F r. 1

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "F r. www.ylikonet.gr 1"

Transcript

1 Σύνθετα θέματα στερεού. Ομάδα Γ Στρεφόµενο Πλαίσιο Το τετράγωνο πλαίσιο του παρακάτω σχήµατος το οποίο ισορροπεί σε οριζόντιο επίπεδο, αποτελείται από 4 όµοιες οµογενείς ράβδους µήκους l = 60cm και µάζας m = 0,5Kg η κάθε µια. Η κορυφή Γ του πλαισίου, γύρω από την οποία µπορεί να περιστρέφεται χωρίς τριβές, είναι στερεωµένη στο οριζόντιο επίπεδο. F r Τη χρονική στιγµή t = 0, ασκείται στη κορυφή Α του πλαισίου σταθερή (κατά µέτρο) δύναµη F = 10 N, όπως φαίνεται στο σχήµα (F ΑΓ). i) Να προσδιοριστεί η ροπή αδράνειας του πλαισίου ως προς οριζόντιο άξονα, κάθετο στο επίπεδο ΑΒΓ, ο οποίος διέρχεται από το Γ. ii) Να εξετάσετε εάν το πλαίσιο, λόγω της δύναµης F θα περιστραφεί προς τα δεξιά. Αν ναι, να προσδιοριστεί η αρχική γωνιακή επιτάχυνση. iii) Να προσδιοριστεί ο ρυθµός µεταβολής της στροφορµής του πλαισίου ως προς τον άξονα περιστροφής που διέρχεται από το Γ, τη στιγµή κατά την οποία η διαγώνιος ΑΓ είναι κατακόρυφη. iv) Να προσδιοριστεί το έργο της δύναµης F, ως την στιγµή που η πλευρά ΓΒ του πλαισίου, ακουµπά το οριζόντιο επίπεδο µε γωνιακή ταχύτητα ω = 7,9 rad/sec. ίνεται: Ι (ράβδου) = ml, g=10m s 3.3. Μια ράβδος και δυο δακτύλιοι Με αφορµή ένα πρόβληµα του βιβλίου κατεύθυνσης της Γ Λυκείου Μία οµογενής ράβδος µάζας M και µήκους L=4m βρίσκεται στο διάστηµα µακριά από βαρυτικές επιδράσεις εκτελώντας επίπεδη στροφική κίνηση γύρω από το κέντρο της. υο δακτύλιοι αµελητέου πάχους και µάζας m=m/1 ο κάθε ένας είναι περασµένοι εφαρµοστά στην ράβδο και συγκρατούνται µε αβαρές νήµα κοντά στο κέντρο της και σε ίσες αποστάσεις από αυτό. Μεταξύ ράβδου και δακτυλίων δεν υπάρχουν τριβές. Κάποια στιγµή το νήµα σπάει και επειδή δεν υπάρχει η απαιτούµενη κεντροµόλος δύναµη οι 1

2 δακτύλιοι κινούνται προς τα άκρα της ράβδου. Όταν οι δακτύλιοι απέχουν από το κέντρο κατά x=1m η γωνιακή ταχύτητα της ράβδου είναι ω 1 =rad/s. i) Βρείτε τη γωνιακή ταχύτητα ω της ράβδου τη στιγµή που οι δακτύλιοι φτάνουν στα άκρα της. ii) Με δεδοµένο ότι τη στιγµή που οι δακτύλιοι απέχουν από το κέντρο της ράβδου κατά x=1m η συνιστώσα της ταχύτητας του κάθε ενός πάνω στη ράβδο είναι υ 1 = 7m / s υπολογίστε την ταχύτητα r υ του κάθε δακτυλίου τη στιγµή που αυτοί θα φτάνουν στα άκρα της ράβδου. iii) Υπολογίστε τη γωνιακή ταχύτητα της ράβδου όταν πλέον οι δακτύλιοι την έχουν εγκαταλείψει. ίνεται ότι η ροπή αδράνειας της ράβδου ως προς το κέντρο της είναι: Μια ράβδος γλιστρά στις πλευρές ορθής γωνίας. Ορθή γωνία xoy βρίσκεται σε κατακόρυφο επίπεδο και οι πλευρές της Ox και Oy είναι οριζόντια και κατακόρυφη αντιστοίχως. Μια λεπτή οµογενής ράβδος ΑΒ µήκους L και µάζας m µπορεί να κινείται χωρίς τριβές µε τα άκρα της σε επαφή µε τις πλευρές της γωνίας. Αρχικά η ράβδος είναι ακίνητη και ο άξονάς της είναι κατακόρυφος. Αφήνουµε την ράβδο ελεύθερη να κινηθεί. Α) Να βρεθούν συναρτήσει της γωνίας φ που σχηµατίζει η ράβδος µε την πλευρά Oy της γωνίας xoy. i) Η γωνιακή ταχύτητα της ράβδου ii) Η γωνιακή επιτάχυνση της ράβδου iii) Οι δυνάµεις που δέχεται η ράβδος από τις πλευρές της γωνίας I 1 1 = ML. Β) Να βρεθεί η γωνία φ για την οποία η ράβδος χάνει την επαφή της µε την πλευρά Oy. ίνεται η ροπή αδράνειας λεπτής οµογενούς ράβδου µάζας m και µήκους L ως προς άξονα που διέρχεται από το µέσον της και είναι κάθετος σε αυτήν 1 ml Ι= Πλαστική κρούση υλικού σηµείου µε ελεύθερη ράβδο Στο διπλανό σχήµα εικονίζεται µια λεπτή οµογενής ράβδος ΑΒ µήκους l=m και µάζας Μ=1Kg, οποία ηρεµεί σε λείο οριζόντιο τραπέζι. Στο άκρο Α τις ράβδου υπάρχει µια µικρή ακίδα κάθετη στην ράβδο. Πάνω στο τραπέζι είναι χαραγµένο ένα ηµικυκλικό αυλάκι µε διάµετρο την ΑΒ. Μια µικρή σφαίρα µάζας m=0,5kg αµελητέας ακτίνας κινείται χωρίς να περιστρέφεται µε ταχύτητα υ 0 =8m/s και «καρφώνεται» στην ακίδα της ράβδου. Να υπολογιστούν: i) Η γωνιακή ταχύτητα περιστροφής της ράβδου. ii) Η ταχύτητα του µέσου Μ της ράβδου αµέσως µετά την κρούση υ 0 Α Β

3 iii) Το ποσοστό της αρχικής κινητικής ενέργειας της σφαίρας που µεταβιβάστηκε στην ράβδο. iv) Το ποσοστό της αρχικής κινητικής ενέργειας της σφαίρας που µετατράπηκε σε θερµική. ίνεται ο ροπή αδράνειας λεπτής οµογενούς ράβδου µάζας Μ και µήκους l ως προς άξονα που διέρχεται 1 από το µέσον της και είναι κάθετος σ αυτήν I= Ml Ένας κύλινδρος που σπινάρει Νήµα τυλίγεται σε λεπτό αυλάκι κατά µήκος της περιφέρειας κυλίνδρου, που έχει µάζα M=kg και ακτίνα R = 0,m. Ο κύλινδρος συγκρατείται αρχικά στη θέση που φαίνεται στο σχήµα, µε το νήµα να εξέχει τεντωµένο από το πάνω µέρος σε οριζόντια θέση, ενώ το τυλιγµένο µήκος του είναι L=m. Το επίπεδο είναι οριζόντιο και ο συντελεστής τριβής µεταξύ δαπέδου και κυλίνδρου είναι µ ορ = µ ολ = µ = 0,1. Ασκώντας στο άκρο του νήµατος σταθερή οριζόντια δύναµη F=18N αφήνουµε ελεύθερο τον κύλινδρο τη στιγµή t=0 να κινηθεί. Το νήµα ξετυλίγεται χωρίς να γλιστρά και παραµένει τεντωµένο µέχρι να ξετυλιχτεί όλο και να φύγει από τον κύλινδρο. Α) Για όσο χρόνο το νήµα ξετυλίγεται, Α-1) Να εξετάσετε ποιά φορά έχει η τριβή. Α-) Να εξετάσετε επίσης αν ο κύλινδρος κυλίεται µε ή χωρίς ολίσθηση. Α-3) Να υπολογίσετε τα µέτρα της επιτάχυνσης του κέντρου µάζας του κυλίνδρου, καθώς και της γωνιακής του επιτάχυνσης, όσο τον τραβάµε µε το νήµα. Β) Μέχρι τη στιγµή t 1 που ξετυλίγεται όλο το νήµα, Β-1) Κατά πόσο διάστηµα x έχει µετατοπιστεί ο κύλινδρος, πόση ενέργεια του προσφέρθηκε µέσω της F και πόση χάθηκε σε θερµότητα; Β-) Ποιά είναι τη στιγµή αυτή τα µέτρα υ cm και ω της ταχύτητας του κέντρου µάζας και της γωνιακής ταχύτητας που έχει αποκτήσει ο κύλινδρος; Γ) Να περιγράψετε ποιοτικά την κίνηση του κυλίνδρου µετά τη στιγµή t 1. Μετά από πόσο χρόνο t αποκτά το κέντρο µάζας σταθερή ταχύτητα υ Τ και ποιό το µέτρο της; (Ροπή αδράνειας κυλίνδρου ως προς τον άξονά του Ι = ½ M R² και g = 10 m/s²) Σύστηµα σταθερής και ελεύθερης τροχαλίας. 3

4 Οι δύο όµοιες οµογενείς τροχαλίες του σχήµατος έχουν ακτίνα R=0,08m, µάζα Μ=8Kg και είναι συνδεδεµένες µε νήµα αµελητέας µάζας που είναι τυλιγµένο στις περιφέρειες τους. Η µία τροχαλία έχει σταθερό το κέντρο µάζας της Κ 1. Η άλλη είναι αρχικά ακίνητη και το κέντρο µάζας της Κ είναι στο ίδιο ύψος µε αυτό της σταθερής τροχαλίας. Κ 1 A Γ Κ Οι δύο τροχαλίες µπορούν να περιστρέφονται γύρω από άξονες που διέρχονται από τα κέντρα µάζας τους Κ 1 και Κ και είναι κάθετοι σε αυτές. Αφήνουµε κάποια στιγµή ελεύθερη την τροχαλία κέντρου µάζας Κ.Κατά την διάρκεια της πτώσης της το νήµα ξετυλίγεται και από τις δύο τροχαλίες χωρίς να ολισθαίνει σ' αυτές παραµένοντας διαρκώς κατακόρυφο και αυτές στρέφονται µε την ίδια φορά. α. Να βρεθεί η σχέση που συνδέει το µέτρο της ταχύτητας του κέντρου µάζας Κ µε τα µέτρα των επιτρόχιων ταχυτήτων των σηµείων Α και Γ των δύο τροχαλιών. β. Να βρεθεί η σχέση που συνδέει το µέτρο της επιτάχυνσης του κέντρου µάζας Κ µε τα µέτρα των επιτρόχιων επιταχύνσεων των σηµείων Α και Γ των δύο τροχαλιών. Να υπολογιστούν: γ. τα µέτρα των γωνιακών επιταχύνσεων α και α των δύο τροχαλιών. γων 1 γων δ. το µέτρο της επιτάχυνσης του κέντρου µάζας Κ, α cm. ε. η δύναµη που ασκεί το νήµα(τάση) στις τροχαλίες. ίνονται οι ροπές αδρανείας των δύο τροχαλιών ως προς τους άξονες περιστροφής τους : 1 I = I = MR (K ) (K ) Η Κύλιση χωρίς (µε) ολίσθηση και µια συνθήκη. m και g=10 s. Ο ίσκος 1, µάζας Μ=kg και ακτίνας R=0,m, ισορροπεί πάνω σε οριζόντιο τραπέζι µε το οποίο παρουσιάζει συντελεστή τριβής ολίσθησης µ=0,5 και έχει στην περιφέρεια του τυλιγµένο αβαρές νήµα που έχει το ένα άκρο του ακλόνητα στερεωµένο στο σηµείο Γ. Το νήµα µπορεί να ξετυλίγεται από το δίσκο 1 χωρίς να ολισθαίνει. Το κέντρο µάζας Κ 1 του δίσκου 1 συνδέεται µε αβαρή ράβδο µε το κέντρο Κ ενός άλλου όµοιου δίσκου που έχει συνδεθεί µέσω αβαρούς νήµατος µε την περιφέρεια ακίνητης τροχαλίας µάζας m=1kg και ακτίνας r=0,1m. Στο άλλο άκρο του νήµατος που δεν ολισθαίνει πάνω στην τροχαλία, έχει συνδεθεί και ισορροπεί σώµα Σ µάζας m 1 =1kg. Κάποια στιγµή ασκούµε στο σώµα κατακόρυφη δύναµη µέτρου F=5N µε φορά προς τα κάτω. Εάν ο δίσκος κυλίεται χωρίς να ολισθαίνει να υπολογιστούν τα µέτρα: Α 1. Της επιτάχυνσης των κέντρων µάζας Κ 1 και Κ των δύο δίσκων. Α. Της γωνιακής επιτάχυνσης α γων της τροχαλίας. Α 3. Της γωνιακής ταχύτητας περιστροφής ω του δίσκου και της ταχύτητας υ Β του σηµείου επαφής Β του ίσκου 1 µε το τραπέζι όταν το σώµα Σ έχει κατέλθει κατά x=1m. Οι ροπές αδρανείας των 4

