3 Ροπή δύναμης ισορροπία σωμάτων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "3 Ροπή δύναμης ισορροπία σωμάτων"

Transcript

1 Ροπή δύναμης ισορροπία σωμάτων ρισμός Συνθήκες ισορροπίας στερεού Κέντρο βάρους Ευσταθής ασταθής ισορροπία Μοχλοί Στατική μελών του σώματος Μαρία Κατσικίνη users.uth.gr/ktsk Ροπή δύναμης - ορισμός... είναι η αιτία που προκαλεί την περιστροή ενός σώματος r Ροπή της δύναμης ως προς το σημείο ονομάζεται το εξωτερικό γινόμενο του διανύσματος θέσης του σημείου εαρμογής της δύναμης με τη δύναμη. r τ Ηροπήείναιδιανυσματικό μέγεθος κάθετο στο επίπεδο που ορίζεται από την και το r.

2 Εξωτερικό γινόμενο δύο διανυσμάτων Διάνυσμα c c z + + Διάνυσμα z + + z Διάνυσμα c z c Μέτρο του διανύσματος c: ( ), c sn c 4 + z z z z z c 4 ) 4 ( ) 0 0 ( 4) 0 0 ( Παράδειγμα: Εξωτερικό γινόμενο δύο διανυσμάτων

3 Ροπή δύναμης Ροπή r r Όταν η είναι κάθετη στην διεύθυνση που ενώνει το σημείο καιτοσημείοεαρμογήςτης r r Σύμβαση για τη ορά της ροπής r r Μονάδα μέτρησης της ροπής Ν.m Εναλλακτική σύμβαση για τη ορά της ροπής Θετική όταν τείνει να περιστρέψει το σώμα δεξιόστροα + Αρνητική όταν τείνει να περιστρέψει το σώμα αριστερόστροα - Ροπή δύναμης 0.m 0N 0. 0 N. m +

4 Ροπή δύναμης Όταν η δεν είναι κάθετη στην r: rsn θ όπου θ είναι η γωνία που σχηματίζουν οι r και r θ Ροπή προκαλεί μόνο η συνιστώσα της που είναι κάθετη στην r r 0 Ροπή δύναμης snθ θ r( sn ϑ) r θ ( r ) sn ϑ r θ sn θ r r snθ : απόσταση από το ορέα της

5 Παράδειγμα Μία τετράγωνη μεταλλική πλάκα πλευράς 0.8m περιστρέεται γύρω από άξονα που διέρχεται από το κέντρο της και είναι κάθετος στην πλάκα. Να υπολογιστεί η συνολική ροπή ως προς το σημείο που οείλεται στις τρεις δυνάμεις 4N, 6N και 8Ν. + O 45 o + ( ) 0.8 ( ).57Nm Ισορροπία σώματος Ένα σώμα ισορροπεί όταν: 0 και 0 Η συνισταμένη των δυνάμεων που δρουν στο σώμα είναι ίση με μηδέν Η συνισταμένη των ροπών όλων των δυνάμεων που δρουν στο σώμα ως προς οποιοδήποτε σημείο είναι ίση με μηδέν Και οι δύο συνθήκες είναι απαραίτητες για ένα σώμα που δεν μπορεί να θεωρηθεί σημειακό (όταν όλες οι δυνάμεις δεν έχουν το ίδιο σημείο εαρμογής)

6 Παράδειγμα Πόση πρέπει να είναι η μάζα του σώματος Β για να ισορροπεί η (αβαρής) δοκός; 0.m 0.8m kg Α N Β? kg Α Για να ισορροπεί η δοκός θα πρέπει : 0 A + B B 0 A A B A A m B N + B g m A B g + N 0 0 A B m B α) Συνθήκη ισορροπίας για το σώμα Β: Ν Β B β) Ν Β Ν Β (δράση αντίδραση) γ) Ν Β : δύναμη που ασκείται απότοσώμαβστηδοκό B m A A A B A m B B B N B B 0.5kg Άσκηση Ένας αθλητής βάρους 900Ν έχει τη στάση του σχήματος. Αν η προβολή του κέντρου μάζας του σώματός του στο έδαος απέχει 60cm από τα χέρια και 90cm από το σημείο στήριξης να υπολογιστεί η δύναμη που εξασκείται στα πόδια και τα χέρια του. Ισορροπία δυνάμεων: N + N 0 N N 0.9m 0.6m Ισορροπία ροπών γύρω από το : N N N ( ) 540N, N N 540 N 60N 900

7 Άσκηση Ένα ράι πλάτους 0.4m στηρίζεται στον τοίχο με ένα μεντεσέ και κρατιέται στην οριζόντια θέση με τη βοήθεια μιας ράβδου μήκους 0.5m. Το βάρος του ραιού είναι 0Ν. Ένα βιβλίο βάρους 50Ν είναιτοποθετημένοστοράιέτσιώστενα αήνει 0.m καθαρή απόσταση από το άκρο του ραιού. Να υπολογιστεί η τάση στη ράβδο (η ράβδος ασκεί δύναμη κατά μήκος της). L Τ L 0.4 snθ 0.8 θ ON θ Ρ Δυνάμεις που ασκούνται στο ράι Βάρος του ραιού Αντίδραση του βιβλίου Τάση της ράβδου Αντίδραση στο μεντεσέ Ισορροπία ροπών γύρω από το L L 0 0 Ρ + N T cosθ L T T 9.6N Άσκηση Ένας εργάτης βάρους 000Ν βρίσκεται πάνω σε μία σκάλα μήκους.6m, η οποία στηρίζεται σε τοίχο με τον οποίο σχηματίζει γωνία 4 ο. εργάτης απέχει 0.9m από την κορυή της σκάλας. Το βάρος της σκάλας και η τριβή με τον τοίχο είναι αμελητέα. Να υπολογιστούν οι δυνάμεις που αναπτύσσονται στη σκάλα από το έδαος και τον τοίχο. 4 o N Ισορροπία δυνάμεων: 4 o 0 N snθ N 56 o 0 cosθ Ισορροπία ροπών γύρω από το : θ O 0 N cos56 (.6 0.9) N cosθ 506N & tnθ tnθ.98 θ N cos4.6 (κάθετη αντίδραση εδάους & τριβή)

8 Κέντρο μάζας Κέντρο μάζας είναι το σημείο εκείνο του σώματος στο οποίο θεωρούμε ότι συγκεντρώνεται όλη η μάζα του σώματος. Κάθε στοιχειώδης μάζα δέχεται τη δύναμη της βαρύτητας Κέντρο μάζας (ή κέντρο βάρους) είναι το σημείο εαρμογής της συνισταμένης των δυνάμεων βαρύτητας που ασκούνται σε κάθε σωματίδιο από το οποίο αποτελείται το σώμα. Κ.Μ. O Ροπή του βάρους του χεριού: Κέντρο μάζας Μαθηματικός ορισμός: Έστω αριθμός σωματιδίων μάζας m με συντεταγμένες (,, z ). Το κέντρο μάζας του συστήματος είναι ένα σημείο με συντεταγμένες: K m m K m m z K m z m

9 Άσκηση Στο σχήμα αίνεται η απλοποιημένη εικόνα της δομής του μορίου του νερού. Να βρείτε το κέντρο μάζας του μορίου αν το μήκος του δεσμού Η- είναι0.957å. Θεωρήστε ότι η μάζα του Η και του είναι αντίστοιχα και 6 u (u kg). 05 ο m 6u 0 + u u u + u + u K m K Κέντρο μάζας Ιδιότητες Συντεταγμένες ατόμων ξυγόνο Υδρογόνο [] Υδρογόνο [] m m ( 0,0) cos, sn 0.58, ( ) 6u 0 + u u u + u + u Å 0 Η 05 ο Η ( 0.58,0.759) K.. πολύ κοντά στο, πάνω στον άξονα των Η ροπή του βάρους του σώματος ως προς το Κ.Μ. είναι πάντα μηδέν. Το Κ.Μ. είναι το σημείο που πρέπει να στηριχθεί ένα σώμα για να ισορροπήσει (εμπειρική μέθοδος προσδιορισμού του Κ.Μ.) 4 Στα στερεά σώματα το Κ.Μ. είναι απόλυτα καθορισμένο και δε μεταβάλλεται με την κίνηση του σώματος. Στην περίπτωση εύκαμπτων αντικειμένων (όπως το ανθρώπινο σώμα) το Κ.Μ. αλλάζει με τη στάση του σώματος

10 Κέντρο μάζας...στην περίπτωση εύκαμπτων αντικειμένων (όπως το ανθρώπινο σώμα) το Κ.Μ. μετατοπίζεται ανάλογα με τη στάση του σώματος. Για να ισορροπεί και να μην πέτει ο σκυμμένος άνθρωπος, θα πρέπει η κατακόρυος που περνά από το Κ.Μ. να περνά και από τη βάση στήριξης. Κ.Μ. Κ.Μ. Κ.Μ. Ασταθής ισορροπία Κ.Μ. Κ.Μ.

