Ορθότητα Χωρική αποδοτικότητα. Βελτιστότητα. Θεωρητική ανάλυση Εμπειρική ανάλυση. Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ορθότητα Χωρική αποδοτικότητα. Βελτιστότητα. Θεωρητική ανάλυση Εμπειρική ανάλυση. Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1"

Transcript

1 Ανάλυση Αλγορίθμων Θέματα Θέματα: Ορθότητα Χρονική αποδοτικότητα Χωρική αποδοτικότητα Βελτιστότητα Προσεγγίσεις: Θεωρητική ανάλυση Εμπειρική ανάλυση Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1

2 Θεωρητική ανάλυση χρονικής αποδοτικότητας Η χρονική αποδοτικότητα αναλύεται προσδιορίζοντας τον αριθμό των επαναλήψεων της βασικής πράξης ως συνάρτηση του μεγέθους εισόδου. Βασική πράξη: η πράξη που συνεισφέρει περισσότερο από τις άλλες στο χρόνο εκτέλεσης του αλγορίθμου. Μέγεθος εισόδου T(n) c op C(n) Χρόνος εκτέλεσης Χρόνος εκτέλεσης βασικής πράξης Πλήθος επαναλήψεων βασικής πράξης Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 2

3 Μέγεθος εισόδου & βασική πράξη Πρόβλημα Μέγεθος εισόδου Βασική πράξη Αναζήτηση κλειδιού σε λίστα με n αντικείμενα Πολλαπλασιασμός πινάκων με πραγματικούς αριθμούς Υπολογισμός a n Προβλήματα με γράφους Το πλήθος n των αντικειμένων Διαστάσεις των πινάκων n Πλήθος κορυφών ή/και ακμών Συγκρίσεις κλειδιών Πολλαπλασιασμός πραγματικών αριθμών Πολλαπλασιασμός πραγματικών αριθμών Η επίσκεψη ενός κόμβου ή η διάσχιση μίας ακμής Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 3

4 Εμπειρική ανάλυση της χρονικής αποδοτικότητας Επιλέγουμε ένα συγκεκριμένο δείγμα εισόδου Χρησιμοποιούμε τη φυσική μονάδα μέτρησης (π.χ., milliseconds) ή Μετρούμε τον πραγματικό αριθμό επαναλήψεων της βασικής πράξης Αναλύουμε τα εμπειρικά δεδομένα Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 4

5 Καλύτερη, μέση, χειρότερη περίπτωση Σε μερικούς αλγορίθμους η αποδοτικότητα εξαρτάται από τον τύπο της εισόδου: Χειρότερη περίπτωση: W(n) το μέγιστο από όλες τις εισόδους μεγέθους n Καλύτερη περίπτωση: B(n) το ελάχιστο από όλες τις εισόδους μεγέθους μγ n Μέση περίπτωση: A(n) ο μέσος όρος από όλες τις εισόδους μεγέθους n Είναι το πλήθος εκτελέσεων της βασικής πράξης σε μία τυπική είσοδο Όχι ο μέσος όρος της καλύτερης και της χειρότερης περίπτωσης Η προσδοκητή τιμή των επαναλήψεων της βασικής πράξης θεωρείται μία τυχαία μεταβλητή υπό την προϋπόθεση της γνώσης της κατανομής πιθανότητας όλων των δυνατών εισόδων μεγέθους μγ n Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 5

6 Παράδειγμα: Σειριακή αναζήτηση Πρόβλημα: Δοθείσης λίστας με n στοιχεία και ενός κλειδιού K, να βρεθεί ένα στοιχείο ίσο με K, αν υπάρχει. Αλγόριθμος: Σαρώνουμε τη λίστα και συγκρίνουμε διαδοχικά τα στοιχεία με την τιμή K μέχρι είτε να βρούμε μία τιμή που να ταιριάζει (επιτυχής αναζήτηση) ή να εξαντληθεί η λίστα (ανεπιτυχής αναζήτηση) Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 6

7 Παράδειγμα: Σειριακή αναζήτηση Algorithm Sequential(A[0..n-1]) // Input: An array A[0..n-1] and a sought value k // Output: the position of k if found, -1 otherwise i 0 while i<n and A[i]<>k do i i+1 If i<n return i else return -1 Χειρότερη περίπτωση Καλύτερη περίπτωση Μέση περίπτωση Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 7

8 Εκφράσεις για τη μέτρηση της βασικής πράξης Επακριβής ρβής τύπος π.χ., C(n) = n(n-1)/2 Τύπος ενδεικτικός της τάξης μεγέθους με συγκεκριμένη πολλαπλασιαστική σταθερά π.χ., C(n) 0.5 n 2 Τύπος ενδεικτικός της τάξης μεγέθους με άγνωστη πολλαπλασιαστική σταθερά π.χ., C(n) cn 2 Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 8

9 Τάξη μεγέθους Σημείωση: η η τάξη μγ μεγέθους θεωρείται με κάποια σταθερά καθώς n Παράδειγμα: Πόσο ταχύτερα θα τρέξει ένας αλγόριθμος σε ένα υπολογιστή δύο φορές ταχύτερο? Πόσο περισσότερο ρ χρόνο θα χρειασθεί η επίλυση προβλήματος με διπλάσιο μέγεθος εισόδου? Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 9

10 Τάξη μεγέθους (2) Τιμές μερικών σημαντικών συναρήσεων για την ανάλυση αλγορίθμων Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 10

11 Ασυμπτωτικός λόγος αύξησης Ένας τρόπος σύγκρισης συναρτήσεων ρή που αγνοεί τους σταθερούς παράγοντες και τα μικρά μεγέθη εισόδου O(g(n)): η κλάση των συναρτήσεων f(n) που μεγαλώνουν όχι γρηγορότερα από τη g(n) Θ(g(n)): η κλάση των συναρτήσεων f(n) που μεγαλώνουν με τον ίδιο ρυθμό όπως η g(n) Ω(g(n)): ( η κλάση των συναρτήσεων f(n) ) που μεγαλώνουν τουλάχιστον τόσο γρήγορα όπως η g(n) Δες επόμενα σχήματα Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 11

12 Συμβολισμός Ο Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 12

13 Συμβολισμός Ω Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 13

14 Συμβολισμός Θ Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 14

15 Εύρεση ρυθμού αύξησης: Μέθοδος 1 με όρια 0 τάξη αύξησης της T(n) < τάξη αύξησης της g(n) lim n T(n)/ ( )/g(n) ) = c>0 τάξη αύξησης της T(n) = τάξη αύξησης της g(n) τάξη αύξησης της T(n) > τάξη αύξησης της g(n) Παραδείγματα: 10n vs. 2n 2 n(n+1)/2 ( vs. n 2 log b n vs. log c n Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 15

16 Κανόνας του L Hôpital Αν lim n f(n) ) = lim n g(n) ) = και υπάρχουν οι παράγωγοι f και g, τότε ισχύει lim n f(n) g(n) = lim n f (n) g (n) Παράδειγμα: logn vs. n Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 16

17 Εύρεση ρυθμού αύξησης: Μέθοδος 2 με τον ορισμό Η f(n) ) είναι O(g(n)) αν η τάξη αύξησης ης της f(n) ) τάξης αύξησης της g(n) (εντός μίας σταθεράς) Υπάρχει μία θετική σταθερά c και ένας μη αρνητικός ακέραιος n 0 τέτοιος ώστε να ισχύει f(n) cg(n) για κάθε n n 0 Παραδείγματα: 10n είναι O(2n 2 ) 5n+20 είναι O(10n) Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 17

