του μεγέθους των δεδομένων εισόδου
5 Ασυμπτωτική Συμπεριφορά Αναφέρεται σε οποιαδήποτε συνάρτηση Ιδιαίτερο ενδιαφέρον: Χαρακτηριστικά εκτέλεσης (Χρόνος, Μνήμη, κλπ) ως συνάρτηση του μεγέθους n του προβλήματος Ασυμπτωτικά <=> Μεγάλο n Ο(g(n)), Ω(g(n)), Θ(g(n)) f(n)=ο(n) linear f(n)=ο(n 2 ) quadratic f(n)=ο(log(n)) logarithmic f(n)=ο(c n ) exponential από Cormen et. al
6 Σύγκριση; Για ποιο λόγο; Πώς; Ήταν πάντα trendy Ο τρόπος με τον οποίο θα εφαρμοσθεί εξαρτάται από: Τύπο/Πλήθος δεδομένων Ερώτημα (?) Στηριζόμαστε στο γεγονός ότι: ΟΜΟΙΟΤΗΤΑ ΑΚΟΛΟΥΘΙΩΝ =>???
7 ΑΚΟΛΟΥΘΙΑ == ΠΛΗΡΟΦΟΡΙΑ Αντιγραφή DNA Μεταγραφή Sequence Determines RNA Μετάφραση 3D-structure PROTEIN Function Determines
8 OMOIOTHTA =>?? Δομική/Λειτουργική Συσχέτιση Εξελικτική Σχέση Εντοπισμός 'κρίσιμων' καταλοίπων Εύρεση χαρακτηριστικών μοτίβων
9 Σύγκριση Δύο Ακολουθιών (pairwise alignment) Τύποι Σύγκρισης Μέτρο Σύγκρισης Αντικειμενικότητα Σημαντικότητα
10 Σύγκριση Δύο Ακολουθιών (pairwise alignment) Τύποι Σύγκρισης Τοπική, Ολική Πρωτεΐνη/DNA/RNA Τί ιδιότητες έχουν οι ακολουθίες μου?? Μέτρο Σύγκρισης Αντικειμενικότητα Σημαντικότητα
11 Σύγκριση Δύο Ακολουθιών (pairwise alignment) Τύποι Σύγκρισης Μέτρο Σύγκρισης Χρειαζόμαστε ένα μοντέλο => ΠΙΝΑΚΕΣ ΑΝΤΙΚΑΤΑΣΤΑΣΗΣ Εξελικτική Σχέση Αντικαταστάσεις (substitutions) Προσθήκες (insertions) Εξαλείψεις (deletions) Δομική Αντιστοιχία Φυσικοχημικές Ιδιότητες Αντικειμενικότητα Σημαντικότητα
12 Στοίχιση Ακολουθιών Κατά Ζεύγη (Pairwise alignment) Τύποι Σύγκρισης Μέτρο Σύγκρισης Αντικειμενικότητα Ποσοτικά vs Ποιοτικά Κριτήρια Αυτοματοποίηση (??) Σημαντικότητα
13 Στοίχιση Ακολουθιών Κατά Ζεύγη (Pairwise alignment) Τύποι Σύγκρισης Μέτρο Σύγκρισης Αντικειμενικότητα Σημαντικότητα... so what???
14 Στοίχιση Ακολουθιών Κατά Ζεύγη (Pairwise alignment) S1 HFCGGSLINEQWVVSAGHC S2 HFCGASIYNENYATAGHC Τμήματα ακολουθιών Θρυψίνης S1: Ποντικός S2: Αστακός S1 HFCGGSLINEQWVVSAGHC S2 HFCGASIYNENYA-TAGHC Με το ΧΕΡΙ!!! ή το μάτι.. S-S S1 HFCGGSLINEQWVVSAGHC HFCG S NE AGHC S2 HFCGASIYNENYA-TAGHC
15 Πίνακες Διαγραμμάτων Σημείων (Dot Matrix Plots) BIO 650: Ειδικά Θέματα Βιοπληροφορικής, 04/02/2008
16 Πίνακες Διαγραμμάτων Σημείων (Dot Matrix Plots) Πλεονεκτήματα Οπτικοποίηση Εύκολη (σχετικά) κατασκευή Μικρές (σχετικά) Υπολογιστικές Απαιτήσεις Μειονεκτήματα Αντικειμενικότητα Σημαντικότητα ΣΗΜΑΝΤΙΚΟ!!! Στοίχιση == Διαδρομή
17 Μέθοδοι Δυναμικού Προγραμματισμού Προγραμματισμού (;) Αναζήτηση των Βέλτιστων Λύσεων μέσα από ΜΕΓΑΛΑ σύνολα λύσεων Αντιμετώπιση με στρατηγική από «Κάτω προς τα επάνω» Διαίρει και βασίλευε (;) Αλγοριθμική πολυπλοκότητα ~ Ν 2
18 Ολική Στοίχιση BIO 650: Ειδικά Θέματα Βιοπληροφορικής, 04/02/2008
19 j Ολική Στοίχιση i
20
21 Τοπική Στοίχιση BIO 650: Ειδικά Θέματα Βιοπληροφορικής, 04/02/2008
22 j i
23
24 Συζήτηση...