5 δίσκων 1, και της τροχαλίας ως προς τους άξονες που διέρχονται από τα κέντρα µάζας τους και είναι κάθετοι στο επίπεδο τους, είναι αντίστοιχα: Ι ( K ) =Ι ( Κ ) = 1 1 ΜR και Ι = Κ 1 mr. ίνεται ότι g=10m/s Πόσο θα µετατοπιστεί το κάρο; Το κάρο του σχήµατος έχει µήκος 3m και µάζα Μ = 0kg. Έχει 4 ρόδες που κάθε µία έχει µάζα m = 5kg. Ο εικονιζόµενος έχει µάζα 100kg και κινείται προς τα δεξιά µε σταθερή επιτάχυνση ως προς το έδαφος διασχίζοντας το κάρο. Οι τροχοί δεν ολισθαίνουν στο οριζόντιο δάπεδο. Πόσο µετατοπίζεται το κάρο; Θεωρούµε δεδοµένο ότι κάθε τροχός έχει ροπή αδράνειας I=m R, όπου Rη ακτίνα του Σύνθετη κίνηση δοκού και ο γάντζος Πάνω σε µια λεία επιφάνεια ηρεµεί µια οµογενής δοκός ΑΒ µήκους L=4m και µάζας M=kg, η οποία στο άκρο της Β φέρει γάντζο αµελητέας µάζας. Σε µια στιγµή t=0 ένα κινούµενο υλικό σηµείο Σ, συγκρούεται µε τη δοκό µε αποτέλεσµα, αµέσως µετά την κρούση το άκρα Α της δοκού να αποκτά ταχύτητα u Α =40m/s και το κέντρο µάζας της Ο u cm =30m/s αντίστοιχα, όπως φαίνεται στο σχήµα. Όταν η δοκός αποκτήσει τον ίδιο προσανατολισµό για 1 η φορά µετά την t=0 γαντζώνεται σε καρφί που βρίσκεται σε ορισµένη απόσταση από την δοκό στην διεύθυνση του άκρου Β.. Α z O Β Β Α z 5

6 α) Η κρούση του υλικού σηµείου µε τη δοκό έγινε: i) στο κέντρο µάζας Ο της δοκού. ii) σε σηµείο µεταξύ του κέντρου Ο της δοκού και του άκρου της Α. iii) σε σηµείο µεταξύ του κέντρου Ο της δοκού και του άκρου της B. β) Να βρεθεί η γωνιακή ταχύτητα περιστροφής της δοκού, γύρω από το κέντρο µάζας της Ο. γ) Να βρεθεί η ταχύτητα του άκρου Β της δοκού αµέσως µετά την κρούση. δ) Να βρεθεί η γωνιακή ταχύτητα περιστροφής της δοκού αµέσως µετά το γάτζωµα της στο καρφί. ε) Ποιο σηµείο της δοκού, µετά το γάτζωµα στο καρφί, έχει την ίδια κατά µέτρο γραµµική ταχύτητα µε το µέτρο της ταχύτητας του κέντρου µάζας λίγο πριν η δοκός γατζωθεί στο καρφί; στ)να βρεθεί το µέτρο της σταθερής ροπής που πρέπει να επιδράσει στη δοκό ώστε να ακινητοποιηθεί σε χρόνο t=5s µετά το γάτζωµα. ζ) Να βρεθεί το µήκος της τροχιάς που έχει διαγράψει το σηµείο Ο από την χρονική στιγµή t=0 µέχρι η δοκός να πάψει να περιστρέφεται. ίνεται η ροπή αδράνειας της δοκού ως προς άξονα κάθετο σε αυτή που διέρχεται από το κέντρο µάζας της 1 Ι cm = ML Κρούση και ολίσθηση που µετατρέπεται σε κύλιση Ένας κύλινδρος µάζας M=4kg και ακτίνας R=0,3m ηρεµεί πάνω σε οριζόντιο δάπεδο µε το οποίο παρουσιάζει συντελεστή τριβής ολίσθησης µ=0,1. Ένα βλήµα µάζας m=0,1kg κινείται οριζόντια µε ταχύτητα υ 1 =1000m/s σε διεύθυνση που απέχει απόσταση d από το κέντρο του κυλίνδρου και βρίσκεται στο ίδιο κατακόρυφο επίπεδο µε αυτό. Το βλήµα διαπερνά τον κύλινδρο και εξέρχεται µε ταχύτητα µέτρου u ίδιας κατεύθυνσης µε την αρχική, ενώ αµέσως µετά την κρούση το σηµείο επαφής Σ του κυλίνδρου µε το δάπεδο αποκτά ταχύτητα µέτρου 9m/s µε φορά προς τα δεξιά και το αντιδιαµετρικό του ταχύτητα 18m/s ίδιας κατεύθυνσης µε αυτή του σηµείου Σ. Να υπολογίσετε: α) το µέτρο της ταχύτητας του κέντρου µάζας του κυλίνδρου αµέσως µετά την κρούση. β) το µέτρο της γωνιακή ταχύτητα του κυλίνδρου αµέσως µετά την κρούση. γ) το µέτρο της ταχύτητα u τους βλήµατος. δ) την απόσταση d ε) την χρονική στιγµή t 1 µετά την κρούση, όπου θεωρούµε ως t=0, όπου ο κύλινδρος ξεκινά να κυλίεται χωρίς να ολισθαίνει. 6

7 στ) το έργο της τριβής µέχρι την χρονική στιγµή t 1 ζ) την απόσταση d της διεύθυνσης κίνησης του βλήµατος από το κέντρο του κυλίνδρου στην οποία έπρεπε να κτυπήσει το βλήµα ώστε ο κύλινδρος αµέσως µετά την κρούση να κυλίεται χωρίς ολίσθηση; ίνεται η ροπή αδράνειας του κυλίνδρου ως προς άξονα περιστροφής που διέρχεται από το κέντρο µάζας του 1 Ι = MR και η επιτάχυνση της βαρύτητας g=10m/s ίσκος-σώµα και επικείµενη ολίσθηση. Ένας οριζόντιος δίσκος µάζας Μ=4kg και ακτίνας R=1m είναι αρχικά ακίνητος και έχει την δυνατότητα να στρέφεται γύρω από ακλόνητο κατακόρυφο άξονα που διέρχεται από το κέντρο του. Πάνω στο δίσκο και σε απόσταση r=0,5m από το κέντρο του τοποθετούµε σώµα Σ µάζας m=kg. Τη χρονική στιγµή t=0 ο δίσκος ξεκινά να στρέφεται µε τη επίδραση εφαπτοµενικής δύναµης σταθερού µέτρου F=10Ν, χωρίς το σώµα Σ να ολισθαίνει. Να υπολογίσετε: α) τη ροπή αδράνειας του συστήµατος ως προς τον άξονα περιστροφής του β) το µέτρο της γωνιακής επιτάχυνσης του συστήµατος γ) το µέτρο της επιτάχυνσης του σώµατος και της τριβής που δέχεται από το δίσκο την χρονική στιγµή t 1 =0,5s δ) το ρυθµό µεταβολής της στροφορµής κατά τον άξονα περιστροφής τη χρονική στιγµή t 1 =0,5s i) του σώµατος Σ ii) του δίσκου iii) του συστήµατος δίσκος-σώµα ίνεται η ροπή αδράνειας δίσκου ως προς άξονα που διέρχεται από το κέντρο του και είναι κάθετος σ αυτόν Ιcm=1/ MR και η επιτάχυνση της βαρύτητας g=10m/s Πρισµατικό σώµα και κύλινδρος (Ι) (Σ ) (Σ 1 ) A F εξ Ζ Ο Πρισµατικό σώµα (Σ ) µάζας m = 4 kg και κύλινδρος (Σ 1 ) µάζας m 1 βρίσκονται πάνω σε οριζόντιο επίπεδο και είναι συνδεδεµένα µε νήµα στα σηµεία Ζ και Ο αντίστοιχα. Η σύνδεση στο κέντρο µάζας Ο του 7

8 κυλίνδρου είναι τέτοια ώστε να επιτρέπει την ελεύθερη περιστροφή του γύρω από τον άξονά του που διέρχεται από το σηµείο αυτό. Ο συντελεστής τριβής µεταξύ σωµάτων δαπέδου είναι ίδιος και για τα δύο σώµατα, µ ολ = µ ορ = µ = 0,. Σε λεπτό αυλάκι γύρω από τον κύλινδρο έχουµε τυλίξει νήµα που το συγκρατούµε από το άκρο του Α ασκώντας µικρή οριζόντια δύναµη µέτρου F εξ όπως φαίνεται στο σχήµα. Το σύστηµα ισορροπεί παραµένοντας ακίνητο. i) Να υπολογίσετε το λόγο λ = m 1 /m των µαζών των δύο σωµάτων ώστε αν προκαλέσουµε σταδιακή αύξηση στο µέτρο της F r εξ : α) να ολισθήσει πρώτο το Σ β) να ολισθήσει πρώτο το Σ 1. ii) Για κάθε µία από τις πιο πάνω περιπτώσεις να υπολογίσετε την ελάχιστη τιµή του µέτρου της την οποία αρχίζει να ολισθαίνει το σώµα Σ. F r εξ για Τα σώµατα είναι συµπαγή και οµογενή και το Σ δεν ανατρέπεται. Τα νήµατα είναι αβαρή και µη εκτατά και αυτό που είναι τυλιγµένο στον κύλινδρο δεν ολισθαίνει µέσα στο αυλάκι. ίνεται g = 10m/s² Πρισµατικό σώµα και κύλινδρος (ΙΙ) (Σ ) (Σ 1 ) A F εξ Ζ Ο Πρισµατικό σώµα (Σ ) µάζας m = 4kg και κύλινδρος (Σ 1 ) ίσης µάζας m και ακτίνας R = 0,m βρίσκονται πάνω σε οριζόντιο επίπεδο και είναι συνδεδεµένα µε νήµα στα σηµεία Ζ και Ο αντίστοιχα. Η σύνδεση µε το κέντρο µάζας Ο του κυλίνδρου είναι τέτοια ώστε να επιτρέπει την ελεύθερη περιστροφή του γύρω από τον άξονά του που διέρχεται από το σηµείο αυτό. Ο συντελεστής τριβής µεταξύ σωµάτων δαπέδου είναι ίδιος και για τα δύο σώµατα, µ ολ = µ ορ = µ = 0,. Σε λεπτό αυλάκι γύρω από τον κύλινδρο έχουµε τυλίξει νήµα που το συγκρατούµε από το άκρο του Α ασκώντας µικρή οριζόντια δύναµη µέτρου F εξ όπως φαίνεται στο σχήµα. Το τυλιγµένο στον κύλινδρο κοµµάτι του νήµατος έχει µήκος L = m. Τη στιγµή t ο = 0 η εξωτερική δύναµη αποκτά σταθερό µέτρο F εξ = 16Ν και το νήµα αρχίζει να ξετυλίγεται µέχρι να φύγει όλο από τον κύλινδρο. Ζητούνται τα εξής: i) Να υπολογίσετε τη γωνιακή και τη µεταφορική ταχύτητα του κυλίνδρου τη στιγµή που τον εγκαταλείπει το τυλιγµένο αρχικά νήµα. ii) Να περιγράψετε την κίνηση των δύο σωµάτων µετά την κατάργηση της εξωτερικής δύναµης. iii) Να απεικονίσετε γραφικά τα µέτρα της τάσης του νήµατος και των τριβών µεταξύ σωµάτων και δαπέδου σε συνάρτηση µε τη θέση x του κέντρου µάζας Ο του κυλίνδρου (θεωρώντας ως x ο = 0 τη 8