18 Βασικές ασυμπτωτικές κλάσεις αποδοτικότητας 1 σταθερή log n n n log n n 2 n 3 λογαριθμική γραμμική n log n τετραγωνική κυβική 2 n εκθετική n! παραγοντική Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 18

19 Χρονική αποδοτικότητα επαναληπτικών αλγορίθμων Βήματα της μαθηματικής ανάλυσης επαναληπτικών αλγορίθμων: Αποφασίζουμε την παράμετρο n που δείχνει το μέγεθος της εισόδου Προσδιορίζουμε τη βασική πράξη του αλγορίθμου Προσδιορίζουμε τη χειρότερη, τη μέση, και την καλύτερη περίπτωση για μία είσοδο μεγέθους n Βρίσκουμε την έκφραση C(n) με βάση τη δομή βρόχου του αλγορίθμου Απλοποιούμε την έκφραση με τη βοήθεια τυποποιημένων σχέσεων Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 19

20 Ένα απλό παράδειγμα Algorithm MaxElement(A[0..n-1]) // Determines the largest value in a given array // Input: An array A[0..n-1] of real numbers // Output: The value of the largest element in A maxval A[0] for i 1 to n-1 do if A[i]>maxval maxval A[i] return maxval Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 20

21 Ένα άλλο απλό παράδειγμα Algorithm UniqueElement(A[0..n-1]) // Check whether all the elements in an array are distinct // Input: An array A[0..n-1] of real numbers // Output: Returns true if all the elements are distinct for i 0 to n-2 do for j i+1 to n-1 do if A[i]=A[j] return false return true Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 21

22 Άλλα παραδείγματα Πολλαπλασιασμός πινάκων Ταξινόμηση με επιλογή Ταξινόμηση με εισαγωγή Μυστηριώδης αλγόριθμος Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 22

23 Πολλαπλασιασμός πινάκων Algorithm MatrixMultiplication(A[0..n-1,0..n-1], B[0..n-1,0..n-1], C[0..n-1,0..n-1]) // Input: Two n-by-n matrices A and B // Output: Matrix C=AB for i 0 to n-1 do for j 0 to n-1 do C[i,j] 0.00 for k 0 to n-1 do C[i,j] C[i,j]+A[i,k]*B[k,j] return C Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 23

24 Ενα τρίτο απλό παράδειγμα Algorithm Binary(n) // Input: A positive decimal integer n // Output: The number of binary digits in n s binary representation ti count 1 while n>1 do count count+1 n n/2 return count Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 24

25 Ταξινόμηση με επιλογή Algorithm SelectionSort(A[0..n-1]) // Input: An array A[0..n-1] of unordered elements // Output: t Array A[0..n-1] in ascending order for i 0 to n-2 do min i for j i+1 to n-1 do if A[j]<A[min] min j swap A[i] and A[min] Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 25

26 Ταξινόμηση με εισαγωγή Algorithm InsertionSort(A[0..n-1]) // Input: An array A[0..n-1] of unordered elements // Output: t Array A[0..n-1] in ascending order for i 0 to n-1 do v A[i] j i-1 while j 0 and A[j] > v do A[j+1]<- A[j] j j-1 A[j+1] v Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 26

27 Μυστηριώδης αλγόριθμος for i := 1 to n-1 do max := i; for j := i+1 to n do if A[j,i] > A[max,i] then max := j; for k := i to n+1 do swap A[i,k] with A[max,k]; for j := i+1 to n do for k := n+1 downto i do A[j,k]:=A[j,k]-A[i,k]*A[j,i]/A[i,i]; Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 27

28 Χρονική αποδοτικότητα αναδρομικών αλγορίθμων Βήματα της μαθηματικής ανάλυσης αναδρομικών αλγορίθμων: Αποφασίζουμε την παράμετρο n που δείχνει το μέγεθος της εισόδου Προσδιορίζουμε τη βασική πράξη του αλγορίθμου Προσδιορίζουμε τη χειρότερη, τη μέση, και την καλύτερη περίπτωση για μία είσοδο μεγέθους n Σχηματίζουμε για τη C(n) μία αναδρομική εξίσωση με αρχικές συνθήκες το πλήθος των επαναλήψεων που θα εκτελεσθεί η βασική πράξη για μία είσοδο μεγέθους n (εναλλακτικά μπορούμε να μετρήσουμε τις αναδρομικές κλήσεις). Επιλύουμε την αναδρομική εξίσωση για να πετύχουμε μία κλειστή έκφραση ή να εκτιμήσουμε το μέγεθος της λύσης Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 28

29 Αναδρομικός υπολογισμός του n! Ορισμός: n! = 1*2* *(n-1)*n Αναδρομικός ορισμός του n!: n! = (n-1)!*n Αλγόριθμος: if n=0 then F(n) := 1 else F(n) := F(n-1) * n return F(n) Αναδρομή για το πλήθος των πολλαπλασιασμών: M(n) = M(n-1) + 1 for n>0 M(0) = 0 Μέθοδος: αντικατάσταση προς τα πίσω Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 29

30 Οι πύργοι του Ανόι Πρόβλημα: να μετρήσουμε το πλήθος των κινήσεων Αναδρομή για το πλήθος των κινήσεων: M(n) = M(n-1) M(n-1) for n>1 M(1) = Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 30

31 Οι πύργοι του Ανόι (συνέχεια) Εναλλακτικά: σχηματίζουμε ένα δένδρο για το πλήθος των αναδρομικών κλήσεων Σχόλιο: εγγενής μη αποδοτικότητα n-1 1 n-1 n 2 n-2 n-2 n-2 n Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 31

32 Επανεπίσκεψη του «δυαδικού» αλγόριθμου Algorithm BinRec(n) // Input: A positive decimal integer n // Output: The number of binary digits in n s binary representation if n=1 return 1 else return BinRec( n/2 )+1 Αναδρομή μήγ για το πλήθος των προσθέσεων: A(n) = A( n/2 ) + 1 for n>1 A(1) = 0 Εφαρμόζουμε την απλοποίηση: : n=2 k Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 32

33 Υπολογισμός αριθμών Fibonacci (1) Leonardo Fibonacci, Ακολουθία Fibonacci : 0, 1, 1, 2, 3, 5, 8, 13, 21, Αναδρομή Fibonacci : F(n)=F( )=F(n-1)+F( 1)+F(n-2), F(0)=0, F(1)=1 Algorithm F(n): // Computes the n-th Fibonacci number recursively rsi el // Input: A nonnegative integer n // Output: t The n-th Fibonacci i number if n <= 1 return n else return F(n-1)+F(n-2) Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 33

34 Υπολογισμός αριθμών Fibonacci (2) 1. Αναδρομικός αλγόριθμος με βάση τον ορισμό 2. Επαναληπτικός ορισμός με ωμή βία 3. Αλγόριθμος με βοήθεια ρητής έκφρασης 4. Αλγόριθμος βασισμένος σε πολλαπλασιασμό λα α πινάκων Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 34

35 Υπολογισμός αριθμών Fibonacci (3) Αναδρομικός αλγόριθμος ςμ με βάση τον ορισμό Γραμμική ομογενής αναδρομική σχέση 2 ου βαθμού με σταθερούς συντελεστές Χαρακτηριστική εξίσωση Επίλυση F(n) = φ n / 5 φ n / 5 φ = (1+ 5)/2 (golden ratio) φ = (1-5)/2 F(n) φ n / 5 Κατασκευάζουμε ένα δένδρο για το πλήθος των αναδρομικών κλήσεων Οι λύσεις αναδρομικών εξισώσεων δεν είναι πανάκεια Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 35