11 Κέντρο μάζας του σώματος - ισορροπία Για τον υπολογισμό του κέντρου μάζας του σώματος θεωρούμε ότι το σώμα αποτελείται από συμπαγή και σταθερού σχήματος τμήματα... κάτω πόδι, κεάλι κλπ Το κέντρο μάζας «εκτελεί βολή» Sports n eercse omechncs, P. Grmshw & A. Buren (Tlor & rncs 006) Κέντρο μάζας του σώματος Phscs o the humn o, Irvng P. Hermn

12 Κέντρο μάζας του σώματος Τμήμα του σώματος Μάζα (Μ: μάζα όλου του σώματος) Κέντρο μάζας του τμήματος (L: μήκος τμήματος) Proml Dstl χέρι Μ L L αντοβραχίονας 0.06 Μ 0.40 L L βραχίονας 0.08 Μ 0.46 L L πόδι (κάτω) Μ 0.50 L 0.50 L κνήμη Μ 0.4 L L μηρός 0. Μ 0.4 L L κεάλι και λαιμός 0.08 Μ L L θώρακας Μ 0.50 L 0.50 L Phscs o the humn o, Irvng P. Hermn Bo Segment Prmeters: A Surve o esurement Technques, R. Drlls, R. Contn,. Bluesten, Dstl/ proml (μακριά / κοντά στοκέντροτουσώματος) Εμπειρική μέθοδος υπολογισμού του Κ.Μ. Ν υ Α Ν υπομόχλιο Ένδειξη ζυγαριάς δύναμη που ασκεί η σανίδα στη ζυγαριά ζεύγος δράσης αντίδρασης με τη Ν O 0 + Ν ένδειξη ζυγαριάς βάρος ομοιογενούς σανίδας N N βάρος ανθρώπου μήκος σανίδας Sports n eercse omechncs, P. Grmshw & A. Buren (Tlor & rncs 006)

13 Ισορροπία (Ευσταθής Ασταθής) Ευσταθής ισορροπία Εάν σώμα εκτραπεί από τη θέση ισορροπίας του έτσι ώστε το κέντρο βάρους του να ανυψωθεί, το σώμα βρίσκεται σε ευσταθή ισορροπία επανέρχεται στην αρχική του θέση μόλις αεθεί ελεύθερο Εάν σώμα εκτραπεί από τη θέση ισορροπίας του έτσι ώστε το κέντρο βάρους του να χαμηλώσει, το σώμα βρίσκεται σε ασταθή ισορροπία Ασταθής ισορροπία δεν επανέρχεται στην αρχική του θέση μόλις αεθεί ελεύθερο Ισορροπία του ανθρώπινου σώματος Κατά το βάδισμα, το Κ.Μ. μετατοπίζεται συνεχώς έτσι ώστε η κατακόρυος που περνά από αυτό να περνά διαδοχικά από το δεξί ή το αριστερό πόδι Όταν στεκόμαστε με ανοιχτά πόδια η βάση στήριξης είναι μεγαλύτερη Lehruch er plstschen Antome E. Hrless (856)

14 Ισορροπία του ανθρώπινου σώματος Πόση είναι η δύναμη που πρέπει να ασκηθεί για να πέσει άνθρωπος μάζας 75kg; m g 0. m g N.5 άνθρωπος γέρνει προς τη μεριά άσκησης της δύναμης το κ.μ. απομακρύνεται από το σημείο Α είναι πιο δύσκολο να αναποδογυρίσει το σώμα άνθρωπος ανοίγει τα πόδια το κ.μ. μετατοπίζεται προς τα κάτω + μεγαλώνει ηβάσηστήριξης Η ροπή της τριβής και της κάθετης δύναμης στο σημείο Α ισούται με μηδέν για άξονα περιστροής που περνά από το Α Ισορροπία του ανθρώπινου σώματος Έστω άνθρωπος βάρους 900Ν που στηρίζεται στα δύο πόδια του με την απόσταση μεταξύ των πελμάτων να είναι 0cm. Ισορροπία δυνάμεων: N + N A Δ Ν Δ 0cm Ν Α Ισορροπία ροπών γύρω από το σημείο : NΔ NΔ 450N

15 Ισορροπία του ανθρώπινου σώματος Αν λόγω τραυματισμού στο δεξί πόδι η Ν Δ δεν μπορεί να είναι μεγαλύτερη από 50Ν πόσο πρέπει να μετατοπιστεί το κέντρο βάρους του σώματος; Ισορροπία δυνάμεων: N + N A Δ Ν Δ Ν Α 0cm Ισορροπία ροπών γύρω από το σημείο : N Δ N N Δ Δ cm 900 Το Κ.Μ. μετατοπίστηκε κατά: cm Μοχλοί Συμπαγής δοκός ελεύθερη να περιστραεί γύρω από σταθερό σημείο (υπομόχλιο) ου είδους ου είδους ου είδους βάρος μοχλοβραχίονας Ν υπομόχλιο μυϊκή δύναμη δύναμη Αχίλλειου τένοντα βάρος δύναμη δικεάλου βάρος κεαλιού δύναμη εξωτερικών μυών λαιμού Κοινοί στη μηχανική Κοινοί στο σώμα Απαιτείται μεγαλύτερη μυϊκή δύναμη αλλά μυς συστέλλεται λιγότερο Τα άκρα μπορούν να είναι λεπτά και περισσότερο ευκίνητα

16 Σκελετικοί μύες Επειδή οι μύες παράγουν έργο μόνο όταν συστέλλονται υπάρχουν συνήθως κατά ζεύγη Δικέαλος: βοηθά στο να ανασηκώνεται προς τα πάνω ο αντιβραχίονας Τρικέαλος : βοηθά στο να ασκεί δύναμη προς τα κάτω ο αντιβραχίονας ι μύες απολήγουν σε τένοντες, ο καθένας εκ των οποίων συνδέεταιμεδιαορετικό οστό Μέγιστη δύναμη μυός: ~40 Ν ανάcm του εμβαδού διατομής του Άσκηση Να υπολογιστεί η συμπιεστική δύναμη που ασκείται στην άρθρωση του αγκώνα και η εκτατική δύναμη που ασκείται στον τένοντα όταν κρατάμε στην παλάμη μάζα 6kg (βάρος 60Ν). Το βάρος του αντιβραχίoνα είναι 0Ν καιη γωνία που σχηματίζει ο δικέαλος με τον οριζόντιο άξονα είναι 60 ο. Μηχανικό ανάλογο: : δύναμη αντίδρασης από τον Μοχλός ου είδους 60 ο αγκώνα (κάθετη δύναμη) ζεύγος δράσης αντίδρασης με τη συμπιεστική δύναμη που ασκείται στην άρθρωση του αγκώνα (αυτή που ψάχνω) : δύναμη με την οποία ο τένοντας συγκρατεί τον αντιβραχίονα (~ τάση νήματος) ζεύγος δράσης-αντίδρασης με την εκτατική δύναμη που ασκείται από τον αντιβραχίονα στον τένοντα (αυτή που ψάχνω). cm cm 60 ο 5cm

17 Άσκηση Να υπολογιστεί η συμπιεστική τάση που ασκείται στην άρθρωση του αγκώνα και η εκτατική τάση που ασκείται από τον τένοντα στον αντιβραχίονα όταν κρατάμε στην παλάμη βάρος 60Ν. Το βάρος του αντιβραχίoνα είναι 0Ν καιηγωνίαπου σχηματίζει ο δικέαλος με τον οριζόντιο άξονα είναι 60 ο. cm cm ϕ cos60 5cm snϕ sn ο Ισορροπία δυνάμεων: 0 cos 0 (0.+ 0.) sn Ισορροπία ροπών γύρω από το : sn N Άσκηση 40N cm cosϕ cm 60 ο 5cm sn ϕ cosϕ cos cosϕ 40 snϕ 8N snϕ 40 5N + snϕ sn 60 snϕ cosϕ ϕ ϕ tn & ( snϕ) + ( cos ) N ϕ 55

18 Άσκηση Απαιτείται μεγαλύτερη ή μικρότερη δύναμη για να σηκώσουμε ένα βάρος όταν η γωνία α είναι μεγάλη; Εξηγήστε. 0 (0.+ 0.) cosϕ + 0. cosϕ cosϕ α O ανεξάρτητη της Η δύναμη που ασκεί ο μυς ελαττώνεται σημαντικά όταν έχει εκταθεί ή συμπιεστεί πολύ. Άσκηση Αν ο αντιβραχίονας βρίσκεται σε οριζόντια θέση και η παλάμη ασκεί δύναμη 0Ν στο ζυγό, να υπολογιστεί η μυϊκή δύναμη m και η δύναμη αντίδρασης στον αγκώνα (βάρος χεριού 0). n 0N Ισορροπία ροπών γύρω από το : C O 0.5 6N C 9.5 n Ισορροπία δυνάμεων: m m 0 C 96N m n + n C 6 0