9 θέση του τη στιγµή t o = 0). iv) Να υπολογίσετε τα έργα όλων των δυνάµεων σε κάθε µία από τις φάσειςτης κίνησης των σωµάτων και να τα συσχετίσετε µε τις αντίστοιχες ενεργειακές µετατροπές. Τα σώµατα είναι συµπαγή και οµογενή και το Σ 1 δεν ανατρέπεται. Τα νήµατα είναι αβαρή και µη εκτατά και αυτό που είναι τυλιγµένο στον κύλινδρο δεν ολισθαίνει µέσα στο αυλάκι µέχρι να ξετυλιχτεί όλο και να φύγει από αυτόν. ίνονται: Ροπή αδράνειας κυλίνδρου ως προς τον άξονά του Ι = ½ m R² και g = 10m/s² Πότε θα γλιστρήσει η ράβδος; Η λεπτή ράβδος ΑΒ του σχήµατος, µήκους l, ισορροπεί σε οριζόντια θέση, όπως στο σχήµα, στηριζόµενη σε τρίποδο στο σηµείο Γ, όπου (ΑΓ)= ¼ l και δεµένη µε κατακόρυφο νήµα. Οι συντελεστές τριβής µεταξύ τρίποδου και ράβδου είναι µ=µ s =0,65. Σε µια στιγµή κόβουµε το νήµα. Ποια γωνία σχηµατίζει η ράβδος µε την οριζόντια διεύθυνση, τη στιγµή που θα γλιστρήσει; ίνεται η ροπή αδράνειας της ράβδου ως προς κάθετο άξονα που περνά από το µέσον της Ι= 1/1 Μl Κρούση, στροφή και κατακόρυφη βολή Η ράβδος ΑΒ του σχήµατος, είναι οµογενής έχει µήκος l και d A Κ Σ 1 υ ο Σ ισορροπεί σε οριζόντια θέση ακουµπώντας µε τα άκρα της Α και B Β σε δυο κατακόρυφα υποστηρίγµατα Σ 1, Σ. Ένα σφαιρίδιο αµελητέων διαστάσεων, µε µάζα ίση µε το µισό της µάζας της ράβδου, κινείται κατακόρυφα προς τα επάνω και χτυπά σε ένα σηµείο της ράβδου, το οποίο απέχει κατά d = l/4 από το κέντρο µάζας της K. Η κρούση είναι ελαστική, διαρκεί αµελητέο χρόνο, και αµέσως µετά απ αυτήν ηφορά της ταχύτητας του σφαιριδίου αντιστρέφεται. Η ράβδος µετά την κρούση, αφού εκτελέσει γύρω από το κέντρο µάζας της περιστροφή κατά φ = π rad, ξαναπέφτει πάνω στα ίδια στηρίγµατα έτσι ώστε το άκρο της Β να ακουµπήσει πάνω στο Σ 1 και το άκρο Α στο Σ. Να υπολογιστούν : i) Η ταχύτητα του κέντρου µάζας της ράβδου αµέσως µετά την κρούση. ii) Η γωνιακή ταχύτητα τηςράβδου αµέσως µετά την κρούση. iii) Οι ταχύτητες του σφαιριδίου πριν και µετά την κρούση. ίνεται το µήκος της ράβδου l, η επιτάχυνση της βαρύτητας g, και η ροπή αδράνειας της ράβδου ως προς το κέντρο µάζας της I = (1/1)Ml² Ισορροπία και κίνηση. Αλλαγή µε το χρόνο. 9

10 Μια οµογενής δοκός (ΑΒ) µήκους 6m και µάζας m 1 =10kg, ισορροπεί σε οριζόντια θέση, αρθρωµένη στο ένα της άκρο Α σε κατακόρυφο τοίχο και στηριζόµενη σε τροχαλία σε σηµείο Γ, το οποίο απέχει 1m από το άλλο της άκρο Β, όπως στο σχήµα. Στο σηµείο, όπου (Α )=1m ηρεµεί ένα σώµα Σ µάζας m =1kg, ενώ η τροχαλία µπορεί να στρέφεται χωρίς τριβές γύρω από σταθερόν οριζόντιο άξονα που περνά από το κέντρο της. Στο αυλάκι της τροχαλίας έχουµε περάσει ένα αβαρές νήµα στο άκρο του οποίου κρέµεται ένα σώµα Σ 1, µάζας m=4kg, το οποίο συγκρατούµε µε τεντωµένο το νήµα. Η τροχαλία έχει µάζα Μ=1kg, ακτίνα R=0,m και παρουσιάζει µε τη δοκό συντελεστές τριβής µ s =0,65 και µ=0,5. Τη στιγµή t 0 =0, το σώµα Σ δέχεται ένα κτύπηµα, οπότε αρχίζει να κινείται κατά µήκος της δοκού µε σταθερή ταχύτητα υ=1m/s, ενώ ταυτόχρονα αφήνουµε ελεύθερο το σώµα Σ 1. ίνεται η ροπή αδράνειας της τροχαλίας Ι= ½ ΜR και g=10m/s. i) Να υπολογίσετε την οριζόντια και κατακόρυφη συνιστώσα της δύναµης που δέχεται η δοκός από την άρθρωση, σε συνάρτηση µε το χρόνο, µέχρι της χρονική στιγµή t 1 =6s και να κάνετε τις γραφικές τους παραστάσεις. ii) Να υπολογίστε την κινητική ενέργεια της τροχαλίας τη στιγµή t 1 καθώς και την θερµική ενέργεια που παρήχθη στο µεταξύ, στην επαφή δοκού-τροχαλίας. iii) Ποιος ο ρυθµός µεταβολής της στροφορµής του συστήµατος τροχαλία-σ 1, ως προς τον άξονα περιστροφής της τροχαλίας, τη στιγµή t 1 ; Μεταβλητή δύναµη τριβής. Η ράβδος του σχήµατος έχει µήκος 3 m και µάζα 6 Kg. Στηρίζεται στο άκρο Ο µε άρθρωση που δεν παρουσιάζει τριβές. Η ράβδος µε την τροχαλία παρουσιάζει τριβή µε συντελεστή µ = 0,5. Ο κύλινδρος µάζας 3 kg ξεκινά την στιγµή µηδέν από το σηµείο Α που απέχει από το Ο 1 m κινούµενο προς το Γ µε σταθερή ταχύτητα 1 m/s. Στην τροχαλία µάζας 5 kg και ακτίνας 0,4 m έχει κρεµαστεί σώµα µάζας,5 kg. O m 1 Γ A K i) Να υπολογιστεί η δύναµη τριβής που δέχεται η τροχαλία από τη ράβδο. ii) Να παραστήσετε γραφικά τη ολική ροπή επί της τροχαλίας συναρτήσει του χρόνου. 10

11 iii) Τι παριστάνει το εµβαδόν της; iv) Ποια είναι η µεγαλύτερη ταχύτητα που θα αποκτήσει το κρεµασµένο σώµα από την στιγµή µηδέν ως την στιγµή που ο κύλινδρος φτάνει στο Γ; Στρεφόµενο σύστηµα και µια γραφική παράσταση Ένας κύλινδρος µπορεί να στρέφεται γύρω από σταθερό οριζόντιο άξονα, που περνά από τα κέντρα των δύο βάσεών του, ο οποίος απέχει 6m από το έδαφος. Γύρω από τον κύλινδρο έχουµε τυλίξει δύο ανεξάρτητα αβαρή νήµατα ικανού µήκους, στα άκρα των οποίων δένονται τα σώµατα Α, Β και Γ, όπως στο σχήµα. Το σύστηµα ισορροπεί, ενώ είναι γνωστές οι µάζες των σωµάτων Α και Β, m 1 =kg και m =1kg αντίστοιχα, τα οποία βρίσκονται σε ύψος h=m, από το έδαφος. ίνεται η ακτίνα του κυλίνδρου R=0,m, η ροπή αδράνειάς του ως προς τον άξονά του Ι= ½ MR και g=10m/s. i) Να αποδείξτε ότι η µάζα του σώµατος Γ είναι 1kg. ii) Σε µια στιγµή t=0 κόβουµε το νήµα που συνδέει τα σώµατα Β και Γ και παρατηρούµε ότι το σώµα Α φτάνει στο έδαφος τη στιγµή t 1 =s, όπου και ακινητοποιείται. Να αποδείξτε ότι η κίνησή του ήταν ευθύγραµµη οµαλά επιταχυνόµενη και να υπολογίσετε την µάζα του κυλίνδρου. iii) Να βρεθεί η κινητική ενέργεια του κυλίνδρου καθώς και ο ρυθµός µεταβολής της, τη χρονική στιγµή t =1s. iv) Να κάνετε τη γραφική παράσταση της στροφορµής του κυλίνδρου σε συνάρτηση µε το χρόνο από 0-4s Μια περιστροφή και µια α.α.τ. Η ράβδος ΑΓ έχει µήκος 3m, µάζα Μ=10kg και µπορεί να στρέφεται σε κατακόρυφο επίπεδο, αρθρωµένη στο άκρο της Α. Η ράβδος ισορροπεί οριζόντια, µε το άλλο της άκρο Γ, δεµένο µέσω κατακόρυφου νήµατος, µε σώµα Σ µάζας m=5kg, το οποίο ηρεµεί στο κάτω άκρο κατακόρυφου ελατηρίου. Το ελατήριο έχει φυσικό µήκος 1m και σταθερά 00Ν/m. i) Πόση δύναµη δέχεται η ράβδος στο σηµείο Α και πόσο είναι στην ισορροπία το µήκος του ελατηρίου; ii) Σε µια στιγµή t=0, κόβουµε το νήµα που συνδέει το σώµα Σ µε τη ράβδο, οπότε το Σ εκτελεί α.α.τ. ενώ η ράβδος στρέφεται γύρω από το άκρο της Α. Να βρείτε: α) Την ενέργεια ταλάντωσης του σώµατος Σ, β) Την αρχική επιτάχυνση (για t=0) τόσο του σώµατος Σ, όσο και του σηµείου Γ της ράβδου. γ) Την µέγιστη ταχύτητα του σώµατος Σ και την µέγιστη ταχύτητα του σηµείου Γ. ίνονται η ροπή αδράνειας της ράβδου ως προς το κέντρο µάζας της Ι cm = ml /1, π 10, g=10m/s ενώ δεν αναπτύσσονται τριβές στην άρθρωση στο άκρο Α κατά την πτώση της ράβδου. 11