Αλληλουχίες βιολογικών µακροµορίων Δοµή, λειτουργία, εξέλιξη
Αλληλουχίες βιολογικών µακροµορίων Δοµή, λειτουργία, εξέλιξη BIO230 Εισαγωγή στην Υπολογιστική Βιολογία Vasilis Promponas Bioinformatics Research Laboratory Department of Biological Sciences University
Πρόγνωση δομής πρωτεϊνών (Μέρος Ι)
Πρόγνωση δομής πρωτεϊνών (Μέρος Ι) Βασίλης Προμπονάς, PhD Ερευνητικό Εργαστήριο Βιοπληροφορικής Τμήμα Βιολογικών Επιστημών Νέα Παν/πολη, Γραφείο B161 Πανεπιστήμιο Κύπρου Ταχ.Κιβ. 20537 1678, Λευκωσία ΚΥΠΡΟΣ
ΕΠΑΝΑΛΗΨΗ. Σελίδα 1 ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ. Τ. Θηραίου
ΕΠΑΝΑΛΗΨΗ Σελίδα 1 τεχνική σύγκρισης ακολουθιών υπολογισµός ενός µέτρου οµοιότητας αναζήτηση ομολογίας S-S match S1 HFCGGSLINEQWVVSAGHC HFCG S NE AGHC S2 HFCGASIYNENYA-TAGHC gap mismatch Σελίδα 2 ολική
Αλγόριθμοι Εύρεσης Ομοιοτήτων Ακολουθιών Μέρος ΙΙΙ: Έλεγχος στατιστικής σημαντικότητας
Αλγόριθμοι Εύρεσης Ομοιοτήτων Ακολουθιών Μέρος ΙΙΙ: Έλεγχος στατιστικής σημαντικότητας Βασίλης Προμπονάς, PhD Ερευνητικό Εργαστήριο Βιοπληροφορικής Τμήμα Βιολογικών Επιστημών Νέα Παν/πολη, Γραφείο B161
Πίνακες αντικατάστασης PAM και BLOSUM και εναλλακτικές προσεγγίσεις
Πίνακες αντικατάστασης PAM και BLOSUM και εναλλακτικές προσεγγίσεις Βασίλης Προμπονάς, PhD Ερευνητικό Εργαστήριο Βιοπληροφορικής Τμήμα Βιολογικών Επιστημών Νέα Παν/πολη, Γραφείο B161 Πανεπιστήμιο Κύπρου
Σύγκριση και κατηγοριοποίηση πρωτεϊνικών δομών
Σύγκριση και κατηγοριοποίηση πρωτεϊνικών δομών Βασίλης Προμπονάς, PhD Ερευνητικό Εργαστήριο Βιοπληροφορικής Τμήμα Βιολογικών Επιστημών Νέα Παν/πολη, Γραφείο B161 Πανεπιστήμιο Κύπρου Ταχ.Κιβ. 20537 1678,
ΑΣΚΗΣΗ 3η Στοίχιση ακολουθιών βιολογικών µακροµορίων
ΑΣΚΗΣΗ 3η Στοίχιση ακολουθιών βιολογικών µακροµορίων ΕΙΣΑΓΩΓΗ Ένας από τους πρωταρχικούς στόχους της σύγκρισης των ακολουθιών δύο µακροµορίων είναι η εκτίµηση της οµοιότητάς τους και η εξαγωγή συµπερασµάτων
ΣΤΟΙΧΙΣΗ ΑΚΟΛΟΥΘΙΩΝ ΑΝΑ ΖΕΥΓΗ
ΣΤΟΙΧΙΣΗ ΑΚΟΛΟΥΘΙΩΝ ΑΝΑ ΖΕΥΓΗ Σελίδα 1 Ομολογία Σελίδα 2 Ομολογία Ομολογία κοινή εξελικτική καταγωγή Ορθόλογα γονίδια ειδογένεση συνήθως, ίδια βιολογική λειτουργία Παράλογα γονίδια γονιδιακός διπλασιασμός
Ασυμπτωτικός Συμβολισμός
Ασυμπτωτικός Συμβολισμός ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Υπολογιστική πολυπλοκότητα αλγόριθμου Α: Ποσότητα
Υπολογιστική Πολυπλοκότητα
Υπολογιστική Πολυπλοκότητα Υπολογιστική πολυπλοκότητα αλγόριθµου Α: Ποσότητα υπολογιστικών πόρων που απαιτεί Α ως αύξουσα συνάρτηση µεγέθους στιγµιότυπου εισόδου. Χρόνος, µνήµη, επεξεργαστές, επικοινωνία,
Βιοπληροφορική. Ενότητα 5: Στοίχιση ακολουθιών ανά ζεύγη, 2 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου
Βιοπληροφορική Ενότητα 5: Στοίχιση ακολουθιών ανά ζεύγη, 2 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Κατανόηση της συσχέτισης ομολογίας ομοιότητας. Παρουσίαση των πληροφοριών
Βιοπληροφορική. Ενότητα 7: Στοίχιση ακολουθιών ανά ζεύγη Τεχνικές Στοίχισης Ακολουθιών, (1/2) 1ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ.
Βιοπληροφορική Ενότητα 7: Στοίχιση ακολουθιών ανά ζεύγη Τεχνικές Στοίχισης Ακολουθιών, (1/2) 1ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Παρουσίαση της μεθόδου κατασκευής και
Ασυμπτωτικός Συμβολισμός
Ασυμπτωτικός Συμβολισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Ασυμπτωτικός Συμβολισμός
Ασυμπτωτικός Συμβολισμός Επιμέλεια διαφανειών: Δημήτρης Φωτάκης (λίγες προσθήκες: Άρης Παγουρτζής) Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα
Ασυμπτωτικός Συμβολισμός
Ασυμπτωτικός Συμβολισμός ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Υπολογιστική
Βιοπληροφορική. Ενότητα 7: Στοίχιση ακολουθιών ανά ζεύγη Τεχνικές Στοίχισης Ακολουθιών,(2/2) 2 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ.
Βιοπληροφορική Ενότητα 7: Στοίχιση ακολουθιών ανά ζεύγη Τεχνικές Στοίχισης Ακολουθιών,(2/2) 2 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Παρουσίαση της μεθόδου κατασκευής και
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ BIO 230 Εισαγωγή στην Υπολογιστική Βιολογία Διδάσκων: Βασίλειος Ι. Προμπονάς, Ph.D. Επίκουρος Καθηγητής Βιοπληροφορικής ΓΕΝΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Διαλέξεις Δευτέρα
Βιοπληροφορική Ι. Παντελής Μπάγκος. Παν/µιο Στερεάς Ελλάδας
Βιοπληροφορική Ι Παντελής Μπάγκος Παν/µιο Στερεάς Ελλάδας Λαµία 2006 1 Βιοπληροφορική Ι Εισαγωγή: Ορισµός της Βιοπληροφορικής, Υποδιαιρέσεις της Βιοπληροφορικής, Τα είδη των δεδοµένων στη Βιοπληροφορική.
Αλγόριθμοι Εύρεσης Ομοιοτήτων Ακολουθιών Μέρος ΙΙ: Ευριστικές μέθοδοι αναζήτησης σε βάσεις δεδομένων
Αλγόριθμοι Εύρεσης Ομοιοτήτων Ακολουθιών Μέρος ΙΙ: Ευριστικές μέθοδοι αναζήτησης σε βάσεις δεδομένων Vasilis Promponas Bioinformatics Research Laboratory Department of Biological Sciences University of
Στοίχιση κατά ζεύγη. Στοίχιση ακολουθιών κατά ζεύγη (Pairwise alignment)
Στοίχιση ακολουθιών κατά ζεύγη (Pairwise alignment) Στοίχιση κατά ζεύγη: Τι είναι Αντιστοίχιση των νουκλεοτιδίων/αµινοξέων δυο ακολουθιών, ώστε να εντοπιστούν οι οµοιότητες και οι διαφορές τους. Χρησιµοποιείται
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ (ΒΙΟ 003) Εισαγωγή στη Βιοπληροφορική Διδάσκων: Βασίλειος Ι. Προμπονάς, Ph.D. Λέκτορας Βιοπληροφορικής ΓΕΝΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Διαλέξεις Φροντιστήριο Τρίτη και
Συγκριτική Γονιδιωματική
ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ ΙΙ Συγκριτική Γονιδιωματική Παντελής Μπάγκος 1 2 Μέθοδοι Ανάλυσης Μέθοδοι βασισμένες στην ομοιότητα ακολουθιών Τοπική ομοιότητα Ολική ομοιότητα Προγνωστικές μέθοδοι Δευτεροταγής δομή Διαμεμβρανικά
Κεφάλαιο 5 ο : Αλγόριθµοι Σύγκρισης Ακολουθιών Βιολογικών εδοµένων
Κεφάλαιο 5 ο : Αλγόριθµοι Σύγκρισης Ακολουθιών Βιολογικών εδοµένων Σε αυτό το κεφάλαιο παρουσιάζουµε 2 βασικούς αλγορίθµους σύγκρισης ακολουθιών Βιολογικών εδοµένων τους BLAST & FASTA. Οι δυο αλγόριθµοι
Στοίχιση Ακολουθιών. Μέθοδοι σύγκρισης ακολουθιών. Είδος στοίχισης. match. gap. mismatch
Οµολογία ΣΤΟΙΧΙΣΗ ΑΚΟΛΟΥΘΙΩΝ ΑΝΑ ΖΕΥΓΗ Σελίδα 1 Σελίδα 2 Οµολογία Οµολογία Οµολογία κοινή εξελικτική καταγωγή Ορθόλογα γονίδια ειδογένεση συνήθως, ίδια βιολογική λειτουργία Παράλογα γονίδια γονιδιακός
Αλγοριθμικές Τεχνικές. Brute Force. Διαίρει και Βασίλευε. Παράδειγμα MergeSort. Παράδειγμα. Τεχνικές Σχεδιασμού Αλγορίθμων
Τεχνικές Σχεδιασμού Αλγορίθμων Αλγοριθμικές Τεχνικές Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr Ορισμένες γενικές αρχές για τον σχεδιασμό αλγορίθμων είναι: Διαίρει και Βασίλευε (Divide and
Αλγοριθμικές Τεχνικές
Αλγοριθμικές Τεχνικές Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr Αλγοριθμικές Τεχνικές 1 Τεχνικές Σχεδιασμού Αλγορίθμων Ορισμένες γενικές αρχές για τον σχεδιασμό αλγορίθμων είναι: Διαίρει και
Εισαγωγή στους Αλγόριθμους. Παύλος Εφραιμίδης, Λέκτορας
Εισαγωγή στους Αλγόριθμους Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr 1 Περιεχόμενα Μαθήματος Εισαγωγή στου Αλγόριθμους Πολυπλοκότητα Αλγορίθμων Ασυμπτωτική Ανάλυση Θεωρία Γράφων Κλάσεις Πολυπλοκότητας
Πολλαπλές στοιχίσεις ακολουθιών (Προοδευτικές μέθοδοι)
Πολλαπλές στοιχίσεις ακολουθιών (Προοδευτικές μέθοδοι) Vasilis Promponas Bioinformatics Research Laboratory Department of Biological Sciences University of Cyprus Σύνοψη Εισαγωγή Πολλαπλή στοίχιση και
ΑΡΧΕΣ ΒΙΟΛΟΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ
ΑΡΧΕΣ ΒΙΟΛΟΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ Εργαστήριο Βιοπληροφορικής 7 ο εξάμηνο Σχολή Μηχανολόγων Μηχανικών ΕΜΠ Διδάσκων: Λεωνίδας Αλεξόπουλος Fritz Kahn (1888 1968) 1 Περιεχόμενα Ομοιότητα πρωτεϊνών Σύγκριση αλληλουχιών
Δομές Δεδομένων (Data Structures)
Δομές Δεδομένων (Data Structures) Ανάλυση - Απόδοση Αλγορίθμων Έλεγχος Αλγορίθμων. Απόδοση Προγραμμάτων. Χωρική/Χρονική Πολυπλοκότητα. Ασυμπτωτικός Συμβολισμός. Παραδείγματα. Αλγόριθμοι: Βασικές Έννοιες
Βιοπληροφορική. Ενότητα 8: Αναζήτηση Ομοιοτήτων σε Βάσεις Δεδομένων Ακολουθιών, 2 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ.
Βιοπληροφορική Ενότητα 8: Αναζήτηση Ομοιοτήτων σε Βάσεις Δεδομένων Ακολουθιών, 2 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Κατανόηση της αναγκαιότητας των ευριστικών αλγορίθμων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ (ΒΙΟ 003) Εισαγωγή στη Βιοπληροφορική Διδάσκοντες: Χρήστος Ουζούνης, Βασίλειος Ι. Προµπονάς ΓΕΝΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Διαλέξεις Τρίτη και Παρασκευή 10:30 12:00,
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ 1. α. Να βάλετε σε αύξουσα σειρά μεγέθους τις παρακάτω συναρτήσεις χρονικής πολυπλοκότητας αλγορίθμων: nlogn, n logn,
Βιοπληροφορική. Ενότητα 6: Στοίχιση ακολουθιών ανά ζεύγη Σύστημα βαθμολόγησης, 2 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ.
Βιοπληροφορική Ενότητα 6: Στοίχιση ακολουθιών ανά ζεύγη Σύστημα βαθμολόγησης, 2 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Κατανόηση της σημασίας του συστήματος βαθμολόγησης
Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες)
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι
Βιοπληροφορική. Ενότητα 8: Αναζήτηση Ομοιοτήτων σε Βάσεις Δεδομένων Ακολουθιών, 2 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ.
Βιοπληροφορική Ενότητα 8: Αναζήτηση Ομοιοτήτων σε Βάσεις Δεδομένων Ακολουθιών, 2 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Κατανόηση της αναγκαιότητας των ευριστικών αλγορίθμων
Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι
LALING/PLALING :
1. Άρθρα- δημοσιεύσεις Scopus DBLP Pubmed Google Scholar 2. Αναζήτηση νουκλεοτιδίου- πρωτεΐνης Entrez : http://www.ncbi.nlm.nih.gov/nuccore/ Uniprot (πρωτεΐνης): http://www.uniprot.org/ Blast : http://blast.ncbi.nlm.nih.gov/blast.cgi
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ (ΒΙΟ 650) Ειδικά Θέματα Βιοπληροφορικής Διδάσκων: Βασίλειος Ι. Προμπονάς, Ph.D. Λέκτορας Βιοπληροφορικής ΓΕΝΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Διαλέξεις Δευτέρα και Πέμπτη
Εισαγωγή στους Αλγόριθµους. Αλγόριθµοι. Ιστορικά Στοιχεία. Ο πρώτος Αλγόριθµος. Παραδείγµατα Αλγορίθµων. Τι είναι Αλγόριθµος
Εισαγωγή στους Αλγόριθµους Αλγόριθµοι Τι είναι αλγόριθµος; Τι µπορεί να υπολογίσει ένας αλγόριθµος; Πως αξιολογείται ένας αλγόριθµος; Παύλος Εφραιµίδης pefraimi@ee.duth.gr Αλγόριθµοι Εισαγωγικές Έννοιες
Βιοπληροφορική. Ενότητα 6: Στοίχιση ακολουθιών ανά ζεύγη Σύστημα βαθμολόγησης, 2 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ.
Βιοπληροφορική Ενότητα 6: Στοίχιση ακολουθιών ανά ζεύγη Σύστημα βαθμολόγησης, 2 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Κατανόηση της σημασίας του συστήματος βαθμολόγησης
Περιοχές με ακραία σύσταση / χαμηλή πολυπλοκότητα
Περιοχές με ακραία σύσταση / χαμηλή πολυπλοκότητα Vasilis Promponas Bioinformatics Research Laboratory Department of Biological Sciences University of Cyprus Σύνοψη Βασικές έννοιες XNU SEG LCRs και αναζητήσεις
Πρόβλημα. Σύνολο γνωστών αλληλουχιών
BLAST Πρόβλημα Άγνωστη αλληλουχία Σύνολο γνωστών αλληλουχιών Η χρήση ενός υπολογιστή κι ενός αλγόριθμου είναι απαραίτητη για την ανακάλυψη της σχέσης μιας αλληλουχίας με τις γνωστές υπάρχουσες Τί είναι
Αλγόριθµοι. Παράδειγµα. ιαίρει και Βασίλευε. Παράδειγµα MergeSort. Τεχνικές Σχεδιασµού Αλγορίθµων
Τεχνικές Σχεδιασµού Αλγορίθµων Αλγόριθµοι Παύλος Εφραιµίδης pefraimi@ee.duth.gr Ορισµένες γενικές αρχές για τον σχεδιασµό αλγορίθµων είναι: ιαίρει και Βασίλευε (Divide and Conquer) υναµικός Προγραµµατισµός
ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ ΙΙ. Δυναμικός Προγραμματισμός. Παντελής Μπάγκος
ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ ΙΙ Δυναμικός Προγραμματισμός Παντελής Μπάγκος Δυναμικός Προγραμματισμός Στοίχιση (τοπική-ολική) RNA secondary structure prediction Διαμεμβρανικά τμήματα Hidden Markov Models Άλλες εφαρμογές
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ (ΒΙΟ 650) Ειδικά Θέματα Βιοπληροφορικής Διδάσκων: Βασίλειος Ι. Προμπονάς, Ph.D. Επίκουρος Καθηγητής Βιοπληροφορικής ΓΕΝΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Διαλέξεις Δευτέρα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ BIO 230 Εισαγωγή στην Υπολογιστική Βιολογία Διδάσκων: Βασίλειος Ι. Προμπονάς, Ph.D. Επίκουρος Καθηγητής Βιοπληροφορικής ΓΕΝΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Διαλέξεις Δευτέρα
Κατα ζέυγη στοίχιση και στατιστική σημαντικότητα αυτής
ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ ΙΙ Κατα ζέυγη στοίχιση και στατιστική σημαντικότητα αυτής Παντελής Μπάγκος 1 Διάλεξη 2 Αναζήτηση ομοιότητας και κατά ζεύγη στοίχιση ακολουθιών 2 Κατά ζεύγη στοίχιση ακολουθιών Από τα πιο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΕΠΛ 450 ΥΠΟΛΟΓΙΣΤΙΚΗ ΒΙΟΛΟΓΙΑ. Παύλος Αντωνίου
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΕΠΛ 450 ΥΠΟΛΟΓΙΣΤΙΚΗ ΒΙΟΛΟΓΙΑ Παύλος Αντωνίου Με μια ματιά: Εισαγωγή στη Βιολογία Ευθυγράμμιση Ακολουθιών Αναζήτηση ομοίων ακολουθιών από βάσεις δεδομενων Φυλογενετική πρόβλεψη Πρόβλεψη
Αρχιτεκτονική της τρισδιάστατης δομής πρωτεϊνών
Αρχιτεκτονική της τρισδιάστατης δομής πρωτεϊνών Βασίλης Προμπονάς, PhD Ερευνητικό Εργαστήριο Βιοπληροφορικής Τμήμα Βιολογικών Επιστημών Νέα Παν/πολη, Γραφείο B161 Πανεπιστήμιο Κύπρου Ταχ.Κιβ. 20537 1678,
Μελέτη και Υλοποίηση Αλγορίθμων για Βιολογικές Εφαρμογές σε MapReduce Περιβάλλον
Μελέτη και Υλοποίηση Αλγορίθμων για Βιολογικές Εφαρμογές σε MapReduce Περιβάλλον Δανάη Κούτρα Eργαστήριο Συστημάτων Βάσεων Γνώσεων και Δεδομένων Εθνικό Μετσόβιο Πολυτεχνείο Θέματα Σκοπός της διπλωματικής
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ
1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #10: Αλγόριθμοι Διαίρει & Βασίλευε: Master Theorem, Αλγόριθμοι Ταξινόμησης, Πιθανοτικός
Βιοπληροφορική. Ενότητα 10: Αναζήτηση Ομοιοτήτων σε ΒΔ Ακολουθιών - Blast, (1/2) 1ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ.
Βιοπληροφορική Ενότητα 10: Αναζήτηση Ομοιοτήτων σε ΒΔ Ακολουθιών - Blast, (1/2) 1ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Αναφορά στις παραλλαγές του BLAST. Εξοικείωση με τη
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ BIO 331 - Αρχές και Μέθοδοι Βιοπληροφορικής I Διδάσκων: Βασίλειος Ι. Προμπονάς, Ph.D. Λέκτορας Βιοπληροφορικής ΓΕΝΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Διαλέξεις Δευτέρα και Πέμπτη
Ορθότητα Χωρική αποδοτικότητα. Βελτιστότητα. Θεωρητική ανάλυση Εμπειρική ανάλυση. Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1
Ανάλυση Αλγορίθμων Θέματα Θέματα: Ορθότητα Χρονική αποδοτικότητα Χωρική αποδοτικότητα Βελτιστότητα Προσεγγίσεις: Θεωρητική ανάλυση Εμπειρική ανάλυση Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Θεωρητική
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 18: Χρονική και Χωρική Πολυπλοκότητα
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 18: Χρονική και Χωρική Πολυπλοκότητα Τι θα κάνουμε σήμερα Εισαγωγικά Χρονική Πολυπλοκότητα (7) Κλάση P (7.2) Κλάση ΝΡ (7.3) ΝΡ-πληρότητα (7.4) Χωρική
Κεφάλαιο 5 Ανάλυση Αλγορίθμων
Κεφάλαιο 5 Ανάλυση Αλγορίθμων 5.1 Επίδοση αλγορίθμων Τα πρωταρχικά ερωτήματα που προκύπτουν είναι: 1. πώς υπολογίζεται ο χρόνος εκτέλεσης ενός αλγορίθμου; 2. πώς μπορούν να συγκριθούν μεταξύ τους οι διάφοροι
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Βιοπληροφορική
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Βιοπληροφορική Ενότητα 12: Αναζήτηση ομοιοτήτων έναντι βάσεων δεδομένων με τη χρήση ευρετικών αλγορίθμων Αν. καθηγητής Αγγελίδης Παντελής e-mail: paggelidis@uowm.gr
Βιοπληροφορική. Ενότητα 9: Αναζήτηση Ομοιοτήτων σε ΒΔ Ακολουθιών - Στατιστική Σημαντικότητα, 1 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ.
Βιοπληροφορική Ενότητα 9: Αναζήτηση Ομοιοτήτων σε ΒΔ Ακολουθιών - Στατιστική Σημαντικότητα, 1 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Παρουσίαση των εφαρμογών της αναζήτησης
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ
ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ Κ Υ Κ Λ Ο Υ Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ Κ Α Ι Υ Π Η Ρ Ε Σ Ι Ω Ν Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Η
ΑΣΚΗΣΗ 4η Αναζήτηση οµοιοτήτων σε βάσεις δεδοµένων ακολουθιών
ΑΣΚΗΣΗ 4η Αναζήτηση οµοιοτήτων σε βάσεις δεδοµένων ακολουθιών ΕΙΣΑΓΩΓΗ Η αναζήτηση οµοιοτήτων σε βάσεις δεδοµένων ακολουθιών (database similarity searching) αποτελεί µια από τις συχνότερα χρησιµοποιούµενες
Διακριτά Μαθηματικά [Rosen, κεφ. 3] Γιάννης Εμίρης Τμήμα Πληροφορικής & Τηλεπικοινωνιών, ΕΚΠΑ Οκτώβριος 2018
Διακριτά Μαθηματικά [Rosen, κεφ. 3] Γιάννης Εμίρης Τμήμα Πληροφορικής & Τηλεπικοινωνιών, ΕΚΠΑ Οκτώβριος 2018 Αλγόριθμοι Ρυθμός αύξησης συναρτήσεων [Rosen 3.2] Αριθμητικές συναρτήσεις Τάξη αριθμητικών συναρτήσεων
Α Ν Α Λ Τ Η Α Λ Γ Ο Ρ Ι Θ Μ Ω Ν Κ Ε Υ Α Λ Α Ι Ο 5. Πως υπολογίζεται ο χρόνος εκτέλεσης ενός αλγορίθμου;
5.1 Επίδοση αλγορίθμων Μέχρι τώρα έχουμε γνωρίσει διάφορους αλγόριθμους (αναζήτησης, ταξινόμησης, κ.α.). Στο σημείο αυτό θα παρουσιάσουμε ένα τρόπο εκτίμησης της επίδοσης (performance) η της αποδοτικότητας
Προγραμματισμός Η/Υ. Προτεινόμενα θέματα εξετάσεων Εργαστήριο. Μέρος 1 ό. ΤΕΙ Λάρισας- Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Έργων Υποδομής
Προγραμματισμός Η/Υ Προτεινόμενα θέματα εξετάσεων Εργαστήριο Μέρος 1 ό ΤΕΙ Λάρισας- Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Έργων Υποδομής Ιανουάριος 2011 Καλογιάννης Γρηγόριος Επιστημονικός/ Εργαστηριακός
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα Ανάλυση Αλγορίθμων Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ανάλυση Αλγορίθμων Η ανάλυση αλγορίθμων περιλαμβάνει τη διερεύνηση του τρόπου
Μοντελοποίηση προβληµάτων
Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων
Πρόλογος. Πρόλογος 13. Πώς χρησιμοποείται αυτό το βιβλίο 17
Πρόλογος Πρόλογος 13 Πώς χρησιμοποείται αυτό το βιβλίο 17 1 Η λογική σκέψη 19 1.1 Τυπική λογική 20 1.1.1 Διερευνητικά προβλήματα 21 1.1.2 Σύνδεσμοι και προτάσεις 21 1.1.3 Οι πίνακες αλήθειας 23 1.1.4 Λογικές
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 2: Ασυμπτωτικός συμβολισμός Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 15 Ιουνίου 2009 1 / 26 Εισαγωγή Η ϑεωρία
Για τις λύσεις των προβλημάτων υπάρχει τρόπος εκτίμησης της επίδοσης (performance) και της αποδοτικότητας (efficiency). Ερωτήματα για την επίδοση
Επίδοση Αλγορίθμων Για τις λύσεις των προβλημάτων υπάρχει τρόπος εκτίμησης της επίδοσης (performance) και της αποδοτικότητας (efficiency). Ερωτήματα για την επίδοση πώς υπολογίζεται ο χρόνος εκτέλεσης
Βιοπληροφορική. Ενότητα 12: Μέθοδοι Πολλαπλής Στοίχισης, 2 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου
Βιοπληροφορική Ενότητα 12: Μέθοδοι Πολλαπλής Στοίχισης, 2 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Κατανόηση των μεθόδων πολλαπλής στοίχισης. Ανάδειξη των πλεονεκτημάτων και
Σηµειώσεις Βιοπληροφορικής
Σηµειώσεις Βιοπληροφορικής Εισαγωγή Ακολουθίες Πρωτεϊνών και DNA Μέθοδοι εύρεσης οµοιοτήτων σε ακολουθίες Υπολογιστικές και Βιολογικές Προσεγγίσεις, (Μαθηµατικά) Βέλτιστες Στοιχίσεις, Αλγόριθµοι υναµικού
Δομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 9 P vs NP 1 / 13 Δυσκολία επίλυσης υπολογιστικών προβλημάτων Κάποια προβλήματα είναι εύκολα να λυθούν με
Υπολογιστικό Πρόβληµα
Υπολογιστικό Πρόβληµα Μετασχηµατισµός δεδοµένων εισόδου σε δεδοµένα εξόδου. Δοµή δεδοµένων εισόδου (έγκυρο στιγµιότυπο). Δοµή και ιδιότητες δεδοµένων εξόδου (απάντηση ή λύση). Τυπικά: διµελής σχέση στις
Περιεχόμενα. Εισαγωγή του επιμελητή, Γιάννης Σταματίου 15 Πρόλογος 17 Εισαγωγή 23. Μέρος I. ΕΠΑΝΑΛΗΠΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΑΝΑΛΛΟΙΩΤΕΣ ΣΥΝΘΗΚΕΣ
Περιεχόμενα Εισαγωγή του επιμελητή, Γιάννης Σταματίου 15 Πρόλογος 17 Εισαγωγή 23 Μέρος I. ΕΠΑΝΑΛΗΠΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΑΝΑΛΛΟΙΩΤΕΣ ΣΥΝΘΗΚΕΣ 1. Επαναληπτικοί αλγόριθμοι: Μέτρα προόδου και αναλλοίωτες συνθήκες.....................................................29
Ανάπτυξη & Σχεδίαση Λογισμικού (ΗΥ420)
Ανάπτυξη & Σχεδίαση Λογισμικού (ΗΥ420) Διάλεξη 8: Σχεδίαση Συστήματος Σχεδίαση Συστήματος 2 Διεργασία μετατροπής του προβλήματος σε λύση. Από το Τί στο Πώς. Σχέδιο: Λεπτομερής περιγραφή της λύσης. Λύση:
Μάθημα 16 ο ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ
Μάθημα 16 ο ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ Περιεχόμενα Παρουσίασης Βιολογικό υπόβαθρο Το κεντρικό αξίωμα Σύνοψη της Βιοπληροφορικής Ερευνητικές περιοχές Πηγές πληροφοριών Τι είναι η Βιοπληροφορική Βιο Πληροφορική μοριακή
ιακριτές Μέθοδοι για την Επιστήμη των Υπολογιστών
ιακριτές Μέθοδοι για την Επιστήμη των Υπολογιστών ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
εισαγωγικές έννοιες Παύλος Εφραιμίδης Δομές Δεδομένων και
Παύλος Εφραιμίδης 1 περιεχόμενα ενθετική ταξινόμηση ανάλυση αλγορίθμων σχεδίαση αλγορίθμων 2 ενθετική ταξινόμηση 3 ενθετική ταξινόμηση Βασική αρχή: Επιλέγει ένα-έναταστοιχείατηςμηταξινομημένης ακολουθίας
ο ρόλος των αλγορίθμων στις υπολογιστικές διαδικασίες Παύλος Εφραιμίδης Δομές Δεδομένων και Αλγόριθμοι
Παύλος Εφραιμίδης 1 περιεχόμενα αλγόριθμοι τεχνολογία αλγορίθμων 2 αλγόριθμοι αλγόριθμος: οποιαδήποτε καλά ορισμένη υπολογιστική διαδικασία που δέχεται κάποια τιμή ή κάποιο σύνολο τιμών, και δίνεικάποιατιμήήκάποιοσύνολοτιμώνως
Εισαγωγικές Έννοιες. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο
Εισαγωγικές Έννοιες ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Κεφάλαιο 2. Βασικά στοιχεία ανάλυσης αλγορίθμων. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 2 Βασικά στοιχεία ανάλυσης αλγορίθμων Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 2.1 Υπολογιστική Επιλυσιμότητα "For me, great algorithms are the poetry of computation.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση χωρίς περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 7-8 η /2017 Τι παρουσιάστηκε
Δομές Δεδομένων & Αλγόριθμοι
Θέματα Απόδοσης Αλγορίθμων 1 Η Ανάγκη για Δομές Δεδομένων Οι δομές δεδομένων οργανώνουν τα δεδομένα πιο αποδοτικά προγράμματα Πιο ισχυροί υπολογιστές πιο σύνθετες εφαρμογές Οι πιο σύνθετες εφαρμογές απαιτούν
Προγνωστικές μέθοδοι με βάση αμινοξικές αλληλουχίες
Προγνωστικές μέθοδοι με βάση αμινοξικές αλληλουχίες Vasilis Promponas Bioinformatics Research Laboratory Department of Biological Sciences University of Cyprus ΣΥΝΟΨΗ Εισαγωγή Πρόγνωση της δομής πρωτεϊνών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ BIO 230 Εισαγωγή στην Υπολογιστική Βιολογία Διδάσκων: Βασίλειος Ι. Προμπονάς, Ph.D. Επίκουρος Καθηγητής Βιοπληροφορικής Διαλέξεις Φροντιστήριο Ιστοσελίδα
Εισαγωγή στους αλγορίθμους Βιοπληροφορικής. Στοίχιση αλληλουχιών
Στοίχιση αλληλουχιών Σύνοψη Καθολική στοίχιση Μήτρες βαθμολόγησης Τοπική στοίχιση Στοίχιση με ποινές εισαγωγής κενών Από την LCS στη στοίχιση: αλλαγές στη βαθμολόγηση Το πρόβλημα της Μεγαλύτερης Κοινής
Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας
Τεχνικές Μείωσης Διαστάσεων Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας 1 Εισαγωγή Το μεγαλύτερο μέρος των δεδομένων που καλούμαστε να επεξεργαστούμε είναι πολυδιάστατα.
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
περιεχόμενα υπολογιστικό πρόβλημα αλγόριθμοι παράδειγμα ταξινόμησης ταξινόμηση αλγόριθμοι τεχνολογία αλγορίθμων Παύλος Εφραιμίδης
περιεχόμενα αλγόριθμοι τεχνολογία αλγορίθμων Παύλος Εφραιμίδης 1 2 αλγόριθμοι αλγόριθμος: οποιαδήποτε καλά ορισμένη υπολογιστική διαδικασία που δέχεταικάποιατιμήήκάποιοσύνολοτιμών, και δίνει κάποια τιμή
Ειδικά Θέματα Βιοπληροφορικής
Ειδικά Θέματα Βιοπληροφορικής Παντελής Μπάγκος Αναπληρωτής Καθηγητής Πανεπιστήμιο Θεσσαλίας Λαμία, 2015 1 Πολλαπλή στοίχιση ακολουθιών και φυλογενετικά δέντρα 2 Πολλαπλή στοίχιση Αναφέρεται στην ταυτόχρονη
ΑΝΑΖΗΤΗΣΗ ΟΜΟΙΟΤΗΤΩΝ ΣΕ ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ ΑΚΟΛΟΥΘΙΩΝ
Αναζήτηση οµοιοτήτων ΑΝΑΖΗΤΗΣΗ ΟΜΟΙΟΤΗΤΩΝ ΣΕ ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ ΑΚΟΛΟΥΘΙΩΝ Σελίδα 1 εδοµένα Ακολουθία επερώτησης (query sequence) Ακολουθίες στη Βάση εδοµένων (subject sequences) Αναζήτηση Μέθοδοι δυναµικού
Δομές Δεδομένων Ενότητα 2
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Θέματα Απόδοσης Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Βάσεις δομικών δεδομένων βιολογικών μακρομορίων
Βάσεις δομικών δεδομένων βιολογικών μακρομορίων Vasilis Promponas Bioinformatics Research Laboratory Department of Biological Sciences University of Cyprus Εισαγωγή Βασικές αρχές δομής πρωτεϊνών και νουκλεϊκών
Δομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 1 Εισαγωγή 1 / 14 Δομές Δεδομένων και Αλγόριθμοι Δομή Δεδομένων Δομή δεδομένων είναι ένα σύνολο αποθηκευμένων
Βιοπληροφορική. Ενότητα 10: Αναζήτηση Ομοιοτήτων σε ΒΔ Ακολουθιών - Blast, (2/2) 1ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ.
Βιοπληροφορική Ενότητα 10: Αναζήτηση Ομοιοτήτων σε ΒΔ Ακολουθιών - Blast, (2/2) 1ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Αναφορά στις παραλλαγές του BLAST. Εξοικείωση με τη
ΓΕ0170 -Αλγόριθμοι και Προηγμένες Προγραμματικές Τεχνικές. Εισαγωγή. Νίκος Αθανάσης.
ΓΕ0170 -Αλγόριθμοι και Προηγμένες Προγραμματικές Τεχνικές Εισαγωγή Νίκος Αθανάσης e-mail: athanasis@geo.aegean.gr Συνοπτικά Σκοπός του μαθήματος Στόχοι του μαθήματος Αντικείμενο του μαθήματος Κανονισμός
Δομές Δεδομένων (Data Structures)
Δομές Δεδομένων (Data Structures) Γραμμικές Λίστες Βασικές Έννοιες Βασικές Έννοιες. Αναπαράσταση με τύπο και με δείκτη. Γραμμικές Λίστες. Βασικές Λειτουργίες. Δομές Δεδομένων: Βασικές Έννοιες Αντικείμενο
οµές εδοµένων 3 ο Εξάµηνο Τµήµα Πανεπιστήµιο Πληροφορικής Ιωαννίνων ΟΜΕΣ Ε ΟΜΕΝΩΝ
Τµήµα Πανεπιστήµιο Πληροφορικής Ιωαννίνων ΟΜΕΣ Ε ΟΜΕΝΩΝ ΕΝΟΤΗΤΑ 1 ΕΙΣΑΓΩΓΗ 1 εδοµένα Σύνολο από πληροφορίες που πρέπει να αποθηκευτούν σε έναν υπολογιστή Υπολογιστικό Μοντέλο ένας επεξεργαστής και µεγάλος
ρυθιμός αύξησης συναρτήσεων
ρυθμός αύξησης συναρτήσεων Παύλος Εφραιμίδης 1 περιεχόμενα Ασυμπτωτικός συμβολισμός Καθιερωμένοι συμβολισμοί και συνήθεις συναρτήσεις 2 ασυμπτωτική πολυπλοκότητα Πολυπλοκότητα χειρότερης περίπτωσης Συγχωνευτική