19 Άσκηση Δυνάμεις που αναπτύσσονται στον Αχίλλειο τένοντα και στον αστράγαλο καθώς ανεβαίνουμε τις σκάλες. Να υπολογιστεί το μέτρο της συμπιεστικής δύναμης στην κνήμη και της δύναμης έκτασης στον Αχίλλειο τένοντα μόλις ένα άτομο βάρους 850Ν πατάει στο σκαλοπάτι και όλο το βάρος του μεταέρεται στο ένα πόδι. Θεώρησε το βάρος του ποδιού κάτω από τον αστράγαλο αμελητέο. Άνθρωπος που στέκεται στο ένα πόδι: ο κνήμη N T C Αχίλλειος τένοντας Ν850Ν (ισορροπία δυνάμεων που ασκούνται στον άνθρωπο) Πόδι ως απομονωμένο σώμα: Δέχεται την κάθετη αντίδραση του δαπέδου (Ν), τη δύναμη από την κνήμη ( C ) και τη δύναμη από τον τένοντα ( T ). 7cm 4cm Η ζητούμενη εκτατική δύναμη στον τένοντα είναι η αντίδραση της T (ίση και αντίθετη της T με σημείο εαρμογής στον τένοντα). Η ζητούμενη συμπιεστική δύναμη στην κνήμη είναι η αντίδραση της C (ίση και αντίθετη της C με σημείο εαρμογής στην κνήμη). Άσκηση ο T Ισορροπία δυνάμεων: 0 N + T cos C cosϕ N C 0 T sn C sn ϕ Ισορροπία ροπών γύρω από το : N 7cm T ο C 4cm T O cos T cos N C sn ϕ 594 sn 57N C cosϕ cos 8N 7cm 4cm T 594N 4 o c 407N

20 Άσκηση Ποια είναι η ελάχιστη οριζόντια δύναμη που πρέπει να ασκηθεί πάνω στον τροχό μάζας m και ακτίνας R γιαναανέβειτοσκαλοπάτι; Γιαναανέβειτοσκαλοπάτιθα πρέπει να στραεί γύρω από το Α Θα πρέπει: h Α Άσκηση L Ε Ν Ν Α O R O R h Α σώμα Α Κ Ροπή της δύναμης Μ N 0, γύρωαπότοσημείοα R O R h Ροπή του βάρους Θα πρέπει: ( ) ( R h) + R h R R R h + Rh Rh h Rh h ( ) ( ) R h h R h ( ) h R h R h Το σώμα Α βάρους (το κέντρο βάρους βρίσκεται στο σημείο Κ) ισορροπεί πάνω σε ακλόνητο κύλινδρο. συντελεστής στατικής τριβής στην επιάνεια επαής είναι μ. Πόση πρέπει να είναι η ώστε να ολισθαίνει το σώμα Α πάνω στον κύλινδρο; Αυξανόμενης της το σημείο επαής Ε μετατοπίζεται προς τ αριστερά (η συνισταμένη των Ν και εξισορροπείται από τη συνισταμένη των και ). Ισορροπία δυνάμεων: Ισορροπία ροπών γύρω από το O: Δυνάμεις που ασκούνται στο σώμα Α: Τριβή: Δύναμη Κάθετη αντίδραση: Ν Βάρος + N cosϕ + snϕ N snϕ cosϕ L R H ροπή του βάρους του σώματος Α είναι μηδέν όσο το σώμα δεν κινείται

21 Άσκηση L Κ Ε Ν N tn ϕ Nμ σώμα Α μ tn ϕ snϕ R N cosϕ + snϕ + N snϕ cosϕ N L R + snϕ cosϕ snϕ cos ϕ cosϕ + snϕ snϕ L R R L snϕ + R ( + ) ( + ) L + Όσο αυξάνει η τόσο αυξάνει το και η γωνία Για > κρισιμη tn>μ αρχίζει ολίσθηση Ισορροπία χεριού (90 ο -χωρίς τριβές) N P P N Πόση είναι η ελάχιστη δύναμη που είναι απαραίτητη για να αρχίσει να κινείται η άρθρωση του αγκώνα (κίνηση του αντιβραχίονα προς τα πάνω). Η ακτίνα καμπυλότητας του άκρου του βραχίονα είναι r.9cm, το βάρος του αντιβραχιόνιου είναι 0Ν και ο συντελεστής τριβής στην άρθρωση είναι N 0N

22 Ισορροπία χεριού (90 ο -με τριβές) 5cm N cm 5cm θ r Ισορροπία δυνάμεων ( άξονας) 0 N snθ μ N cosθ μ tnθ s s cosθ Ισορροπία δυνάμεων ( άξονας) N cosθ + sn θ Ισορροπία ροπών (γύρω από το ) O Για να υπερνικηθεί η τριβή θα πρέπει: * Η συνισταμένη δύναμη των Ν και αντιστοιχεί στην P του προηγούμενου παραδείγματος 0 + cosθ cosθ + sn θ 90 sn θ sn θ r + N cosθ + sn θ 90 ( cos θ + sn θ) ( 90) sn θ r ( 90) tn θ > μs θ > r sn θ 0.085cm N ( ) + r 0.05 Στατική του ισχίου Άνθρωπος στηρίζεται στο ένα πόδι Ισορροπία σώματος : N Η κεαλή του μηριαίου οστού εαρμόζει και κινείται σε εσοχή της λεκάνης. Στο σημείο επαής δέχεται δύναμη αντίστασης R Μείζων τροχαντήρας: εξωτερική εξοχή από την οποία καταύονται απαγωγοί μύες (γλουτιαίοι): δύναμη Στο κέντρο βάρους του ποδιού ασκείται το βάρος του που είναι ~ίσο με το /7 του βάρους του ανθρώπου.

23 Στατική του ισχίου Ισορροπία δυνάμεων: 0 cos70 Rsnϕ Ισορροπία ροπών γύρω από το : 0 sn 70 + N R cosϕ R cosϕ R sn ϕ R cos 7R cosϕ 6.57 ϕ.6 ϕ R.4 70 o O R 7 8 /7 0 N Δυνάμεις στη σπονδυλική στήλη Μηχανικό ανάλογο: L/ Βάρος κεαλιού & χεριών o σπονδυλική στήλη θ Βάρος θώρακα R αντίδραση από τη λεκάνη λεκάνη

24 Δυνάμεις στη σπονδυλική στήλη Πόση είναι η R και η για θ0 ο ; L/ θ o θ R Ισορροπία δυνάμεων: 0 cos Ισορροπία ροπών γύρω από το : ( θ ) R cosϕ ( θ ) + + R sn ϕ 0 sn θ 0.4 L L 0 cosθ + Lcosθ sn Δυνάμεις στη σπονδυλική στήλη.47 cos.47 sn ( 0 ) R cosϕ.5 R cosϕ ( 0 ).6 R sn ϕ R sn ϕ + R R tn ϕ 0.58 ϕ 0 Για θ60 ο :.4 ϕ R.9 δοκιμάστε λύσεις για διαορετικές γωνίες θ και για την περίπτωση που ο άνθρωπος σηκώνει βάρος π.χ. 0., 0.5

25 Άσκηση Άνθρωπος βάρους 800Ν στηρίζει όλο του το βάρος συμμετρικά σε δύο πατερίτσες που σχηματίζουν γωνία 75 ο με το έδαος. Η παλάμη κάθε χεριού ασκεί στην (αβαρή) πατερίτσα δύναμη 00Ν. Να υπολογιστεί η δύναμη R που ασκεί το δάπεδο στην πατερίτσα και η δύναμη P που ασκείται από την πατερίτσα στη μασχάλη. Αν ο συντελεστής τριβής στατικής πατερίτσας δαπέδου είναι μ0.7 θα γλιστρήσει η πατερίτσα; 0.6L Ν P R 75 ο Σύστημα άνθρωπος πατερίτσες (εξωτερικές δυνάμεις, N) πατερίτσα (ως απομονωμένο σώμα): Ισορροπία δυνάμεων: 0 Psn ϕ Ισορροπία ροπών γύρω από το : O sn5 0 sn(90 75) 0.4L + N N 400N 0 P cosϕ + N ( 0.4 N ) L L cos5 tn5 ( ) 96.5N cos5 L N sn5 L Άσκηση Άνθρωπος βάρους 800Ν στηρίζει όλο του το βάρος συμμετρικά σε δύο πατερίτσες που σχηματίζουν γωνία 75 ο με το έδαος. Η παλάμη κάθε χεριού ασκεί στην (αβαρή) πατερίτσα δύναμη 00Ν. Να υπολογιστεί η δύναμη R που ασκεί το δάπεδο στην πατερίτσα και η δύναμη P που ασκείται από την πατερίτσα στη μασχάλη. Αν ο συντελεστής τριβής στατικής πατερίτσας δαπέδου είναι μ0.7 θα γλιστρήσει η πατερίτσα; P 96.5 tnϕ 0. ϕ 7. 8 N P P 6N sn 0.79 ϕ 0.6L Ν R 75 ο Άρα: R + N N Η μέγιστη τιμή της στατικής τριβής είναι: m μn N δηλαδήμεγαλύτερητηςτριβήςπουαναπτύσσεταιστηνπατερίτσα η πατερίτσα δεν γλιστράει.

ΟΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 3.1 Στο σχήμα φαίνεται μία πόρτα και οι δυνάμεις που δέχεται. Ροπή ως προς τον άξονα z z έχει η δύναμη:

ΟΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 3.1 Στο σχήμα φαίνεται μία πόρτα και οι δυνάμεις που δέχεται. Ροπή ως προς τον άξονα z z έχει η δύναμη: 3.1 Στο σχήμα φαίνεται μία πόρτα και οι δυνάμεις που δέχεται. Ροπή ως προς τον άξονα z z έχει η δύναμη: α. F 1 β. F 2 γ. F 3 δ. F 4 3. 2 Ένα σώμα δέχεται πολλές ομοεπίπεδες δυνάμεις. Τότε: α. οι ροπές

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση,

Διαβάστε περισσότερα

6. Να βρείτε ποια είναι η σωστή απάντηση.

6. Να βρείτε ποια είναι η σωστή απάντηση. 12ΑΣΚΗΣΕΙΣ ΔΥΝΑΜΙΚΗΣ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Να βρείτε ποια είναι η σωστή απάντηση. Το όργανο μέτρησης του βάρους ενός σώματος είναι : α) το βαρόμετρο, β) η ζυγαριά, γ) το δυναμόμετρο, δ) ο αδρανειακός ζυγός.

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης)

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης) ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης) Ένας ομογενής οριζόντιος δίσκος, μάζας Μ και ακτίνας R, περιστρέφεται γύρω από κατακόρυφο ακλόνητο άξονα z, ο οποίος διέρχεται

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ Σ ένα στερεό ασκούνται ομοεπίπεδες δυνάμεις. Όταν το στερεό ισορροπεί, δηλαδή ισχύει ότι F 0 και δεν περιστρέφεται τότε το αλγεβρικό άθροισμα των ροπών είναι μηδέν Στ=0,

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΛΥΚΕΙΟ ΑΓΙΟΥ ΠΥΡΙΔΩΝΑ ΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕ ΠΡΟΑΓΩΓΙΚΕ ΕΞΕΤΑΕΙ ΦΥΙΚΗ ΚΑΤΕΥΘΥΝΗ Β ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 31-05-2012 ΔΙΑΡΚΕΙΑ: 07.45 10.15 Οδηγίες 1. Το εξεταστικό δοκίμιο αποτελείται από 9 σελίδες.

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Α Λυκείου

Διαγώνισμα Φυσικής Α Λυκείου Διαγώνισμα Φυσικής Α Λυκείου Δυναμιική.. Θέμα 1 ο 1. Συμπληρώστε την παρακάτω πρόταση. H αρχή της αδράνειας λέει ότι όλα ανεξαιρέτως τα σώματα εκδηλώνουν μια τάση να διατηρούν την... 2. Ένα αυτοκίνητο

Διαβάστε περισσότερα

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα.

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. ΘΕΜΑ Α Παράδειγμα 1 Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. Α2. Για τον προσδιορισμό μιας δύναμης που ασκείται σε ένα σώμα απαιτείται να

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014 ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/014 ΘΕΜΑ Α Οδηγία: Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

Ισορροπία στερεού. 3.2.8. Ποιες είναι οι δυνάμεις που ασκούνται; 3.2.9. Ένας Κύλινδρος Πάνω σε μια Σφήνα. Υλικό Φυσικής Χημείας

Ισορροπία στερεού. 3.2.8. Ποιες είναι οι δυνάμεις που ασκούνται; 3.2.9. Ένας Κύλινδρος Πάνω σε μια Σφήνα. Υλικό Φυσικής Χημείας 3.2.. 3.2.1. Ροπές και ισορροπία. Πάνω σε λείο οριζόντιο επίπεδο βρίσκεται μια ράβδος μήκους l=4m, η οποία μπορεί να στρέφεται γύρω από κατακόρυφο άξονα, ο οποίος διέρχεται από το μέσον της Ο. Ασκούμε

Διαβάστε περισσότερα

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1.

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 28 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 15 Δεκεμβρίου, 2013 Ώρα: 10:00-13:00 Οδηγίες: 1) Το δοκίμιο αποτελείται από πέντε (5) σελίδες και πέντε (5) θέματα. 2) Να απαντήσετε σε

Διαβάστε περισσότερα

ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση

ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση 1.

Διαβάστε περισσότερα

ΓΑΛΑΝΑΚΗΣ ΓΙΩΡΓΟΣ ΔΗΜΗΤΡΑΚΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ

ΓΑΛΑΝΑΚΗΣ ΓΙΩΡΓΟΣ ΔΗΜΗΤΡΑΚΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ ΘΕΜΑ Α Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί η σωστή απάντηση. Ένας ακίνητος τρoχός δέχεται σταθερή συνιστάμενη ροπή ως προς άξονα διερχόμενο

Διαβάστε περισσότερα

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΠΛΑΓΙΑ ΠΛΑΣΤΙΚΗ ΚΡΟΥΣΗ ΚΑΙ ΤΑΛΑΝΤΩΣΗ

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΠΛΑΓΙΑ ΠΛΑΣΤΙΚΗ ΚΡΟΥΣΗ ΚΑΙ ΤΑΛΑΝΤΩΣΗ ΤΑΛΑΝΤΩΣΗ ΜΕΤΑ ΑΠΟ ΠΛΑΓΙΑ ΚΡΟΥΣΗ.. Σώμα που κινείται με κάποια ταχύτητα που σχηματίζει γωνία ως προς το κεκλιμένο επίπεδο συγκρούεται πλαστικά με άλλο σώμα δεμένο στο άκρο οριζοντίου ελατηρίου. Ξύλινο

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014 ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 013-014 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 09/03/014 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το

Διαβάστε περισσότερα

ΣΤΑΤΙΚΗ 1 ΔΥΝΑΜΕΙΣ. Παράδειγμα 1.1

ΣΤΑΤΙΚΗ 1 ΔΥΝΑΜΕΙΣ. Παράδειγμα 1.1 ΣΤΤΙΚΗ 1 ΥΝΜΕΙΣ Στατική είναι ο κλάδος της μηχανικής που μελετά την ισορροπία των σωμάτων. Κατά την μελέτη δεχόμαστε ότι τα σώματα δεν παραμορφώνονται από τις δυνάμεις που ασκούνται σ αυτά. Οι παραμορφώσεις

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 1. Εισαγωγικές έννοιες στην μηχανική των υλικών Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 1 Περιεχόμενο μαθήματος Μηχανική των Υλικών: τμήμα των θετικών επιστημών που

Διαβάστε περισσότερα

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Απλές προτάσεις Για τον έλεγχο της κατανόησης και εφαρμογής των εννοιών Δογραματζάκης Γιάννης 9/5/2013 Απλές προτάσεις για τον έλεγχο της κατανόησης και εφαρμογής

Διαβάστε περισσότερα

8. Σύνθεση και ανάλυση δυνάμεων

8. Σύνθεση και ανάλυση δυνάμεων 8. Σύνθεση και ανάλυση δυνάμεων Βασική θεωρία Σύνθεση δυνάμεων Συνισταμένη Σύνθεση δυνάμεων είναι η διαδικασία με την οποία προσπαθούμε να προσδιορίσουμε τη δύναμη εκείνη που προκαλεί τα ίδια αποτελέσματα

Διαβάστε περισσότερα

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014 minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/014 minimath.eu Περιεχόμενα Κινηση 3 Ευθύγραμμη ομαλή κίνηση 4 Ευθύγραμμη ομαλά μεταβαλλόμενη κίνηση 5 Δυναμικη 7 Οι νόμοι του Νεύτωνα 7 Τριβή 8 Ομαλη κυκλικη

Διαβάστε περισσότερα

ΔΕΙΓΜΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΧΙΛΙΑΔΩΝ ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΦΥΣΙΚΩΝ (ΒΑΣΙΚΟ+ΣΥΝΕΞΕΤΑΖΟΜΕΝΟ)

ΔΕΙΓΜΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΧΙΛΙΑΔΩΝ ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΦΥΣΙΚΩΝ (ΒΑΣΙΚΟ+ΣΥΝΕΞΕΤΑΖΟΜΕΝΟ) ΔΕΙΓΜΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΧΙΛΙΑΔΩΝ ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΦΥΣΙΚΩΝ (ΒΑΣΙΚΟ+ΣΥΝΕΞΕΤΑΖΟΜΕΝΟ) ΠΟΥ ΔΙΑΘΕΤΟΥΜΕ ΚΑΙ ΠΟΥ ΑΝΟΙΓΟΥΝ ΤΟ ΔΡΟΜΟ ΓΙΑ ΤΟΝ ΔΙΟΡΙΣΜΟ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΜΑΣ ΣΤΟ ΔΗΜΟΣΙΟ 1. Για το κωνικό

Διαβάστε περισσότερα

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση 19-05-08 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Aσκηση 2 :

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση 19-05-08 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Aσκηση 2 : ΦΥΕ 14 5 η ΕΡΓΑΣΙΑ Παράδοση 19-5-8 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Συµπαγής κύλινδρος µάζας Μ συνδεδεµένος σε ελατήριο σταθεράς k = 3. N / και αµελητέας µάζας, κυλίεται, χωρίς να

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4 (ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ) ΚΥΡΙΑΚΗ 15 ΜΑΡΤΙΟΥ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 5

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4 (ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ) ΚΥΡΙΑΚΗ 15 ΜΑΡΤΙΟΥ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 5 ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4 (ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ) ΚΥΡΙΑΚΗ 15 ΜΑΡΤΙΟΥ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 5 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. = 2r, τότε:

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. = 2r, τότε: ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση 1. (Διατήρηση της στροφορμής) Η Γη στρέφεται σε ελλειπτική τροχιά γύρω από τον Ήλιο. Το κοντινότερο σημείο στον Ήλιο ονομάζεται Περιήλιο (π) και το πιο απομακρυσμένο Αφήλιο (α).

Διαβάστε περισσότερα

ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Το έργο μίας από τις δυνάμεις που ασκούνται σε ένα σώμα. α. είναι μηδέν όταν το σώμα είναι ακίνητο β. έχει πρόσημο το οποίο εξαρτάται από τη γωνία

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 10 ΙΟΥΝΙΟΥ 2014 ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 10 ΙΟΥΝΙΟΥ 2014 ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 0 ΙΟΥΝΙΟΥ 04 ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑ Α Α. γ Α. β Α3. γ Α4. β Α5. α. Σ β. Σ γ. Λ δ. Λ ε. Σ ΘΕΜΑ Β Β. Σωστή απάντηση η: (iii) Το πλάτος της ΑΑΤ του σώματος () πριν την κρούση

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός)

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) 4 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) Κυριακή, 5 Απριλίου, 00, Ώρα:.00 4.00 Προτεινόμενες Λύσεις Άσκηση ( 5 μονάδες) Δύο σύγχρονες πηγές, Π και Π, που απέχουν μεταξύ τους

Διαβάστε περισσότερα

2 Δυνάμεις. Δυνάμεις: ορισμός

2 Δυνάμεις. Δυνάμεις: ορισμός Δυνάμεις Ορισμός διανυσματική ανάλυση Νόμοι του Νεύτωνα Ισορροπία υλικού σημείου Φύση των δυνάμεων Θεμελιώδεις δυνάμεις (βαρύτητα κλπ) Δυνάμεις επαφής (τριβή & μυϊκές δυνάμεις) Εύκαμπτοι σύνδεσμοι Μαρία

Διαβάστε περισσότερα

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Τι ονομάζουμε κίνηση ενός κινητού; 2. Τι ονομάζουμε τροχιά ενός κινητού; 3. Τι ονομάζουμε υλικό σημείο; 4. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

Διαβάστε περισσότερα

Κυριακή, 17 Μαίου, 2009 Ώρα: 10:00-12:30 ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤΕΙ

Κυριακή, 17 Μαίου, 2009 Ώρα: 10:00-12:30 ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤΕΙ ΕΝΩΗ ΚΥΠΡΙΩΝ ΦΥΙΚΩΝ 5 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΙΚΗ Γ ΓΥΜΝΑΙΟΥ Κυριακή, 17 Μαίου, 2009 Ώρα: 10:00-12:30 ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤΕΙ 1. α) Ζεύγος δυνάμεων Δράσης Αντίδρασης είναι η δύναμη που ασκεί ο μαθητής στο έδαφος

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ- Η ΠΑΓΚΥΠΡΙΑΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ- ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ Κυριακή, 0 Μαΐου 05 Ώρα : 0:0 - :00 ΘΕΜΑ 0 (µονάδες

Διαβάστε περισσότερα

w w w.k z a c h a r i a d i s.g r

w w w.k z a c h a r i a d i s.g r ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Ασκήσεις με δοκό που ισορροπεί, και το ένα άκρο της συνδέεται με άρθρωση Έστω ότι έχουμε ομογενή δοκό η οποία συνδέεται στο ένα άκρο της με άρθρωση.

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 10 ΣΕΠΤΕΜΒΡΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

Επιπρόσθετα για την δύναμη. Από το βιβλίο «Concepts in Physics CRM Books Del Mar California 1973. Επιλογή μόνον για την εκπαίδευση των φοιτητών

Επιπρόσθετα για την δύναμη. Από το βιβλίο «Concepts in Physics CRM Books Del Mar California 1973. Επιλογή μόνον για την εκπαίδευση των φοιτητών Επιπρόσθετα για την δύναμη Από το βιβλίο «Concepts in Physics CRM Books Del Mar California 1973 Επιλογή μόνον για την εκπαίδευση των φοιτητών Εικόνα : Τα πόδια της κοπέλας σπρώχνουν κάτω καθώς πατάει πάνω

Διαβάστε περισσότερα

ΤΕΣΤ 16. Να επιλέξετε τη σωστή απάντηση. Να δικαιολογήσετε την επιλογή σας. Να επιλέξετε τη σωστή απάντηση. Να δικαιολογήσετε την επιλογή σας.

ΤΕΣΤ 16. Να επιλέξετε τη σωστή απάντηση. Να δικαιολογήσετε την επιλογή σας. Να επιλέξετε τη σωστή απάντηση. Να δικαιολογήσετε την επιλογή σας. Επαναληπτικό 4 ΘΕΜ aa ΤΕΣΤ 16 1. Στη διάταξη του σχήματος, ασκούμε κατακόρυφη δύναμη σταθερού μέτρου F στο άκρο του νήματος, ώστε ο τροχός () να ανέρχεται κυλιόμενος χωρίς ολίσθηση στο κεκλιμένο επίπεδο.

Διαβάστε περισσότερα

στοιχεία Βιο-μηχανική:

στοιχεία Βιο-μηχανική: : ορισμός Ως δύναμη ορίζεται η επίδραση, η οποία ασκούμενη σε ένα σώμα προκαλεί είτε μεταβολή στην κινητική του κατάσταση, είτε ταυτόχρονα και μεταβολή στην μορφή του. επιταχύνουν ή/και παραμορφώνουν σώματα.

Διαβάστε περισσότερα

EΡΓΑΣΙΑ 5 η Καταληκτική ηµεροµηνία παράδοσης: 20 Ιουλίου 2003

EΡΓΑΣΙΑ 5 η Καταληκτική ηµεροµηνία παράδοσης: 20 Ιουλίου 2003 1 EΡΓΑΣΙΑ 5 η Καταληκτική ηµεροµηνία παράδοσης: 20 Ιουλίου 2003 1. Από την ίδια γραµµή αφετηρίας(από το ίδιο ύψος) ενός κεκλιµένου επιπέδου αφήστε να κυλήσουν, ταυτόχρονα προς τα κάτω, δύο κυλίνδροι της

Διαβάστε περισσότερα

Μ Η Χ Α Ν Ι Κ Η Σ Τ Ε Ρ Ε Ο Υ

Μ Η Χ Α Ν Ι Κ Η Σ Τ Ε Ρ Ε Ο Υ Στερεό σώμα - 07-4 Μ Η Χ Α Ν Ι Κ Η Σ Τ Ε Ρ Ε Ο Υ 4.1. Εισαγωγικές έννοιες. ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΣΗΜΕΙΑΚΟΥ ΑΝΤΙΚΕΙΜΕΝΟΥ Θεωρούμε ένα σημειακό αντικείμενο το οποίο κινείται σε κυκλική τροχιά κέντρου Ο και ακτίνας

Διαβάστε περισσότερα

υναµική στερεού. Οµάδα Γ

υναµική στερεού. Οµάδα Γ 3.3.21. Μια περίεργη κύλιση Κύλινδρος υναµική στερεού. Οµάδα Γ µάζας Μ=10Κg και ακτίνας R=0,5m αρχίζει την στιγµή t=0 να ανέρχεται κυλιόµενος (αριστερόστροφα) χωρίς να ολισθαίνει κατά µήκος αρχικά λείου

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση.

ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση. ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση. Η δύναμη είναι ένα διανυσματικό μέγεθος. Όταν κατά την κίνηση ενός σώματος η δύναμη είναι μηδενική

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2.

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ 1. Η δύναμη επαναφοράς που ασκείται σε ένα σώμα μάζας m που εκτελεί απλή αρμονική

Διαβάστε περισσότερα

, ραδιοκύματα: που του ασκούνται και για το αλγεβρικό άθροισμα των ροπών Στ ως προς οποιοδήποτε σημείο του, ισχύει: δ) F 0, 0

, ραδιοκύματα: που του ασκούνται και για το αλγεβρικό άθροισμα των ροπών Στ ως προς οποιοδήποτε σημείο του, ισχύει: δ) F 0, 0 Α Π Α Ν Τ Η Σ Ε Ι Σ Θ Ε Μ Α Τ Ω Ν Π Α Ν Ε Λ Λ Α Δ Ι Κ Ω Ν Ε Ξ Ε Τ Α Σ Ε Ω Ν 0 4 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 0.06.04 Θέμα Α Στις ερωτήσεις Α-Α4 να γράψετε στο τετράδιό σας τον αριθμό

Διαβάστε περισσότερα

ΕΜΒΙΟΜΗΧΑΝΙΚΟΙ ΠΑΡΑΓΟΝΤΕΣ. Σοφία Α. Ξεργιά PT, MSc, PhD

ΕΜΒΙΟΜΗΧΑΝΙΚΟΙ ΠΑΡΑΓΟΝΤΕΣ. Σοφία Α. Ξεργιά PT, MSc, PhD ΕΜΒΙΟΜΗΧΑΝΙΚΟΙ ΠΑΡΑΓΟΝΤΕΣ Σοφία Α. Ξεργιά PT, MSc, PhD Ανάλυση της Ανθρώπινης Κίνησης Εμβιομηχανική Κινησιολογία Κινηματική Κινητική Λειτουργική Ανατομική Γραμμική Γωνιακή Γραμμική Γωνιακή Θέση Ταχύτητα

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 1 Η ράβδος ΟΑ του σχήματος μπορεί να στρέφεται γύρω από τον άξονα z z χωρίς τριβές Tη στιγμή t=0 δέχεται την εφαπτομενική δύναμη F σταθερού μέτρου 0 Ν, με φορά όπως φαίνεται στο σχήμα

Διαβάστε περισσότερα

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ Προτεινόμενα θέματα Πανελλαδικών εξετάσεων Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης 3o ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ ΘΕΜΑ 1ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ( ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ( ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014 ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 013-014 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ( ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/014 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4

Διαβάστε περισσότερα

Δυνάμεις μεταξύ ηλεκτρικών φορτίων ΘΕΜΑ Δ

Δυνάμεις μεταξύ ηλεκτρικών φορτίων ΘΕΜΑ Δ Δυνάμεις μεταξύ ηλεκτρικών φορτίων ΘΕΜΑ Δ 4_15580 Δύο σημειακά ηλεκτρικά φορτία Q 1 = μc και Q = 8 μc, συγκρατούνται ακλόνητα πάνω σε οριζόντιο μονωτικό δάπεδο, στα σημεία Α και Β αντίστοιχα, σε απόσταση

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 5 ΙΟΥΝΙΟΥ 05 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ

Διαβάστε περισσότερα

1 ΦΕΠ 012 Φυσική και Εφαρμογές

1 ΦΕΠ 012 Φυσική και Εφαρμογές 1 ΦΕΠ 012 Φυσική και Εφαρμογές Διάλεξη 5 η Παραδείγματα: (1) Δύο σώματα είναι δεμένα με σχοινί όπως στο σχήμα. Στο πρώτο σώμα μάζας m 1 = 2Κg ασκούμε δύναμη F = 4N. Αν η μάζα του σώματος (2) είναι m 2

Διαβάστε περισσότερα

Ι ΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΗ ΙΑΛΕΞΗ ΜΕ ΘΕΜΑ: ΜΗΧΑΝΙΚΗ ΤΗΣ ΣΤΑΣΗΣ ΚΑΙ ΤΗΣ ΒΑ ΙΣΗΣ. Νίκος Αγγελούσης, Επ. Καθηγητής

Ι ΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΗ ΙΑΛΕΞΗ ΜΕ ΘΕΜΑ: ΜΗΧΑΝΙΚΗ ΤΗΣ ΣΤΑΣΗΣ ΚΑΙ ΤΗΣ ΒΑ ΙΣΗΣ. Νίκος Αγγελούσης, Επ. Καθηγητής Ι ΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΗ ΙΑΛΕΞΗ ΜΕ ΘΕΜΑ: ΜΗΧΑΝΙΚΗ ΤΗΣ ΣΤΑΣΗΣ ΚΑΙ ΤΗΣ ΒΑ ΙΣΗΣ Νίκος Αγγελούσης, Επ. Καθηγητής Γενικά Οι ικανότητες για στάση και για βάδισµα αποτελούν βασικές προϋποθέσεις για την ποιότητα

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 14: ΣΤΟΙΧΕΙΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΜΗΧΑΝΙΚΗΣ ΕΠΙΣΤΗΜΗΣ

ΕΝΟΤΗΤΑ 14: ΣΤΟΙΧΕΙΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΜΗΧΑΝΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΕΝΟΤΗΤΑ 14: ΣΤΟΙΧΕΙΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΜΗΧΑΝΙΚΗΣ ΕΠΙΣΤΗΜΗΣ 159 Εισαγωγή: Μηχανική ονομάζεται το τμήμα της Φυσικής, το οποίο εξετάζει την κίνηση και την ισορροπία των σωμάτων. Επειδή η σημασία της είναι μεγάλη

Διαβάστε περισσότερα

ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ

ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ Σε όλες τις κινήσεις που μελετούσαμε μέχρι τώρα, προκειμένου να απλοποιηθεί η μελέτη τους, θεωρούσαμε τα σώματα ως υλικά σημεία. Το υλικό σημείο ορίζεται ως σώμα που έχει

Διαβάστε περισσότερα

υναµική στο επίπεδο.

υναµική στο επίπεδο. στο επίπεδο. 1.3.1. Η τάση του νήµατος, πού και γιατί; Έστω ότι σε ένα λείο οριζόντιο επίπεδο ηρεµούν δύο σώµατα Α και Β µε µάζες Μ=3kg και m=2kg αντίστοιχα, τα οποία συνδέονται µε ένα νήµα. Σε µια στιγµή

Διαβάστε περισσότερα

Δ3. Ο χρόνος από τη στιγμή που η απόστασή τους ήταν d μέχρι τη στιγμή που ακουμπά η μία την άλλη. Μονάδες 6

Δ3. Ο χρόνος από τη στιγμή που η απόστασή τους ήταν d μέχρι τη στιγμή που ακουμπά η μία την άλλη. Μονάδες 6 ΘΕΜΑ Δ 1. Δύο αμαξοστοιχίες κινούνται κατά την ίδια φορά πάνω στην ίδια γραμμή. Η προπορευόμενη έχει ταχύτητα 54km/h και η επόμενη 72km/h. Όταν βρίσκονται σε απόσταση d, οι μηχανοδηγοί αντιλαμβάνονται

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι -ΣΤΑΤΙΚΗ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι -ΣΤΑΤΙΚΗ ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΓΕΝΙΚΟ ΤΜΗΜΑ ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΜΗΧΑΝΙΚΗΣ Lab. MEchanics Applied TECHNICAL UNIVERSITY OF CRETE ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι -ΣΤΑΤΙΚΗ 1 η Συνέχεια διαλέξεων B Μέρος 1 ΒΑΣΙΚΑ ΙΑΝΥΣΜΑΤΙΚΑ ΜΕΓΕΘΗ

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ ΘΕΜΑ Δ (15732) Δύο ακίνητα σημειακά ηλεκτρικά φορτία 2 μc και 3 μc, βρίσκονται αντίστοιχα στις θέσεις 3 m και 6 m ενός άξονα, όπως φαίνεται στο παρακάτω σχήμα. Δ1) Να υπολογίσετε το δυναμικό του ηλεκτρικού

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 28 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Κυριακή, 13 Απριλίου, 2014 Ώρα: 10:00-13:00 Παρακαλώ διαβάστε πρώτα τα πιο κάτω, πριν απαντήσετε οποιαδήποτε ερώτηση. Γενικές οδηγίες: 1.

Διαβάστε περισσότερα

ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής.

ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής. ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής. Ο πύραυλος καίει τα καύσιμα που αρχικά βρίσκονται μέσα του και εκτοξεύει τα καυσαέρια προς τα πίσω. Τα καυσαέρια δέχονται

Διαβάστε περισσότερα

Ομογενής δίσκος ροπής αδράνειας, με μάζα και ακτίνας θα χρησιμοποιηθεί σε 3 διαφορετικά πειράματα.

Ομογενής δίσκος ροπής αδράνειας, με μάζα και ακτίνας θα χρησιμοποιηθεί σε 3 διαφορετικά πειράματα. Δίσκος Σύνθετη Τρίτη 01 Μαϊου 2012 ΑΣΚΗΣΗ 5 Ομογενής δίσκος ροπής αδράνειας, με μάζα και ακτίνας θα χρησιμοποιηθεί σε 3 διαφορετικά πειράματα. ΠΕΙΡΑΜΑ Α Θα εκτοξευθεί με ταχύτητα από τη βάση του κεκλιμένου

Διαβάστε περισσότερα

α) Να επιλέξετε τη σωστή απάντηση. Μονάδες 2 β) Να δικαιολογήσετε την απάντησή σας. Μονάδες 6

α) Να επιλέξετε τη σωστή απάντηση. Μονάδες 2 β) Να δικαιολογήσετε την απάντησή σας. Μονάδες 6 Α Π Α Ν Τ Η Σ Ε Ι Σ Θ Ε Μ Α Τ Ω Ν Π Α Ν Ε Λ Λ Α Δ Ι Κ Ω Ν Ε Ξ Ε Τ Α Σ Ε Ω Ν 0 3 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ.0.03 Θέμα Α Στις ερωτήσεις Α-Α να γράψετε στο τετράδιό σας τον αριθμό

Διαβάστε περισσότερα

F r. www.ylikonet.gr 1

F r. www.ylikonet.gr 1 3.5. Έργο Ενέργεια. 3.5.1. Έργο δύναµης- ροπής και Κινητική Ενέργεια. Το οµοαξονικό σύστηµα των δύο κυλίνδρων µε ακτίνες R 1 =0,1m και R =0,5m ηρεµεί σε οριζόντιο επίπεδο. Τυλίγουµε γύρω από τον κύλινδρο

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ. Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στην σωστή απάντηση

ΕΚΦΩΝΗΣΕΙΣ. Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στην σωστή απάντηση 1 A' ΛΥΚΕΙΥ ΖΗΤΗΜΑ 1 ο ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στην σωστή απάντηση 1. Το µέτρο της µετατόπισης

Διαβάστε περισσότερα

w w w.k z a c h a r i a d i s.g r

w w w.k z a c h a r i a d i s.g r Πως εφαρμόζουμε την αρχή διατήρησης της μηχανικής ενέργειας στα στερεά σώματα Πριν δούμε την μεθοδολογία, ας θυμηθούμε ότι : Για να εφαρμόσουμε την αρχή διατήρησης της μηχανικής ενέργειας (Α.Δ.Μ.Ε.) για

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΥΚΛΙΚΗ ΟΜΑΛΗ ΚΙΝΗΣΗ

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΥΚΛΙΚΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΥΚΛΙΚΗ ΟΜΑΛΗ ΚΙΝΗΣΗ 1) Δυο τροχοί με ακτίνες ο πρώτος 100cm και ο δεύτερος 60cm περιστρέφονται ομαλά συνδεδεμένοι μεταξύ τους με ιμάντα. Αν η συχνότητα του πρώτου τροχού είναι 10Hz να βρεθεί

Διαβάστε περισσότερα

4 η Εργασία F 2. 90 o 60 o F 1. 2) ύο δυνάµεις F1

4 η Εργασία F 2. 90 o 60 o F 1. 2) ύο δυνάµεις F1 4 η Εργασία 1) ύο δυνάµεις F 1 και F 2 ασκούνται σε σώµα µάζας 5kg. Εάν F 1 =20N και F 2 =15N βρείτε την επιτάχυνση του σώµατος στα σχήµατα (α) και (β). [ 2 µονάδες] F 2 F 2 90 o 60 o (α) F 1 (β) F 1 2)

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 15 ΙΟΥΝΙΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

μηχανικη στερεου σωματοσ

μηχανικη στερεου σωματοσ μηχανικη στερεου σωματοσ 4 Ροπή δύναμης 112 Ισορροπία στερεού 115 Ροπή αδράνειας 116 Στροφορμή 122 Κινητική ενέργεια λόγω περιστροφής 126 Σύνοψη 131 Ασκήσεις 132 4-1 ΕΙΣΑΓΩΓΗ Στην προσπάθειά μας να απλοποιήσουμε

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Τάξης ΓΕΛ 4 ο ΓΕΛ ΚΟΖΑΝΗΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Τάξης ΓΕΛ 4 ο ΓΕΛ ΚΟΖΑΝΗΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Τάξης ΓΕΛ 4 ο ΓΕΛ ΚΟΖΑΝΗΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ - ΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ Δυναμική ενέργεια δυο φορτίων Δυναμική ενέργεια τριών ή περισσοτέρων

Διαβάστε περισσότερα

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Αντικείµενο εξέτασης: Όλη η διδακτέα ύλη Χρόνος εξέτασης: 3 ώρες

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Αντικείµενο εξέτασης: Όλη η διδακτέα ύλη Χρόνος εξέτασης: 3 ώρες ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Αντικείµενο εξέτασης: Όλη η διδακτέα ύλη Χρόνος εξέτασης: 3 ώρες ΘΕΜΑ 1ο Στις ερωτήσεις 1-4 να γράψετε στο φύλλο απαντήσεών σας τον αριθµό

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΤΕΙ ΠΕΙΡΑΙΑ ΗΜ: 1/7/14 ΣΤΕΦ - ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Α ΕΞΕΤΑΣΤΙΚΗ -ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΦΥΣΙΚΗ ΟΝΟΜΑΤΕΠΩΝΥΜΟ.

ΤΕΙ ΠΕΙΡΑΙΑ ΗΜ: 1/7/14 ΣΤΕΦ - ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Α ΕΞΕΤΑΣΤΙΚΗ -ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΦΥΣΙΚΗ ΟΝΟΜΑΤΕΠΩΝΥΜΟ. ΤΕΙ ΠΕΙΡΑΙΑ ΗΜ: 1/7/14 ΣΤΕΦ - ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Α ΕΞΕΤΑΣΤΙΚΗ -ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ:Μ.ΠΗΛΑΚΟΥΤΑ ΔΙΑΡΚΕΙΑ 2 ΩΡΕΣ B ΟΝΟΜΑΤΕΠΩΝΥΜΟ. 1. (2.5) Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012. Α5) α) Σωστό β) Σωστό γ) Λάθος δ) Λάθος ε) Σωστό.

ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012. Α5) α) Σωστό β) Σωστό γ) Λάθος δ) Λάθος ε) Σωστό. ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 Α) γ Α) β Α)γ Α4) γ Α5) α) Σωστό β) Σωστό γ) Λάθος δ) Λάθος ε) Σωστό ΘΕΜΑ Β n a n ( ύ) a n (), ( ύ ) n

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 Ο ΑΝΑΛΥΣΗ ΕΠΙ ΜΕΡΟΥΣ ΕΡΩΤΗΣΕΩΝ ΤΩΝ ΕΡΩΤΗΜΑΤΟΛΟΓΙΩΝ ΚΑΤΑ ΤΙΣ ΔΥΟ ΔΙΔΑΚΤΙΚΕΣ ΠΑΡΕΜΒΑΣΕΙΣ

ΚΕΦΑΛΑΙΟ 4 Ο ΑΝΑΛΥΣΗ ΕΠΙ ΜΕΡΟΥΣ ΕΡΩΤΗΣΕΩΝ ΤΩΝ ΕΡΩΤΗΜΑΤΟΛΟΓΙΩΝ ΚΑΤΑ ΤΙΣ ΔΥΟ ΔΙΔΑΚΤΙΚΕΣ ΠΑΡΕΜΒΑΣΕΙΣ ΚΕΦΑΛΑΙΟ 4 Ο ΑΝΑΛΥΣΗ ΕΠΙ ΜΕΡΟΥΣ ΕΡΩΤΗΣΕΩΝ ΤΩΝ ΕΡΩΤΗΜΑΤΟΛΟΓΙΩΝ ΚΑΤΑ ΤΙΣ ΔΥΟ ΔΙΔΑΚΤΙΚΕΣ ΠΑΡΕΜΒΑΣΕΙΣ ΠΕΡΙΛΗΨΗ Στο μέρος αυτό της εργασίας παρουσιάζονται ο συχνότητες και τα ποσοστά στις απαντήσεις των μαθητών

Διαβάστε περισσότερα

Μέτρηση της επιτάχυνσης της βαρύτητας. με τη μέθοδο του απλού εκκρεμούς

Μέτρηση της επιτάχυνσης της βαρύτητας. με τη μέθοδο του απλού εκκρεμούς Εργαστηριακή Άσκηση 5 Μέτρηση της επιτάχυνσης της βαρύτητας με τη μέθοδο του απλού εκκρεμούς Βαρσάμης Χρήστος Στόχος: Μέτρηση της επιτάχυνσης της βαρύτητας, g. Πειραματική διάταξη: Χρήση απλού εκκρεμούς.

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΗ ΣΕ ΟΡΙΖΟΝΤΙΟ ΕΠΙΠΕΔΟ ΜΕ ΔΥΟ ΣΩΜΑΤΑ

ΤΑΛΑΝΤΩΣΗ ΣΕ ΟΡΙΖΟΝΤΙΟ ΕΠΙΠΕΔΟ ΜΕ ΔΥΟ ΣΩΜΑΤΑ ΤΑΛΑΝΤΩΣΗ ΣΕ ΟΡΙΖΟΝΤΙΟ ΕΠΙΠΕΔΟ ΜΕ ΔΥΟ ΣΩΜΑΤΑ Σώμα είναι τοποθετημένο πάνω σε ορίζοντα δίσκο.ο δίσκος τιθεται σε οριζόντια αρμονικη ταλάντωση με συχνότητα f.αν ο συντελεστης μέγιστης στατικης τριβής μεταξύ

Διαβάστε περισσότερα

Όλα τα θέματα των πανελληνίων στις μηχανικές ταλαντώσεις έως και το 2014 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ. Ερωτήσεις Πολλαπλής Επιλογής

Όλα τα θέματα των πανελληνίων στις μηχανικές ταλαντώσεις έως και το 2014 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ. Ερωτήσεις Πολλαπλής Επιλογής έως και το 04 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ Ερωτήσεις Πολλαπλής Επιλογής. Να μεταφέρετε στο τετράδιό σας τον παρακάτω πίνακα που αναφέρεται στην απλή αρμονική ταλάντωση και να συμπληρώσετε

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ ΜΑΪΟΥ 03 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

1 ΦΕΠ 012 Φυσική και Εφαρμογές

1 ΦΕΠ 012 Φυσική και Εφαρμογές 1 ΦΕΠ 012 Φυσική και Εφαρμογές Διάλεξη 10 η Ομαλή κυκλική κίνηση Δθ = ω = σταθερό Δt X = Rσυν (ωt) => X 2 +Υ 2 = R 2 Υ = Rημ(ωt) Οι προβολές της κίνησης στους άξονες των x και y είναι αρμονικές ταλαντώσεις

Διαβάστε περισσότερα

A Λυκείου 9 Μαρτίου 2013

A Λυκείου 9 Μαρτίου 2013 Θεωρητικό Μέρος A Λυκείου 9 Μαρτίου 2013 Θέμα 1 ο Στις ερωτήσεις A1, A2, A3, A4 και Β μία μόνο απάντηση είναι σωστή. Γράψτε στο τετράδιό σας το κεφαλαίο γράμμα της ερώτησης και το μικρό γράμμα της σωστής

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 4 Μαΐου 014 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις από Α1-Α4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα

Διαβάστε περισσότερα

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς Εργαστηριακή Άσκηση 4 Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και του θεωρήματος μεταβολής της κινητικής ενέργειας με τη διάταξη της αεροτροχιάς Βαρσάμης Χρήστος Στόχος: Μελέτη της ευθύγραμμης

Διαβάστε περισσότερα

Μηχανική των κινήσεων στον αέρα και στο νερό

Μηχανική των κινήσεων στον αέρα και στο νερό Μηχανική των κινήσεων στον αέρα και στο νερό Νίκος Αγγελούσης Σκοπός αυτής της διάλεξης είναι η εξοικείωση με τις βασικές έννοιες και τις εφαρμογές της μηχανικήςστιςκινήσειςπουπραγματοποιείτο σώμα του

Διαβάστε περισσότερα

Διαγώνισμα εφ όλης της ύλης. Στα θέματα 1 4 να σημειώσετε στο τετράδιό σας ποιες από τις προτάσεις είναι σωστές και ποιες λανθασμένες.

Διαγώνισμα εφ όλης της ύλης. Στα θέματα 1 4 να σημειώσετε στο τετράδιό σας ποιες από τις προτάσεις είναι σωστές και ποιες λανθασμένες. Διαγώνισμα εφ όλης της ύλης Θέμα ο Στα θέματα 4 να σημειώσετε στο τετράδιό σας ποιες από τις προτάσεις είναι σωστές και ποιες λανθασμένες. ) Στο σχήμα φαίνεται το στιγμιότυπο ενός τρέχοντος αρμονικού κύματος

Διαβάστε περισσότερα

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2010

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2010 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 010 ΤΕΧΝΟΛΟΓΙΑ (Ι) ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα: Βασικά Στοιχεία Εφαρμοσμένης Μηχανικής

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 014 ΘΕΜΑ Α.1 Α1. Να χαρακτηρίσετε με (Σ) τις σωστές και με (Λ) τις λανθασμένες προτάσεις Στην ευθύγραμμα ομαλά επιβραδυνόμενη κίνηση: Α. Η ταχύτητα

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ Φυσική Γ Λυκείου (Θετικής & Τεχνολογικής κατεύθυνσης)

ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ Φυσική Γ Λυκείου (Θετικής & Τεχνολογικής κατεύθυνσης) Θέµα 1 ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ Φυσική Γ Λυκείου (Θετικής & Τεχνολογικής κατεύθυνσης) 1.1 Πολλαπλής επιλογής A. Ελαστική ονοµάζεται η κρούση στην οποία: α. οι ταχύτητες των σωµάτων πριν και µετά την κρούση

Διαβάστε περισσότερα

4 η Εργασία (Ηµεροµηνία Παράδοσης: 10-5-2004)

4 η Εργασία (Ηµεροµηνία Παράδοσης: 10-5-2004) Άσκηση (Μονάδες ) 4 η Εργασία (Ηµεροµηνία Παράδοσης: -5-4) Α) Αστροναύτης µάζας 6 Κg βρίσκεται µέσα σε διαστηµόπλοιο που κινείται µε σταθερή ταχύτητα προς τον Άρη. Σε κάποιο σηµείο του ταξιδιού βρίσκεται

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ 3.1 Η έννοια της δύναμης ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Στο κεφάλαιο των κινήσεων ασχοληθήκαμε με τη μελέτη της κίνησης χωρίς να μας απασχολούν τα αίτια που προκαλούν την κίνηση

Διαβάστε περισσότερα

Ροπή αδράνειας. q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: I = m(2r) 2 = 4mr 2

Ροπή αδράνειας. q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: I = m(2r) 2 = 4mr 2 ΦΥΣ 131 - Διαλ.22 1 Ροπή αδράνειας q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: m (α) m (β) m r r 2r 2 2 I =! m i r i = 2mr 2 1 I = m(2r) 2 = 4mr 2 Ø Είναι δυσκολότερο να προκαλέσεις περιστροφή

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ ΧΩΡΟ Στη συνέχεια θα δοθούν ορισμένες βασικές έννοιες μαθηματικών και φυσικήςμηχανικής που είναι απαραίτητες για την κατανόηση του μαθήματος

Διαβάστε περισσότερα

φυσική κατεύθυνσης γ λυκείου ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΕΠΙΛΟΓΗΣ (κεφ.4) Γκότσης Θανάσης - Τερζής Πέτρος

φυσική κατεύθυνσης γ λυκείου ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΕΠΙΛΟΓΗΣ (κεφ.4) Γκότσης Θανάσης - Τερζής Πέτρος 1 Ένα στερεό εκτελεί μεταφορική κίνηση όταν: α) η τροχιά κάθε σημείου είναι ευθεία γραμμή β) όλα τα σημεία του έχουν ταχύτητα που μεταβάλλεται με το χρόνο γ) μόνο το κέντρο μάζας του διαγράφει ευθύγραμμη

Διαβάστε περισσότερα

Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ÍÅÏ ÖÑÏÍÔÉÓÔÇÑÉÏ ΕΚΦΩΝΗΣΕΙΣ

Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ÍÅÏ ÖÑÏÍÔÉÓÔÇÑÉÏ ΕΚΦΩΝΗΣΕΙΣ 1 Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΘΕΜΑ 1 o ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Η ορµή ενός σώµατος

Διαβάστε περισσότερα

ΣΤΡΕΦΟΜΕΝΟΙ ΙΣΚΟΙ & ΠΕΡΙ ΣΤΡΟΦΟΡΜΗΣ

ΣΤΡΕΦΟΜΕΝΟΙ ΙΣΚΟΙ & ΠΕΡΙ ΣΤΡΟΦΟΡΜΗΣ ΣΤΡΕΦΜΕΝΙ ΙΣΚΙ & ΠΕΡΙ ΣΤΡΦΡΜΗΣ Ένας οµογενής και συµπαγής δίσκος µάζας m και ακτίνας =,2m στρέφεται γύρω από σταθερό οριζόντιο άξονα που διέρχεται από το κέντρο του µε γωνιακή ταχύτητα µέτρου ω =1 ra/sec.

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÅÐÉËÏÃÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÅÐÉËÏÃÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 15 ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 1 Μαΐου 15 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθµό

Διαβάστε περισσότερα

Ã. ÁÓÉÁÊÇÓ ÐÅÉÑÁÉÁÓ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο

Ã. ÁÓÉÁÊÇÓ ÐÅÉÑÁÉÁÓ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο Στι ερωτήσει - 4 να γράψετε στο τετράδιό σα τον αριθµό των ερώτηση και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Τροχό κυλίεται πάνω σε οριζόντιο

Διαβάστε περισσότερα