12 3.50. Κύλιση χωρίς ολίσθηση και κύλιση µε ταυτόχρονη ολίσθηση. Ένας κύλινδρος µε ακτίνα βάσης =, του οποίου όλη η µάζα είναι συγκεντρωµένη στην παράπλευρη επιφάνεια του αφήνεται να κινηθεί από την κορυφή κεκλιµένου επιπέδου µε τον άξονα του παράλληλο στο οριζόντιο επίπεδο. (α) Αν ο συντελεστής τριβής ολίσθησης µεταξύ κυλίνδρου και κεκλιµένου επιπέδου είναι =, και θεωρηθεί ίσος µε το συντελεστή στατικής ή οριακής τριβής δείξτε ότι για να κυλίεται ο κύλινδρος χωρίς να ολισθαίνει θα πρέπει <0,8. (β) Ρυθµίζουµε τη γωνία µεταξύ οριζόντιου και κεκλιµένου επιπέδου έτσι ώστε =, και αφήνουµε θ τον κύλινδρο να κινηθεί από την κορυφή του κεκλιµένου επιπέδου µε τον άξονα του παράλληλο στο οριζόντιο επίπεδο. Αν ο κύλινδρος µετατοπίζεται συνολικά κατά =, µέχρι να φτάσει στη βάση του κεκλιµένου επιπέδου και µε δεδοµένο ότι η µάζα του είναι = βρείτε το ποσό θερµότητας που εκλύεται κατά την κίνηση του αυτή. (γ) Επαναρρυθµίζουµε τη γωνία µεταξύ οριζόντιου και κεκλιµένου επιπέδου έτσι ώστε =, και αφήνουµε ξανά τον κύλινδρο να κινηθεί από την κορυφή του κεκλιµένου επιπέδου µε τον άξονα του παράλληλο στο οριζόντιο επίπεδο. Ο κύλινδρος µετατοπίζεται και πάλι συνολικά κατά =, µέχρι να φτάσει στη βάση του κεκλιµένου επιπέδου. Υπολογίστε την επιτάχυνση του κέντρου µάζας του κυλίνδρου και τη γωνιακή επιτάχυνση του κυλίνδρου ως προς τον άξονα του. Βρείτε το ποσό θερµότητας που εκλύεται τώρα κατά την κίνηση του. Υπενθυµίζεται ότι η µάζα του κυλίνδρου είναι =. ίνεται ότι η επιτάχυνση της βαρύτητας είναι = Προσπαθώντας να ανασηκώσουµε µια ράβδο. Μια λεπτή οµογενής ράβδος µήκους 8m και µάζας 6kg, ηρεµεί σε λείο οριζόντιο επίπεδο. Μέσω ενός νήµατος, το οποίο έχουµε δέσει στο άκρο της Β, ασκούµε πάνω της µια κατακόρυφη δύναµη F, όπως στο σχήµα. i) Αν το µέτρο της δύναµης είναι F=0Ν, παρατηρούµε ότι η ράβδος ισορροπεί. Να σχεδιάστε τις δυνάµεις που ασκούνται πάνω της, βρίσκοντας και την ροπή καθεµιάς, ως προς το µέσον της Ο. ii) Αυξάνουµε το µέτρο της ασκούµενης δύναµης στην τιµή F=30Ν. Σχεδιάστε ξανά τις δυνάµεις που ασκούνται στη ράβδο. 1

13 iii) Αν αυξήσουµε το µέτρο της δύναµης στην τιµή F=3Ν, παρατηρούµε ότι η ράβδος αρχίζει να ανασηκώνεται από το έδαφος. α) Να βρεθεί η αρχική επιτάχυνση του µέσου της Ο της ράβδου. β) Σε µια στιγµή t 1 το άκρο Β της ράβδου, βρίσκεται σε ύψος h=4m από το έδαφος, ενώ το Α σε επαφή µε το έδαφος. Για την θέση αυτή να υπολογίσετε την ταχύτητα του Ο και την ταχύτητα του άκρου Α της ράβδου. γ) Πόσο έχει µετατοπιστεί το άκρο Α της ράβδου από 0-t 1 ; ίνεται η ροπή αδράνειας της ράβδου ως προς κάθετο σε αυτήν άξονα που περνά από το µέσο της Ι= Μl /1 και g=10m/s ύο σφαίρες σε επαφή. ίνονται Ι c = /5 ΜR και g Ο κύλινδρος και η σανίδα. Σανίδα µάζας Μ = 7 kg, µήκους L =,4 m βρίσκεται πάνω σε λείο οριζόντιο δάπεδο. Πάνω στη σανίδα, στο αριστερό της άκρο, τοποθετείται κύλινδρος µάζας m = 1 kg, ακτίνας R = 0, m που φέρει εγκοπή 13

14 ακτίνας r = 0,1 m. Στην εγκοπή τυλίγεται αβαρές νήµα όπως δείχνει το σχήµα. Το χέρι κινείται µε επιτάχυνση α = 1 m/s. Ο κύλινδρος δεν ολισθαίνει στη σανίδα. i) Ποια θα είναι η επιτάχυνση του κυλίνδρου και ποια της σανίδας; ii) Ποια θα είναι η τελική ταχύτητα της σανίδας; iii) Πόσο έργο έχει προσφέρει το χέρι στο σύστηµα; Ένα φρενάρισµα κυλίνδρου. Ένας κύλινδρος µάζας Μ=00kg και ακτίνας R=0,6m Α στρέφεται χωρίς τριβές γύρω από οριζόντιο άξονα, που περνά Γ από τα κέντρα των δύο βάσεών του, µε σταθερή γωνιακή ταχύτητα ω=10rad/s. Προκειµένου να τον σταµατήσουµε, Ο Ο στηρίζουµε πάνω του µια οµογενή δοκό µήκους l=4m και µάζας m=9kg, όπως στο σχήµα, όπου (ΑΓ)=1m ενώ η γωνία θ που σχηµατίζει µε το έδαφος έχει ηµθ=0,6 (συνθ=0,8). B θ Παρατηρούµε ότι η δοκός ισορροπεί, ενώ ο κύλινδρος σταµατά σε χρονικό διάστηµα t=50s. i) Να υπολογιστεί ο συντελεστής τριβής ολίσθησης µεταξύ κυλίνδρου και δοκού. ii) Να βρεθεί η τριβή που δέχεται η δοκός από το έδαφος. iii) Ποιος ο ελάχιστος συντελεστής στατικής οριακής τριβής µεταξύ δοκού και εδάφους, χωρίς να γλιστρήσει η δοκός για το χρονικό διάστηµα περιστροφής του κυλίνδρου. ίνεται η ροπή αδράνειας του κυλίνδρου Ι= ½ ΜR και g=10m/s Ολίσθηση και κύλιση τροχού. Σε οριζόντιο επίπεδο ηρεµεί ένας τροχός µάζας Μ=10kg και ακτίνας =0,5m, ο οποίος παρουσιάζει µε το επίπεδο συντελεστές τριβής µ=µ s =0,3. Σε µια στιγµή t=0 ασκείται στο κέντρο Ο του τροχού οριζόντια δύναµη F µέτρου F 1 =100Ν, ενώ τη στιγµή t 1 =s, το µέτρο της δύναµης µειώνεται στην τιµή F =60Ν. i) Να υπολογιστεί η κινητική ενέργεια του τροχού τη στιγµή t 1. ii) Να κάνετε τη γραφική παράσταση της ταχύτητας του κέντρου Ο του τροχού µέχρι τη στιγµή t =4s. iii) Να υπολογιστεί η ενέργεια που µετατρέπεται σε θερµική, µέχρι την παραπάνω στιγµή t, εξαιτίας της τριβής που ασκείται στον τροχό Γενικευµένοι νόµοι και ολίσθηση τροχού. 14

15 Σε οριζόντιο επίπεδο ηρεµεί ένας τροχός µάζας Μ=10kg και ακτίνας =0,5m, ο οποίος παρουσιάζει µε το επίπεδο συντελεστές τριβής µ=µ s =0,4. Σε µια στιγµή t=0 ασκείται στο κέντρο Ο του τροχού οριζόντια δύναµη F, η τιµή της οποίας µεταβάλλεται όπως στο διάγραµµα. i) Να αποδειχθεί ότι ο τροχός θα αρχίσει να περιστρέφεται, αλλά και να ολισθαίνει. ii) Να βρεθεί η χρονική στιγµή που ο τροχός θα πάψει να ολισθαίνει και πλέον θα κυλίεται. iii) Για την χρονική στιγµή t 1 =1s να βρεθούν η ισχύς της δύναµης, ο ρυθµός µεταβολής της κινητικής ενέργειας του τροχού, καθώς και ο ρυθµός µε τον οποίο η µηχανική ενέργεια µετατρέπεται σε θερµική εξαιτίας της τριβής. ίνεται η ροπή αδράνειας του τροχού ως προς τον άξονα περιστροφής του Ι= ½ ΜR και g=10m/s Κύλινδρος και σκαλοπάτι. Στο διπλανό σχήµα, ο κύλινδρος ακτίνας R, ισορροπεί ενώ δέχεται οριζόντια F r A δύναµη F, ασκούµενη στο σηµείο Α, όπου η ακτίνα ΟΑ σχηµατίζει γωνία ϕ φ=60 µε την κατακόρυφη. Το λείο σκαλοπάτι, ύψους h > R εµποδίζει την O K κίνηση του κυλίνδρου. Αν F= ½ w, όπου w το βάρος του κυλίνδρου: i) Να υπολογίστε την δύναµη που δέχεται ο κύλινδρος από το σκαλοπάτι. ii) Να αποδείξτε ότι ο κύλινδρος δέχεται τριβή από το οριζόντιο επίπεδο και στη συνέχεια να υπολογίστε την τιµή της. iii) Ποιος ο ελάχιστος συντελεστής οριακής στατικής τριβής µεταξύ κυλίνδρου και οριζοντίου επιπέδου ώστε να εξασφαλίζεται η ισορροπία του κυλίνδρου; iv) Αν σε µια στιγµή αυξήσουµε το µέτρο της ασκούµενης δύναµης στην τιµή F = ¾ w ενώ ο συντελεστής τριβής ολίσθησης µεταξύ κυλίνδρου και οριζοντίου επιπέδου, είναι ίσος µε την ελάχιστη τιµή του συντελεστή οριακής τριβής του προηγούµενου ερωτήµατος, να υπολογίσετε την αρχική γωνιακή επιτάχυνση που θα αποκτήσει ο κύλινδρος. Εφαρµογή: R=0,5m, g=10m/s, ενώ για τον κύλινδρο ως προς τον άξονά του Ι= ½ ΜR Τραβάω το χαρτόνι και ο κύλινδρος βρίσκεται στο δάπεδο. Τραβάω το χαρτόνι µε σταθερή επιτάχυνση 4 m/s. Ο κοίλος, µε λεπτό τοίχωµα, κύλινδρος δεν θα ολισθήσει ούτε στο χαρτόνι, ούτε στο τραπέζι. i) Με ποια επιτάχυνση και ποια γωνιακή επιτάχυνση θα κινηθεί; 15