36 Υπολογισμός αριθμών Fibonacci (4) Επαναληπτικός ορισμός ςμ με ωμή βία Algorithm F(n): // Computes the n-th Fibonacci number iteratively // Input: A nonnegative integer n // Output: The n-th Fibonacci number F[0] 0; F[1] 1; for i 2 to n do F[i] F[i-1] + F[i-2] return F(n) Πολυπλοκότητα? Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 36

37 Υπολογισμός αριθμών Fibonacci (5) Αλγόριθμος με βοήθεια ρητής έκφρασης με έξυπνη στρογγυλοποίηση της εξίσωσης F(n) φ n / 5 Επαφίεται στον εκθετικό αλγόριθμο Λύσεις: Θ(n), Θ(logn) Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 37

38 Υπολογισμός αριθμών Fibonacci (6) Αλγόριθμος με πολλαπλασιασμό πινάκων Ισχύει ότι για n 1, F(n-1) F(n) 0 1 = F(n) F(n+1) 1 1 Υποθέτοντας έναν αποτελεσματικό τρόπο πολλαπλασιασμού δυνάμεων πινάκων, η λύση είναι Θ(logn) n Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 38

39 Σημαντικοί τύποι αναδρομών: Μία πράξη μειώνει το μέγεθος του προβλήματος κατά 1. T(n) = T(n-1) + c T(1) = d Λύση: : T(n) = (n-1) 1)c + d γραμμική Ένα πέρασμα από την είσοδο μειώνει το πρόβλημα κατά ένα. T(n) = T(n-1) + cn T(1) = d Λύση: : T(n) = [n(n+ n+1)/2 1] c + d τετραγωνική Μία πράξη μειώνει το μέγεθος του προβλήματος κατά το μισό. T(n) = T(n/2) + c T(1) = d Λύση: : T(n) = c lg n + d λογαριθμική Ένα πέρασμα από την είσοδο μειώνει το πρόβλημα κατά το μισό. T(n) = 2T(n/2) + cn T(1) = d Λύση: : T(n) = cn lg n + d n n log n Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 39

40 Μία γενική αναδρομή διαίρει-και και-βασίλευε T(n) ( ) = at(n/b) ( ) + f (n) όπου f (n) Θ(n( k ) 1. a < b k T(n) Θ(n k ) 2. a = b k T(n) Θ(n k lg n ) 3. a > b k T(n) ( ) Θ(n( log b a ) Σημείωση: το ίδιο ισχύει και για O αντί για Θ. Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 40

41 Επίλυση γραμμικών ομογενών αναδρομικών εξισώσεων με σταθερούς συντελεστές Πρώτα τα εύκολα: 1 ης τάξης 2 ης τάξης C(n) = a C(n -1) C(0) = t Λύση: C(n) = t a n L(n) = a L(n-1) + b L(n-2) Μία λύση?: L(n) = r n Χαρακτηριστική εξίσωση η( (τετραγωνική) ρ γ Επιλύουμε για να πάρουμε τις ρίζες r 1 και r 2 π.χ.: : A(n) = 3A(n-1) - 2(n-2) Γενική λύση: γραμμικός συνδυασμός των r 1n και r 2 n Συγκεκριμένη λύση: χρησιμοποιούμε τις αρχικές συνθήκες. π.χ.: A(0) = 1 A(1) = 3 Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 41

Δομές Δεδομένων (Data Structures)

Δομές Δεδομένων (Data Structures) Δομές Δεδομένων (Data Structures) Ανάλυση - Απόδοση Αλγορίθμων Έλεγχος Αλγορίθμων. Απόδοση Προγραμμάτων. Χωρική/Χρονική Πολυπλοκότητα. Ασυμπτωτικός Συμβολισμός. Παραδείγματα. Αλγόριθμοι: Βασικές Έννοιες

Διαβάστε περισσότερα

5.1. Προσδοκώμενα αποτελέσματα

5.1. Προσδοκώμενα αποτελέσματα 5.1. Προσδοκώμενα αποτελέσματα Όταν θα έχεις ολοκληρώσει τη μελέτη αυτού του κεφαλαίου θα έχεις κατανοήσει τις τεχνικές ανάλυσης των αλγορίθμων, θα μπορείς να μετράς την επίδοση των αλγορίθμων με βάση

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Εισαγωγή. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Εισαγωγή. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Εισαγωγή Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Βιβλιογραφία Robert Sedgewick, Αλγόριθμοι σε C, Μέρη 1-4 (Θεμελιώδεις Έννοιες, Δομές Δεδομένων, Ταξινόμηση,

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Πρόβληµα, Στιγµιότυπο, Αλγόριθµος Εργαλεία εκτίµησης πολυπλοκότητας: οι τάξεις Ο(n), Ω(n), Θ(n) Ανάλυση Πολυπλοκότητας Αλγορίθµων

Διαβάστε περισσότερα

Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις

Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις Άσκηση 1 Αποδείξτε τη µεταβατική και τη συµµετρική ιδιότητα του Θ. Λύση Μεταβατική Ιδιότητα (ορισµός): Αν f(n) = Θ(g(n)) και g(n) = Θ(h(n)) τότε f(n)=θ(h(n)). Για

Διαβάστε περισσότερα

Διάλεξη 15: Αναδρομή (Recursion) Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 15: Αναδρομή (Recursion) Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 15: Αναδρομή (Recursion) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Η έννοια της αναδρομής Μη αναδρομικός / Αναδρομικός Ορισμός Συναρτήσεων Παραδείγματα Ανάδρομης Αφαίρεση της Αναδρομής

Διαβάστε περισσότερα

Αναδρομικοί Αλγόριθμοι

Αναδρομικοί Αλγόριθμοι Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας ένα ή περισσότερα στιγμιότυπα του ίδιου προβλήματος. Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας

Διαβάστε περισσότερα

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Matrix Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Περιεχόμενα παρουσίασης Πολλαπλασιασμός πίνακα με διάνυσμα Πολλαπλασιασμός πινάκων Επίλυση τριγωνικού

Διαβάστε περισσότερα

Παράλληλη Επεξεργασία Κεφάλαιο 2 Παραλληλισμός Δεδομένων

Παράλληλη Επεξεργασία Κεφάλαιο 2 Παραλληλισμός Δεδομένων Παράλληλη Επεξεργασία Κεφάλαιο 2 Παραλληλισμός Δεδομένων Κωνσταντίνος Μαργαρίτης Καθηγητής Τμήμα Εφαρμοσμένης Πληροφορικής Πανεπιστήμιο Μακεδονίας kmarg@uom.gr http://eos.uom.gr/~kmarg Αρετή Καπτάν Υποψήφια

Διαβάστε περισσότερα

Ευχαριστίες. Β. Ζησιμόπουλος

Ευχαριστίες. Β. Ζησιμόπουλος ÂÆÁÃÇÃ ÁÃ ÈÇ ÁËÌÊÁ ÃÇÈ Æ ÈÁËÌÀÅÁÇ ÂÀÆÏÆ ÌÅÀÅ ÈÄÀÊÇ ÇÊÁÃÀËÃ ÁÌÀÄ ÈÁÃÇÁÆÏÆÁÏÆ ÌÇÅ ËÂ ÏÊÀÌÁÃÀËÈÄÀÊÇ ÇÊÁÃÀË Ð Ö ÑÓ ÈÓÐÙÔÐÓ Ø Ø º Ñ ÔÓÙÐÓ Ò ¾¼¼ Ευχαριστίες Ευχαριστώ θερμά τους συνεργάτες μου στο Τμήμα Πληροφορικής

