ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ"

Transcript

1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ 1. α. Να βάλετε σε αύξουσα σειρά μεγέθους τις παρακάτω συναρτήσεις χρονικής πολυπλοκότητας αλγορίθμων: nlogn, n logn, c n, loglogn, log 4 n, n 1/logn, όπου c σταθερά >1. Υποδ: Χρησιμοποιείτε την ιεράρχιση που αναφέρεται στη διαφάνεια 11 του Ασυμπτωτικού Συμβολισμού. Η εφαρμογή της δεδομενης ιεράρχισης είναι άμεση. β. Αποφασίστε αν ισχύουν τα παρακάτω: 10n 2 =o(n 2 ) 10n 2 =ω(n 2 ) 5n 3 logn = ω(n 3 ) Αιτιολογήστε την απόφασή σας. Υποδ: Εδώ χρησιμοποιείτε τους ορισμούς των ασυμπτωτικών συμβολισμών. Προσοχή στις λεπτομέρειες: Οι ορισμοί ισχυουν για μεγάλα n μεγαλύτερα από ένα n_ο (δοκιμές με κάποιες και μικρές τιμές του n δεν είναι η σωστή μέθοδος), προσοχή στις ανισότητες (γνήσιες για κάποιους ορισμούς) όπως επίσης και στη χρήση σταθερών c (κάποιοι ορισμοί αναφέρονται για κάποιες τιμές του c, ενώ άλλοι για οποιοδήποτε c). γ. Βρείτε την ακριβή εκτίμηση τάξης μεγέθους (Θ) του παρακάτω βρόγχου. for (i=1; i<=n; i++) for (j=1; j<=i; j++) for (k=i; k>0; k--) t=j+k. Υποδ: Η τελευταία στη σειρά εντολή έχει σταθερό χρόνο εκτέλεσης κ (άρα είναι θ(1)). Μετρήστε τον αριθμό εκτελέσεών της ξεκινώντας από τον εσωτερικό βρόγχο και πηγαίνοντας προς τον εξωτερικό βρόγχο. Ο αριθμός εκτελέσεων μπορεί να είναι συνάρτηση μιας παραμετρου. π.χ ο εσωτερικός βρόγχος καλεί την εντολή αυτή για k=i, k=i-1, k=i-2,.κ=1 (δηλαδή i φορές). Ο βρόγχος αυτός καλείται από τον προηγούμενο για j=1, j<=i (δηλαδή i φορές επίσης). Μέχρι στιγµής λοιπόν η τελευταία εντολή εκτελείται i 2 φορές (για κάθε εκτέλεση του 2ου βρόγχου εκτελείται i φορές ). Εγώ η παράµετρος είναι η i. Ο πρώτος βρογχος µας λέει ότι το i είναι από 1 έως n. Αναλυτικότερα: i=1 --- η τελευταία εντολή εκταλείται i 2 =1 φορά ι=2 --- η τελευταία εντολή εκταλείται i 2 =4 φορές κοκ Άρα έχουµε ένα άθροισµα για i από 1 έως n του i 2. Γνωρίζετε πως εκφράζεται το άθροισµα αυτό.

2 2 Έστω πίνακας Α 8 θέσεων με τα ακόλουθα στοιχεία 5,7,2,1,8,3,6,4. α. Δείξτε την εφαρμογή της Heap Sort για την ταξινόμηση των στοιχείων αυτών Υπόδ: Ακολουθείστε τα βήματα του αλγορίθμου στις διαφάνειες 19 και 20 της Heap sort. Προσοχή: Δεν σταματάτε στη δημιουργία του σωρού, αλλά αφού έχουν εξαχθεί όλα τα στοιχεία από το σωρό. Επίσης, μετά την εξαγωγή ενός στοιχείου πρέπει αυτό που παραμένει να είναι σωρός αυτό το διαφαλιζει η combine. β. Με δεδομένο ότι ο αλγόριθμος δημιουργίας σωρού έχει χρονική πολυπλοκότητα Θ(n) (δεν απαιτείται να το δείξετε αυτό), δείξτε ότι η πολυπλοκότητα της Heap Sort είναι Ο(nlogn). Υποδ: Διαφάνεια 19 της Heap sort. Δείξτε με λεπτομέρεια την πολυπλοκότητα των επιμέρους διεργασιών που απαιτούνται (πλην αυτής της δημιουργίας σωρού). 3 α. Δείξτε την εφαρμογή της Quick sort(*) στον πίνακα Α, 8 θέσεων με τα ακόλουθα στοιχεία 5,7,2,1,8,3,6,4. Σε κάθε αναδρομική κλήση δείξτε ΜΟΝΟ τα εξής: - τον πίνακα (Α) - το στοιχείο διαχωρισμού (π) - το σημείο διαχωρισμού (δ) Στην κατασκευή της λύσης δείξτε τους ταξινομημένους πίνακες με τη σειρά που παράγονται. Υποδ: Διαφάνειες 2-5 της Quicksort. Δεν δείχνετε όλα τα βήματα αλλά το αποτέλεσμα μόνο κάθε αναδρομικής κλήσης. Δείτε το παράδειγμα της διαφάνειας 8. β. Δείξτε τη χρονική πολυπλοκότητα της Quick sort στην χειρότερη περίπτωση. Υποδ: Διαφάνειες της Quicksort. 4 Εφαρμόστε το Θεώρημα του Κυρίαρχου Όρου στην περίπτωση f(n)=θ(n) (διακρίνατε περιπτώσεις σε ότι αφορά στις σχέσεις των παραμέτρων α και β) Υποδ: Το θεώρημα αναφέρεται στη διαφάνεια 14 της «διαίρει και βασίλευε». Τα υπόλοιπα είναι εφαρμογές του θεωρήματος. Εδώ λεοιπόν σας ζητείται να εφαρμόσετε το θεώρημα σε μια ειδική περίπτωση (υπάρχει στη διαφάνεια 15) όπου f(n)=θ(n). Πρέπει λοιπόν να δείξετε πως προσκύπτουν τα αποτελέσματα της διαφάνειας 15. Η εφαρμογή είναι απλή με βάση το πότε ένας λογάριθμος είναι μεγαλύτερος ή μικρότερος της μονάδας. 5 Δημιουργία σωρού: 1. Παρουσιάστε την εφαρμογή του αλγορίθμου για το εξής στιγμιότυπο εισόδου: [3, 4, 6, 10, 8, 15, 16, 17, 12]

3 Συγκεκριμένα, παρουσιάστε τα δέντρα που δημιουργούνται και μόνο τις αλλαγές σε αυτά κατά την εκτέλεση του αλγορίθμου. Υποδ: Εδώ σας ζητείται μόνο η δημιουργία σωρού, όπως αυτή αναφέρεται στη διαφάνεια 16. Πρέπει να δείξετε την ιεραρχική (bottom- up) εφαρμογή, όπως φαίνεται και στο παράδειγμα. 6. Εξηγείστε με σύντομο τρόπο γιατί κάθε ντετερμινιστικός συγκριτικός αλγόριθμος ταξινόμησης χρειάζεται Ω(n log n) συγκρίσεις μεταξύ στοιχείων. Υποδ: Διαφάνειες της Heap sort. 7. Ένα ρομπότ πρέπει να προγραμματίσει την εκτέλεση μη-επικαλυπτόμενων εργασιών από ένα σύνολο ενεργειών εντός ενός χρονικού διαστήματος Β χρονικών στιγμών. Οστόχος είναι να εκτελέσει τις εργασίες που του αποδίδουν το μεγαλύτερο δυνατό όφελος. Κάθε ενέργεια χαρακτηρίζεται από το ζεύγος (δ,ο) όπου δ η διάρκειά της σε χρονικές στιγμές και ο το όφελος που προκύπτει από την εκτέλεσή της. Π.χ. μεταξύ δύο ενεργειών με οφέλη 8 και 2, και εφόσον το ρομπότ δεν έχει άλλη επιλογή, θα επιλέξει αυτή με όφελος 8, ενώ την άλλη μπορεί τελικά να μην την εκτελέσει. Με ποιόν αλγόριθμο θα επιλύατε το παραπάνω πρόβλημα; Παρουσιάστε την εφαρμογή του αλγορίθμου για τις εξής ενέργειες (δ,ο): (1, 1), (2, 5), (2, 5), (3, 9), (4, 8), και για χρονικό διάστημα Β=4 στιγμών. Υποδ: Πρόκειται για εφαρμογή του αλγορίθμου επίλυσης του διακριτού προβλήματος του σακιδίου. Πρέπει να εφαρμόσετε την αναδρομική συνάρτηση της διαφάνειας 9 της ενότητας του δυναμικού προγραμματισμού. Στη διαφάνεια 10 υπάρχει συγεκριμένο παράδειγμα εφαρμογής. 8 Έστω ότι σας προτείνουν 2 αλγορίθμους για κάθε πρόβλημα από μια σειρά προβλημάτων και εσείς πρέπει να επιλέξετε βάσει της ασυμπτωτικής συμπεριφοράς τους. Από κάθε ζεύγος που σας προτείνουν ποιόν αλγόριθμο επιλέγετε, και γιατί; 1. (α) Ο(log(log(n))), (β) Ο(log(n)) 2. (α) Ο(log 2 (n)), (β) Ο(log(n)) 3. (α) Ο(2 n ), (β) Ο(3 n ) 4. (α) Ο(n) (β) Ω(nlog(n)) 5. (α) Θ(2 n ) (β) Ο(2 n ) 6. (α) Θ(n 0.6 ), (β) Θ(n logn ) Οι απαντήσεις πρέπει να είναι ως εξής: αριθμος- ζεύγους(α β). π.χ. 7(α) και σύντομη αιτιολόγηση της απάντησής σας σε κάθε περιπτωση. Υποδ: Χρησιμοποιείτε την ιεράρχιση που αναφέρεται στη διαφάνεια 11 του Ασυμπτωτικού Συμβολισμού. 9. Έστω f(n) και g(n) ασυμπτωτικά μη- αρνητικές συναρτήσεις. Χρησιμοποιώντας τον ορισμό του Θ συμβολισμού δείξτε ότι max(f(n),g(n))=θ(f(n)+g(n)).

4 Υποδ. Η άσκηση σας ζητάει ουσιαστικά να διατυπώσετε τον ορισμό του Θ. Αυτό το κάνετε για την Θ(f(n)) και την Θ(g(n)). Πρέπει επίσης να θεωρείσετε μια συνάρτηση που ανήκει στο Θ(f(n)) και μια στο Θ(g(n)) θυμηθείτε αυτά είναι σύνολα συναρτήσεων!. Προσθέτε κατά μέλη στις ανισσότητες. Προσοχή στις λεπτομέρειες καθώς εφαρμόζετε τον ορισμό: Μην κάνετε απλουστεύσεις θεωρώντας ότι έχετε παντού τις ίδιες σταθερές. 10. (α) Διατυπώστε τον αλγόριθμο επίλυσης του διακριτού προβλήματος του σακιδίου και (β) εφαρμόστε τον σε ένα σύνολο 5 αντικειμένων { (3, 5), (2, 7), (4, 4), (6, 8), (5, 4) }(οι δυάδες αφορούν (μέγεθος, αξία) κάθε αντικειμένου), και για ένα σακίδιο μεγέθους 5. Υποδ: Όπως και στο Στο παρακάτω στιγμιότυπο εισόδου εφαρμόστε και δείξτε αναλυτικά(*) την εφαρμογή της ντετερμινιστικής quicksort με επιλογή του στοιχείου που βρίσκεται στη θέση n/2 ως στοιχείο διαχωρισμού. 1,3,5,6,8,10 Υποδ: Διαφάνειες 2-5 της Quicksort. Δεν δείχνετε όλα τα βήματα αλλά το αποτέλεσμα μόνο κάθε αναδρομικής κλήσης. Δείτε το παράδειγμα της διαφάνειας Εξηγείστε με σύντομο τρόπο (μισή σελίδα) γιατί ο χρόνος εκτέλεσης της mergesort είναι Ο(nlοg(n)) Υποδ: Εδώ πρέπει να κατασκευάσετε και να εξηγείσετε το δένρο αναδρομής με βάση το οποίο ισχύει το ζητούμενο, σύμγωνα και με τη διαφάνεια 13 της ενότητας Διαίρει και Βασίλευε. 13. (α) Διατυπώστε τον αλγόριθμο επίλυσης του διακριτού προβλήματος του σακιδίου και (β) εφαρμόστε τον σε ένα σύνολο 5 αντικειμένων { (3, 5), (2, 7), (4, 4), (6, 8), (5, 4) }(**), και για ένα σακίδιο μεγέθους 5 (κατασκευάστε μόνο τον πίνακα αυτό αρκεί). ========================================= (*) Σε κάθε αναδρομική κλήση δείξτε ΜΟΝΟ τα εξής: - τον πίνακα (Α) - το στοιχείο διαχωρισμού (π) - το σημείο διαχωρισμού (δ) Στην κατασκευή της λύσης δείξτε τους ταξινομημένους πίνακες με τη σειρά που παράγονται. (**) Οι δυάδες αφορούν (μέγεθος, αξία) κάθε αντικειμένου. =========================================

5 Υποδ: Όπως και στο Να δείξετε ότι αν f,g είναι δύο συναρτήσεις που δέχονται μη αρνητικές τιμές, τέτοιες ώστε f=o(g), τότε ισχύει ότι g=ω(f). Υποδ. Η άσκηση σας ζητάει ουσιαστικά να διατυπώσετε τον ορισμό του Ο και του Ω. Αν εφαρμόσετε σωστά τους ορισμούς, τότε με μια απλή πράξη δείχνετε το ζητούμενο. 15. Να ταξινομήσετε τις παρακάτω συναρτήσεις σε αύξουσα σειρά τάξης μεγέθους g1,g2,g3... έτσι ώστε g1 = Ο(g2), g2 = Ο(g3) κοκ log((3n)!), log(n 3 ), (logn) logn, n 1/2, (logn) d, όπου d θετική σταθερά. Να αιτιολογήσετε τις απαντήσεις σας. Υποδ. Αφού απλοποιήσετε τις παραστάσεις κάνοντας απλές πράξεις κύρια με βάση και τις ιδιότητες λογαρίθμων, μπορείτε να χρησιμοποιείτε την ιεράρχιση που αναφέρεται στη διαφάνεια 11 του Ασυμπτωτικού Συμβολισμού Εξηγείστε με σύντομο τρόπο γιατί ο χρόνος εκτέλεσης της mergesort είναι Ο(nlοgn) Υποδ. Όπως και στη Να υπολογίσετε την τάξη μεγέθους Θ() των συναρτήσεων Τ που αφορούν στις παρακάτω αναδρομικές σχέσεις. Θεωρείστε για όλες ότι Τ(1)=Θ(1). a. T(n) = 2T(n/2) + n 2 b. T(n) = 5T(n/7) + n log n c. T(n) = 5T(n/7) + log n Υποδ: Εδώ εφαρμόζετε το θεώρημα του κυρίαρχου όρου που αναφέρεται στη διαφάνεια 14 της «διαίρει και βασίλευε». Προσοχή: μπορείτε αν εφαρμόσετε τις ειδικές περιπτώσεις του θεωρήματος (διαφ. 15) ΜΟΝΟ αν ισχύουν οι συνθήκες εφαρμογής τους. Στην περίπτωση που το θεώρημα δεν μπορεί να εφαρμοστεί πρέπει (α) να το αιτιολογήσετε και (β) να εφαρμόσετε την αναδρομική συνάρτηση επαναληπτικά, φτιάχνονατς το δέντρο αναδρομής και κάνοντας πράξεις. 17. Eφαρμόστε τον αλγόριθμο επίλυσης του διακριτού προβλήματος του σακιδίου σε ένα σύνολο 5 αντικειμένων { (3, 2), (2, 3), (4, 2), (6, 5), (5, 4) }*, και για ένα σακίδιο μεγέθους 5 (κατασκευάστε τον πίνακα και δείξτε τον υπολογισμό 3 τουλάχιστον κελλιών του με τιμή διαφορετική του 0) Οι δυάδες αφορούν (μέγεθος, αξία) κάθε αντικειμένου. Υποδ: Όπως και στο 7.

6 18. Εκτιμήστε την ασυμπτωτική συμπεριφορά του παραπάνω αλγορίθμου (στην χειρότερη περίπτωση). Αιτιολογήστε με λεπτομέρεια. Υποδ. Παρόμοια με την 1γ παραπάνω. 19. Με βάση τους ορισμούς των ασυμπτωτικών συμβολισμών αποδείξτε το παρακάτω θεώρημα: Για οποιεσδήποτε συναρτήσεις f(n) και g(n) έχουμε ότι f(n)=θ(g(n)) αν και μόνο αν f(n)=ο(g(n)) και f(n)=ω(g(n)). Χρησιμοποιήστε το παραπάνω θεώρημα για να δείξετε ότι Υποδ. Πρόκειται για απλή εφαρμογή των ορισμών των ασυμπτωτικών συμβολισμών. Στην εφαρμογή θα πρέπει να δείξετε ότι an 2 +bn+c=ω(n 2 ) και ότι an 2 +bn+c=ο(n 2 ) 20. Για την αναδρομική συνάρτηση Τ(n)=3Τ(n/4)+cn 2 A. Δείξτε πως εξελίσσεται το δέντρο αναδρομής και υπολογίστε (α) το ύψος του δέντρου (β) το κόστος σε κάθε επίπεδο του δέντρου Β. Υπολογίστε την ασυμπτωτική συμπεριφορά που προκύπτει από την παραπάνω συνάρτηση. Υποδ. Για να μπορέσετε να επιλύσετε ασκήσεις αυτού του τύπου πρέπει να μελετήσετε την απόδειξη του θεωρήματος κυρίαρχου όρου στο βιβλίο σας (Εισαγωγή στους αλγορίθμους Cormen et al). Στη διάθεσή σας για απορίες. 21. Με βάση το θεώρημα κυρίαρχου όρου δείξτε ότι: Υποδ. Εδώ πρόκειται για μια ειδική περίπτωση του θεωρήματος. Η λύση ακολουθεί την ίδα μέθοδο με αυτή της άσκησης 4 παραπάνω. 22. α. Δείξτε ότι ο(g(n)) ω(g(n)) =

7 Υποδ. Θυμηθείτε ότι τα ο(g(n)) και ω(g(n)) είναι σύνολα συναρτήσεων που έχουν συγκεκριμένη ασυμπτωτική συμπεριφορά. Θεωρείστε λοιπόν μια συνάρτηση που να ανήκει στην τομή των δύο συνόλων ο(g(n)) και ω(g(n)). Με βάση τους ορισμούς (και μόνο) φτάνετε σε άτοπο. Προσοχή όμως στις λεπτομέρειες των ορισμών. β. Δείξτε τις παρακάτω σχέσεις i. n!=ω(2 n ) ii. n!=ο(n n ) iii. log(n!) = Θ(nlogn) (Υποδ. Για την (iii) δείξτε επαγωγικά ότι για n 4 ισχύει ότι (n/2)log(n/2) (nlogn)/4 ) Υποδ. Μπορείτε να χρησιμοποιείτε την ιεράρχιση που αναφέρεται στη διαφάνεια 11 του Ασυμπτωτικού Συμβολισμού. Στην 3η, πρέπει να απλοποιήσετε την log(n!) κάνοντας απλές πράξεις κύρια με βάση και τις ιδιότητες λογαρίθμων. Στη διαδικασία αυτή θα εφαρμόσετε από ένα σημείο και μετά την υπόδειξη της άσκησης (συμβουλευτείτε τις σημειώσεις σας, έχω κάνει παρόμοια άσκηση στον πίνακα) 23. β1. Δείξτε ότι αν Τ(n)=2T(n/2)+n, Τ(1)=Θ(1), τότε T(n)=nlogn. β2. Βρείτε την ακριβή ασυμπτωτική συμπεριφορά για κάθε μια από τις ακόλουθες περιπτωσεις: - T(n)=4T(n/2)+n - T(n)=4T(n/2)+n 2 - T(n)=4T(n/2)+n 3 - T(n)=4T(n/2)+n 2 logn Υποδ: Εδώ εφαρμόζετε το θεώρημα του κυρίαρχου όρου που αναφέρεται στη διαφάνεια 14 της «διαίρει και βασίλευε». Προσοχή: μπορείτε αν εφαρμόσετε τις ειδικές περιπτώσεις του θεωρήματος (διαφ. 15) ΜΟΝΟ αν ισχύουν οι συνθήκες εφαρμογής τους. Στην περίπτωση που το θεώρημα δεν μπορεί να εφαρμοστεί πρέπει (α) να το αιτιολογήσετε και (β0 να εφαρμόσετε την αναδρομική συνάρτηση επαναληπτικά, φτιάχνονατς το δέντρο αναδρομής και κάνοντας πράξεις. 24. Δείξτε αναλυτικά την εκτίμηση καλύτερης και χειρότερης περίπτωσης για την quicksort. Υποδ. Οπως στις διαφάνειες της quicksort. 25. Διατυπώστε ένα αλγόριθμο για την επίλυση του προβλήματος Subset Sum. Εφαρμόστε τον αλγόριθμό σας στο εξής στιγμιότυπο (1,2,3,4,5,6) για Β=10. Υποδ: Όπως και στο α. είξτε ότι αν η f(n) είναι Ο(g(n)) και η d(n) είναι Ο(h(n)), τότε f(n) + d(n)=ο(g(n)+ h(n)) β. Με βάση τους ορισμούς των συμβολισμών ασυμπτωτικής συμπεριφοράς δείξτε τις παρακάτω σχέσεις: Ω(g(n)) = ω(g(n)) Θ(g(n)) Θ(g(n)) = O(g(n)) Ω(g(n))

8 Υποδ. Τα παραπάνω προκύπτουν με απλές πράξεις και εφαρμογή των ορισμών των ασυμπτωτικών συμβολισμών. Προσοχή στις λεπτομέρειες των ορισμών! 27. Να υπολογίσετε το Θ() για τις λύσεις των παρακάτω αναδρομικών εξισώσεων. Για όλες να θεωρήσετε ότι Τ(1)=Θ(1). Υποδ: Εδώ εφαρμόζετε το θεώρημα του κυρίαρχου όρου που αναφέρεται στη διαφάνεια 14 της «διαίρει και βασίλευε». Προσοχή: μπορείτε αν εφαρμόσετε τις ειδικές περιπτώσεις του θεωρήματος (διαφ. 15) ΜΟΝΟ αν ισχύουν οι συνθήκες εφαρμογής τους. Στην περίπτωση που το θεώρημα δεν μπορεί να εφαρμοστεί πρέπει (α) να το αιτιολογήσετε και (β0 να εφαρμόσετε την αναδρομική συνάρτηση επαναληπτικά, φτιάχνοντας το δέντρο αναδρομής και κάνοντας πράξεις. 28. Δημιουργία σωρού: α. Παρουσιάστε την εφαρμογή του αλγορίθμου για το εξής στιγμιότυπο εισόδου: [3, 4, 6, 10, 8, 15, 16, 17, 12] Συγκεκριμένα, παρουσιάστε τα δέντρα που δημιουργούνται και μόνο τις αλλαγές σε αυτά κατά την εκτέλεση του αλγορίθμου. β. Υπολογίστε την πολυπλοκότητα του αλγορίθμου δημιουργίας σωρού που εφαρμόσατε παραπάνω. Υποδ. Όπως σε παραπάνω ασκήσεις. 29. Quicksort: α. Στο παρακάτω στιγμιότυπο εισόδου εφαρμόστε και δείξτε αναλυτικά την εφαρμογή της ντετερμινιστικής quicksort με επιλογή του στοιχείου που βρίσκεται στη 1η θέση ως στοιχείο διαχωρισμού. 1,3,5,6,8,10 β. Σχολιάστε την αποτελεσματικότητα του αλγορίθμου για την περίπτωση αυτή και γενικεύστε το συμπέρασμά σας. Υποδ. Όπως σε παραπάνω ασκήσεις. Στο (β) θα πρέπει να διαπιστώσετε ότι πρόκειται για τη χειρότερη περίπτωση εφαρμογής του αλγορίθμου.

1o Φροντιστήριο ΗΥ240

1o Φροντιστήριο ΗΥ240 1o Φροντιστήριο ΗΥ240 Άσκηση 1 Αποδείξτε τη μεταβατική και τη συμμετρική ιδιότητα του Θ Μεταβατική Ιδιότητα (ορισμός): Αν f(n) = Θ(g(n)) και g(n) = Θ(h(n)) τότε f(n)=θ(h(n)) Για να ισχύει f(n)= Θ(h(n))

Διαβάστε περισσότερα

Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις

Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις Άσκηση 1 Αποδείξτε τη µεταβατική και τη συµµετρική ιδιότητα του Θ. Λύση Μεταβατική Ιδιότητα (ορισµός): Αν f(n) = Θ(g(n)) και g(n) = Θ(h(n)) τότε f(n)=θ(h(n)). Για

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση Αλγορίθμων (2-3)

Εισαγωγή στην Ανάλυση Αλγορίθμων (2-3) Εισαγωγή στην Ανάλυση Αλγορίθμων (2-3) 3.1 Ασυμπτωτικός συμβολισμός (Ι) Οι ορισμοί που ακολουθούν μας επιτρέπουν να επιχειρηματολογούμε με ακρίβεια για την ασυμπτωτική συμπεριφορά. Οι f(n) και g(n) συμβολίζουν

Διαβάστε περισσότερα

Ασυμπτωτικός Συμβολισμός

Ασυμπτωτικός Συμβολισμός Ασυμπτωτικός Συμβολισμός ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Υπολογιστική

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 2: Ασυμπτωτικός συμβολισμός Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

οµές εδοµένων 3 ο Εξάµηνο Τµήµα Πανεπιστήµιο Πληροφορικής Ιωαννίνων ΟΜΕΣ Ε ΟΜΕΝΩΝ

οµές εδοµένων 3 ο Εξάµηνο Τµήµα Πανεπιστήµιο Πληροφορικής Ιωαννίνων ΟΜΕΣ Ε ΟΜΕΝΩΝ Τµήµα Πανεπιστήµιο Πληροφορικής Ιωαννίνων ΟΜΕΣ Ε ΟΜΕΝΩΝ ΕΝΟΤΗΤΑ 1 ΕΙΣΑΓΩΓΗ 1 εδοµένα Σύνολο από πληροφορίες που πρέπει να αποθηκευτούν σε έναν υπολογιστή Υπολογιστικό Μοντέλο ένας επεξεργαστής και µεγάλος

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση Αλγορίθμων

Εισαγωγή στην Ανάλυση Αλγορίθμων Εισαγωγή στην Ανάλυση Αλγορίθμων (4) Μεθοδολογία αναδρομικών σχέσεων (Ι) Με επανάληψη της αναδρομής Έστω όπου r και a είναι σταθερές. Βρίσκουμε τη σχέση που εκφράζει την T(n) συναρτήσει της T(n-) την T(n)

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Άσκηση αυτοαξιολόγησης 1 Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις Άσκηση 1 Αποδείξτε τη µεταβατική

Διαβάστε περισσότερα

Ασυμπτωτικός Συμβολισμός

Ασυμπτωτικός Συμβολισμός Ασυμπτωτικός Συμβολισμός Επιμέλεια διαφανειών: Δημήτρης Φωτάκης (λίγες προσθήκες: Άρης Παγουρτζής) Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα

Διαβάστε περισσότερα

Ασκήσεις (2) Άσκηση 1

Ασκήσεις (2) Άσκηση 1 Άσκηση 1 Ασκήσεις () Εισαγωγή στην Ανάλυση Αλγορίθμων Υποθέστε ότι συγκρίνουμε την υλοποίηση της ταξινόμησης με εισαγωγή και της ταξινόμησης με συγχώνευση στον ίδιο υπολογιστή. Για εισόδους μεγέθους n,

Διαβάστε περισσότερα

Δομές Δεδομένων (Data Structures)

Δομές Δεδομένων (Data Structures) Δομές Δεδομένων (Data Structures) Ανάλυση - Απόδοση Αλγορίθμων Έλεγχος Αλγορίθμων. Απόδοση Προγραμμάτων. Χωρική/Χρονική Πολυπλοκότητα. Ασυμπτωτικός Συμβολισμός. Παραδείγματα. Αλγόριθμοι: Βασικές Έννοιες

Διαβάστε περισσότερα

Ορισµός. Εστω συναρτήσεις: f : N R και g : N R. η f(n) είναι fi( g(n) ) αν υπάρχουν σταθερές C 1, C 2 και n 0, τέτοιες ώστε:

Ορισµός. Εστω συναρτήσεις: f : N R και g : N R. η f(n) είναι fi( g(n) ) αν υπάρχουν σταθερές C 1, C 2 και n 0, τέτοιες ώστε: Συµβολισµός Ω( ) Τάξη των Συναρτήσεων () Εκτίµηση Πολυπλοκότητας Αλγορίθµων Ορέστης Τελέλης telelis@unipi.gr Ορισµός. Εστω συναρτήσεις: f : N R και g : N R η f(n) είναι Ω( g(n) ) αν υπάρχουν σταθερές C

Διαβάστε περισσότερα

Ασυμπτωτικός Συμβολισμός

Ασυμπτωτικός Συμβολισμός Ασυμπτωτικός Συμβολισμός ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Υπολογιστική πολυπλοκότητα αλγόριθμου Α: Ποσότητα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας ΠΕΡΙΓΡΑΦΗ Σε αυτή την άσκηση καλείστε να αναλύσετε και να υπολογίσετε το

Διαβάστε περισσότερα

Υπολογιστική Πολυπλοκότητα

Υπολογιστική Πολυπλοκότητα Υπολογιστική Πολυπλοκότητα Υπολογιστική πολυπλοκότητα αλγόριθµου Α: Ποσότητα υπολογιστικών πόρων που απαιτεί Α ως αύξουσα συνάρτηση µεγέθους στιγµιότυπου εισόδου. Χρόνος, µνήµη, επεξεργαστές, επικοινωνία,

Διαβάστε περισσότερα

Δυναμικός Προγραμματισμός

Δυναμικός Προγραμματισμός Δυναμικός Προγραμματισμός Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις: Α. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διωνυμικοί Συντελεστές Διωνυμικοί

Διαβάστε περισσότερα

Εισαγωγή στους Αλγόριθμους. Παύλος Εφραιμίδης, Λέκτορας

Εισαγωγή στους Αλγόριθμους. Παύλος Εφραιμίδης, Λέκτορας Εισαγωγή στους Αλγόριθμους Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr 1 Περιεχόμενα Μαθήματος Εισαγωγή στου Αλγόριθμους Πολυπλοκότητα Αλγορίθμων Ασυμπτωτική Ανάλυση Θεωρία Γράφων Κλάσεις Πολυπλοκότητας

Διαβάστε περισσότερα

Διαίρει-και-Βασίλευε. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2

Διαίρει-και-Βασίλευε. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2 Διαίρει-και-Βασίλευε Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2 Διαίρει-και-Βασίλευε Γενική µέθοδος σχεδιασµού αλγορίθµων: Διαίρεση σε ( 2) υποπροβλήµατα (σηµαντικά) µικρότερου µεγέθους.

Διαβάστε περισσότερα

Ασυμπτωτικός Συμβολισμός

Ασυμπτωτικός Συμβολισμός Ασυμπτωτικός Συμβολισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ρυθιμός αύξησης συναρτήσεων

ρυθιμός αύξησης συναρτήσεων ρυθμός αύξησης συναρτήσεων Παύλος Εφραιμίδης 1 περιεχόμενα Ασυμπτωτικός συμβολισμός Καθιερωμένοι συμβολισμοί και συνήθεις συναρτήσεις 2 ασυμπτωτική πολυπλοκότητα Πολυπλοκότητα χειρότερης περίπτωσης Συγχωνευτική

Διαβάστε περισσότερα

Αναδρομικές Σχέσεις «ιαίρει-και-βασίλευε»

Αναδρομικές Σχέσεις «ιαίρει-και-βασίλευε» Αναδρομικές Σχέσεις «ιαίρει-και-βασίλευε» ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαίρει-και-βασίλευε

Διαβάστε περισσότερα

Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις-προσθήκες: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις-προσθήκες: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Διαίρει-και-Βασίλευε Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις-προσθήκες: Α. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διαίρει-και-Βασίλευε Γενική

Διαβάστε περισσότερα

Διωνυµικοί Συντελεστές. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Δυναµικός Προγραµµατισµός 1

Διωνυµικοί Συντελεστές. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Δυναµικός Προγραµµατισµός 1 Διωνυµικοί Συντελεστές Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Δυναµικός Προγραµµατισµός 1 Διωνυµικοί Συντελεστές Διωνυµικοί συντελεστές Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Δυναµικός Προγραµµατισµός

Διαβάστε περισσότερα

Διακριτά Μαθηματικά [Rosen, κεφ. 3] Γιάννης Εμίρης Τμήμα Πληροφορικής & Τηλεπικοινωνιών, ΕΚΠΑ Οκτώβριος 2018

Διακριτά Μαθηματικά [Rosen, κεφ. 3] Γιάννης Εμίρης Τμήμα Πληροφορικής & Τηλεπικοινωνιών, ΕΚΠΑ Οκτώβριος 2018 Διακριτά Μαθηματικά [Rosen, κεφ. 3] Γιάννης Εμίρης Τμήμα Πληροφορικής & Τηλεπικοινωνιών, ΕΚΠΑ Οκτώβριος 2018 Αλγόριθμοι Ρυθμός αύξησης συναρτήσεων [Rosen 3.2] Αριθμητικές συναρτήσεις Τάξη αριθμητικών συναρτήσεων

Διαβάστε περισσότερα

ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαίρει-και-βασίλευε Γενική μέθοδος σχεδιασμού αλγορίθμων: ιαίρεση σε ( 2) υποπροβλήματα

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου, Τμήμα Μηχανικών Πληροφορικής ΤΕ Χειμερινό Εξάμηνο 2014-2015 (Παρουσίαση 6) 1 / 20 Ρυθμοί αύξησης Γραμμικός ρυθμός αύξησης: n, 2n, Πολυωνυμικός

Διαβάστε περισσότερα

Αν ένα πρόβλημα λύνεται από δύο ή περισσότερους αλγόριθμους, ποιος θα είναι ο καλύτερος; Με ποια κριτήρια θα τους συγκρίνουμε;

Αν ένα πρόβλημα λύνεται από δύο ή περισσότερους αλγόριθμους, ποιος θα είναι ο καλύτερος; Με ποια κριτήρια θα τους συγκρίνουμε; Αν ένα πρόβλημα λύνεται από δύο ή περισσότερους αλγόριθμους, ποιος θα είναι ο καλύτερος; Με ποια κριτήρια θα τους συγκρίνουμε; Πως θα υπολογίσουμε το χρόνο εκτέλεσης ενός αλγόριθμου; Για να απαντήσουμε

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ανάλυση Αλγορίθμων Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ανάλυση Αλγορίθμων Η ανάλυση αλγορίθμων περιλαμβάνει τη διερεύνηση του τρόπου

Διαβάστε περισσότερα

Δυναμικός Προγραμματισμός

Δυναμικός Προγραμματισμός Δυναμικός Προγραμματισμός Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις /προσθήκες: Α. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διωνυμικοί Συντελεστές

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2013 ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας Διδάσκων Καθηγητής: Παναγιώτης Ανδρέου Ημερομηνία Υποβολής:

Διαβάστε περισσότερα

Δυναμικός Προγραμματισμός

Δυναμικός Προγραμματισμός Τρίγωνο του Pascal Δυναμικός Προγραμματισμός Διωνυμικοί συντελεστές Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο

Διαβάστε περισσότερα

ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων

ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #10: Αλγόριθμοι Διαίρει & Βασίλευε: Master Theorem, Αλγόριθμοι Ταξινόμησης, Πιθανοτικός

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 4: Αναδρομικές σχέσεις και ανάλυση αλγορίθμων Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Δομές Δεδομένων & Αλγόριθμοι

Δομές Δεδομένων & Αλγόριθμοι Δομές Δεδομένων & Αναζήτηση & Ταξινόμηση 1 Αναζήτηση Έχω έναν πίνακα Α με Ν στοιχεία. Πρόβλημα: Βρες αν το στοιχείο x ανήκει στον πίνακα Αν ο πίνακας είναι αταξινόμητος τότε μόνη λύση σειριακή αναζήτηση

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 3: Ασυμπτωτικός συμβολισμός Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Διάλεξη 04: Παραδείγματα Ανάλυσης

Διάλεξη 04: Παραδείγματα Ανάλυσης Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα

Διαβάστε περισσότερα

Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων

Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα

Διαβάστε περισσότερα

ΗΥ240: οµές εδοµένων. ιδάσκουσα: Παναγιώτα Φατούρου ΗΥ240 - Παναγιώτα Φατούρου 2

ΗΥ240: οµές εδοµένων. ιδάσκουσα: Παναγιώτα Φατούρου ΗΥ240 - Παναγιώτα Φατούρου 2 ΗΥ240: οµές εδοµένων ιδάσκουσα: Παναγιώτα Φατούρου Υποχρεωτικό Μάθηµα 2ου έτους Τµήµα Επιστήµης Υπολογιστών Πανεπιστήµιο Κρήτης Ενότητα 1 Εισαγωγή ΗΥ240 - Παναγιώτα Φατούρου 2 Εισαγωγικά Θέµατα Αντικείµενο

Διαβάστε περισσότερα

Διαίρει-και-Βασίλευε. Διαίρει-και-Βασίλευε. MergeSort. MergeSort. Πρόβλημα Ταξινόμησης: Είσοδος : ακολουθία n αριθμών (α 1

Διαίρει-και-Βασίλευε. Διαίρει-και-Βασίλευε. MergeSort. MergeSort. Πρόβλημα Ταξινόμησης: Είσοδος : ακολουθία n αριθμών (α 1 Διαίρει-και-Βασίλευε Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διαίρει-και-Βασίλευε Γενική μέθοδος

Διαβάστε περισσότερα

ΗΥ240: οµές εδοµένων

ΗΥ240: οµές εδοµένων ΗΥ240: οµές εδοµένων ιδάσκουσα: Παναγιώτα Φατούρου Υποχρεωτικό Μάθηµα 2ου έτους Τµήµα Επιστήµης Υπολογιστών Πανεπιστήµιο Κρήτης Ενότητα 1 Εισαγωγή ΗΥ240 - Παναγιώτα Φατούρου 2 Εισαγωγικά Θέµατα Αντικείµενο

Διαβάστε περισσότερα

1η Σειρά Γραπτών Ασκήσεων

1η Σειρά Γραπτών Ασκήσεων 1/20 Ασυμπτωτικός Συμβολισμός, Αναδρομικές Σχέσεις 1η Σειρά Γραπτών Ασκήσεων Αλγόριθμοι και Πολυπλοκότητα ΣΗΜΜΥ, Εθνικό Μετσόβιο Πολυτεχνείο 1 Ασυμπτωτικός Συμβολισμός, Αναδρομικές Σχέσεις 2 3 4 5 2/20

Διαβάστε περισσότερα

Κατ οίκον Εργασία 1 Σκελετοί Λύσεων

Κατ οίκον Εργασία 1 Σκελετοί Λύσεων ΕΠΛ Δομές Δεδομένων και Αλγόριθμοι Σεπτέμβριος 008 Κατ οίκον Εργασία Σκελετοί Λύσεων Άσκηση Παρατηρούμε ότι ο χρόνος εκτέλεσης μέσης περίπτωσης της κάθε εντολής if ξεχωριστά: if (c mod 0) for (k ; k

Διαβάστε περισσότερα

Δομές Δεδομένων & Αλγόριθμοι

Δομές Δεδομένων & Αλγόριθμοι Δομές Δεδομένων & Αναζήτηση & Ταξινόμηση 1 Αναζήτηση Έχω έναν πίνακα Α με Ν στοιχεία. Πρόβλημα: Βρες αν το στοιχείο x ανήκει στον πίνακα Αν ο πίνακας είναι αταξινόμητος τότε μόνη λύση σειριακή αναζήτηση

Διαβάστε περισσότερα

Τηλ , Fax: , URL:

Τηλ , Fax: , URL: Τµήµα Πανεπιστήµιο Πληροφορικής Ιωαννίνων ΟΜΕΣ Ε ΟΜΕΝΩΝ Παναγιώτα Φατούρου faturu@cs.uoi.gr Σεπτέµβριος, 2005 Τµήµα Πληροφορικής, Πανεπιστήµιο Ιωαννίνων, Τ.Θ. 1186, Γραφείο Α26, Τηλ. +30 26510 98808, Fax:

Διαβάστε περισσότερα

υναμικός Προγραμματισμός

υναμικός Προγραμματισμός υναμικός Προγραμματισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιωνυμικοί Συντελεστές ιωνυμικοί

Διαβάστε περισσότερα

Δομές Δεδομένων Ενότητα 2

Δομές Δεδομένων Ενότητα 2 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Θέματα Απόδοσης Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ AM: Δοµές Δεδοµένων Εξεταστική Ιανουαρίου 2014 Διδάσκων : Ευάγγελος Μαρκάκης 20.01.2014 ΥΠΟΓΡΑΦΗ ΕΠΟΠΤΗ: Διάρκεια εξέτασης : 2 ώρες και

Διαβάστε περισσότερα

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Αρχές Ανάλυσης Αλγορίθµων Κεφάλαιο 2. Ε. Μαρκάκης Επικ. Καθηγητής

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Αρχές Ανάλυσης Αλγορίθµων Κεφάλαιο 2. Ε. Μαρκάκης Επικ. Καθηγητής ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Αρχές Ανάλυσης Αλγορίθµων Κεφάλαιο 2 Ε. Μαρκάκης Επικ. Καθηγητής Περίληψη Εµπειρική ανάλυση αλγορίθµων Μαθηµατική ανάλυση αλγορίθµων Αύξηση συναρτήσεων Συµβολισµός µεγάλου όµικρον Παραδείγµατα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές δεδομένων. Ενότητα 1η: Εισαγωγή Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές δεδομένων. Ενότητα 1η: Εισαγωγή Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Ενότητα 1η: Εισαγωγή Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών ΗΥ240: Δομές Δεδομένων Διδάσκουσα: Παναγιώτα Φατούρου Υποχρεωτικό Μάθημα 2ου

Διαβάστε περισσότερα

Επιλογή. Πρόβλημα Επιλογής. Μέγιστο / Ελάχιστο. Εφαρμογές

Επιλογή. Πρόβλημα Επιλογής. Μέγιστο / Ελάχιστο. Εφαρμογές Επιλογή Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Πρόβλημα Επιλογής Πίνακας Α[]με n στοιχεία (όχι ταξινομημένος). Αριθμός

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Γιάννης Εμίρης. Τμήμα Πληροφορικής & Τηλεπικοινωνιών ΕΚΠΑ. Οκτώβριος

Διακριτά Μαθηματικά. Γιάννης Εμίρης. Τμήμα Πληροφορικής & Τηλεπικοινωνιών ΕΚΠΑ. Οκτώβριος ΔιακριτάΜαθηματικά Γιάννης Εμίρης http://eclass.uoa.gr/ Τμήμα Πληροφορικής & Τηλεπικοινωνιών ΕΚΠΑ Οκτώβριος 2016 Διακριτά Μαθηματικά Αλγόριθμοι Ρυθμόςαύξησηςσυναρτήσεων[Rosen 3.2] Διακριτά Μαθηματικά Ορισμοί

Διαβάστε περισσότερα

Quicksort. Πρόβλημα Ταξινόμησης. Μέθοδοι Ταξινόμησης. Συγκριτικοί Αλγόριθμοι

Quicksort. Πρόβλημα Ταξινόμησης. Μέθοδοι Ταξινόμησης. Συγκριτικοί Αλγόριθμοι Πρόβλημα Ταξινόμησης Quicksort Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Είσοδος : ακολουθία n αριθμών (α 1, α 2,..., α n

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 04: ΠαραδείγματαΑνάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα -Γραμμική

Διαβάστε περισσότερα

Τίτλος Μαθήματος: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

Τίτλος Μαθήματος: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Τίτλος Μαθήματος: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 5: Ασκήσεις Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

υναμικός Προγραμματισμός

υναμικός Προγραμματισμός υναμικός Προγραμματισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιωνυμικοί Συντελεστές ιωνυμικοί

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Διαίρει και Βασίλευε Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Διαίρει και Βασίλευε Divide and Conquer Η τεχνική διαίρει και βασίλευε αναφέρεται

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων

Σχεδίαση και Ανάλυση Αλγορίθμων Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 3.0 Σταύρος Δ. Νικολόπουλος 0-7 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Διαίρει και Βασίλευε Quick-sort και Merge-sort

Διαβάστε περισσότερα

Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες)

Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι

Διαβάστε περισσότερα

Πρόβληµα Επιλογής. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Επιλογή 1

Πρόβληµα Επιλογής. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Επιλογή 1 Πρόβληµα Επιλογής Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Επιλογή 1 Πρόβληµα Επιλογής Πίνακας Α[ Αριθµός k, 1 k n. ] µε n στοιχεία (όχι ταξινοµηµένος). Υπολογισµός του k-οστού µικρότερου στοιχείου (στοιχείο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 12: Θεωρία υπολογισµών

ΚΕΦΑΛΑΙΟ 12: Θεωρία υπολογισµών ΚΕΦΑΛΑΙΟ 12: Θεωρία υπολογισµών 1 Συναρτήσεις και ο υπολογισµός τους 2 Μηχανές Turing 3 Καθολικές γλώσσες προγραµµατισµού 4 Μια µη υπολογίσιµη συνάρτηση 5 Πολυπλοκότητα προβληµάτων 1 Συναρτήσεις Μία συνάρτηση

Διαβάστε περισσότερα

Ενότητα 1 Εισαγωγή. ΗΥ240: Δοµές Δεδοµένων. Διδάσκουσα: Παναγιώτα Φατούρου

Ενότητα 1 Εισαγωγή. ΗΥ240: Δοµές Δεδοµένων. Διδάσκουσα: Παναγιώτα Φατούρου ΗΥ240: Δοµές Δεδοµένων Διδάσκουσα: Παναγιώτα Φατούρου Υποχρεωτικό Μάθηµα 2ου έτους Τµήµα Επιστήµης Υπολογιστών Πανεπιστήµιο Κρήτης Ενότητα 1 Εισαγωγή ΗΥ240 - Παναγιώτα Φατούρου 2 Εισαγωγικά Θέµατα Αντικείµενο

Διαβάστε περισσότερα

Επιλογή. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο

Επιλογή. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο Επιλογή ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πρόβλημα Επιλογής Πίνακας Α[]με n στοιχεία (όχι ταξινομημένος). Αριθμός k, 1 k n. Υπολογισμός

Διαβάστε περισσότερα

Επιλογή. Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο

Επιλογή. Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο Επιλογή Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πρόβλημα Επιλογής Πίνακας Α[ ] με n στοιχεία (όχι ταξινομημένος). Αριθμός k,

Διαβάστε περισσότερα

Κεφάλαιο 2. Βασικά στοιχεία ανάλυσης αλγορίθμων. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 2. Βασικά στοιχεία ανάλυσης αλγορίθμων. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 2 Βασικά στοιχεία ανάλυσης αλγορίθμων Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 2.1 Υπολογιστική Επιλυσιμότητα "For me, great algorithms are the poetry of computation.

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 2

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 2 Εισαγωγή στους Αλγορίθμους Φροντιστήριο 2 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι

Διαβάστε περισσότερα

Quicksort [Hoare, 62] Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Quicksort 1

Quicksort [Hoare, 62] Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Quicksort 1 Quicksort [Hoare, 62] Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Quicksort 1 Quicksort [Hoare, 62] Στοιχείο διαχωρισµού (pivot), π.χ. πρώτο, τυχαίο, Αναδιάταξη και διαίρεση εισόδου σε δύο υπο-ακολουθίες:

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 25 Φεβρουαρίου 2015 1 / 53 Περιεχόµενα

Διαβάστε περισσότερα

Ουρά Προτεραιότητας: Heap

Ουρά Προτεραιότητας: Heap Δομές Δεδομένων Ουρά Προτεραιότητας: Heap Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο (Αναπαράσταση,)

Διαβάστε περισσότερα

Επιλογή. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Επιλογή. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Επιλογή ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Στοιχεία Αλγορίθµων και Πολυπλοκότητας

Στοιχεία Αλγορίθµων και Πολυπλοκότητας Στοιχεία Αλγορίθµων και Πολυπλοκότητας Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Πολυπλοκότητα 1 / 16 «Ζέσταµα» Να γράψετε τις συναρτήσεις

Διαβάστε περισσότερα

Δοµές Δεδοµένων. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Ουρές Προτεραιότητας 2

Δοµές Δεδοµένων. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Ουρές Προτεραιότητας 2 Δοµές Δεδοµένων Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Ουρές Προτεραιότητας 2 Δοµές Δεδοµένων (Αναπαράσταση,) οργάνωση και διαχείριση συνόλων αντικειµένων για αποδοτική ενηµέρωση και ανάκτηση πληροφορίας.

Διαβάστε περισσότερα

Ουρά Προτεραιότητας: Heap

Ουρά Προτεραιότητας: Heap Ουρά Προτεραιότητας: Heap Επιμέλεια διαφανειών: Δ. Φωτάκης (λίγες τροποποιήσεις: Α. Παγουρτζής) Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Δομές Δεδομένων (Αναπαράσταση,)

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ταξινόμηση. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ταξινόμηση. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Ταξινόμηση Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Είσοδος n αντικείμενα a 1, a 2,..., a n με κλειδιά (συνήθως σε ένα πίνακα, ή λίστα, κ.τ.λ)

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 6: ΠαραδείγματαΑνάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα -Γραμμική

Διαβάστε περισσότερα

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ Διάλεξη 14: Αλγόριθμοι Ταξινόμησης Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Οι αλγόριθμοι ταξινόμησης 3) Mergesort Ταξινόμηση με Συγχώνευση 4) BucketSort Ταξινόμηση με Κάδους Διδάσκων:

Διαβάστε περισσότερα

Αλγοριθμικές Τεχνικές

Αλγοριθμικές Τεχνικές Αλγοριθμικές Τεχνικές Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr Αλγοριθμικές Τεχνικές 1 Τεχνικές Σχεδιασμού Αλγορίθμων Ορισμένες γενικές αρχές για τον σχεδιασμό αλγορίθμων είναι: Διαίρει και

Διαβάστε περισσότερα

Ταξινόμηση. Παύλος Εφραιμίδης. Δομές Δεδομένων Ταξινόμηση 1

Ταξινόμηση. Παύλος Εφραιμίδης. Δομές Δεδομένων Ταξινόμηση 1 Ταξινόμηση Παύλος Εφραιμίδης Δομές Δεδομένων Ταξινόμηση 1 Το πρόβλημα της ταξινόμησης Δομές Δεδομένων Ταξινόμηση 2 Ταξινόμηση Δίνεται πολυ-σύνολο Σ με στοιχεία από κάποιο σύμπαν U (πχ. U = το σύνολο των

Διαβάστε περισσότερα

Κεφάλαιο 2. Βασικά στοιχεία ανάλυσης αλγορίθµων. Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 2. Βασικά στοιχεία ανάλυσης αλγορίθµων. Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 2 Βασικά στοιχεία ανάλυσης αλγορίθµων Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 2.1 Υπολογιστική Επιλυσιµότητα "For me, great algorithms are the poetry of computation.

Διαβάστε περισσότερα

Αλγοριθμικές Τεχνικές. Brute Force. Διαίρει και Βασίλευε. Παράδειγμα MergeSort. Παράδειγμα. Τεχνικές Σχεδιασμού Αλγορίθμων

Αλγοριθμικές Τεχνικές. Brute Force. Διαίρει και Βασίλευε. Παράδειγμα MergeSort. Παράδειγμα. Τεχνικές Σχεδιασμού Αλγορίθμων Τεχνικές Σχεδιασμού Αλγορίθμων Αλγοριθμικές Τεχνικές Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr Ορισμένες γενικές αρχές για τον σχεδιασμό αλγορίθμων είναι: Διαίρει και Βασίλευε (Divide and

Διαβάστε περισσότερα

Εισαγωγή στους Αλγόριθµους. Αλγόριθµοι. Ιστορικά Στοιχεία. Ο πρώτος Αλγόριθµος. Παραδείγµατα Αλγορίθµων. Τι είναι Αλγόριθµος

Εισαγωγή στους Αλγόριθµους. Αλγόριθµοι. Ιστορικά Στοιχεία. Ο πρώτος Αλγόριθµος. Παραδείγµατα Αλγορίθµων. Τι είναι Αλγόριθµος Εισαγωγή στους Αλγόριθµους Αλγόριθµοι Τι είναι αλγόριθµος; Τι µπορεί να υπολογίσει ένας αλγόριθµος; Πως αξιολογείται ένας αλγόριθµος; Παύλος Εφραιµίδης pefraimi@ee.duth.gr Αλγόριθµοι Εισαγωγικές Έννοιες

Διαβάστε περισσότερα

Αλγόριθμοι Ταξινόμησης Μέρος 4

Αλγόριθμοι Ταξινόμησης Μέρος 4 Αλγόριθμοι Ταξινόμησης Μέρος 4 Μανόλης Κουμπαράκης Δομές Δεδομένων και Τεχνικές 1 Μέθοδοι Ταξινόμησης Βασισμένοι σε Συγκρίσεις Κλειδιών Οι αλγόριθμοι ταξινόμησης που είδαμε μέχρι τώρα αποφασίζουν πώς να

Διαβάστε περισσότερα

Θεωρητικό Υπόβαθρο. Περιεχόμενα Κεφαλαίου

Θεωρητικό Υπόβαθρο. Περιεχόμενα Κεφαλαίου 2 Θεωρητικό Υπόβαθρο Περιεχόμενα Κεφαλαίου 2.1 Μαθηματικά Εργαλεία.................... 34 2.2 Συμβολισμοί Πολυπλοκότητας............... 39 2.3 Χρήση Συμβολισμών στην Ανάλυση............ 45 2.4 Χειρισμός

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 22 Counting sort, bucket sort και radix sort 1 / 16 Ιδιότητες αλγορίθμων ταξινόμησης ευστάθεια (stable

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ

ΑΛΓΟΡΙΘΜΟΙ  Άνοιξη I. ΜΗΛΗΣ ΑΛΓΟΡΙΘΜΟΙ http://eclass.aueb.gr/courses/inf161/ Άνοιξη 2016 - I. ΜΗΛΗΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΑΛΓΟΡΙΘΜΩΝ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 2016 - Ι. ΜΗΛΗΣ - 03 - EXAMPLES ALG & COMPL 1 Example: GCD συνάρτηση

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 23 Μαρτίου 2017 1 / 20 Επιλογή Το πρόβληµα

Διαβάστε περισσότερα

Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I

Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Α. SelectionSort Ταξινόμηση με Επιλογή Β. InsertionSort Ταξινόμηση με Εισαγωγή

Διαβάστε περισσότερα

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ ΕΠΛ 035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ.

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ ΕΠΛ 035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ. Διάλεξη : Παραδείγματα Ανάλυσης Πολυπλοκότητας / Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, 6 παραδείγματα

Διαβάστε περισσότερα

Heapsort Using Multiple Heaps

Heapsort Using Multiple Heaps sort sort Using Multiple s. Λεβεντέας Χ. Ζαρολιάγκης Τµήµα Μηχανικών Η/Υ & Πληροφορικής 29 Αυγούστου 2008 sort 1 Ορισµός ify Build- 2 sort Πως δουλεύει Ιδιότητες 3 4 Προβλήµατα Προτάσεις Ανάλυση Κόστους

Διαβάστε περισσότερα

Quicksort. Επιμέλεια διαφανειών: Δ. Φωτάκης Μικροαλλαγές: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Quicksort. Επιμέλεια διαφανειών: Δ. Φωτάκης Μικροαλλαγές: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Quicksort Επιμέλεια διαφανειών: Δ. Φωτάκης Μικροαλλαγές: Α. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Quicksort [Hoare, 6] Στοιχείο διαχωρισμού (pivot),

Διαβάστε περισσότερα

Κεφάλαιο 5 Ανάλυση Αλγορίθμων

Κεφάλαιο 5 Ανάλυση Αλγορίθμων Κεφάλαιο 5 Ανάλυση Αλγορίθμων 5.1 Επίδοση αλγορίθμων Τα πρωταρχικά ερωτήματα που προκύπτουν είναι: 1. πώς υπολογίζεται ο χρόνος εκτέλεσης ενός αλγορίθμου; 2. πώς μπορούν να συγκριθούν μεταξύ τους οι διάφοροι

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Πρόβληµα, Στιγµιότυπο, Αλγόριθµος Εργαλεία εκτίµησης πολυπλοκότητας: οι τάξεις Ο(n), Ω(n), Θ(n) Ανάλυση Πολυπλοκότητας Αλγορίθµων

Διαβάστε περισσότερα

Κεφάλαιο 2 Ανάλυση Αλγορίθμων

Κεφάλαιο 2 Ανάλυση Αλγορίθμων Κεφάλαιο Ανάλυση Αλγορίθμων Περιεχόμενα.1 Εισαγωγή... 0. Εμπειρική και Θεωρητική Ανάλυση Αλγορίθμων.....1 Εμπειρική Πολυπλοκότητα..... Θεωρητική Πολυπλοκότητα... 3.3 Ανάλυση Χειρότερης και Αναμενόμενης

Διαβάστε περισσότερα

1 Ανάλυση αλγορίθµων. 2 Συµβολισµοί O, Ω και Θ. 3 Αναδροµικές εξισώσεις

1 Ανάλυση αλγορίθµων. 2 Συµβολισµοί O, Ω και Θ. 3 Αναδροµικές εξισώσεις Γενικό πλάνο Μαθηµατικά για Πληροφορική 6ο Μάθηµα 1 Ανάλυση αλγορίθµων Ηλίας Κουτσουπιάς, Γιάννης Εµίρης 2 Συµβολισµοί O, Ω και Θ Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 27/11/2008 3

Διαβάστε περισσότερα

Μαθηµατικά για Πληροφορική

Μαθηµατικά για Πληροφορική Μαθηµατικά για Πληροφορική 6ο Μάθηµα Ηλίας Κουτσουπιάς, Γιάννης Εµίρης Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 27/11/2008 27/11/2008 1 / 55 Γενικό πλάνο 1 Ανάλυση αλγορίθµων 2 Συµβολισµοί

Διαβάστε περισσότερα

Α Ν Α Λ Τ Η Α Λ Γ Ο Ρ Ι Θ Μ Ω Ν Κ Ε Υ Α Λ Α Ι Ο 5. Πως υπολογίζεται ο χρόνος εκτέλεσης ενός αλγορίθμου;

Α Ν Α Λ Τ Η Α Λ Γ Ο Ρ Ι Θ Μ Ω Ν Κ Ε Υ Α Λ Α Ι Ο 5. Πως υπολογίζεται ο χρόνος εκτέλεσης ενός αλγορίθμου; 5.1 Επίδοση αλγορίθμων Μέχρι τώρα έχουμε γνωρίσει διάφορους αλγόριθμους (αναζήτησης, ταξινόμησης, κ.α.). Στο σημείο αυτό θα παρουσιάσουμε ένα τρόπο εκτίμησης της επίδοσης (performance) η της αποδοτικότητας

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ενότητα 1 Εισαγωγικές έννοιες Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αλγόριθµοι και Πολυπλοκότητα - Ενότητα 1 1 / 57 Περιεχόµενα 1.

Διαβάστε περισσότερα

Ανάλυση Αλγορίθµων. Σύντοµη επανάληψη (ΕΠΛ 035).

Ανάλυση Αλγορίθµων. Σύντοµη επανάληψη (ΕΠΛ 035). Ανάλυση Αλγορίθµων Σύντοµη επανάληψη (ΕΠΛ 035). Περίληψη Ανάλυση αλγορίθµων Ο, Θ, Ω Ανάλυση µη αναδροµικών αλγόριθµων Ανάλυση αναδροµικών αλγόριθµων Εµπειρική Ανάλυση Visualization Απόδοση Αλγορίθµων Απόδοση

Διαβάστε περισσότερα

Ορθότητα Χωρική αποδοτικότητα. Βελτιστότητα. Θεωρητική ανάλυση Εμπειρική ανάλυση. Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1

Ορθότητα Χωρική αποδοτικότητα. Βελτιστότητα. Θεωρητική ανάλυση Εμπειρική ανάλυση. Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Ανάλυση Αλγορίθμων Θέματα Θέματα: Ορθότητα Χρονική αποδοτικότητα Χωρική αποδοτικότητα Βελτιστότητα Προσεγγίσεις: Θεωρητική ανάλυση Εμπειρική ανάλυση Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Θεωρητική

Διαβάστε περισσότερα