16 ii) Όταν θα βρεθεί στο τραπέζι πόση είναι η ταχύτητά του και πόση η γωνιακή του ταχύτητα; iii) Ποια θα είναι η τελική του ταχύτητα; iv) Πόση η απώλεια µηχανικής ενέργειας και πόσο έργο πρόσφερε το χέρι αν η µάζα του χαρτονιού είναι αµελητέα; m 1 kg, 0,5, g 10 m = µ = = s Μια σανίδα σε ηµικυκλική τροχιά. Μια οµογενής σανίδα µήκους 1m και µάζας kg, αφήνεται να κινηθεί από µια ορισµένη θέση ενός λείου κοίλου ηµισφαιρίου, κατά µήκος της ηµικυκλικής τροχιάς του σχήµατος, κέντρου Ο και ακτίνας R=1m. Μετά από λίγο, η σανίδα γίνεται οριζόντια (δεξιό σχήµα). Τη στιγµή αυτή τα άκρα της Α και Β έχουν ταχύτητες ίσου µέτρου υ=m/s. O O R l B M A Για την οριζόντια αυτή θέση ζητούνται: i) Η ταχύτητα του µέσου Μ της σανίδας. ii) Η κινητική της ενέργεια. iii) Η στροφορµή της σανίδας, ως προς άξονα κάθετο στο επίπεδο της σελίδας, που περνά από το κέντρο Ο της τροχιάς. ίνεται η ροπή αδράνειας της σανίδας ως προς κάθετο άξονα, ο οποίος περνά από το κέντρο µάζας της Ι cm = Μl / Ένας κύβος σε ηµικυλινδρική κοίλη επιφάνεια. O ϑ a R Ένας κύβος ακµής α και µάζας m, τοποθετείται στο εσωτερικό µιας κοίλης ηµικυλινδρικής επιφάνειας ακτίνας R=10α, σε τέτοια θέση, ώστε η ακτίνα που περνά από το κέντρο µάζας του, να σχηµατίζει γωνία θ µε την κατακόρυφη, όπου ηµθ=0,6 και συνθ=0,8. i) Αν για το συντελεστή οριακής στατικής τριβής, µεταξύ κύβου και επιφάνειας ισχύει µ s =0,5, τότε ο κύβος: 16

17 α) Θα ισορροπήσει. β) Θα ανατραπεί. γ) Θα ολισθήσει κατά µήκος της επιφάνειας. δ) Θα ολισθήσει και ταυτόχρονα θα ανατραπεί. ii) Αν τη στιγµή που η ακτίνα που περνά από το κέντρο µάζας Κ του κύβου, γίνεται κατακόρυφη, το µέτρο της ταχύτητας του Κ, είναι υ = 1 θερµική, κατά την κάθοδο του κύβου, είναι: ga, τότε η µηχανική ενέργεια που µετατρέπεται σε α) µικρότερη από 0,8mgα, β) ίση µε 0,8mgα γ) µεγαλύτερη από 0,8mgα. Να δικαιολογήσετε τις απαντήσεις σας. Θεωρείστε την απόσταση του κέντρου Κ του κύβου από το κέντρο της τροχιάς Ο ίση µε R-α=9α. 17

F r. www.ylikonet.gr 1

F r. www.ylikonet.gr 1 3.5. Έργο Ενέργεια. 3.5.1. Έργο δύναµης- ροπής και Κινητική Ενέργεια. Το οµοαξονικό σύστηµα των δύο κυλίνδρων µε ακτίνες R 1 =0,1m και R =0,5m ηρεµεί σε οριζόντιο επίπεδο. Τυλίγουµε γύρω από τον κύλινδρο

Διαβάστε περισσότερα

ΣΙΤΣΑΝΛΗΣ ΗΛΙΑΣ ΣΕΛΙΔΑ 1

ΣΙΤΣΑΝΛΗΣ ΗΛΙΑΣ ΣΕΛΙΔΑ 1 1. Νήμα τυλίγεται σε λεπτό αυλάκι κατά μήκος της περιφέρειας κυλίνδρου, που έχει μάζα 2 kg και ακτίνα 0,2 m. Ο κύλινδρος συγκρατείται αρχικά στη θέση που φαίνεται στο σχήμα, με το νήμα να εξέχει τεντωμένο

Διαβάστε περισσότερα

Σύνθετα θέματα στερεού

Σύνθετα θέματα στερεού Σύνθετα θέματα στερεού 3.1. οκός τροχός σφαιρίδιο Κατασκευάζουµε ένα τροχό ενώνοντας τις βάσεις δύο οµογενών κυλίνδρων, έτσι ώστε να αποκτήσουν κοινό άξονα όπως δείχνει το σχήµα. Ο µεγάλος κύλινδρος έχει

Διαβάστε περισσότερα

υναµική στερεού. Οµάδα Γ

υναµική στερεού. Οµάδα Γ 3.3.21. Μια περίεργη κύλιση Κύλινδρος υναµική στερεού. Οµάδα Γ µάζας Μ=10Κg και ακτίνας R=0,5m αρχίζει την στιγµή t=0 να ανέρχεται κυλιόµενος (αριστερόστροφα) χωρίς να ολισθαίνει κατά µήκος αρχικά λείου

Διαβάστε περισσότερα

Ισορροπία στερεού. 3.2.8. Ποιες είναι οι δυνάμεις που ασκούνται; 3.2.9. Ένας Κύλινδρος Πάνω σε μια Σφήνα. Υλικό Φυσικής Χημείας

Ισορροπία στερεού. 3.2.8. Ποιες είναι οι δυνάμεις που ασκούνται; 3.2.9. Ένας Κύλινδρος Πάνω σε μια Σφήνα. Υλικό Φυσικής Χημείας 3.2.. 3.2.1. Ροπές και ισορροπία. Πάνω σε λείο οριζόντιο επίπεδο βρίσκεται μια ράβδος μήκους l=4m, η οποία μπορεί να στρέφεται γύρω από κατακόρυφο άξονα, ο οποίος διέρχεται από το μέσον της Ο. Ασκούμε

Διαβάστε περισσότερα

Τίτλος Κεφαλαίου: Στερεό σώµα. Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως. Γεώργιος Μακεδών, Φυσικός Ρ/Η Σελίδα 1

Τίτλος Κεφαλαίου: Στερεό σώµα. Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως. Γεώργιος Μακεδών, Φυσικός Ρ/Η Σελίδα 1 Τίτλος Κεφαλαίου: Στερεό σώµα ιδακτική Ενότητα: Κινηµατική του Στερεού Σώµατος Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Θέµα 3ο: Γεώργιος Μακεδών, Φυσικός Ρ/Η Σελίδα 1 ιδακτική Ενότητα: Ροπή

Διαβάστε περισσότερα

Ασκήσεις. Φυσική Γ Λυκείου - Μηχανική στερεού σώματος

Ασκήσεις. Φυσική Γ Λυκείου - Μηχανική στερεού σώματος - Μηχανική στερεού σώματος Ασκήσεις 1. Στερεό στρέφεται γύρω Ένας δίσκος μπορεί να περιστρέφεται γύρω από σταθερό άξονα ο οποίος διέρχεται από το κέντρο και είναι κάθετος στο επίπεδο του. Ο δίσκος είναι

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης)

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης) ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης) Ένας ομογενής οριζόντιος δίσκος, μάζας Μ και ακτίνας R, περιστρέφεται γύρω από κατακόρυφο ακλόνητο άξονα z, ο οποίος διέρχεται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 3: ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ - ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ

ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 3: ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ - ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 3: ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ - ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 12. Ένας οριζόντιος ομογενής δίσκος ακτίνας μπορεί να περιστρέφεται χωρίς τριβές, γύρω από κατακόρυφο

Διαβάστε περισσότερα

% ] Βαγγέλης Δημητριάδης 4 ο ΓΕΛ Ζωγράφου

% ] Βαγγέλης Δημητριάδης 4 ο ΓΕΛ Ζωγράφου 1. Ομογενής και ισοπαχής ράβδος μήκους L= 4 m και μάζας M= 2 kg ισορροπεί οριζόντια. Το άκρο Α της ράβδου συνδέεται με άρθρωση σε κατακόρυφο τοίχο. Σε σημείο Κ της ράβδου έχει προσδεθεί το ένα άκρο κατακόρυφου

Διαβάστε περισσότερα

Β. Συµπληρώστε τα κενά των παρακάτω προτάσεων

Β. Συµπληρώστε τα κενά των παρακάτω προτάσεων ΔΙΑΓΩΝΙΣΜΑ ΣΤΟ ΣΤΕΡΕΟ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΘΕΜΑ Α Α. Στις ερωτήσεις 1 έως 3 επιλέξτε τη σωστή απάντηση 1. Δυο δακτύλιοι µε διαφορετικές ακτίνες αλλά ίδια µάζα κυλάνε χωρίς ολίσθηση σε οριζόντιο έδαφος µε την

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 1 Η ράβδος ΟΑ του σχήματος μπορεί να στρέφεται γύρω από τον άξονα z z χωρίς τριβές Tη στιγμή t=0 δέχεται την εφαπτομενική δύναμη F σταθερού μέτρου 0 Ν, με φορά όπως φαίνεται στο σχήμα

Διαβάστε περισσότερα

4.1.α. Κρούσεις. Κρούσεις. 4.1.21. Ενέργεια Ταλάντωσης και Ελαστική κρούση. 4.1.22. Κρούση και τριβές. 4.1.23. Κεντρική ανελαστική κρούση

4.1.α. Κρούσεις. Κρούσεις. 4.1.21. Ενέργεια Ταλάντωσης και Ελαστική κρούση. 4.1.22. Κρούση και τριβές. 4.1.23. Κεντρική ανελαστική κρούση 4.1.α.. 4.1.21. Ενέργεια Ταλάντωσης και Ελαστική κρούση. Μια πλάκα µάζας Μ=4kg ηρεµεί στο πάνω άκρο ενός κατακόρυφου ελατηρίου, σταθεράς k=250ν/m, το άλλο άκρο του οποίου στηρίζεται στο έδαφος. Εκτρέπουµε

Διαβάστε περισσότερα

υ r 1 F r 60 F r A 1

υ r 1 F r 60 F r A  1 2.2. Ασκήσεις Έργου-Ενέργειας. 4.2.1. Θεώρηµα Μεταβολής της Κινητικής Ενέργειας. ΘΜΚΕ. Ένα σώµα µάζας m=2kg ηρεµεί σε οριζόντιο επίπεδο. Σε µια στιγµή δέχεται την επίδραση οριζόντιας δύνα- µης, το µέτρο

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε. ΚΕΦΑΛΑΙΟ 4 3ο, 4ο ΘΕΜΑ Πανελληνίων εξετάσεων -OΕΦΕ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΟΕΦΕ ΘΕΜΑ 3 o 00 Ομογενής και ισοπαχής ράβδος ΑΓ, μήκους L=1 m και μάζας m=10 kg, μπορεί να στρέφεται γύρω από ακλόνητο οριζόντιο

Διαβάστε περισσότερα

[1kgm 2, 5m/s, 3,2cm, 8rad/s][1kgm 2, 5m/s, 3,2cm, 8rad/s]

[1kgm 2, 5m/s, 3,2cm, 8rad/s][1kgm 2, 5m/s, 3,2cm, 8rad/s] ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 5: ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ ΚΑΙ ΕΡΓΟ ΔΥΝΑΜΗΣ ΣΤΗ ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ 34. Μία κατακόρυφη ράβδος μάζας μήκους, μπορεί να περιστρέφεται στο κατακόρυφο επίπεδο γύρω από

Διαβάστε περισσότερα

Διαγώνισμα Μηχανική Στερεού Σώματος

Διαγώνισμα Μηχανική Στερεού Σώματος Διαγώνισμα Μηχανική Στερεού Σώματος Θέμα Α Στις ημιτελείς προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση η οποία τη συμπληρώνει σωστά

Διαβάστε περισσότερα

3.3.. Μια περίεργη κύλιση Κύλινδρος υναµική στερεού. Οµάδα Γ µάζας Μ=0Κg και ακτίνας R=0,5m αρχίζει την στιγµή t=0 να ανέρχεται κυλιόµενος (αριστερόστροφα) χωρίς να ολισθαίνει κατά µήκος αρχικά λείου κεκλιµένου

Διαβάστε περισσότερα

2.2. Ασκήσεις Έργου-Ενέργειας. Οµάδα Γ.