Διαβάστε περισσότερα

Κεφάλαιο 5ο: Εντολές Επανάληψης

Κεφάλαιο 5ο: Εντολές Επανάληψης Χρήστος Τσαγγάρης ΕΕ ΙΠ Τµήµατος Μαθηµατικών, Πανεπιστηµίου Αιγαίου Κεφάλαιο 5ο: Εντολές Επανάληψης Η διαδικασία της επανάληψης είναι ιδιαίτερη συχνή, αφού πλήθος προβληµάτων µπορούν να επιλυθούν µε κατάλληλες

Διαβάστε περισσότερα

υναμικός Προγραμματισμός

υναμικός Προγραμματισμός υναμικός Προγραμματισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιωνυμικοί Συντελεστές ιωνυμικοί

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #10: Αλγόριθμοι Διαίρει & Βασίλευε: Master Theorem, Αλγόριθμοι Ταξινόμησης, Πιθανοτικός

Διαβάστε περισσότερα

Διάλεξη 6: Δείκτες και Πίνακες

Διάλεξη 6: Δείκτες και Πίνακες Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου ΕΠΛ132 Αρχές Προγραμματισμού II Διάλεξη 6: Δείκτες και Πίνακες (Κεφάλαιο 12, KNK-2ED) Δημήτρης Ζεϊναλιπούρ http://www.cs.ucy.ac.cy/courses/epl132 6-1 Περιεχόμενο

Διαβάστε περισσότερα

Δυναμικός Προγραμματισμός

Δυναμικός Προγραμματισμός πρόβλημα μεγέθους Ν «Διαίρει και βασίλευε» : ανεξάρτητα υποπροβλήματα διάσπαση πρόβλημα μεγέθους k πρόβλημα μεγέθους Ν-k πρόβλημα μεγέθους Ν Σε κάποιες περιπτώσεις όμως τα υποπροβλήματα δεν είναι ανεξάρτητα

Διαβάστε περισσότερα

εισαγωγικές έννοιες Παύλος Εφραιμίδης Δομές Δεδομένων και

εισαγωγικές έννοιες Παύλος Εφραιμίδης Δομές Δεδομένων και Παύλος Εφραιμίδης 1 περιεχόμενα ενθετική ταξινόμηση ανάλυση αλγορίθμων σχεδίαση αλγορίθμων 2 ενθετική ταξινόμηση 3 ενθετική ταξινόμηση Βασική αρχή: Επιλέγει ένα-έναταστοιχείατηςμηταξινομημένης ακολουθίας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: Αλγόριθμοι

ΚΕΦΑΛΑΙΟ 5: Αλγόριθμοι ΚΕΦΑΛΑΙΟ 5: Αλγόριθμοι 5.1 Η έννοια του αλγορίθμου 5.2 Αναπαράσταση αλγορίθμων 5.3 Επινόηση αλγορίθμων 5.4 Δομές επανάληψης 5.5 Αναδρομικές δομές 5.6 Απόδοση και ορθότητα Οι διαφάνειες βασίζονται σε μεγάλο

Διαβάστε περισσότερα

Είδη εντολών. Απλές εντολές. Εντολές ελέγχου. Εκτελούν κάποια ενέργεια. Ορίζουν τον τρόπο με τον οποίο εκτελούνται άλλες εντολές

Είδη εντολών. Απλές εντολές. Εντολές ελέγχου. Εκτελούν κάποια ενέργεια. Ορίζουν τον τρόπο με τον οποίο εκτελούνται άλλες εντολές Μορφές Εντολών Είδη εντολών Απλές εντολές Εκτελούν κάποια ενέργεια Εντολές ελέγχου Ορίζουν τον τρόπο με τον οποίο εκτελούνται άλλες εντολές Εντολές και παραστάσεις Μιαεντολήείναιμιαπαράστασηπου ακολουθείται

Διαβάστε περισσότερα

Πληρουορική Γ Γσμμασίοσ

Πληρουορική Γ Γσμμασίοσ Πληρουορική Γ Γσμμασίοσ Προγραμματισμός και Αλγόριθμοι Από το και τημ Χελώμα στημ Ευριπίδης Βραχνός http://evripides.mysch.gr/ 2014 2015 1 Προγραμματισμός Ζάννειο Πρότυπο Πειραματικό Γυμνάσιο Πειραιά Ενότητα:

Διαβάστε περισσότερα

O Χρόνος Εκτέλεσης. προγραμμάτων ΚΕΦΑΛΑΙΟ 3. Τα θέματα αυτού του κεφαλαίου

O Χρόνος Εκτέλεσης. προγραμμάτων ΚΕΦΑΛΑΙΟ 3. Τα θέματα αυτού του κεφαλαίου ΚΕΦΑΛΑΙΟ 3 O Χρόνος Εκτέλεσης Προγραμμάτων Στο Κεφάλαιο 2 είδαμε δύο ριζικά διαφορετικούς αλγόριθμους ταξινόμησης: τον αλγόριθμο ταξινόμησης με εισαγωγή και τον αλγόριθμο ταξινόμησης με συγχώνευση. Υπάρχουν,

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 22/11/07

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 22/11/07 Ακαδ έτος 2007-2008 ΠΛΗΡΟΦΟΡΙΚΗ Ι Φερεντίνος 22/11/07 ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με ΑΜ σε 3, 7, 8 & 9 22/11/07 Παράδειγμα με if/else if και user input: import javautil*; public class Grades public

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 18 Dijkstra s Shortest Path Algorithm 1 / 12 Ο αλγόριθμος εύρεσης της συντομότερης διαδρομής του Dijkstra

Διαβάστε περισσότερα

Συνδυαστική Βελτιστοποίηση

Συνδυαστική Βελτιστοποίηση Τμήμα Εφαρμοσμένης Πληροφορικής, Παν. Μακεδονίας 1 Άγγελος Σιφαλέρας sifalera@uom.gr 4 η Διάλεξη Τμήμα Εφαρμοσμένης Πληροφορικής, Παν. Μακεδονίας 2 Knapsack Problem, (1/9) Ένας επενδυτής διαθέτει ένα χρηματικό

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Ενότητα 6 Πίνακες Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Τύπος πίνακα (array) Σύνθετος τύπος δεδομένων Αναπαριστά ένα σύνολο ομοειδών

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 Μάθημα: ΠΛΗΡΟΦΟΡΙΚΗ Ημερομηνία και ώρα εξέτασης: Τρίτη, 6 Ιουνίου 2006 07:30 10:30

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ & ΣΤΟΙΧΕΙΑ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ

ΑΛΓΟΡΙΘΜΟΙ & ΣΤΟΙΧΕΙΑ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ ΑΛΓΟΡΙΘΜΟΙ & ΣΤΟΙΧΕΙΑ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ Περίγραµµα Εισαγωγή Στοιχεία Πολυπλοκότητας Ηλίας Κ. Σάββας Επίκουρος Καθηγητής Τμήμα: Τεχνολογίας Πληροφορικής & Τηλεπικοινωνιών Email: savvas@teilar teilar.gr Αλγόριθµοι

Διαβάστε περισσότερα

Κεφάλαιο 10. Υποπρογράμματα

Κεφάλαιο 10. Υποπρογράμματα Κεφάλαιο 10 Υποπρογράμματα 10.1 Γενικός διδακτικός σκοπός Ο γενικός σκοπός του κεφαλαίου είναι να καταστούν ικανοί οι μαθητές να χρησιμοποιούν υποπρογράμματα για τη δημιουργία συνθέτων προγραμμάτων. 194

Διαβάστε περισσότερα

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Σχέσεις Αναδρομής Γραμμικές Σχέσεις Αναδρομής με σταθερούς συντελεστές

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Δέντρα Αναζήτησης Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Αναζήτηση Θέλουμε να διατηρήσουμε αντικείμενα με κλειδιά και να μπορούμε εκτός από

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #2: Πολυωνυμικοί Αλγόριθμοι, Εισαγωγή στα Γραφήματα, Αναζήτηση κατά Βάθος, Τοπολογική Ταξινόμηση

Διαβάστε περισσότερα

2.1. Εντολές. 2.2. Σχόλια. 2.3. Τύποι Δεδομένων

2.1. Εντολές. 2.2. Σχόλια. 2.3. Τύποι Δεδομένων 2 Βασικές Εντολές 2.1. Εντολές Οι στην Java ακολουθούν το πρότυπο της γλώσσας C. Έτσι, κάθε εντολή που γράφουμε στη Java θα πρέπει να τελειώνει με το ερωτηματικό (;). Όπως και η C έτσι και η Java επιτρέπει

Διαβάστε περισσότερα

Μια Επισκόπηση της Ύλης & Μερικές Οδηγίες

Μια Επισκόπηση της Ύλης & Μερικές Οδηγίες Μια Επισκόπηση της Ύλης & Μερικές Οδηγίες Βαγγέλης ούρος douros@aueb.gr 1 11/6/2012 Αλγόριθμοι, Εαρινό Εξάμηνο 2012, Φροντιστήριο #14 Γενικά Σχόλια (1) 2 Για το τελικό διαγώνισμα θα χρειαστείτε: Φοιτητική

Διαβάστε περισσότερα

Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών

Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Υλοποίηση ΑΤΔ με Συνδεδεμένες Λίστες -

Διαβάστε περισσότερα

ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου

ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου Εαρινό Εξάµηνο 2009 Κάτια Παπακωνσταντινοπούλου 1. Εστω A ένα µη κενό σύνολο. Να δείξετε ότι η αλγεβρική δοµή (P(A), ) είναι αβελιανή οµάδα. 2. Εστω ένα ξενοδοχείο

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ. Δρ. Ιωάννης Λυχναρόπουλος 2014-2015. Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ. Δρ. Ιωάννης Λυχναρόπουλος 2014-2015. Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ Δρ. Ιωάννης Λυχναρόπουλος 2014-2015 Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Τι είναι τα υποπρογράμματα Αυτόνομες μονάδες κώδικα Γραμμένα από τον χρήστη Η δομή

Διαβάστε περισσότερα

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Πρόβλημα 1 Το πρώτο πρόβλημα λύνεται με τη μέθοδο του Δυναμικού Προγραμματισμού. Για να το λύσουμε με Δυναμικό Προγραμματισμό

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ Ι (Χρήση της C) 6 η Θεωρία ΜΟΝΟΔΙΑΣΤΑΤΟΙ ΠΙΝΑΚΕΣ

Προγραμματισμός Η/Υ Ι (Χρήση της C) 6 η Θεωρία ΜΟΝΟΔΙΑΣΤΑΤΟΙ ΠΙΝΑΚΕΣ Προγραμματισμός Η/Υ Ι (Χρήση της C) 6 η Θεωρία ΜΟΝΟΔΙΑΣΤΑΤΟΙ ΠΙΝΑΚΕΣ Σκοπός του μαθήματος Σκοπός του παρόντος μαθήματος είναι να μάθετε να κάνετε εισαγωγή δεδομένων σε πίνακες και περαιτέρω επεξεργασία

Διαβάστε περισσότερα

Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client

Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client ΕΣΔ 516 Τεχνολογίες Διαδικτύου Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client Περιεχόμενα Περιεχόμενα Javascript και HTML Βασική σύνταξη Μεταβλητές Τελεστές Συναρτήσεις

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 4 ΣΥΝΟΛΑ - ΛΕΞΙΚΑ

ΕΝΟΤΗΤΑ 4 ΣΥΝΟΛΑ - ΛΕΞΙΚΑ ΕΝΟΤΗΤΑ 4 ΣΥΝΟΛΑ - ΛΕΞΙΚΑ ΗΥ240 - Παναγιώτα Φατούρου Σύνολα (Sets) Τα µέλη ενός συνόλου προέρχονται από κάποιο χώρο U αντικειµένων/στοιχείων (π.χ., σύνολα αριθµών, λέξεων, ζευγών αποτελούµενων από έναν

Διαβάστε περισσότερα

Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Λεξικό, Union Find ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαχείριση ιαμερίσεων Συνόλου Στοιχεία

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 9 ΕΝΩΣΗ ΞΕΝΩΝ ΣΥΝΟΛΩΝ ( ΟΜΕΣ UNION-FIND)

ΕΝΟΤΗΤΑ 9 ΕΝΩΣΗ ΞΕΝΩΝ ΣΥΝΟΛΩΝ ( ΟΜΕΣ UNION-FIND) ΕΝΟΤΗΤΑ 9 ΕΝΩΣΗ ΞΕΝΩΝ ΣΥΝΟΛΩΝ ( ΟΜΕΣ UNION-FIND) Ένωση Ξένων Συνόλων (Disjoint Sets with Union) S 1,, S k : ξένα υποσύνολα ενός συνόλου U δηλ., S i S j =, αν i j, και S 1 S k = U. Λειτουργίες που θέλουµε

Διαβάστε περισσότερα

Αλγόριθµοι Brute-Force και Διεξοδική Αναζήτηση

Αλγόριθµοι Brute-Force και Διεξοδική Αναζήτηση Αλγόριθµοι Brute-Force και Διεξοδική Αναζήτηση Περίληψη Αλγόριθµοι τύπου Brute-Force Παραδείγµατα Αναζήτησης Ταξινόµησης Πλησιέστερα σηµεία Convex hull Βελτιστοποίηση Knapsack problem Προβλήµατα Ανάθεσης

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

Διάλεξη 13: Δομές Δεδομένων ΙΙ (Ταξινομημένες Λίστες)

Διάλεξη 13: Δομές Δεδομένων ΙΙ (Ταξινομημένες Λίστες) Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου ΕΠΛ132 Αρχές Προγραμματισμού II Διάλεξη 13: Δομές Δεδομένων ΙΙ (Ταξινομημένες Λίστες) Δημήτρης Ζεϊναλιπούρ http://www.cs.ucy.ac.cy/courses/epl132 13-1 Περιεχόμενο

Διαβάστε περισσότερα

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει;

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει; ΜΑΘΗΜΑ 7 Κλήση αλγορίθμου από αλγόριθμο Αναδρομή Σ χ ο λ ι κ ο Β ι β λ ι ο ΥΠΟΚΕΦΑΛΑΙΟ 2.2.7: ΕΝΤΟΛΕΣ ΚΑΙ ΔΟΜΕΣ ΑΛΓΟΡΙΘΜΟΥ ΠΑΡΑΓΡΑΦΟI 2.2.7.5: Κλήση αλγορίθμου από αλγόριθμο 2.2.7.6: Αναδρομή εισαγωγη

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 1. Μαθηματικό Υπόβαθρο 23, 26 Ιανουαρίου 2007 Δρ. Παπαδοπούλου Βίκη 1 1.1. Σύνολα Ορισμός : Σύνολο μια συλλογή από αντικείμενα Στοιχεία: Μέλη συνόλου Τα στοιχεία

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Πίνακες Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ακ. Έτος 2012-2013 Πίνακες Πολλές φορές θέλουμε να κρατήσουμε στην μνήμη πολλά αντικείμενα