2.2. Ασκήσεις Έργου-Ενέργειας. Οµάδα Γ. 2.2. Ασκήσεις Έργου-Ενέργειας. Οµάδα Γ. 2.2.21. Έργο και µέγιστη Κινητική Ενέργεια. Ένα σώµα µάζας 2kg κινείται σε οριζόντιο επίπεδο και σε µια στιγµή περνά από την θέση x=0 έχοντας ταχύτητα υ 0 =8m/s,

Διαβάστε περισσότερα

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014 ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως. Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως

Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως. Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Τίτλος Κεφαλαίου: Στερεό σώµα ιδακτική Ενότητα: Κινηµατική του Στερεού Σώµατος Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Θέµα 4ο: ιδακτική Ενότητα: Ροπή ύναµης Ισορροπία Στερεού Σώµατος Ασκήσεις

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΘΕΤ. & ΤΕΧΝ. ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΘΕΤ. & ΤΕΧΝ. ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΘΕΤ. & ΤΕΧΝ. ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α1-Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Α1.

Διαβάστε περισσότερα

γ) το μέτρο της γωνιακής ταχύτητας του δίσκου τη στιγμή κατά την οποία έχει ξετυλιχθεί όλο το σχοινί.

γ) το μέτρο της γωνιακής ταχύτητας του δίσκου τη στιγμή κατά την οποία έχει ξετυλιχθεί όλο το σχοινί. 1. Ο ομογενής και ισοπαχής δίσκος του σχήματος έχει ακτίνα και μάζα, είναι οριζόντιος και μπορεί να περιστρέφεται, χωρίς τριβές, γύρω από κατακόρυφο ακλόνητο άξονα που διέρχεται από το κέντρο του. Ο δίσκος

Διαβάστε περισσότερα

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R 2

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R 2 ΚΕΦΑΛΑΙΟ 4 Γενικές ερωτήσεις Γενικές ασκήσεις Κριτήρια αξιολόγησης ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 1 Η ράβδος ΟΑ του σχήματος μπορεί να στρέφεται γύρω από τον άξονα z z χωρίς τριβές Tη στιγμή t=0 δέχεται την εφαπτομενική

Διαβάστε περισσότερα

Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα

Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα Θέµα ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Ένα σηµειακό

Διαβάστε περισσότερα

υναµική στο επίπεδο.

υναµική στο επίπεδο. στο επίπεδο. 1.3.1. Η τάση του νήµατος, πού και γιατί; Έστω ότι σε ένα λείο οριζόντιο επίπεδο ηρεµούν δύο σώµατα Α και Β µε µάζες Μ=3kg και m=2kg αντίστοιχα, τα οποία συνδέονται µε ένα νήµα. Σε µια στιγµή

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ ΠΡΟΒΛΗΜΑ 1 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ Η λεπτή, ομογενής ράβδος ΟΑ του σχήματος έχει μήκος, μάζα και μπορεί να περιστρέφεται σε κατακόρυφο επίπεδο γύρω από οριζόντιο ακλόνητο άξονα (άρθρωση) που διέρχεται

Διαβάστε περισσότερα

ΣΙΤΣΑΝΛΗΣ ΗΛΙΑΣ ΣΕΛΙΔΑ 1

ΣΙΤΣΑΝΛΗΣ ΗΛΙΑΣ ΣΕΛΙΔΑ 1 1. Ένα βλήμα μάζας 0,1 kg που κινείται οριζόντια με ταχύτητα 100 m/s σφηνώνεται σε ακίνητο ξύλο μάζας 1,9 kg. Να βρεθεί η απώλεια ενέργειας που οφείλεται στην κρούση, όταν το ξύλο είναι: α. πακτωμένο στο

Διαβάστε περισσότερα

ΕΡΓΟ ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ - ΙΣΧΥΣ

ΕΡΓΟ ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ - ΙΣΧΥΣ ΕΡΓΟ ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ - ΙΣΧΥΣ 1. Στο σώμα του σχήματος έχει βάρος Β = 20Ν είναι ακίνητο και του ασκούνται οι δυνάμεις F 1 = 5Ν, F 2 = 10Ν, F 3 = 15Ν και F 4 = 10Ν. Αν το σώμα μετακινηθεί οριζόντια προς

Διαβάστε περισσότερα

0. Επαναληπτικά θέματα. Ομάδα Γ.

0. Επαναληπτικά θέματα. Ομάδα Γ. 0. Ομάδα Γ. 61. Μια πλάγια πλαστική κρούση αλλά μετά τι; Σε ένα λείο οριζόντιο επίπεδο ηρεμεί ένα σώμα Σ 1 μάζας m 1 =1kg δεμένο στο άκρο οριζόντιου ιδανικού ελατηρίου σταθεράς k=100ν/m και φυσικού μήκους

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α Α.1. Η γωνιακή επιτάχυνση ενός οµογενούς δίσκου που στρέφεται γύρω από σταθερό άξονα, που διέρχεται από το κέντρο

Διαβάστε περισσότερα

ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ.

ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ. ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΑΠΟ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ

ΘΕΜΑΤΑ ΑΠΟ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΚΕΦΑΛΑΙΟ 4 ΘΕΜΑΤΑ ΑΠΟ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 3ο, 4ο ΘΕΜΑ Πανελληνίων εξετάσεων -O.Ε.Φ.Ε 196 ΘΕΜΑ 4 ο 00 Δύο ίδιες, λεπτές, ισοπαχείς και ομογενείς ράβδοι ΟΑ και ΟΒ, που έχουν μάζα Μ = 4 Κg και μήκος L =

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Σύνολο Σελίδων: οκτώ (8) - ιάρκεια Εξέτασης: 3 ώρες Κυριακή 24 Γενάρη 2016 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1 Α.4

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Σύνολο Σελίδων: οκτώ (8) - ιάρκεια Εξέτασης: 3 ώρες Κυριακή 28 Φλεβάρη 2016 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1

Διαβάστε περισσότερα

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση 19-05-08 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Aσκηση 2 :

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση 19-05-08 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Aσκηση 2 : ΦΥΕ 14 5 η ΕΡΓΑΣΙΑ Παράδοση 19-5-8 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Συµπαγής κύλινδρος µάζας Μ συνδεδεµένος σε ελατήριο σταθεράς k = 3. N / και αµελητέας µάζας, κυλίεται, χωρίς να

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση,

Διαβάστε περισσότερα

Προτεινόμενα ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ

Προτεινόμενα ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΘΕΜΑΤΑ Β. Β1. Από ύψος h (σημείο Α) αφήνουμε να κυλίσει δακτύλιος μάζας m 1 =m χωρίς ολίσθηση σε οδηγό που καταλήγει σε τεταρτοκύκλιο. Στο σημείο Β και όταν η u cm είναι κατακόρυφη ο δακτύλιος εγκαταλείπει

Διαβάστε περισσότερα

ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ (1) Στεφάνου Μ. Φυσικός

ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ (1) Στεφάνου Μ. Φυσικός ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ (1) 1. Ένας τροχός ακτίνας R=0,3 m μπορεί να περιστρέφεται γύρω από σταθερό άξονα ο οποίος διέρχεται από το κέντρο του. Τη χρονική στιγμή t=0 ο τροχός έχει γωνιακή ταχύτητα ω ο = 10 rad/s

Διαβάστε περισσότερα

Γ ΤΑΞΗ ΤΜΗΜΑ ΟΝΟΜΑ. ΘΕΜΑ 1ο. 7 mr 5. 1 mr. Μονάδες 5. α. 50 W β. 100 W γ. 200 W δ. 400 W

Γ ΤΑΞΗ ΤΜΗΜΑ ΟΝΟΜΑ. ΘΕΜΑ 1ο. 7 mr 5. 1 mr. Μονάδες 5. α. 50 W β. 100 W γ. 200 W δ. 400 W ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΟΝΟΜΑ ΤΜΗΜΑ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΤΕΤΑΡΤΗ 8 ΜΑΡΤΙΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις ερωτήσεις 1-4 να γράψετε

Διαβάστε περισσότερα

υναµική d) Το σώµα ασκεί στο νήµα την αντίδραση του βάρους του.

υναµική d) Το σώµα ασκεί στο νήµα την αντίδραση του βάρους του. υναµική 1) Το σώµα Α του σχήµατος είναι ακίνητο, ενώ το Β κινείται µε σταθερή ταχύτητα Aυ. Σε ποιο από τα δύο σώµατα η συνισταµένη δύναµη είναι µεγαλύτερη; 2) ύο σώµατα Α και Β µε µάζες 2kg και 1 0kg,

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1 Θέµα 1 ο 1. Το διάγραµµα του διπλανού σχήµατος παριστάνει τη χρονική µεταβολή της αποµάκρυνσης ενός σώµατος που εκτελεί απλή αρµονική ταλάντωση. Ποια από

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. = 2r, τότε:

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. = 2r, τότε: ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση 1. (Διατήρηση της στροφορμής) Η Γη στρέφεται σε ελλειπτική τροχιά γύρω από τον Ήλιο. Το κοντινότερο σημείο στον Ήλιο ονομάζεται Περιήλιο (π) και το πιο απομακρυσμένο Αφήλιο (α).

Διαβάστε περισσότερα

Διαγώνισμα: Μηχανική Στερεού Σώματος

Διαγώνισμα: Μηχανική Στερεού Σώματος Διαγώνισμα: Μηχανική Στερεού Σώματος Θέμα Α Στις ημιτελείς προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση η οποία τη συμπληρώνει σωστά

Διαβάστε περισσότερα

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Aσκηση 2 :

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Aσκηση 2 : ΦΥΕ 14 5 η ΕΡΓΑΣΙΑ Παράδοση 19-5-8 ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Συμπαγής κύλινδρος μάζας Μ συνδεδεμένος σε ελατήριο σταθεράς k = 3. N / και αμελητέας μάζας, κυλίεται, χωρίς να

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α Α.1. Ενα στερεό σώµα περιστρέφεται γύρω από ακλόνητο άξονα. Εάν διπλασιαστεί η στροφορµή

Διαβάστε περισσότερα

1.1. Μηχανικές Ταλαντώσεις. Ομάδα Ε.

1.1. Μηχανικές Ταλαντώσεις. Ομάδα Ε. 1.1. Μηχανικές. Ομάδα Ε. 1.1.81. Δυο ΑΑΤ και μία Ταλάντωση. Ένα σώμα μάζας 1kg ηρεμεί σε λείο κεκλιμένο επίπεδο κλίσεως θ=30, δεμένο στο άκρο ελατηρίου σταθεράς k 1 =40Ν/m, ενώ εφάπτεται στο ε- λεύθερο

Διαβάστε περισσότερα

1.1. Μηχανικές Ταλαντώσεις.

1.1. Μηχανικές Ταλαντώσεις. 1.1. Μηχανικές. 1) Εξισώσεις ΑΑΤ Ένα υλικό σηµείο κάνει α.α.τ. µε πλάτος 0,1m και στην αρχή των χρόνων, βρίσκεται σε σηµείο Μ µε απο- µάκρυνση 5cm, αποµακρυνόµενο από τη θέση ισορροπίας. Μετά από 1s περνά

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ >Ι 3. δ. Ι Οι τροχοί (1) και (2) του σχήματος είναι ίδιοι. Τότε: και Ι 2

ΟΡΟΣΗΜΟ >Ι 3. δ. Ι Οι τροχοί (1) και (2) του σχήματος είναι ίδιοι. Τότε: και Ι 2 ΚΕΦΑΛΑΙΟ 4 Ροπή αδράνειας - Θεμελιώδης νόμος της στροφικής κίνησης 4.1 Η ροπή αδράνειας ενός σώματος εξαρτάται: α. μόνο από τη μάζα του σώματος β. μόνο τη θέση του άξονα γύρω από τον οποίο μπορεί να περιστρέφεται

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ Ονοµατεπώνυµο: Διάρκεια: (3 45)+5=50 min Τµήµα: ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ Ζήτηµα ο Ένα στερεό µπορεί να στρέφεται γύρω από σταθερό άξονα και αρχικά ηρεµεί. Σε µια στιγµή δέχεται (ολική) ροπή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ [Υποκεφάλαιο 4.2 Οι κινήσεις των στερεών σωμάτων του σχολικού βιβλίου]

ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ [Υποκεφάλαιο 4.2 Οι κινήσεις των στερεών σωμάτων του σχολικού βιβλίου] ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος. και Α 2

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος. και Α 2 ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος 1. Ένα σύστημα ελατηρίου σταθεράς = 0 π N/ και μάζας = 0, g τίθεται σε εξαναγκασμένη ταλάντωση. Αν είναι Α 1 και Α τα πλάτη της ταλάντωσης

Διαβάστε περισσότερα

2) Βάρος και κυκλική κίνηση. Β) Κυκλική κίνηση

2) Βάρος και κυκλική κίνηση. Β) Κυκλική κίνηση Β) Κυκλική κίνηση 1) Υπολογισμοί στην ομαλή κυκλική κίνηση. Μια μικρή σφαίρα, μάζας 2kg, εκτελεί ομαλή κυκλική κίνηση, σε κύκλο κέντρου Ο και ακτίνας 0,5m, όπως στο σχήμα. Τη χρονική στιγμή t=0 η σφαίρα

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ. Θέµατα Εξετάσεων

ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ. Θέµατα Εξετάσεων ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ Θέµατα Εξετάσεων ΣΤΕΡΕΟ. Θέµατα Εξετάσεων 2 1) Αν το αλγεβρικό άθροισµα των ροπών που δρουν πάνω σ' ένα στερεό σώµα, το οποίο περιστρέφεται γύρω από σταθερό άξονα, είναι µηδέν, τότε α.

Διαβάστε περισσότερα

ΤΕΣΤ 17. η ελάχιστη δυνατή συχνότητα ταλάντωσης των πηγών, ώστε τα κύµατα να συµβάλλουν ενισχυτικά στο σηµείο Σ και f

ΤΕΣΤ 17. η ελάχιστη δυνατή συχνότητα ταλάντωσης των πηγών, ώστε τα κύµατα να συµβάλλουν ενισχυτικά στο σηµείο Σ και f ΘΕΜΑ aaα 1. ΤΕΣΤ 17 Επάνω σε λείο οριζόντιο επίπεδο βρίσκονται δύο µικρά και όµοια σώµατα ίδιας µάζας, που φέρουν το ένα ποµπό (Π) και το άλλο δέκτη ( ) ηχητικών κυµάτων. Αρχικά το σώµα που φέρει τον ποµπό,

Διαβάστε περισσότερα

Για τις παραπάνω ροπές αδράνειας ισχύει: α. β. γ. δ. Μονάδες 5

Για τις παραπάνω ροπές αδράνειας ισχύει: α. β. γ. δ. Μονάδες 5 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 01-03-2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ M-ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ.-ΠΟΥΛΗ Κ. ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Στερεό (Μέχρι Ροπή Αδράνειας) Γ ΛΥΚΕΙΟΥ. Α)Σε κάθε μια από τις ερωτήσεις (1-4) να σημειώσετε στο τετράδιό σας τη σωστή απάντηση.

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Στερεό (Μέχρι Ροπή Αδράνειας) Γ ΛΥΚΕΙΟΥ. Α)Σε κάθε μια από τις ερωτήσεις (1-4) να σημειώσετε στο τετράδιό σας τη σωστή απάντηση. ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ Στερεό (Μέχρι Ροπή δράνειας) Γ ΛΥΚΕΙΟΥ ΘΕΜ 1 Ο : )Σε κάθε μια από τις ερωτήσεις (1-4) να σημειώσετε στο τετράδιό σας τη σωστή απάντηση. 1. Για ένα ζεύγος δυνάμεων Η ροπή του, εξαρτάται

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΕΡΕΟ. ΘΕΜΑ Α (μοναδες 25)

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΕΡΕΟ. ΘΕΜΑ Α (μοναδες 25) ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΕΡΕΟ ΘΕΜΑ Α (μοναδες 25) Α1. Σε στερεό που περιστρέφεται γύρω από σταθερό κατακόρυφο άξονα ενεργεί σταθερή ροπή. Τότε αυξάνεται με σταθερό ρυθμό: α. η ροπή αδράνειας του β. η

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ Τάξης ΚΙΝΗΣΕΙΣ ΣΤΕΡΕΩΝ. ΣΤΕΦΑΝΟΥ Μ. Φυσικός

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ Τάξης ΚΙΝΗΣΕΙΣ ΣΤΕΡΕΩΝ. ΣΤΕΦΑΝΟΥ Μ. Φυσικός ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ Τάξης ΚΙΝΗΣΕΙΣ ΣΤΕΡΕΩΝ ΣΤΕΦΑΝΟΥ Μ. 1. Ομαλή περιστροφική ΠΕΡΙΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ Δθ., ω=, θ=ω.t και υ γρ. R α κ. R ύ και : S τόξο =υ γρt Δt R. Επιταχυνόμενη ομαλά περιστροφική κίνηση Α)

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ. Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στην σωστή απάντηση

ΕΚΦΩΝΗΣΕΙΣ. Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στην σωστή απάντηση 1 A' ΛΥΚΕΙΥ ΖΗΤΗΜΑ 1 ο ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στην σωστή απάντηση 1. Το µέτρο της µετατόπισης

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014 ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/014 ΘΕΜΑ Α Οδηγία: Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

ταχύτητα μέτρου. Με την άσκηση κατάλληλης σταθερής ροπής, επιτυγχάνεται

ταχύτητα μέτρου. Με την άσκηση κατάλληλης σταθερής ροπής, επιτυγχάνεται ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 4: ΣΤΡΟΦΟΡΜΗ 26. Δύο σημειακές σφαίρες που η καθεμιά έχει μάζα συνδέονται μεταξύ τους με οριζόντια αβαρή ράβδο. Το σύστημα περιστρέφεται γύρω από κατακόρυφο

Διαβάστε περισσότερα

2) Ομογενής δίσκος μάζας m και ακτίνας R κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο

2) Ομογενής δίσκος μάζας m και ακτίνας R κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο - 1 - Επώνυμο.. Όνομα.. Αγρίνιο 22/3/2015 Ζήτημα 1 0 Να επιλεγεί η σωστή πρόταση 1) Ομογενής δίσκος μάζας m και ακτίνας R κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο επίπεδο. Ο δίσκος στρέφεται γύρω

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ Θέµατα Εξετάσεων

ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ Θέµατα Εξετάσεων ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ Θέµατα Εξετάσεων ΣΤΕΡΕΟ. Θέµατα Εξετάσεων 2 1) Αν το αλγεβρικό άθροισµα των ροπών που δρουν πάνω σ' ένα στερεό σώµα, το οποίο περιστρέφεται γύρω από σταθερό άξονα, είναι µηδέν, τότε α.

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 01: ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4 (ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ) ΚΥΡΙΑΚΗ 15 ΜΑΡΤΙΟΥ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 5

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4 (ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ) ΚΥΡΙΑΚΗ 15 ΜΑΡΤΙΟΥ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 5 ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4 (ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ) ΚΥΡΙΑΚΗ 15 ΜΑΡΤΙΟΥ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 5 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον

Διαβάστε περισσότερα

7. Ένα σώμα εκτελεί Α.Α.Τ. Η σταθερά επαναφοράς συστήματος είναι.

7. Ένα σώμα εκτελεί Α.Α.Τ. Η σταθερά επαναφοράς συστήματος είναι. ΚΕΦΑΛΑΙΟ 1 ο : ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) 6α. Σφαίρα μάζας ισορροπεί δεμένη στο πάνω άκρο κατακόρυφου

Διαβάστε περισσότερα

Β) Μέχρι τη στιγµή t 1 που ξετυλίγεται όλο το νήµα, Β-1) Κατά πόσο διάστηµα x έχει µετατοπιστεί ο κύλινδρος, πόση ενέργεια

Β) Μέχρι τη στιγµή t 1 που ξετυλίγεται όλο το νήµα, Β-1) Κατά πόσο διάστηµα x έχει µετατοπιστεί ο κύλινδρος, πόση ενέργεια Ένας κύλινδρος που σπινάρει Νήµα τυλίγεται σε λεπτό αυλάκι κατά µήκος της περιφέρειας κυλίνδρου, που έχει µάζα M=2kg και ακτίνα R = 0,2m. Ο κύλινδρος συγκρατείται αρχικά στη θέση που φαίνεται στο σχήµα,

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ. Ισχύει: α. L 1. και Κ 1 β. 2L 1 =2L 2 =L 2. και 2Κ 1 γ. L 1

ΟΡΟΣΗΜΟ. Ισχύει: α. L 1. και Κ 1 β. 2L 1 =2L 2 =L 2. και 2Κ 1 γ. L 1 61 Η κινητική ενέργεια ενός δίσκου μάζας m και ακτίνας R που εκτελεί στροφική κίνηση, εξαρτάται: α Μόνο από την γωνιακή του ταχύτητα β Μόνο από την μάζα και την ακτίνα του γ Μόνο από την γωνιακή του ταχύτητα,

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ

ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ Θέµα 1 0 1. Το αλγεβρικό άθροισµα των... που δρουν σ' ένα στερεό που περιστρέφεται γύρω από σταθερό άξονα, είναι ίσο µε την αλγεβρική τιµή του ρυθµού µεταβολής της στροφορµής του..

Διαβάστε περισσότερα

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1.

Διαβάστε περισσότερα

ΦάσµαGroup ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑΤΑ ΠΕΡΙΟ ΟΥ ΦΕΒΡΟΥΑΡΙΟΥ-ΜΑΡΤΙΟΥ 2016 ΤΜΗΜΑΤΑ: ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ. σύγχρονο. µαθητικό φροντιστήριο

ΦάσµαGroup ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑΤΑ ΠΕΡΙΟ ΟΥ ΦΕΒΡΟΥΑΡΙΟΥ-ΜΑΡΤΙΟΥ 2016 ΤΜΗΜΑΤΑ: ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ. σύγχρονο. µαθητικό φροντιστήριο σύγχρονο ΦάσµαGroup προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. µαθητικό φροντιστήριο 1. 25ης Μαρτίου 111 ΠΕΤΡΟΥΠΟΛΗ 50.27.990 50.20.990 2. 25ης Μαρτίου 74 ΠΛ. ΠΕΤΡΟΥΠΟΛΗΣ 50.50.658 50.60.845 3. Γραβιάς 85 ΚΗΠΟΥΠΟΛΗ

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ Σ ένα στερεό ασκούνται ομοεπίπεδες δυνάμεις. Όταν το στερεό ισορροπεί, δηλαδή ισχύει ότι F 0 και δεν περιστρέφεται τότε το αλγεβρικό άθροισμα των ροπών είναι μηδέν Στ=0,

Διαβάστε περισσότερα

1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα).

1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα). Θέμα ο. ια το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και M= M = M, υπολογίστε την επιτάχυνση της µάζας. ίνεται το g. (0) Λύση.

Διαβάστε περισσότερα

Δυναμική στο επίπεδο. Ομάδα Γ.

Δυναμική στο επίπεδο. Ομάδα Γ. 1.3.21. Η τριβή και η κίνηση. στο επίπεδο. Ομάδα Γ. Ένα σώμα μάζας 2kg ηρεμεί σε οριζόντιο επίπεδο με το οποίο παρουσιάζει συντελεστές τριβής μ=μ s =0,2. Σε μια στιγμή t 0 =0 στο σώμα ασκείται μεταβλητή

Διαβάστε περισσότερα

3.1. Διατήρηση της Ορμής.

3.1. Διατήρηση της Ορμής. 3.1. Διατήρηση της Ορμής. 3.1.Ορμή και ρυθμός μεταβολής της ορμής. Ένα σώμα μάζας m=2kg εκτελεί ομαλή κυκλική κίνηση με ταχύτητα υ=5m/s σε κύκλο κέντρου Ο και ακτίνας R=10m. i) Υπολογίστε την ορμή του

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2.

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ 1. Η δύναμη επαναφοράς που ασκείται σε ένα σώμα μάζας m που εκτελεί απλή αρμονική

Διαβάστε περισσότερα

ΤΕΣΤ 16. Να επιλέξετε τη σωστή απάντηση. Να δικαιολογήσετε την επιλογή σας. Να επιλέξετε τη σωστή απάντηση. Να δικαιολογήσετε την επιλογή σας.

ΤΕΣΤ 16. Να επιλέξετε τη σωστή απάντηση. Να δικαιολογήσετε την επιλογή σας. Να επιλέξετε τη σωστή απάντηση. Να δικαιολογήσετε την επιλογή σας. Επαναληπτικό 4 ΘΕΜ aa ΤΕΣΤ 16 1. Στη διάταξη του σχήματος, ασκούμε κατακόρυφη δύναμη σταθερού μέτρου F στο άκρο του νήματος, ώστε ο τροχός () να ανέρχεται κυλιόμενος χωρίς ολίσθηση στο κεκλιμένο επίπεδο.

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις 1 έως 4 να γράψετε στο τετράδιο σας τον αριθµό

Διαβάστε περισσότερα

ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ.

ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ. ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

0. Ασκήσεις επανάληψης.

0. Ασκήσεις επανάληψης. 0. Ασκήσεις επανάληψης. 1. Κίνηση με μεταβλητή κατακόρυφη δύναμη Ένα σώμα μάζας 2kg βρίσκεται ακίνητο στο έδαφος. Σε μια στιγμή δέχεται την επίδραση μιας μεταβλητής κατακόρυφης δύναμης F, το μέτρο της

Διαβάστε περισσότερα

Δυναμική στο επίπεδο. Ομάδα Γ.

Δυναμική στο επίπεδο. Ομάδα Γ. 1.3.21. Η τριβή και η κίνηση. στο επίπεδο. Ομάδα Γ. Ένα σώμα μάζας 2kg ηρεμεί σε οριζόντιο επίπεδο με το οποίο παρουσιάζει συντελεστές τριβής μ=μ s =0,2. Σε μια στιγμή t 0 =0 στο σώμα ασκείται μεταβλητή

Διαβάστε περισσότερα

Ομογενής δίσκος ροπής αδράνειας, με μάζα και ακτίνας θα χρησιμοποιηθεί σε 3 διαφορετικά πειράματα.

Ομογενής δίσκος ροπής αδράνειας, με μάζα και ακτίνας θα χρησιμοποιηθεί σε 3 διαφορετικά πειράματα. Δίσκος Σύνθετη Τρίτη 01 Μαϊου 2012 ΑΣΚΗΣΗ 5 Ομογενής δίσκος ροπής αδράνειας, με μάζα και ακτίνας θα χρησιμοποιηθεί σε 3 διαφορετικά πειράματα. ΠΕΙΡΑΜΑ Α Θα εκτοξευθεί με ταχύτητα από τη βάση του κεκλιμένου

Διαβάστε περισσότερα

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΚΥΡΙΑΚΗ 24/04/2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ (ΑΠΟΦΟΙΤΟΙ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΔΕΚΑΠΕΝΤΕ (15) ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας

Διαβάστε περισσότερα

A3. Στο στιγμιότυπο αρμονικού μηχανικού κύματος του Σχήματος 1, παριστάνονται οι ταχύτητες ταλάντωσης δύο σημείων του.

A3. Στο στιγμιότυπο αρμονικού μηχανικού κύματος του Σχήματος 1, παριστάνονται οι ταχύτητες ταλάντωσης δύο σημείων του. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 15 ΙΟΥΝΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Θέμα Α Στις ερωτήσεις Α1-Α4 να γράψετε στο

Διαβάστε περισσότερα

Επαναληπτική άσκηση: Περιστροφή Κρούση - Κύλιση με ολίσθηση

Επαναληπτική άσκηση: Περιστροφή Κρούση - Κύλιση με ολίσθηση Επαναληπτική άσκηση: Περιστροφή Κρούση - Κύλιση με ολίσθηση Η ομογενής και ισοπαχής ράβδος ΑΓ του διπλανού σχήματος έχει μήκος L=1,m και μάζα M=4kg και μπορεί να περιστρέφεται χωρίς τριβές σε κατακόρυφο

Διαβάστε περισσότερα

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014 ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Απλές προτάσεις Για τον έλεγχο της κατανόησης και εφαρμογής των εννοιών Δογραματζάκης Γιάννης 9/5/2013 Απλές προτάσεις για τον έλεγχο της κατανόησης και εφαρμογής

Διαβάστε περισσότερα

10,0 0 11,5 0,5 13,0 1,0 15,0 1,5 16,0 2,0. www.ylikonet.gr 1

10,0 0 11,5 0,5 13,0 1,0 15,0 1,5 16,0 2,0. www.ylikonet.gr 1 σε µια διάσταση. Οµάδα Β. 1.2.1. Ελαστική παραµόρφωση και σκληρότητα ελατηρίου. Στο διάγραµµα δίνεται η γραφική παράσταση της δύναµης που ασκείται σε δύο ελατήρια σε συνάρτηση µε την επιµήκυνση των ελατηρίων.

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ Επαναληπτικά Θέµατα ΟΕΦΕ 009 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΘΕΜΑ ο ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί

Διαβάστε περισσότερα

2) Ορμή και ρυθμός μεταβολής της στην κυκλική κίνηση. 3) Ένα σύστημα σωμάτων σε πτώση. 4) Ένα σύστημα επιταχύνεται. Γ) Ορμή και διατήρηση ορμής

2) Ορμή και ρυθμός μεταβολής της στην κυκλική κίνηση. 3) Ένα σύστημα σωμάτων σε πτώση. 4) Ένα σύστημα επιταχύνεται. Γ) Ορμή και διατήρηση ορμής Γ) Ορμή και διατήρηση ορμής 1) Στο ταβάνι, στον τοίχο ή στο πάτωμα; Βρισκόμαστε σε ένα δωμάτιο όπου ταβάνι τοίχος και δάπεδο έχουν φτιαχτεί από το ίδιο υλικό και κάνουμε το εξής πείραμα. Εκτοξεύουμε μπαλάκι

Διαβάστε περισσότερα

Για τις παραπάνω ροπές αδράνειας ισχύει: α. β. γ. δ. Μονάδες 5

Για τις παραπάνω ροπές αδράνειας ισχύει: α. β. γ. δ. Μονάδες 5 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ-A ΗΜΕΡΟΜΗΝΙΑ: 01-03-2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ M-ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ.-ΠΟΥΛΗ Κ. ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17/4/2016 ΘΕΜΑ Α

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17/4/2016 ΘΕΜΑ Α ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 7/4/06 ΘΕΜΑ Α Στις παρακάτω ερωτήσεις - 7 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθμό το γράµμα που αντιστοιχεί στη σωστή απάντηση:

Διαβάστε περισσότερα

Ερωτήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως

Ερωτήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Τίτλος Κεφαλαίου: Στερεό σώµα ιδακτική Ενότητα: Κινηµατική του Στερεού Σώµατος Ερωτήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Θέµα ο: (Ιούνιος 009 Ηµερήσιο) Ο δίσκος του σχήµατος κυλίεται χωρίς

Διαβάστε περισσότερα

ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση

ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση 1.

Διαβάστε περισσότερα

4. Σώμα Σ 1 μάζας m 1 =1kg ισορροπεί πάνω σε λείο κεκλιμένο επίπεδο που σχηματίζει με τον ορίζοντα γωνία φ=30 ο. Το σώμα Σ 1 είναι δεμένο στην άκρη

4. Σώμα Σ 1 μάζας m 1 =1kg ισορροπεί πάνω σε λείο κεκλιμένο επίπεδο που σχηματίζει με τον ορίζοντα γωνία φ=30 ο. Το σώμα Σ 1 είναι δεμένο στην άκρη 1. Δίσκος μάζας Μ=1 Kg είναι στερεωμένος στο πάνω άκρο κατακόρυφου ελατηρίου, σταθεράς k=200 N/m. Το άλλο άκρο του ελατηρίου είναι στερεωμένο σε οριζόντιο δάπεδο. Πάνω στο δίσκο κάθεται ένα πουλί με μάζα

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΠΝΛΗΠΤΙΚΟ ΙΓΩΝΙΣΜ ΣΤΗ ΜΗΧΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΤΟΣ ΘΕΜ Για να απαντήσετε στις παρακάτω ερωτήσεις 1-4 πολλαπλής επιλογής, αρκεί να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δεξιά απ αυτόν, μέσα σε

Διαβάστε περισσότερα

. α. περιστροφή σώματος με σταθερή γωνιακή ταχύτητα. και 0

. α. περιστροφή σώματος με σταθερή γωνιακή ταχύτητα. και 0 Επανάληψη: Περιστροφή στερεού σώματος (Φ25) 1. Να αποδείξετε ότι, για τροχό ακτίνας R που κυλίεται χωρίς να ολισθαίνει, ισχύει α cm =Rα γων. 2. Τροχός ακτίνας R έχει α cm =0 και α γων =0. Τι είδους κίνηση

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Κανάρη 36, Δάφνη Τηλ. 10 9713934 & 10 9769376 ΘΕΜΑ Α ΘΕΜΑ Α ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

EΡΓΑΣΙΑ 5 η Καταληκτική ηµεροµηνία παράδοσης: 20 Ιουλίου 2003

EΡΓΑΣΙΑ 5 η Καταληκτική ηµεροµηνία παράδοσης: 20 Ιουλίου 2003 1 EΡΓΑΣΙΑ 5 η Καταληκτική ηµεροµηνία παράδοσης: 20 Ιουλίου 2003 1. Από την ίδια γραµµή αφετηρίας(από το ίδιο ύψος) ενός κεκλιµένου επιπέδου αφήστε να κυλήσουν, ταυτόχρονα προς τα κάτω, δύο κυλίνδροι της

Διαβάστε περισσότερα