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ. Πως γίνεται ο ορισμός μιας διαδικασίας; Να δοθούν σχετικά παραδείγματα. ΑΡΧΗ Εντολές ΤΕΛΟΣ_ΔΙΑΔΙΚΑΣΙΑΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ. Πως γίνεται ο ορισμός μιας διαδικασίας; Να δοθούν σχετικά παραδείγματα. ΑΡΧΗ Εντολές ΤΕΛΟΣ_ΔΙΑΔΙΚΑΣΙΑΣ Πως γίνεται ο ορισμός μιας διαδικασίας; Να δοθούν σχετικά παραδείγματα. Οι διαδικασίες μπορούν να εκτελέσουν οποιαδήποτε λειτουργία και δεν επιστρέφουν μια τιμή όπως οι συναρτήσεις. Κάθε διαδικασία έχει

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

Κρυπτογραφία. Κρυπτοσυστήματα ροής. Πέτρος Ποτίκας. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Κρυπτογραφία. Κρυπτοσυστήματα ροής. Πέτρος Ποτίκας. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κρυπτογραφία Κρυπτοσυστήματα ροής Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 22 Περιεχόμενα 1 Εισαγωγή 2 Υπολογιστική

Διαβάστε περισσότερα

Κατακερματισμός. 4/3/2009 Μ.Χατζόπουλος 1

Κατακερματισμός. 4/3/2009 Μ.Χατζόπουλος 1 Κατακερματισμός 4/3/2009 Μ.Χατζόπουλος 1 H ιδέα που βρίσκεται πίσω από την τεχνική του κατακερματισμού είναι να δίνεται μια συνάρτησης h, που λέγεται συνάρτηση κατακερματισμού ή παραγωγής τυχαίων τιμών

Διαβάστε περισσότερα

Τεχνικός Εφαρμογών Πληροφορικής

Τεχνικός Εφαρμογών Πληροφορικής Τεχνικός Εφαρμογών Πληροφορικής ΓΛΩΣΣΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΠΙΝΑΚΕΣ Εξάμηνο: 2014Β Διδάσκουσα: Ηλεκτρονική Τάξη: Κανελλοπούλου Χριστίνα_ΠΕ19 Πληροφορικής Περιεχόμενα Πίνακες Τι είναι πίνακας; Οι πίνακες χρησιμοποιούνται

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι;

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; ΘΕΜΑΤΑ ΔΕΝΔΡΩΝ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΠΛΗ0 ΑΣΚΗΣΗ Για τις ερωτήσεις - θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; Β Ε Α 6 Δ 5 9 8 0 Γ 7 Ζ Η. Σ/Λ Δυο από τα συνδετικά

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΚΑΙ ΕΞΕΤΑΣΤΕΑ ΥΛΗ. ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Με τις Γλώσσες Προγραμματισμού Pascal, C, C++, Java

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΚΑΙ ΕΞΕΤΑΣΤΕΑ ΥΛΗ. ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Με τις Γλώσσες Προγραμματισμού Pascal, C, C++, Java ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΚΑΙ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Με τις Γλώσσες Προγραμματισμού Pascal, C, C++, Java 1 ο & 2 o ΕΠΙΠΕΔΟ Αναλυτικό Πρόγραμμα Εξετάσεων Σελίδα: 1/20 Απρίλιος 2011 Γλωσσών Προγραμματισμού

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 10β: Αλγόριθμοι Γραφημάτων-Γραφήματα- Αναπαράσταση Γραφημάτων- Διερεύνηση Πρώτα σε Πλάτος (BFS) Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Έστω t, t,..., t ν οι παρατηρήσεις µιας ποσοτικής µεταβλητής Χ ενός δείγµατος µεγέθους ν, που έχουν µέση τιµή x. Σχηµατίζουµε

Διαβάστε περισσότερα

Chapter 9: NP-Complete Problems

Chapter 9: NP-Complete Problems Θεωρητική Πληροφορική Ι: Αλγόριθμοι και Πολυπλοκότητα Chapter 9: NP-Complete Problems 9.3 Graph-Theoretic Problems (Συνέχεια) 9.4 Sets and Numbers Γιώργος Αλεξανδρίδης gealexan@mail.ntua.gr Κεφάλαιο 9:

Διαβάστε περισσότερα

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος.

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος. 1. Δώστε τον ορισμό του προβλήματος. 2. Σι εννοούμε με τον όρο επίλυση ενός προβλήματος; 3. Σο πρόβλημα του 2000. 4. Σι εννοούμε με τον όρο κατανόηση προβλήματος; 5. Σι ονομάζουμε χώρο προβλήματος; 6.

Διαβάστε περισσότερα

Εκτίμηση μη-γραμμικών χαρακτηριστικών

Εκτίμηση μη-γραμμικών χαρακτηριστικών Εκτίμηση μη-γραμμικών χαρακτηριστικών Μη-γραμμικά χαρακτηριστικά ή αναλλοίωτα μέτρα Διάσταση. Ευκλείδια. Τοπολογική 3. Μορφοκλασματική (συσχέτισης, πληροφορίας, μέτρησης κουτιών, ) Εκθέτες Lypunov (μεγαλύτερος,

Διαβάστε περισσότερα

Γραφικά και Εικονική Πραγματικότητα Απαλλακτική εργασία 2012. Παπαπαύλου Χρήστος ΑΜ: 6609

Γραφικά και Εικονική Πραγματικότητα Απαλλακτική εργασία 2012. Παπαπαύλου Χρήστος ΑΜ: 6609 Γραφικά και Εικονική Πραγματικότητα Απαλλακτική εργασία 2012 0B Παπαπαύλου Χρήστος ΑΜ: 6609 Περιεχόμενα Πίνακας Περιεχομένων...2 Περιεχόμενα...2 Προγραμματιστικές λεπτομέρειες υλοποίησης...3 geom.h...3

Διαβάστε περισσότερα

Διάλεξη 2. Μεταβλητές - Δομές Δεδομένων - Eίσοδος δεδομένων - Έξοδος: Μορφοποίηση - Συναρτήσεις. Διοργάνωση : ΚΕΛ ΣΑΤΜ

Διάλεξη 2. Μεταβλητές - Δομές Δεδομένων - Eίσοδος δεδομένων - Έξοδος: Μορφοποίηση - Συναρτήσεις. Διοργάνωση : ΚΕΛ ΣΑΤΜ Διάλεξη 2 Μεταβλητές - Δομές Δεδομένων - Eίσοδος δεδομένων - Έξοδος: Μορφοποίηση - Συναρτήσεις Διοργάνωση : ΚΕΛ ΣΑΤΜ Διαφάνειες: Skaros, MadAGu Παρουσίαση: MadAGu Άδεια: Creative Commons 3.0 2 Internal

Διαβάστε περισσότερα

Φροντιστήριο 9 Λύσεις

Φροντιστήριο 9 Λύσεις Άσκηση 1 Φροντιστήριο 9 Λύσεις Να κατασκευάσετε μια μηχανή Turing με δύο ταινίες η οποία να αποδέχεται στην πρώτη της ταινία μια οποιαδήποτε λέξη w {a,b} * και να γράφει τη λέξη w R στη δεύτερη της ταινία.

Διαβάστε περισσότερα

Αλγόριθμοι Τυφλής Αναζήτησης

Αλγόριθμοι Τυφλής Αναζήτησης Τεχνητή Νοημοσύνη 04 Αλγόριθμοι Τυφλής Αναζήτησης Αλγόριθμοι Τυφλής Αναζήτησης (Blind Search Algorithms) Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει αξιολόγηση των καταστάσεων.

Διαβάστε περισσότερα

242 -ΕισαγωγήστουςΗ/Υ

242 -ΕισαγωγήστουςΗ/Υ 1 242 -ΕισαγωγήστουςΗ/Υ ΤµήµαΜαθηµατικών, Πανεπιστήµιο Ιωαννίνων Άρτια Α.Μ. (0-2-4-6-8) 2 ήλωση: Πίνακες στην ΕΑΓ δηλωση ( [1 : 1, 1 : 2,..., 1: ν ] ) παραταξη ; Π.χ.: δηλωση

Διαβάστε περισσότερα

Κεφάλαιο 5.4-5.11: Επαναλήψεις (oι βρόγχοιfor, do-while) (Διάλεξη 10) Εντολές Επανάληψης που θα καλυφθούν σήμερα

Κεφάλαιο 5.4-5.11: Επαναλήψεις (oι βρόγχοιfor, do-while) (Διάλεξη 10) Εντολές Επανάληψης που θα καλυφθούν σήμερα Κεφάλαιο 5.4-5.11: Επαναλήψεις (oι βρόγχοιfor, do-while) (Διάλεξη 10) 10-1 Εντολές Επανάληψης που θα καλυφθούν σήμερα Διάλεξη 9 - Δευτέρα while() τελεστές postfix/prefix (++, --,...) και σύνθετοι τελεστές

Διαβάστε περισσότερα

Μαθησιακές δυσκολίες ΙΙ. Παλαιγεωργίου Γιώργος Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών Τηλεπικοινωνιών και Δικτύων, Πανεπιστήμιο Θεσσαλίας

Μαθησιακές δυσκολίες ΙΙ. Παλαιγεωργίου Γιώργος Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών Τηλεπικοινωνιών και Δικτύων, Πανεπιστήμιο Θεσσαλίας Μαθησιακές δυσκολίες ΙΙ Παλαιγεωργίου Γιώργος Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών Τηλεπικοινωνιών και Δικτύων, Πανεπιστήμιο Θεσσαλίας Μάρτιος 2010 Προηγούμενη διάλεξη Μαθησιακές δυσκολίες Σε όλες

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 27/01/2013

ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 27/01/2013 ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 27/01/2013 ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

Παράδειγμα #1 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΕΠΙΜΕΛΕΙΑ: Ι. Λυχναρόπουλος

Παράδειγμα #1 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΕΠΙΜΕΛΕΙΑ: Ι. Λυχναρόπουλος Παράδειγμα #1 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΕΠΙΜΕΛΕΙΑ: Ι. Λυχναρόπουλος 1. Πως ορίζεται και τι σημαίνει ο όρος flop στους επιστημονικούς υπολογισμούς. Απάντηση: Ο όρος flop σημαίνει floating point operation

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ... 11. Κεφάλαιο 2 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ: BΑΣΙΚΕΣ ΕΝΝΟΙΕΣ... 29

Περιεχόμενα. Κεφάλαιο 1 ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ... 11. Κεφάλαιο 2 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ: BΑΣΙΚΕΣ ΕΝΝΟΙΕΣ... 29 Περιεχόμενα Πρόλογος 5 Κεφάλαιο ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα βελτιστοποίησης Γραμμικά προγράμματα Ακέραια προγράμματα Τετραγωνικά προγράμματα Διατύπωση προβλήματος Σύμβαση λύσης Κεφάλαιο ΓΡΑΜΜΙΚΟΣ

Διαβάστε περισσότερα

Βασικά Στοιχεία της Java

Βασικά Στοιχεία της Java Βασικά Στοιχεία της Java Παύλος Εφραιμίδης Java Βασικά Στοιχεία της γλώσσας Java 1 Τύποι Δεδομένων Η Java έχει δύο κατηγορίες τύπων δεδομένων: πρωτογενείς (primitive) τύπους δεδομένων αναφορές Java Βασικά

Διαβάστε περισσότερα

Διάλεξη 9: Αλγόριθμοι Αμοιβαίου Αποκλεισμού με τη χρήση μεταβλητών Ανάγνωσης/Εγγραφής. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 9: Αλγόριθμοι Αμοιβαίου Αποκλεισμού με τη χρήση μεταβλητών Ανάγνωσης/Εγγραφής. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 9: Αλγόριθμοι Αμοιβαίου Αποκλεισμού με τη χρήση μεταβλητών Ανάγνωσης/Εγγραφής ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Τι θα δούμε σήμερα Αλγόριθμος Ψησταριάς (Bakery Algorithm) Αλγόριθμος 2- επεξεργαστών

Διαβάστε περισσότερα

Κεφάλαιο 2.6: Είσοδος / Έξοδος εδοµένων, Μορφοποίηση εδοµένων Εξόδου. ( ιάλεξη 7) ιδάσκων: ηµήτρης Ζεϊναλιπούρ

Κεφάλαιο 2.6: Είσοδος / Έξοδος εδοµένων, Μορφοποίηση εδοµένων Εξόδου. ( ιάλεξη 7) ιδάσκων: ηµήτρης Ζεϊναλιπούρ Κεφάλαιο 2.6: Είσοδος / Έξοδος εδοµένων, Μορφοποίηση εδοµένων Εξόδου ( ιάλεξη 7) ιδάσκων: ηµήτρης Ζεϊναλιπούρ 1 Είσοδος/ Έξοδος Σε σχεδόν όλα τα προγράµµατα πρέπει να πάρουµε κάποια δεδοµένα και να δώσουµε

Διαβάστε περισσότερα

Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές

Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ευθύγραμμες Απλά Συνδεδεμένες Λίστες (εισαγωγή, εύρεση, διαγραφή) Ευθύγραμμες Διπλά Συνδεδεμένες Λίστες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

ΠΙΝΑΚΑΣ 3-1 Προσομοιωση και Βελτιστοποιηση Συστηματος (Haimes, 1977) ΠΡΑΓΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΦΥΣΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΑΘΗΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΟΣ

ΠΙΝΑΚΑΣ 3-1 Προσομοιωση και Βελτιστοποιηση Συστηματος (Haimes, 1977) ΠΡΑΓΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΦΥΣΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΑΘΗΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΟΣ 3 ΤΕΧΝΙΚΕΣ ΑΝΑΛΥΣΗΣ 3.1 Εισαγωγη ΣΥΣΤΗΜΑΤΩΝ Τα συστηματα εφαρμοζονται σε αναπτυξιακα προγραμματα, σε μελετες σχεδιασμου εργων, σε προγραμματα διατηρησης ή προστασιας περιβαλλοντος και υδατικων πορων και

Διαβάστε περισσότερα

Μοντελοποίηση Υπολογισμού. Γραμματικές Πεπερασμένα Αυτόματα Κανονικές Εκφράσεις

Μοντελοποίηση Υπολογισμού. Γραμματικές Πεπερασμένα Αυτόματα Κανονικές Εκφράσεις Μοντελοποίηση Υπολογισμού Γραμματικές Πεπερασμένα Αυτόματα Κανονικές Εκφράσεις Προβλήματα - Υπολογιστές Δεδομένου ενός προβλήματος υπάρχουν 2 σημαντικά ερωτήματα: Μπορεί να επιλυθεί με χρήση υπολογιστή;

Διαβάστε περισσότερα

ΠΡΟΓΡΜΜΑΤΑ ΣΕ C. Γράψτε σε γλώσσα προγραμματισμού C τη συνάρτηση:

ΠΡΟΓΡΜΜΑΤΑ ΣΕ C. Γράψτε σε γλώσσα προγραμματισμού C τη συνάρτηση: ΠΡΟΓΡΜΜΑΤΑ ΣΕ C Γράψτε σε γλώσσα προγραμματισμού C τη συνάρτηση: int b_to_d(int dyad[16]) που δέχεται ως είσοδο έναν θετικό ακέραιο δυαδικό αριθμό με τη μορφή πίνακα δυαδικών ψηφίων και επιστρέφει τον

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο 3ο. ΚΕΦΑΛΑΙΟ 5ο 6ο. ΚΕΦΑΛΑΙΟ 7ο. Δομημένος Προγραμματισμός - Γενικές Ασκήσεις Επανάληψης

ΚΕΦΑΛΑΙΟ 1ο 3ο. ΚΕΦΑΛΑΙΟ 5ο 6ο. ΚΕΦΑΛΑΙΟ 7ο. Δομημένος Προγραμματισμός - Γενικές Ασκήσεις Επανάληψης ΚΕΦΑΛΑΙΟ 1ο 3ο 1. Συμπληρώστε τα κενά με τη λέξη που λείπει. α. Ένα πρόβλημα το χωρίζουμε σε άλλα απλούστερα, όταν είναι ή όταν έχει τρόπο επίλυσης. β. Η επίλυση ενός προβλήματος προϋποθέτει την του. γ.

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Να αποδείξετε ότι για δύο συμπληρωματικά ενδεχόμενα Α και Α ισχύει: Ρ(Α )=-Ρ(Α) Μονάδες 7 Α. Να ορίσετε το μέτρο διασποράς εύρος ή

Διαβάστε περισσότερα

ιδάσκων: ηµήτρης Ζεϊναλιπούρ

ιδάσκων: ηµήτρης Ζεϊναλιπούρ Κεφάλαιο 1.3-1.4: Εισαγωγή Στον Προγραµµατισµό ( ιάλεξη 2) ιδάσκων: ηµήτρης Ζεϊναλιπούρ Περιεχόµενα Εισαγωγικές Έννοιες - Ορισµοί Ο κύκλος ανάπτυξης προγράµµατος Παραδείγµατα Πότε χρησιµοποιούµε υπολογιστή?

Διαβάστε περισσότερα

Το πλήθος των δεικτών και οι µεγαλύτερες τιµές που µπορούν να πάρουν ορίζεται µε µία δηλωτική εντολή που λέγεται Dimension.

Το πλήθος των δεικτών και οι µεγαλύτερες τιµές που µπορούν να πάρουν ορίζεται µε µία δηλωτική εντολή που λέγεται Dimension. Χρήστος Τσαγγάρης ΕΕ ΙΠ Τµήµατος Μαθηµατικών, Πανεπιστηµίου Αιγαίου Κεφάλαιο 6ο: Πίνακες Στο κεφάλαιο αυτό θα ασχοληθούµε µε µια από πιο ενδιαφέρουσες δοµές δεδοµένων, τους πίνακες. Οι πίνακες είναι σύνθετες

Διαβάστε περισσότερα

«ΣΥΝΕΧΗ ΚΛΑΣΜΑΤΑ ΚΑΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ: ΠΡΟΣΕΓΓΙΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ»

«ΣΥΝΕΧΗ ΚΛΑΣΜΑΤΑ ΚΑΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ: ΠΡΟΣΕΓΓΙΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ» Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο «ΣΥΝΕΧΗ ΚΛΑΣΜΑΤΑ ΚΑΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ: ΠΡΟΣΕΓΓΙΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ» ΜΠΙΘΗΜΗΤΡΗ ΒΑΣΙΛΙΚΗ ΣΤΕΛΛΑ Επιβλέπουσα: Αν. Καθηγήτρια

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 26-01-2014

ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 26-01-2014 ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 26-01-2014 ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη Σωστό, αν είναι

Διαβάστε περισσότερα

1. ΓΛΩΣΣΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ C++

1. ΓΛΩΣΣΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ C++ Email: liliadis@fmenr.duth.gr 1. ΓΛΩΣΣΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ C++ Τα προγράµµατα αποτελούνται από εντολές οι οποίες γράφονται σε έναν απλό επεξεργαστή που προσφέρει και το Περιβάλλον της Visual C++. Οι εντολές

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Ενότητα 12 Δομές (Structures) Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Αφαιρετικότητα Με τις συναρτήσεις επιτυγχάνουμε αφαιρετικότητα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ ΚΕΦΑΛΑΙΟ ΔΙΑΤΑΞΕΙΣ ΜΕΤΑΘΕΣΕΙΣ ΣΥΝΔΥΑΣΜΟΙ Εισαγωγή. Οι σχηματισμοί που προκύπτουν με την επιλογή ενός συγκεκριμένου αριθμού στοιχείων από το ίδιο σύνολο καλούνται διατάξεις αν μας ενδιαφέρει η σειρά καταγραφή

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 3: Πραγματικοί αριθμοί Πυθαγόρειο Θεώρημα ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 2: Πραγματικοί

Διαβάστε περισσότερα

Συνεχή Κλάσματα. Εμμανουήλ Καπνόπουλος Α.Μ 282

Συνεχή Κλάσματα. Εμμανουήλ Καπνόπουλος Α.Μ 282 Συνεχή Κλάσματα Εμμανουήλ Καπνόπουλος Α.Μ 282 5 Νοεμβρίου 204 Ορισμός και ιδιότητες: Ορισμός: Έστω a 0, a, a 2,...a n ανεξάρτητες μεταβλητές, n N σχηματίζουν την ακολουθία {[a 0, a,..., a n ] : n N} όπου

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ Μ. Γρηγοριάδου Ρ. Γόγουλου Ενότητα: Η Διδασκαλία του Προγραμματισμού Περιεχόμενα Παρουσίασης

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #: Εύρεση Ελαχίστων Μονοπατιών σε Γραφήματα που Περιλαμβάνουν και Αρνητικά Βάρη: Αλγόριθμος

Διαβάστε περισσότερα

Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα

Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αντιμετώπιση NP- υσκολίας Αν P NP, όχι αλγόριθμος

Διαβάστε περισσότερα

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος.

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ Άσκηση 1 (Προτάθηκε από Χρήστο Κανάβη) Έστω CV 0.4 όπου CV ο συντελεστής μεταβολής, και η τυπική απόκλιση s = 0. ενός δείγματος που έχει την ίδια

Διαβάστε περισσότερα

ΤΥΦΛΗ ΑΝΑΖΗΤΗΣΗ (1) ΣΤΡΑΤΗΓΙΚΗ Ή ΑΛΓΟΡΙΘΜΟΣ ΑΝΑΖΗΤΗΣΗΣ

ΤΥΦΛΗ ΑΝΑΖΗΤΗΣΗ (1) ΣΤΡΑΤΗΓΙΚΗ Ή ΑΛΓΟΡΙΘΜΟΣ ΑΝΑΖΗΤΗΣΗΣ ΤΥΦΛΗ ΑΝΑΖΗΤΗΣΗ (1) ΣΤΡΑΤΗΓΙΚΗ Ή ΑΛΓΟΡΙΘΜΟΣ ΑΝΑΖΗΤΗΣΗΣ Μια αυστηρά καθορισµένη ακολουθία ενεργειών µε σκοπό τη λύση ενός προβλήµατος. Χαρακτηριστικά οθέν πρόβληµα: P= Επιλυθέν πρόβληµα: P s

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα