3 Ροπή δύναμης ισορροπία σωμάτων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "3 Ροπή δύναμης ισορροπία σωμάτων"

Transcript

1 Ροπή δύναμης ισορροπία σωμάτων ρισμός Συνθήκες ισορροπίας στερεού Κέντρο βάρους Ευσταθής ασταθής ισορροπία Μοχλοί Στατική μελών του σώματος Μαρία Κατσικίνη users.uth.gr/ktsk Ροπή δύναμης - ορισμός... είναι η αιτία που προκαλεί την περιστροή ενός σώματος r Ροπή της δύναμης ως προς το σημείο ονομάζεται το εξωτερικό γινόμενο του διανύσματος θέσης του σημείου εαρμογής της δύναμης με τη δύναμη. r τ Ηροπήείναιδιανυσματικό μέγεθος κάθετο στο επίπεδο που ορίζεται από την και το r.

2 Εξωτερικό γινόμενο δύο διανυσμάτων Διάνυσμα c c z + + Διάνυσμα z + + z Διάνυσμα c z c Μέτρο του διανύσματος c: ( ), c sn c 4 + z z z z z c 4 ) 4 ( ) 0 0 ( 4) 0 0 ( Παράδειγμα: Εξωτερικό γινόμενο δύο διανυσμάτων

3 Ροπή δύναμης Ροπή r r Όταν η είναι κάθετη στην διεύθυνση που ενώνει το σημείο καιτοσημείοεαρμογήςτης r r Σύμβαση για τη ορά της ροπής r r Μονάδα μέτρησης της ροπής Ν.m Εναλλακτική σύμβαση για τη ορά της ροπής Θετική όταν τείνει να περιστρέψει το σώμα δεξιόστροα + Αρνητική όταν τείνει να περιστρέψει το σώμα αριστερόστροα - Ροπή δύναμης 0.m 0N 0. 0 N. m +

4 Ροπή δύναμης Όταν η δεν είναι κάθετη στην r: rsn θ όπου θ είναι η γωνία που σχηματίζουν οι r και r θ Ροπή προκαλεί μόνο η συνιστώσα της που είναι κάθετη στην r r 0 Ροπή δύναμης snθ θ r( sn ϑ) r θ ( r ) sn ϑ r θ sn θ r r snθ : απόσταση από το ορέα της

5 Παράδειγμα Μία τετράγωνη μεταλλική πλάκα πλευράς 0.8m περιστρέεται γύρω από άξονα που διέρχεται από το κέντρο της και είναι κάθετος στην πλάκα. Να υπολογιστεί η συνολική ροπή ως προς το σημείο που οείλεται στις τρεις δυνάμεις 4N, 6N και 8Ν. + O 45 o + ( ) 0.8 ( ).57Nm Ισορροπία σώματος Ένα σώμα ισορροπεί όταν: 0 και 0 Η συνισταμένη των δυνάμεων που δρουν στο σώμα είναι ίση με μηδέν Η συνισταμένη των ροπών όλων των δυνάμεων που δρουν στο σώμα ως προς οποιοδήποτε σημείο είναι ίση με μηδέν Και οι δύο συνθήκες είναι απαραίτητες για ένα σώμα που δεν μπορεί να θεωρηθεί σημειακό (όταν όλες οι δυνάμεις δεν έχουν το ίδιο σημείο εαρμογής)

6 Παράδειγμα Πόση πρέπει να είναι η μάζα του σώματος Β για να ισορροπεί η (αβαρής) δοκός; 0.m 0.8m kg Α N Β? kg Α Για να ισορροπεί η δοκός θα πρέπει : 0 A + B B 0 A A B A A m B N + B g m A B g + N 0 0 A B m B α) Συνθήκη ισορροπίας για το σώμα Β: Ν Β B β) Ν Β Ν Β (δράση αντίδραση) γ) Ν Β : δύναμη που ασκείται απότοσώμαβστηδοκό B m A A A B A m B B B N B B 0.5kg Άσκηση Ένας αθλητής βάρους 900Ν έχει τη στάση του σχήματος. Αν η προβολή του κέντρου μάζας του σώματός του στο έδαος απέχει 60cm από τα χέρια και 90cm από το σημείο στήριξης να υπολογιστεί η δύναμη που εξασκείται στα πόδια και τα χέρια του. Ισορροπία δυνάμεων: N + N 0 N N 0.9m 0.6m Ισορροπία ροπών γύρω από το : N N N ( ) 540N, N N 540 N 60N 900

7 Άσκηση Ένα ράι πλάτους 0.4m στηρίζεται στον τοίχο με ένα μεντεσέ και κρατιέται στην οριζόντια θέση με τη βοήθεια μιας ράβδου μήκους 0.5m. Το βάρος του ραιού είναι 0Ν. Ένα βιβλίο βάρους 50Ν είναιτοποθετημένοστοράιέτσιώστενα αήνει 0.m καθαρή απόσταση από το άκρο του ραιού. Να υπολογιστεί η τάση στη ράβδο (η ράβδος ασκεί δύναμη κατά μήκος της). L Τ L 0.4 snθ 0.8 θ ON θ Ρ Δυνάμεις που ασκούνται στο ράι Βάρος του ραιού Αντίδραση του βιβλίου Τάση της ράβδου Αντίδραση στο μεντεσέ Ισορροπία ροπών γύρω από το L L 0 0 Ρ + N T cosθ L T T 9.6N Άσκηση Ένας εργάτης βάρους 000Ν βρίσκεται πάνω σε μία σκάλα μήκους.6m, η οποία στηρίζεται σε τοίχο με τον οποίο σχηματίζει γωνία 4 ο. εργάτης απέχει 0.9m από την κορυή της σκάλας. Το βάρος της σκάλας και η τριβή με τον τοίχο είναι αμελητέα. Να υπολογιστούν οι δυνάμεις που αναπτύσσονται στη σκάλα από το έδαος και τον τοίχο. 4 o N Ισορροπία δυνάμεων: 4 o 0 N snθ N 56 o 0 cosθ Ισορροπία ροπών γύρω από το : θ O 0 N cos56 (.6 0.9) N cosθ 506N & tnθ tnθ.98 θ N cos4.6 (κάθετη αντίδραση εδάους & τριβή)

8 Κέντρο μάζας Κέντρο μάζας είναι το σημείο εκείνο του σώματος στο οποίο θεωρούμε ότι συγκεντρώνεται όλη η μάζα του σώματος. Κάθε στοιχειώδης μάζα δέχεται τη δύναμη της βαρύτητας Κέντρο μάζας (ή κέντρο βάρους) είναι το σημείο εαρμογής της συνισταμένης των δυνάμεων βαρύτητας που ασκούνται σε κάθε σωματίδιο από το οποίο αποτελείται το σώμα. Κ.Μ. O Ροπή του βάρους του χεριού: Κέντρο μάζας Μαθηματικός ορισμός: Έστω αριθμός σωματιδίων μάζας m με συντεταγμένες (,, z ). Το κέντρο μάζας του συστήματος είναι ένα σημείο με συντεταγμένες: K m m K m m z K m z m

9 Άσκηση Στο σχήμα αίνεται η απλοποιημένη εικόνα της δομής του μορίου του νερού. Να βρείτε το κέντρο μάζας του μορίου αν το μήκος του δεσμού Η- είναι0.957å. Θεωρήστε ότι η μάζα του Η και του είναι αντίστοιχα και 6 u (u kg). 05 ο m 6u 0 + u u u + u + u K m K Κέντρο μάζας Ιδιότητες Συντεταγμένες ατόμων ξυγόνο Υδρογόνο [] Υδρογόνο [] m m ( 0,0) cos, sn 0.58, ( ) 6u 0 + u u u + u + u Å 0 Η 05 ο Η ( 0.58,0.759) K.. πολύ κοντά στο, πάνω στον άξονα των Η ροπή του βάρους του σώματος ως προς το Κ.Μ. είναι πάντα μηδέν. Το Κ.Μ. είναι το σημείο που πρέπει να στηριχθεί ένα σώμα για να ισορροπήσει (εμπειρική μέθοδος προσδιορισμού του Κ.Μ.) 4 Στα στερεά σώματα το Κ.Μ. είναι απόλυτα καθορισμένο και δε μεταβάλλεται με την κίνηση του σώματος. Στην περίπτωση εύκαμπτων αντικειμένων (όπως το ανθρώπινο σώμα) το Κ.Μ. αλλάζει με τη στάση του σώματος

10 Κέντρο μάζας...στην περίπτωση εύκαμπτων αντικειμένων (όπως το ανθρώπινο σώμα) το Κ.Μ. μετατοπίζεται ανάλογα με τη στάση του σώματος. Για να ισορροπεί και να μην πέτει ο σκυμμένος άνθρωπος, θα πρέπει η κατακόρυος που περνά από το Κ.Μ. να περνά και από τη βάση στήριξης. Κ.Μ. Κ.Μ. Κ.Μ. Ασταθής ισορροπία Κ.Μ. Κ.Μ.

11 Κέντρο μάζας του σώματος - ισορροπία Για τον υπολογισμό του κέντρου μάζας του σώματος θεωρούμε ότι το σώμα αποτελείται από συμπαγή και σταθερού σχήματος τμήματα... κάτω πόδι, κεάλι κλπ Το κέντρο μάζας «εκτελεί βολή» Sports n eercse omechncs, P. Grmshw & A. Buren (Tlor & rncs 006) Κέντρο μάζας του σώματος Phscs o the humn o, Irvng P. Hermn

12 Κέντρο μάζας του σώματος Τμήμα του σώματος Μάζα (Μ: μάζα όλου του σώματος) Κέντρο μάζας του τμήματος (L: μήκος τμήματος) Proml Dstl χέρι Μ L L αντοβραχίονας 0.06 Μ 0.40 L L βραχίονας 0.08 Μ 0.46 L L πόδι (κάτω) Μ 0.50 L 0.50 L κνήμη Μ 0.4 L L μηρός 0. Μ 0.4 L L κεάλι και λαιμός 0.08 Μ L L θώρακας Μ 0.50 L 0.50 L Phscs o the humn o, Irvng P. Hermn Bo Segment Prmeters: A Surve o esurement Technques, R. Drlls, R. Contn,. Bluesten, Dstl/ proml (μακριά / κοντά στοκέντροτουσώματος) Εμπειρική μέθοδος υπολογισμού του Κ.Μ. Ν υ Α Ν υπομόχλιο Ένδειξη ζυγαριάς δύναμη που ασκεί η σανίδα στη ζυγαριά ζεύγος δράσης αντίδρασης με τη Ν O 0 + Ν ένδειξη ζυγαριάς βάρος ομοιογενούς σανίδας N N βάρος ανθρώπου μήκος σανίδας Sports n eercse omechncs, P. Grmshw & A. Buren (Tlor & rncs 006)

13 Ισορροπία (Ευσταθής Ασταθής) Ευσταθής ισορροπία Εάν σώμα εκτραπεί από τη θέση ισορροπίας του έτσι ώστε το κέντρο βάρους του να ανυψωθεί, το σώμα βρίσκεται σε ευσταθή ισορροπία επανέρχεται στην αρχική του θέση μόλις αεθεί ελεύθερο Εάν σώμα εκτραπεί από τη θέση ισορροπίας του έτσι ώστε το κέντρο βάρους του να χαμηλώσει, το σώμα βρίσκεται σε ασταθή ισορροπία Ασταθής ισορροπία δεν επανέρχεται στην αρχική του θέση μόλις αεθεί ελεύθερο Ισορροπία του ανθρώπινου σώματος Κατά το βάδισμα, το Κ.Μ. μετατοπίζεται συνεχώς έτσι ώστε η κατακόρυος που περνά από αυτό να περνά διαδοχικά από το δεξί ή το αριστερό πόδι Όταν στεκόμαστε με ανοιχτά πόδια η βάση στήριξης είναι μεγαλύτερη Lehruch er plstschen Antome E. Hrless (856)

14 Ισορροπία του ανθρώπινου σώματος Πόση είναι η δύναμη που πρέπει να ασκηθεί για να πέσει άνθρωπος μάζας 75kg; m g 0. m g N.5 άνθρωπος γέρνει προς τη μεριά άσκησης της δύναμης το κ.μ. απομακρύνεται από το σημείο Α είναι πιο δύσκολο να αναποδογυρίσει το σώμα άνθρωπος ανοίγει τα πόδια το κ.μ. μετατοπίζεται προς τα κάτω + μεγαλώνει ηβάσηστήριξης Η ροπή της τριβής και της κάθετης δύναμης στο σημείο Α ισούται με μηδέν για άξονα περιστροής που περνά από το Α Ισορροπία του ανθρώπινου σώματος Έστω άνθρωπος βάρους 900Ν που στηρίζεται στα δύο πόδια του με την απόσταση μεταξύ των πελμάτων να είναι 0cm. Ισορροπία δυνάμεων: N + N A Δ Ν Δ 0cm Ν Α Ισορροπία ροπών γύρω από το σημείο : NΔ NΔ 450N

15 Ισορροπία του ανθρώπινου σώματος Αν λόγω τραυματισμού στο δεξί πόδι η Ν Δ δεν μπορεί να είναι μεγαλύτερη από 50Ν πόσο πρέπει να μετατοπιστεί το κέντρο βάρους του σώματος; Ισορροπία δυνάμεων: N + N A Δ Ν Δ Ν Α 0cm Ισορροπία ροπών γύρω από το σημείο : N Δ N N Δ Δ cm 900 Το Κ.Μ. μετατοπίστηκε κατά: cm Μοχλοί Συμπαγής δοκός ελεύθερη να περιστραεί γύρω από σταθερό σημείο (υπομόχλιο) ου είδους ου είδους ου είδους βάρος μοχλοβραχίονας Ν υπομόχλιο μυϊκή δύναμη δύναμη Αχίλλειου τένοντα βάρος δύναμη δικεάλου βάρος κεαλιού δύναμη εξωτερικών μυών λαιμού Κοινοί στη μηχανική Κοινοί στο σώμα Απαιτείται μεγαλύτερη μυϊκή δύναμη αλλά μυς συστέλλεται λιγότερο Τα άκρα μπορούν να είναι λεπτά και περισσότερο ευκίνητα

16 Σκελετικοί μύες Επειδή οι μύες παράγουν έργο μόνο όταν συστέλλονται υπάρχουν συνήθως κατά ζεύγη Δικέαλος: βοηθά στο να ανασηκώνεται προς τα πάνω ο αντιβραχίονας Τρικέαλος : βοηθά στο να ασκεί δύναμη προς τα κάτω ο αντιβραχίονας ι μύες απολήγουν σε τένοντες, ο καθένας εκ των οποίων συνδέεταιμεδιαορετικό οστό Μέγιστη δύναμη μυός: ~40 Ν ανάcm του εμβαδού διατομής του Άσκηση Να υπολογιστεί η συμπιεστική δύναμη που ασκείται στην άρθρωση του αγκώνα και η εκτατική δύναμη που ασκείται στον τένοντα όταν κρατάμε στην παλάμη μάζα 6kg (βάρος 60Ν). Το βάρος του αντιβραχίoνα είναι 0Ν καιη γωνία που σχηματίζει ο δικέαλος με τον οριζόντιο άξονα είναι 60 ο. Μηχανικό ανάλογο: : δύναμη αντίδρασης από τον Μοχλός ου είδους 60 ο αγκώνα (κάθετη δύναμη) ζεύγος δράσης αντίδρασης με τη συμπιεστική δύναμη που ασκείται στην άρθρωση του αγκώνα (αυτή που ψάχνω) : δύναμη με την οποία ο τένοντας συγκρατεί τον αντιβραχίονα (~ τάση νήματος) ζεύγος δράσης-αντίδρασης με την εκτατική δύναμη που ασκείται από τον αντιβραχίονα στον τένοντα (αυτή που ψάχνω). cm cm 60 ο 5cm

17 Άσκηση Να υπολογιστεί η συμπιεστική τάση που ασκείται στην άρθρωση του αγκώνα και η εκτατική τάση που ασκείται από τον τένοντα στον αντιβραχίονα όταν κρατάμε στην παλάμη βάρος 60Ν. Το βάρος του αντιβραχίoνα είναι 0Ν καιηγωνίαπου σχηματίζει ο δικέαλος με τον οριζόντιο άξονα είναι 60 ο. cm cm ϕ cos60 5cm snϕ sn ο Ισορροπία δυνάμεων: 0 cos 0 (0.+ 0.) sn Ισορροπία ροπών γύρω από το : sn N Άσκηση 40N cm cosϕ cm 60 ο 5cm sn ϕ cosϕ cos cosϕ 40 snϕ 8N snϕ 40 5N + snϕ sn 60 snϕ cosϕ ϕ ϕ tn & ( snϕ) + ( cos ) N ϕ 55

18 Άσκηση Απαιτείται μεγαλύτερη ή μικρότερη δύναμη για να σηκώσουμε ένα βάρος όταν η γωνία α είναι μεγάλη; Εξηγήστε. 0 (0.+ 0.) cosϕ + 0. cosϕ cosϕ α O ανεξάρτητη της Η δύναμη που ασκεί ο μυς ελαττώνεται σημαντικά όταν έχει εκταθεί ή συμπιεστεί πολύ. Άσκηση Αν ο αντιβραχίονας βρίσκεται σε οριζόντια θέση και η παλάμη ασκεί δύναμη 0Ν στο ζυγό, να υπολογιστεί η μυϊκή δύναμη m και η δύναμη αντίδρασης στον αγκώνα (βάρος χεριού 0). n 0N Ισορροπία ροπών γύρω από το : C O 0.5 6N C 9.5 n Ισορροπία δυνάμεων: m m 0 C 96N m n + n C 6 0

19 Άσκηση Δυνάμεις που αναπτύσσονται στον Αχίλλειο τένοντα και στον αστράγαλο καθώς ανεβαίνουμε τις σκάλες. Να υπολογιστεί το μέτρο της συμπιεστικής δύναμης στην κνήμη και της δύναμης έκτασης στον Αχίλλειο τένοντα μόλις ένα άτομο βάρους 850Ν πατάει στο σκαλοπάτι και όλο το βάρος του μεταέρεται στο ένα πόδι. Θεώρησε το βάρος του ποδιού κάτω από τον αστράγαλο αμελητέο. Άνθρωπος που στέκεται στο ένα πόδι: ο κνήμη N T C Αχίλλειος τένοντας Ν850Ν (ισορροπία δυνάμεων που ασκούνται στον άνθρωπο) Πόδι ως απομονωμένο σώμα: Δέχεται την κάθετη αντίδραση του δαπέδου (Ν), τη δύναμη από την κνήμη ( C ) και τη δύναμη από τον τένοντα ( T ). 7cm 4cm Η ζητούμενη εκτατική δύναμη στον τένοντα είναι η αντίδραση της T (ίση και αντίθετη της T με σημείο εαρμογής στον τένοντα). Η ζητούμενη συμπιεστική δύναμη στην κνήμη είναι η αντίδραση της C (ίση και αντίθετη της C με σημείο εαρμογής στην κνήμη). Άσκηση ο T Ισορροπία δυνάμεων: 0 N + T cos C cosϕ N C 0 T sn C sn ϕ Ισορροπία ροπών γύρω από το : N 7cm T ο C 4cm T O cos T cos N C sn ϕ 594 sn 57N C cosϕ cos 8N 7cm 4cm T 594N 4 o c 407N

20 Άσκηση Ποια είναι η ελάχιστη οριζόντια δύναμη που πρέπει να ασκηθεί πάνω στον τροχό μάζας m και ακτίνας R γιαναανέβειτοσκαλοπάτι; Γιαναανέβειτοσκαλοπάτιθα πρέπει να στραεί γύρω από το Α Θα πρέπει: h Α Άσκηση L Ε Ν Ν Α O R O R h Α σώμα Α Κ Ροπή της δύναμης Μ N 0, γύρωαπότοσημείοα R O R h Ροπή του βάρους Θα πρέπει: ( ) ( R h) + R h R R R h + Rh Rh h Rh h ( ) ( ) R h h R h ( ) h R h R h Το σώμα Α βάρους (το κέντρο βάρους βρίσκεται στο σημείο Κ) ισορροπεί πάνω σε ακλόνητο κύλινδρο. συντελεστής στατικής τριβής στην επιάνεια επαής είναι μ. Πόση πρέπει να είναι η ώστε να ολισθαίνει το σώμα Α πάνω στον κύλινδρο; Αυξανόμενης της το σημείο επαής Ε μετατοπίζεται προς τ αριστερά (η συνισταμένη των Ν και εξισορροπείται από τη συνισταμένη των και ). Ισορροπία δυνάμεων: Ισορροπία ροπών γύρω από το O: Δυνάμεις που ασκούνται στο σώμα Α: Τριβή: Δύναμη Κάθετη αντίδραση: Ν Βάρος + N cosϕ + snϕ N snϕ cosϕ L R H ροπή του βάρους του σώματος Α είναι μηδέν όσο το σώμα δεν κινείται

21 Άσκηση L Κ Ε Ν N tn ϕ Nμ σώμα Α μ tn ϕ snϕ R N cosϕ + snϕ + N snϕ cosϕ N L R + snϕ cosϕ snϕ cos ϕ cosϕ + snϕ snϕ L R R L snϕ + R ( + ) ( + ) L + Όσο αυξάνει η τόσο αυξάνει το και η γωνία Για > κρισιμη tn>μ αρχίζει ολίσθηση Ισορροπία χεριού (90 ο -χωρίς τριβές) N P P N Πόση είναι η ελάχιστη δύναμη που είναι απαραίτητη για να αρχίσει να κινείται η άρθρωση του αγκώνα (κίνηση του αντιβραχίονα προς τα πάνω). Η ακτίνα καμπυλότητας του άκρου του βραχίονα είναι r.9cm, το βάρος του αντιβραχιόνιου είναι 0Ν και ο συντελεστής τριβής στην άρθρωση είναι N 0N

22 Ισορροπία χεριού (90 ο -με τριβές) 5cm N cm 5cm θ r Ισορροπία δυνάμεων ( άξονας) 0 N snθ μ N cosθ μ tnθ s s cosθ Ισορροπία δυνάμεων ( άξονας) N cosθ + sn θ Ισορροπία ροπών (γύρω από το ) O Για να υπερνικηθεί η τριβή θα πρέπει: * Η συνισταμένη δύναμη των Ν και αντιστοιχεί στην P του προηγούμενου παραδείγματος 0 + cosθ cosθ + sn θ 90 sn θ sn θ r + N cosθ + sn θ 90 ( cos θ + sn θ) ( 90) sn θ r ( 90) tn θ > μs θ > r sn θ 0.085cm N ( ) + r 0.05 Στατική του ισχίου Άνθρωπος στηρίζεται στο ένα πόδι Ισορροπία σώματος : N Η κεαλή του μηριαίου οστού εαρμόζει και κινείται σε εσοχή της λεκάνης. Στο σημείο επαής δέχεται δύναμη αντίστασης R Μείζων τροχαντήρας: εξωτερική εξοχή από την οποία καταύονται απαγωγοί μύες (γλουτιαίοι): δύναμη Στο κέντρο βάρους του ποδιού ασκείται το βάρος του που είναι ~ίσο με το /7 του βάρους του ανθρώπου.

23 Στατική του ισχίου Ισορροπία δυνάμεων: 0 cos70 Rsnϕ Ισορροπία ροπών γύρω από το : 0 sn 70 + N R cosϕ R cosϕ R sn ϕ R cos 7R cosϕ 6.57 ϕ.6 ϕ R.4 70 o O R 7 8 /7 0 N Δυνάμεις στη σπονδυλική στήλη Μηχανικό ανάλογο: L/ Βάρος κεαλιού & χεριών o σπονδυλική στήλη θ Βάρος θώρακα R αντίδραση από τη λεκάνη λεκάνη

24 Δυνάμεις στη σπονδυλική στήλη Πόση είναι η R και η για θ0 ο ; L/ θ o θ R Ισορροπία δυνάμεων: 0 cos Ισορροπία ροπών γύρω από το : ( θ ) R cosϕ ( θ ) + + R sn ϕ 0 sn θ 0.4 L L 0 cosθ + Lcosθ sn Δυνάμεις στη σπονδυλική στήλη.47 cos.47 sn ( 0 ) R cosϕ.5 R cosϕ ( 0 ).6 R sn ϕ R sn ϕ + R R tn ϕ 0.58 ϕ 0 Για θ60 ο :.4 ϕ R.9 δοκιμάστε λύσεις για διαορετικές γωνίες θ και για την περίπτωση που ο άνθρωπος σηκώνει βάρος π.χ. 0., 0.5

25 Άσκηση Άνθρωπος βάρους 800Ν στηρίζει όλο του το βάρος συμμετρικά σε δύο πατερίτσες που σχηματίζουν γωνία 75 ο με το έδαος. Η παλάμη κάθε χεριού ασκεί στην (αβαρή) πατερίτσα δύναμη 00Ν. Να υπολογιστεί η δύναμη R που ασκεί το δάπεδο στην πατερίτσα και η δύναμη P που ασκείται από την πατερίτσα στη μασχάλη. Αν ο συντελεστής τριβής στατικής πατερίτσας δαπέδου είναι μ0.7 θα γλιστρήσει η πατερίτσα; 0.6L Ν P R 75 ο Σύστημα άνθρωπος πατερίτσες (εξωτερικές δυνάμεις, N) πατερίτσα (ως απομονωμένο σώμα): Ισορροπία δυνάμεων: 0 Psn ϕ Ισορροπία ροπών γύρω από το : O sn5 0 sn(90 75) 0.4L + N N 400N 0 P cosϕ + N ( 0.4 N ) L L cos5 tn5 ( ) 96.5N cos5 L N sn5 L Άσκηση Άνθρωπος βάρους 800Ν στηρίζει όλο του το βάρος συμμετρικά σε δύο πατερίτσες που σχηματίζουν γωνία 75 ο με το έδαος. Η παλάμη κάθε χεριού ασκεί στην (αβαρή) πατερίτσα δύναμη 00Ν. Να υπολογιστεί η δύναμη R που ασκεί το δάπεδο στην πατερίτσα και η δύναμη P που ασκείται από την πατερίτσα στη μασχάλη. Αν ο συντελεστής τριβής στατικής πατερίτσας δαπέδου είναι μ0.7 θα γλιστρήσει η πατερίτσα; P 96.5 tnϕ 0. ϕ 7. 8 N P P 6N sn 0.79 ϕ 0.6L Ν R 75 ο Άρα: R + N N Η μέγιστη τιμή της στατικής τριβής είναι: m μn N δηλαδήμεγαλύτερητηςτριβήςπουαναπτύσσεταιστηνπατερίτσα η πατερίτσα δεν γλιστράει.

6. Να βρείτε ποια είναι η σωστή απάντηση.

6. Να βρείτε ποια είναι η σωστή απάντηση. 12ΑΣΚΗΣΕΙΣ ΔΥΝΑΜΙΚΗΣ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Να βρείτε ποια είναι η σωστή απάντηση. Το όργανο μέτρησης του βάρους ενός σώματος είναι : α) το βαρόμετρο, β) η ζυγαριά, γ) το δυναμόμετρο, δ) ο αδρανειακός ζυγός.

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ Σ ένα στερεό ασκούνται ομοεπίπεδες δυνάμεις. Όταν το στερεό ισορροπεί, δηλαδή ισχύει ότι F 0 και δεν περιστρέφεται τότε το αλγεβρικό άθροισμα των ροπών είναι μηδέν Στ=0,

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΛΥΚΕΙΟ ΑΓΙΟΥ ΠΥΡΙΔΩΝΑ ΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕ ΠΡΟΑΓΩΓΙΚΕ ΕΞΕΤΑΕΙ ΦΥΙΚΗ ΚΑΤΕΥΘΥΝΗ Β ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 31-05-2012 ΔΙΑΡΚΕΙΑ: 07.45 10.15 Οδηγίες 1. Το εξεταστικό δοκίμιο αποτελείται από 9 σελίδες.

Διαβάστε περισσότερα

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα.

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. ΘΕΜΑ Α Παράδειγμα 1 Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. Α2. Για τον προσδιορισμό μιας δύναμης που ασκείται σε ένα σώμα απαιτείται να

Διαβάστε περισσότερα

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Τι ονομάζουμε κίνηση ενός κινητού; 2. Τι ονομάζουμε τροχιά ενός κινητού; 3. Τι ονομάζουμε υλικό σημείο; 4. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

Διαβάστε περισσότερα

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1.

Διαβάστε περισσότερα

ΓΑΛΑΝΑΚΗΣ ΓΙΩΡΓΟΣ ΔΗΜΗΤΡΑΚΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ

ΓΑΛΑΝΑΚΗΣ ΓΙΩΡΓΟΣ ΔΗΜΗΤΡΑΚΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ ΘΕΜΑ Α Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί η σωστή απάντηση. Ένας ακίνητος τρoχός δέχεται σταθερή συνιστάμενη ροπή ως προς άξονα διερχόμενο

Διαβάστε περισσότερα

8. Σύνθεση και ανάλυση δυνάμεων

8. Σύνθεση και ανάλυση δυνάμεων 8. Σύνθεση και ανάλυση δυνάμεων Βασική θεωρία Σύνθεση δυνάμεων Συνισταμένη Σύνθεση δυνάμεων είναι η διαδικασία με την οποία προσπαθούμε να προσδιορίσουμε τη δύναμη εκείνη που προκαλεί τα ίδια αποτελέσματα

Διαβάστε περισσότερα

στοιχεία Βιο-μηχανική:

στοιχεία Βιο-μηχανική: : ορισμός Ως δύναμη ορίζεται η επίδραση, η οποία ασκούμενη σε ένα σώμα προκαλεί είτε μεταβολή στην κινητική του κατάσταση, είτε ταυτόχρονα και μεταβολή στην μορφή του. επιταχύνουν ή/και παραμορφώνουν σώματα.

Διαβάστε περισσότερα

ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ

ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ Σε όλες τις κινήσεις που μελετούσαμε μέχρι τώρα, προκειμένου να απλοποιηθεί η μελέτη τους, θεωρούσαμε τα σώματα ως υλικά σημεία. Το υλικό σημείο ορίζεται ως σώμα που έχει

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ- Η ΠΑΓΚΥΠΡΙΑΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ- ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ Κυριακή, 0 Μαΐου 05 Ώρα : 0:0 - :00 ΘΕΜΑ 0 (µονάδες

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 10 ΙΟΥΝΙΟΥ 2014 ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 10 ΙΟΥΝΙΟΥ 2014 ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 0 ΙΟΥΝΙΟΥ 04 ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑ Α Α. γ Α. β Α3. γ Α4. β Α5. α. Σ β. Σ γ. Λ δ. Λ ε. Σ ΘΕΜΑ Β Β. Σωστή απάντηση η: (iii) Το πλάτος της ΑΑΤ του σώματος () πριν την κρούση

Διαβάστε περισσότερα

Ι ΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΗ ΙΑΛΕΞΗ ΜΕ ΘΕΜΑ: ΜΗΧΑΝΙΚΗ ΤΗΣ ΣΤΑΣΗΣ ΚΑΙ ΤΗΣ ΒΑ ΙΣΗΣ. Νίκος Αγγελούσης, Επ. Καθηγητής

Ι ΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΗ ΙΑΛΕΞΗ ΜΕ ΘΕΜΑ: ΜΗΧΑΝΙΚΗ ΤΗΣ ΣΤΑΣΗΣ ΚΑΙ ΤΗΣ ΒΑ ΙΣΗΣ. Νίκος Αγγελούσης, Επ. Καθηγητής Ι ΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΗ ΙΑΛΕΞΗ ΜΕ ΘΕΜΑ: ΜΗΧΑΝΙΚΗ ΤΗΣ ΣΤΑΣΗΣ ΚΑΙ ΤΗΣ ΒΑ ΙΣΗΣ Νίκος Αγγελούσης, Επ. Καθηγητής Γενικά Οι ικανότητες για στάση και για βάδισµα αποτελούν βασικές προϋποθέσεις για την ποιότητα

Διαβάστε περισσότερα

w w w.k z a c h a r i a d i s.g r

w w w.k z a c h a r i a d i s.g r ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Ασκήσεις με δοκό που ισορροπεί, και το ένα άκρο της συνδέεται με άρθρωση Έστω ότι έχουμε ομογενή δοκό η οποία συνδέεται στο ένα άκρο της με άρθρωση.

Διαβάστε περισσότερα

ΕΜΒΙΟΜΗΧΑΝΙΚΟΙ ΠΑΡΑΓΟΝΤΕΣ. Σοφία Α. Ξεργιά PT, MSc, PhD

ΕΜΒΙΟΜΗΧΑΝΙΚΟΙ ΠΑΡΑΓΟΝΤΕΣ. Σοφία Α. Ξεργιά PT, MSc, PhD ΕΜΒΙΟΜΗΧΑΝΙΚΟΙ ΠΑΡΑΓΟΝΤΕΣ Σοφία Α. Ξεργιά PT, MSc, PhD Ανάλυση της Ανθρώπινης Κίνησης Εμβιομηχανική Κινησιολογία Κινηματική Κινητική Λειτουργική Ανατομική Γραμμική Γωνιακή Γραμμική Γωνιακή Θέση Ταχύτητα

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός)

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) 4 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) Κυριακή, 5 Απριλίου, 00, Ώρα:.00 4.00 Προτεινόμενες Λύσεις Άσκηση ( 5 μονάδες) Δύο σύγχρονες πηγές, Π και Π, που απέχουν μεταξύ τους

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 14: ΣΤΟΙΧΕΙΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΜΗΧΑΝΙΚΗΣ ΕΠΙΣΤΗΜΗΣ

ΕΝΟΤΗΤΑ 14: ΣΤΟΙΧΕΙΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΜΗΧΑΝΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΕΝΟΤΗΤΑ 14: ΣΤΟΙΧΕΙΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΜΗΧΑΝΙΚΗΣ ΕΠΙΣΤΗΜΗΣ 159 Εισαγωγή: Μηχανική ονομάζεται το τμήμα της Φυσικής, το οποίο εξετάζει την κίνηση και την ισορροπία των σωμάτων. Επειδή η σημασία της είναι μεγάλη

Διαβάστε περισσότερα

1 ΦΕΠ 012 Φυσική και Εφαρμογές

1 ΦΕΠ 012 Φυσική και Εφαρμογές 1 ΦΕΠ 012 Φυσική και Εφαρμογές Διάλεξη 5 η Παραδείγματα: (1) Δύο σώματα είναι δεμένα με σχοινί όπως στο σχήμα. Στο πρώτο σώμα μάζας m 1 = 2Κg ασκούμε δύναμη F = 4N. Αν η μάζα του σώματος (2) είναι m 2

Διαβάστε περισσότερα

ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής.

ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής. ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής. Ο πύραυλος καίει τα καύσιμα που αρχικά βρίσκονται μέσα του και εκτοξεύει τα καυσαέρια προς τα πίσω. Τα καυσαέρια δέχονται

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 28 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Κυριακή, 13 Απριλίου, 2014 Ώρα: 10:00-13:00 Παρακαλώ διαβάστε πρώτα τα πιο κάτω, πριν απαντήσετε οποιαδήποτε ερώτηση. Γενικές οδηγίες: 1.

Διαβάστε περισσότερα

1. Ένας κασκαντέρ θέλει με το αυτοκίνητό του, να πηδήξει πάνω από

1. Ένας κασκαντέρ θέλει με το αυτοκίνητό του, να πηδήξει πάνω από 1. Ένας κασκαντέρ θέλει με το αυτοκίνητό του, να πηδήξει πάνω από 8 αυτοκίνητα σταθμευμένα ένα μετά το άλλο κάτω από μια οριζόντια πλατφόρμα. Το κάθε αυτοκίνητο έχει μήκος d = 3 m και ύψος h = 1,2 m. Τo

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 9η Ολυμπιάδα Φυσικής Γ Λυκείου (Β φάση) Κυριακή 9 Μαρτίου 01 Ώρα:.00-1.00 ΟΔΗΓΙΕΣ: 1. Το δοκιμιο αποτελειται απο εννεα (9) σελιδες και επτα (7) θεματα.. Να απαντησετε σε ολα τα θεματα του δοκιμιου.. Μαζι

Διαβάστε περισσότερα

μηχανικη στερεου σωματοσ

μηχανικη στερεου σωματοσ μηχανικη στερεου σωματοσ 4 Ροπή δύναμης 112 Ισορροπία στερεού 115 Ροπή αδράνειας 116 Στροφορμή 122 Κινητική ενέργεια λόγω περιστροφής 126 Σύνοψη 131 Ασκήσεις 132 4-1 ΕΙΣΑΓΩΓΗ Στην προσπάθειά μας να απλοποιήσουμε

Διαβάστε περισσότερα

υναµική στο επίπεδο.

υναµική στο επίπεδο. στο επίπεδο. 1.3.1. Η τάση του νήµατος, πού και γιατί; Έστω ότι σε ένα λείο οριζόντιο επίπεδο ηρεµούν δύο σώµατα Α και Β µε µάζες Μ=3kg και m=2kg αντίστοιχα, τα οποία συνδέονται µε ένα νήµα. Σε µια στιγµή

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΗΣ ΘΕΤΙΗΣ-ΤΕΧΝΟΛΟΓΙΗΣ ΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΕΙΟΥ Θέμα ο. ύλινδρος περιστρέφεται γύρω από άξονα που διέρχεται από το κέντρο μάζας του με γωνιακή ταχύτητα ω. Αν ο συγκεκριμένος κύλινδρος περιστρεφόταν

Διαβάστε περισσότερα

Κεφάλαιο 1.1 Ευθύγραμμη κίνηση

Κεφάλαιο 1.1 Ευθύγραμμη κίνηση Κεφάλαιο 1.1 Ευθύγραμμη κίνηση 1 H θέση ενός κινητού που κινείται σε ένα επίπεδο, προσδιορίζεται κάθε στιγμή αν: Είναι γνωστές οι συντεταγμένες του κινητού (x,y) ως συναρτήσεις του χρόνου Είναι γνωστό

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÅÐÉËÏÃÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÅÐÉËÏÃÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 15 ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 1 Μαΐου 15 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθµό

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

φυσική κατεύθυνσης γ λυκείου ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΕΠΙΛΟΓΗΣ (κεφ.4) Γκότσης Θανάσης - Τερζής Πέτρος

φυσική κατεύθυνσης γ λυκείου ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΕΠΙΛΟΓΗΣ (κεφ.4) Γκότσης Θανάσης - Τερζής Πέτρος 1 Ένα στερεό εκτελεί μεταφορική κίνηση όταν: α) η τροχιά κάθε σημείου είναι ευθεία γραμμή β) όλα τα σημεία του έχουν ταχύτητα που μεταβάλλεται με το χρόνο γ) μόνο το κέντρο μάζας του διαγράφει ευθύγραμμη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 Ο ΑΝΑΛΥΣΗ ΕΠΙ ΜΕΡΟΥΣ ΕΡΩΤΗΣΕΩΝ ΤΩΝ ΕΡΩΤΗΜΑΤΟΛΟΓΙΩΝ ΚΑΤΑ ΤΙΣ ΔΥΟ ΔΙΔΑΚΤΙΚΕΣ ΠΑΡΕΜΒΑΣΕΙΣ

ΚΕΦΑΛΑΙΟ 4 Ο ΑΝΑΛΥΣΗ ΕΠΙ ΜΕΡΟΥΣ ΕΡΩΤΗΣΕΩΝ ΤΩΝ ΕΡΩΤΗΜΑΤΟΛΟΓΙΩΝ ΚΑΤΑ ΤΙΣ ΔΥΟ ΔΙΔΑΚΤΙΚΕΣ ΠΑΡΕΜΒΑΣΕΙΣ ΚΕΦΑΛΑΙΟ 4 Ο ΑΝΑΛΥΣΗ ΕΠΙ ΜΕΡΟΥΣ ΕΡΩΤΗΣΕΩΝ ΤΩΝ ΕΡΩΤΗΜΑΤΟΛΟΓΙΩΝ ΚΑΤΑ ΤΙΣ ΔΥΟ ΔΙΔΑΚΤΙΚΕΣ ΠΑΡΕΜΒΑΣΕΙΣ ΠΕΡΙΛΗΨΗ Στο μέρος αυτό της εργασίας παρουσιάζονται ο συχνότητες και τα ποσοστά στις απαντήσεις των μαθητών

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Β ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2009-2010 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. Επιτρεπόμενη διάρκεια γραπτού 2,5 ώρες (150 λεπτά)

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Β ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2009-2010 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. Επιτρεπόμενη διάρκεια γραπτού 2,5 ώρες (150 λεπτά) ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Β ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2009-2010 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 31/05/2010 ΤΑΞΗ: Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΧΡΟΝΟΣ: 07:30 10:00 π.μ. ΟΝΟΜΑΤΕΠΩΝΥΜΟ:... ΤΜΗΜΑ:...

Διαβάστε περισσότερα

Να σχεδιάσετε και να υπολογίσετε τη συνισταμένη δύναμη στις πιο κάτω περιπτώσεις.

Να σχεδιάσετε και να υπολογίσετε τη συνισταμένη δύναμη στις πιο κάτω περιπτώσεις. ΔΥΝΑΜΕΙΣ ΝΟΜΟΙ ΤΟΥ ΝΕΥΤΩΝΑ ΓΙΑ ΤΗΝ ΚΙΝΗΣΗ Να σχεδιάσετε και να υπολογίσετε τη συνισταμένη δύναμη στις πιο κάτω περιπτώσεις. F 2=2N F 1=6N F 3=3N F 4=5N (α) (β) F 5=4N F 6=1N F 7=3N (γ) Να σχεδιάσετε και

Διαβάστε περισσότερα

Ã. ÁÓÉÁÊÇÓ ÐÅÉÑÁÉÁÓ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο

Ã. ÁÓÉÁÊÇÓ ÐÅÉÑÁÉÁÓ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο Στι ερωτήσει - 4 να γράψετε στο τετράδιό σα τον αριθµό των ερώτηση και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Τροχό κυλίεται πάνω σε οριζόντιο

Διαβάστε περισσότερα

Μονάδες 5. Μονάδες 5. Μονάδες 5. Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

Μονάδες 5. Μονάδες 5. Μονάδες 5. Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ ο ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ου ΓΕΛ ΠΕΤΡΟΥΠΟΛΗΣ ΔΕΥΤΕΡΑ 3 ΜΑΪΟΥ 200 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ () Να γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ 3.1 Η έννοια της δύναμης ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Στο κεφάλαιο των κινήσεων ασχοληθήκαμε με τη μελέτη της κίνησης χωρίς να μας απασχολούν τα αίτια που προκαλούν την κίνηση

Διαβάστε περισσότερα

Εύρεση της πυκνότητας στερεών και υγρών.

Εύρεση της πυκνότητας στερεών και υγρών. Μ4 Εύρεση της πυκνότητας στερεών και υγρών. 1 Σκοπός Στην άσκηση αυτή προσδιορίζεται πειραματικά η πυκνότητα του υλικού ενός στερεού σώματος. Το στερεό αυτό σώμα βυθίζεται ή επιπλέει σε υγρό γνωστής πυκνότητας

Διαβάστε περισσότερα

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς Εργαστηριακή Άσκηση 4 Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και του θεωρήματος μεταβολής της κινητικής ενέργειας με τη διάταξη της αεροτροχιάς Βαρσάμης Χρήστος Στόχος: Μελέτη της ευθύγραμμης

Διαβάστε περισσότερα

Κεφάλαιο M6. Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα

Κεφάλαιο M6. Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα Κεφάλαιο M6 Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα Κυκλική κίνηση Αναπτύξαµε δύο µοντέλα ανάλυσης στα οποία χρησιµοποιούνται οι νόµοι της κίνησης του Νεύτωνα. Εφαρµόσαµε τα µοντέλα αυτά

Διαβάστε περισσότερα

w w w.k z a c h a r i a d i s.g r

w w w.k z a c h a r i a d i s.g r Πως εφαρμόζουμε την αρχή διατήρησης της μηχανικής ενέργειας στα στερεά σώματα Πριν δούμε την μεθοδολογία, ας θυμηθούμε ότι : Για να εφαρμόσουμε την αρχή διατήρησης της μηχανικής ενέργειας (Α.Δ.Μ.Ε.) για

Διαβάστε περισσότερα

Κεφάλαιο 11 Στροφορµή

Κεφάλαιο 11 Στροφορµή Κεφάλαιο 11 Στροφορµή Περιεχόµενα Κεφαλαίου 11 Στροφορµή Περιστροφή Αντικειµένων πέριξ σταθερού άξονα Το Εξωτερικό γινόµενο-η ροπή ως διάνυσµα Στροφορµή Σωµατιδίου Στροφορµή και Ροπή για Σύστηµα Σωµατιδίων

Διαβάστε περισσότερα

1 ΦΕΠ 012 Φυσική και Εφαρμογές

1 ΦΕΠ 012 Φυσική και Εφαρμογές 1 ΦΕΠ 012 Φυσική και Εφαρμογές Διάλεξη 10 η Ομαλή κυκλική κίνηση Δθ = ω = σταθερό Δt X = Rσυν (ωt) => X 2 +Υ 2 = R 2 Υ = Rημ(ωt) Οι προβολές της κίνησης στους άξονες των x και y είναι αρμονικές ταλαντώσεις

Διαβάστε περισσότερα

Δύναμη είναι η αιτία που μπορεί να προκαλέσει μεταβολή στην ταχύτητα ενός σώματος ή που μπορεί να το παραμορφώσει.

Δύναμη είναι η αιτία που μπορεί να προκαλέσει μεταβολή στην ταχύτητα ενός σώματος ή που μπορεί να το παραμορφώσει. ΚΕΦΑΛΑΙΟ 3 ο ΔΥΝΑΜΕΙΣ 3.1 Η έννοια της δύναμης 1. Τι είναι δύναμη; Δύναμη είναι η αιτία που μπορεί να προκαλέσει μεταβολή στην ταχύτητα ενός σώματος ή που μπορεί να το παραμορφώσει. 2. Ποια είναι τα χαρακτηριστικά

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΗ ΣΕ ΟΡΙΖΟΝΤΙΟ ΕΠΙΠΕΔΟ ΜΕ ΔΥΟ ΣΩΜΑΤΑ

ΤΑΛΑΝΤΩΣΗ ΣΕ ΟΡΙΖΟΝΤΙΟ ΕΠΙΠΕΔΟ ΜΕ ΔΥΟ ΣΩΜΑΤΑ ΤΑΛΑΝΤΩΣΗ ΣΕ ΟΡΙΖΟΝΤΙΟ ΕΠΙΠΕΔΟ ΜΕ ΔΥΟ ΣΩΜΑΤΑ Σώμα είναι τοποθετημένο πάνω σε ορίζοντα δίσκο.ο δίσκος τιθεται σε οριζόντια αρμονικη ταλάντωση με συχνότητα f.αν ο συντελεστης μέγιστης στατικης τριβής μεταξύ

Διαβάστε περισσότερα

Πεδίο, ονομάζεται μια περιοχή του χώρου, όπου σε κάθε σημείο της ένα ορισμένο φυσικό μέγεθος

Πεδίο, ονομάζεται μια περιοχή του χώρου, όπου σε κάθε σημείο της ένα ορισμένο φυσικό μέγεθος ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ Πεδίο, ονομάζεται μια περιοχή του χώρου, όπου σε κάθε σημείο της ένα ορισμένο φυσικό μέγεθος παίρνει καθορισμένη τιμή. Ηλεκτρικό πεδίο Ηλεκτρικό πεδίο ονομάζεται ο χώρος, που σε κάθε σημείο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ 6.. ΕΙΣΑΓΩΓΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Για τον υπολογισµό των τάσεων και των παραµορφώσεων ενός σώµατος, που δέχεται φορτία, δηλ. ενός φορέα, είναι βασικό δεδοµένο ή ζητούµενο

Διαβάστε περισσότερα

β) το αυτοκίνητο τη χρονική στιγμή t = 2 s έχει ταχύτητα μέτρου υ 4. s γ) στο αυτοκίνητο ασκείται σταθερή συνισταμένη δύναμη μέτρου 1 Ν.

β) το αυτοκίνητο τη χρονική στιγμή t = 2 s έχει ταχύτητα μέτρου υ 4. s γ) στο αυτοκίνητο ασκείται σταθερή συνισταμένη δύναμη μέτρου 1 Ν. ΘΕΜΑ Β Β 1. Ένα παιγνίδι - αυτοκινητάκι μάζας 1 Kg είναι ακίνητο στη θέση x = 0 m. Την χρονική στιγμή t = 0 s ξεκινά να κινείται ευθύγραμμα. Στον παρακάτω πίνακα φαίνονται οι τιμές της θέσης του αυτοκινήτου

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ - 6 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ - 6 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 6 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ Κυριακή, 16 Μαΐου 2010 Ώρα : 10:00-12:30 Προτεινόμενες λύσεις ΘΕΜΑ 1 0 (12 μονάδες) Για τη μέτρηση της πυκνότητας ομοιογενούς πέτρας (στερεού

Διαβάστε περισσότερα

ΘΕΜΑ Β. διπλανό διάγραμμα. Αν t 2 =2 t 1 και t 3 =3 t 1 τότε -F

ΘΕΜΑ Β. διπλανό διάγραμμα. Αν t 2 =2 t 1 και t 3 =3 t 1 τότε -F ΘΕΜΑ Β Β 1. Ένας μικρός μεταλλικός κύβος βρίσκεται αρχικά ακίνητος σε λείο οριζόντιο δάπεδο. Στον κύβο ασκείται την χρονική στιγμή t= 0 s οριζόντια δύναμη της οποίας η τιμή σε συνάρτηση με το χρόνο παριστάνεται

Διαβάστε περισσότερα

Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του;

Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του; Άσκηση Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του; Απάντηση Έστω R n η ακτίνα του κύκλου. Αφού η κίνηση είναι

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2008 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2008 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος. Θεωρητικό Μέρος Θέμα 1o A Λυκείου 22 Μαρτίου 28 Στις ερωτήσεις Α,Β,Γ,Δ,E μια μόνο απάντηση είναι σωστή. Γράψτε στο τετράδιό σας το κεφαλαίο γράμμα της ερώτησης και το μικρό γράμμα της σωστής απάντησης.

Διαβάστε περισσότερα

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΠΛΑΓΙΑ ΠΛΑΣΤΙΚΗ ΚΡΟΥΣΗ ΚΑΙ ΤΑΛΑΝΤΩΣΗ

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΠΛΑΓΙΑ ΠΛΑΣΤΙΚΗ ΚΡΟΥΣΗ ΚΑΙ ΤΑΛΑΝΤΩΣΗ ΤΑΛΑΝΤΩΣΗ ΜΕΤΑ ΑΠΟ ΚΡΟΥΣΗ. Θα μελετήσουμε τώρα συστήματα που η ταλάντωση ξεκινά εξαιτίας μίας κρούσης ή έχουμε ήδη μία ταλάντωση και κάπου στην πορεία συμβαίνει και μία κρούση.. Σώμα που κινείται με κάποια

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 Α) Τί είναι µονόµετρο και τί διανυσµατικό µέγεθος; Β) Τί ονοµάζουµε µετατόπιση και τί τροχιά της κίνησης; ΘΕΜΑ 2 Α) Τί ονοµάζουµε ταχύτητα ενός σώµατος και ποιά η µονάδα

Διαβάστε περισσότερα

Β ΛΥΚΕΙΟΥ: ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Β ΛΥΚΕΙΟΥ: ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΛΥΚΕΙΟΥ: ΦΥΣΙΚΗΣ ΠΡΟΣΑΑΤΟΛΙΣΜΟΥ Διαγωνίσματα 2014-2015 1 ο Διαγώνισμα Θεματικό πεδίο: Επαναληπτικό (Οριζόντια ολή Κυκλική Κίνηση Κρούσεις) Ημερομηνία 16 οεμβρίου 2014 Διάρκεια Επιμέλεια 2 Ώρες ΘΕΜΑ 1 25

Διαβάστε περισσότερα

Αντιμετώπιση προβλημάτων που αλλάζουν την στροφική τους κατάσταση, εξαιτίας εξωτερικών ροπών

Αντιμετώπιση προβλημάτων που αλλάζουν την στροφική τους κατάσταση, εξαιτίας εξωτερικών ροπών Αντιμετώπιση προβλημάτων που αλλάζουν την τους κατάσταση, εξαιτίας εξωτερικών ροπών Σ' ένα πρόβλημα, παρατηρώ αλλαγή στη κατάσταση ενός στερεού (ή συστήματος στερεών), καθώς αυτό δέχεται εξωτερικές ροπές.

Διαβάστε περισσότερα

ΘΕΜΑ Α Στις παρακάτω προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Στις παρακάτω προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 53 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΑΒΒΑΪΔΗ-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Φιλολάου & Εκφαντίδου 26 : Τηλ.: 2107601470 ΔΙΑΓΩΝΙΣΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2013 ΘΕΜΑ Α Στις παρακάτω προτάσεις Α1-Α4 να

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2011

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2011 ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2011 Μάθηµα: ΦΥΣΙΚΗ Ηµεροµηνία και ώρα εξέτασης: Σάββατο, 4 Ιουνίου 2011 8:30 11:30

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1 Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Δύο χορδές μιας κιθάρας Χ1, Χ2

Διαβάστε περισσότερα

Οδηγός βαθμολόγησης Εξεταστικού Δοκιμίου Α Λυκείου

Οδηγός βαθμολόγησης Εξεταστικού Δοκιμίου Α Λυκείου ΛΥΚΕΙΟ ΜΑΚΑΡΙΟΥ Γ ΛΑΡΝΑΚΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2014-15 Οδηγός βαθμολόγησης Εξεταστικού Δοκιμίου Α Λυκείου 1) Να γράψετε 3 διανυσματικά μεγέθη και 2 μονόμετρα μεγέθη καθώς και τις μονάδες μέτρησής τους (στο

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα πο αντιστοιχεί στη ράση η οποία τη

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΟ ΔΙΑΦΟΡΑ ΔΥΝΑΜΙΚΟΥ

ΔΥΝΑΜΙΚΟ ΔΙΑΦΟΡΑ ΔΥΝΑΜΙΚΟΥ ΔΥΝΑΜΙΚΟ ΔΙΑΦΟΡΑ ΔΥΝΑΜΙΚΟΥ Υποθέστε ότι έχουμε μερικά ακίνητα φορτισμένα σώματα (σχ.). Τα σώματα αυτά δημιουργούν γύρω τους ηλεκτρικό πεδίο. Αν σε κάποιο σημείο Α του ηλεκτρικού πεδίου τοποθετήσουμε ένα

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦ. 4Ο

ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦ. 4Ο Όνοµα:... Ηµεροµηνία:... Βαθµός : ΘΕΜΑ Ο Στις παρακάτω ερωτήσεις να επιλέξετε τη σωστή απάντηση. Όταν ένα σώµα πραγµατοποιεί µόνο στροφική κίνηση : α) όλα τα σηµεία του έχουν την ίδια γραµµική ταχύτητα

Διαβάστε περισσότερα

ΕΠΙΜΕΛΕΙΑ: ΓΑΛΑΝΑΚΗΣ ΓΙΩΡΓΟΣ ΔΗΜΗΤΡΑΚΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ

ΕΠΙΜΕΛΕΙΑ: ΓΑΛΑΝΑΚΗΣ ΓΙΩΡΓΟΣ ΔΗΜΗΤΡΑΚΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ ΘΕΜΑ Α Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί η σωστή απάντηση 1. Δίσκος κυλίεται χωρίς να ολισθαίνει με την επίδραση σταθερής οριζόντιας

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ε π α ν α λ η π τ ι κ ά θ έ µ α τ α 0 0 5 Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ΘΕΜΑ 1 o Για τις ερωτήσεις 1 4, να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που

Διαβάστε περισσότερα

Στη συνέχεια παρατίθενται κάποιες ερωτήσεις και παλαιότερα θέµατα εξετάσεων.

Στη συνέχεια παρατίθενται κάποιες ερωτήσεις και παλαιότερα θέµατα εξετάσεων. ΙΑΤΡΙΚΗ ΦΥΣΙΚΗ Ακαδ. Έτος 2007-2008 ιδάσκουσα: Μ. Μακροπούλου Στη συνέχεια παρατίθενται κάποιες ερωτήσεις και παλαιότερα θέµατα εξετάσεων. Ενδεικτικές ερωτήσεις δεν είναι όλη η εξεταστέα ύλη σε αυτές!

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. Ενότητα 5: ΟΙ ΝΟΜΟΙ ΤΗΣ ΚΙΝΗΣΗΣ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

ΦΥΣΙΚΗ. Ενότητα 5: ΟΙ ΝΟΜΟΙ ΤΗΣ ΚΙΝΗΣΗΣ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΦΥΣΙΚΗ Ενότητα 5: ΟΙ ΝΟΜΟΙ ΤΗΣ ΚΙΝΗΣΗΣ Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΘΕΜΑΤΑ : ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ 17/4/2015

ΘΕΜΑΤΑ : ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ 17/4/2015 ΘΕΜΑΤΑ : ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ ΘΕΜΑ 1 ο 17/4/2015 Στις ερωτήσεις 1-5 να γράψετε στο φύλλο απαντήσεων τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: ΔΥΝΑΜΕΙΣ Μέρος 1ο

ΚΕΦΑΛΑΙΟ 3: ΔΥΝΑΜΕΙΣ Μέρος 1ο ΚΕΦΑΛΑΙΟ 3: ΔΥΝΑΜΕΙΣ Μέρος 1ο Φυσική Β Γυμνασίου Βασίλης Γαργανουράκης http://users.sch.gr/vgargan Εισαγωγή Στο προηγούμενο κεφάλαιο μελετήσαμε τις κινήσεις των σωμάτων. Το επόμενο βήμα είναι να αναζητήσουμε

Διαβάστε περισσότερα

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 10 Περιστροφική Κίνηση Περιεχόµενα Κεφαλαίου 10 Γωνιακές Ποσότητες Διανυσµατικός Χαρακτήρας των Γωνιακών Ποσοτήτων Σταθερή γωνιακή Επιτάχυνση Ροπή Δυναµική της Περιστροφικής Κίνησης, Ροπή και

Διαβάστε περισσότερα

Κεφάλαιο Η2. Ο νόµος του Gauss

Κεφάλαιο Η2. Ο νόµος του Gauss Κεφάλαιο Η2 Ο νόµος του Gauss Ο νόµος του Gauss Ο νόµος του Gauss µπορεί να χρησιµοποιηθεί ως ένας εναλλακτικός τρόπος υπολογισµού του ηλεκτρικού πεδίου. Ο νόµος του Gauss βασίζεται στο γεγονός ότι η ηλεκτρική

Διαβάστε περισσότερα

Επιτάχυνση της Βαρύτητας g = 10m/s 2

Επιτάχυνση της Βαρύτητας g = 10m/s 2 ΛΥΚΕΙΟ ΑΚΡΟΠΟΛΗΣ ΠΡΟΤΕΙΟΜΕΕΣ ΑΠΑΤΗΣΕΙΣ Σχολική Χρονιά:2014-2015 αθμός :. ΔΙΑΓΩΙΣΜΑ κατ. ΣΧΕΔΙΑΣΜΟΣ ΔΥΑΜΕΩ-ΚΙΗΜΑΤΙΚΗ-ΔΥΑΜΙΚΗ-ΤΡΙΗ Υπ. Κηδεμόνα :.. Μάθημα : ΦΥΣΙΚΗ Όνομα μαθητή/τριας: Ημερομηνία : Τμήμα

Διαβάστε περισσότερα

Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΘΕΜΑ ο ΕΚΦΩΝΗΣΕΙΣ. Αρµονικό κύµα διαδίδεται σε ένα εθύγραµµο ελαστικό µέσο. Όλα τα σηµεία το µέσο διάδοσης, πο ταλαντώνονται λόγω της διέλεσης

Διαβάστε περισσότερα

Β1) Ένα σώμα κινείται σε οριζόντιο δάπεδο με σταθερή ταχύτητα μέτρου 4 m/s με την επίδραση οριζόντιας σταθερής δύναμης μέτρου ίσου με 40 N.

Β1) Ένα σώμα κινείται σε οριζόντιο δάπεδο με σταθερή ταχύτητα μέτρου 4 m/s με την επίδραση οριζόντιας σταθερής δύναμης μέτρου ίσου με 40 N. ΘΕΜΑ Β Β1) Ένα σώμα κινείται σε οριζόντιο δάπεδο με σταθερή ταχύτητα μέτρου 4 m/s με την επίδραση οριζόντιας σταθερής δύναμης μέτρου ίσου με 40 N. Α) Να επιλέξετε τη σωστή πρόταση. Ο ρυθμός με τον οποίο

Διαβάστε περισσότερα

EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Ο Να επιλέξετε τη σωστή απάντηση σε κάθε μία από τις ερωτήσεις - που ακολουθούν: Η ενεργός ταχύτητα των μορίων ορισμένης ποσότητας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας ΚΕΦΑΛΑΙΑ,4. Συστήµατα ενός Βαθµού ελευθερίας. Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα ' O για την απωστική δύναµη F, > και για ενέργεια Ε. (α) Είναι V και οι επιτρεπτές περιοχές της κίνησης

Διαβάστε περισσότερα

w w w.k z a c h a r i a d i s.g r

w w w.k z a c h a r i a d i s.g r ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 4 Γραµµική ταχύτητα : ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ds. Γωνιακή ταχύτητα : dθ ω ωr Οµαλή κκλική κίνηση : σταθερό

Διαβάστε περισσότερα

w w w.k z a c h a r i a d i s.g r

w w w.k z a c h a r i a d i s.g r Πως αποδεικνύουμε ότι ένα σώμα εκτεί απλή αρμονική ταλάντωση Μεθοδολογία i) Βρίσκουμε την θέση ισορροπίας του σώματος και σχεδιάζουμε το σώμα σε αυτή την θέση. ii) Σχεδιάζουμε τις δυνάμεις που ενεργούν

Διαβάστε περισσότερα

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Φυσική Α Λυκείου

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Φυσική Α Λυκείου Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων Μάθημα: Φυσική Α Λυκείου Στο παρών παρουσιάζουμε συνοπτικές λύσεις σε επιλεγμένα Θέματα («Θέμα 2 ο, 4 ο») από την Τράπεζα θεμάτων. Το αρχείο αυτό τις

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 3. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 3. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 3 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Περιεχόμενα: Διακριτή Μοντελοποίηση Μηχανικών Συστημάτων Επανάληψη: Διακριτά στοιχεία μηχανικών δυναμικών συστημάτων Δυναμικά

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ 2002 ΘΕΜΑΤΑ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 6 ΙΟΥΝΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ): ΦΥΣΙΚΗ

Διαβάστε περισσότερα

r r r r r r r r r r r Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

r r r r r r r r r r r Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΠΑΡΑΣΚΕΥΗ 0 ΜΑÏΟΥ 011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ

Διαβάστε περισσότερα

B Μέρος (από 2) Οστά των Ακρων

B Μέρος (από 2) Οστά των Ακρων B Μέρος (από 2) Οστά των Ακρων 01/25 ΑΝΩ ΑΚΡΑ 02/25 ΑΝΩ ΑΚΡΑ Οστά της Ζώνης του Ώμου 1. Ωμοπλάτη (scapula) _Τριγωνικό οστό _Συνδέεται με την κλείδα με το ακρώμιο. 2. Κλείδα (clavicle) _Με το ένα άκρο της

Διαβάστε περισσότερα

Πίεση ονομάζουμε το πηλικό της δύναμης που ασκείται κάθετα σε μία επιφάνεια προς το εμβαδόν της επιφάνειας αυτής.

Πίεση ονομάζουμε το πηλικό της δύναμης που ασκείται κάθετα σε μία επιφάνεια προς το εμβαδόν της επιφάνειας αυτής. ΚΕΦΑΛΑΙΟ 4 ο ΠΙΕΣΗ 4.1 Πίεση Είναι γνωστό ότι οι χιονοδρόμοι φορούν ειδικά φαρδιά χιονοπέδιλα ώστε να μπορούν να βαδίζουν στο χιόνι χωρίς να βουλιάζουν. Θα έχετε επίσης παρατηρήσει ότι τα μεγάλα και βαριά

Διαβάστε περισσότερα

Κεφάλαιο 14 Ταλαντώσεις. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 14 Ταλαντώσεις. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 14 Ταλαντώσεις Ταλαντώσεις Ελατηρίου Απλή αρµονική κίνηση Ενέργεια απλού αρµονικού ταλαντωτή Σχέση απλού αρµονικού ταλαντωτή και κυκλικής κίνησης Το απλό εκκρεµές Περιεχόµενα 14 Το φυσικό εκκρεµές

Διαβάστε περισσότερα

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014)

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014) > Φυσική Β Γυμνασίου >> Αρχική σελίδα ΔΥΝΑΜΗ ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς μμ εε ααππααννττήή σσεει ιςς (σελ. 1) ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς χχωρρί ίςς ααππααννττήήσσεει ιςς (σελ. 5) ΙΑΒΑΣΕ

Διαβάστε περισσότερα

1.1. Μηχανικές Ταλαντώσεις. Ομάδα Δ.

1.1. Μηχανικές Ταλαντώσεις. Ομάδα Δ. 1.1. Μηχανικές. Ομάδα Δ. 1.1.51. Συνάντηση σωμάτων που ταλαντώνονται. Τα σώματα Α και Β του σχήματος έχουν ίσες μάζες m 1 =m 2 =m=1kg. Τα δύο σώματα ισορροπούν πάνω στο λείο οριζόντιο δάπεδο, με τα ελατήρια

Διαβάστε περισσότερα

Από το βιβλίο του Δρ. Πέτρου Α. Πουλμέντη

Από το βιβλίο του Δρ. Πέτρου Α. Πουλμέντη Από το βιβλίο του Δρ. Πέτρου Α. Πουλμέντη Κεφάλαιο 1 Εισαγωγή στη βιολογική μηχανική Κεφάλαιο 2 Εκβιομηχανική των οστών Οι διαφάνειες που ακολουθούν Η ΑΝΑΤΟΜΙΚΗ ΘΕΣΗ ΤΟΥ ΑΝΘΡΩΠΟΥ Για να περιγράψουμε τα

Διαβάστε περισσότερα

Κεφάλαιο 8 Διατήρηση της Ενέργειας

Κεφάλαιο 8 Διατήρηση της Ενέργειας Κεφάλαιο 8 Διατήρηση της Ενέργειας ΔΥΝΑΜΗ ΕΡΓΟ ΕΝΕΡΓΕΙΑ µηχανική, χηµική, θερµότητα, βαρυτική, ηλεκτρική, µαγνητική, πυρηνική, ραδιοενέργεια, τριβής, κινητική, δυναµική Περιεχόµενα Κεφαλαίου 8 Συντηρητικές

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 9 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ

Διαβάστε περισσότερα

Δ 4. Το ποσοστό της αρχικής κινητικής ενέργειας του βέλους που μεταφέρεται στο περιβάλλον του συστήματος μήλο-βέλος κατά τη διάρκεια της διάτρησης.

Δ 4. Το ποσοστό της αρχικής κινητικής ενέργειας του βέλους που μεταφέρεται στο περιβάλλον του συστήματος μήλο-βέλος κατά τη διάρκεια της διάτρησης. Σε οριζόντιο επίπεδο βρίσκεται ακίνητο ένα μήλο μάζας Μ = 200 g. Ένα μικρό βέλος μάζας m = 40 g κινείται οριζόντια με ταχύτητα μέτρου, υ 1 = 10 m / s, χτυπά το μήλο με αποτέλεσμα να το διαπεράσει. Αν γνωρίζετε

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ μονόμετρα. διανυσματικά Η μάζα ενός σώματος αποτελεί το μέτρο της αδράνειάς του, πυκνότητα ενός υλικού d = m/v

ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ μονόμετρα. διανυσματικά Η μάζα ενός σώματος αποτελεί το μέτρο της αδράνειάς του, πυκνότητα ενός υλικού d = m/v ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ Υπάρχουν φυσικά μεγέθη που ορίζονται πλήρως, όταν δοθεί η αριθμητική τιμή τους και λέγονται μονόμετρα.. Μονόμετρα μεγέθη είναι ο χρόνος, η μάζα, η θερμοκρασία, η πυκνότητα, η ενέργεια,

Διαβάστε περισσότερα

ΘΕΜΑ 1 Nα γράψετε στο τετράδιο σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ 1 Nα γράψετε στο τετράδιο σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 9 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΣΑΒΒΑΪ Η-ΜΑΝΩΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Φιλολάου & Εκφαντίδου 6 : Τηλ.: 076070 ΙΑΓΩΝΙΣΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΥΚΕΙΟΥ 009 ΘΕΜΑ Nα γράψετε στο τετράδιο σας τον αριθµό καθεµιάς

Διαβάστε περισσότερα

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Α ΣΧΟΛΙΚΟ ΕΤΟΣ 2010-2011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2011 ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΑΡ.:...

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Α ΣΧΟΛΙΚΟ ΕΤΟΣ 2010-2011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2011 ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΑΡ.:... ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Α ΣΧΟΛΙΚΟ ΕΤΟΣ 2010-2011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2011 ΜΑΘΗΜΑ: Φυσική ΤΑΞΗ: Α ΗΜΕΡΟΜΗΝΊΑ: 27 Μαίου 2011 ΧΡΟΝΟΣ: 2 ώρες ΩΡΑ: 11.00 1.00 ΒΑΘΜΟΣ: Αριθμητικά:... Ολογράφως:...

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ 2008 ΘΕΜΑΤΑ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 29 ΜΑÏΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ

Διαβάστε περισσότερα

m A m B Δ4) Να υπολογιστεί το ποσό θερμικής ενέργειας (θερμότητας) που ελευθερώνεται εξ αιτίας της κρούσης των δύο σωμάτων.

m A m B Δ4) Να υπολογιστεί το ποσό θερμικής ενέργειας (θερμότητας) που ελευθερώνεται εξ αιτίας της κρούσης των δύο σωμάτων. Το σώμα Α μάζας m A = 1 kg κινείται με ταχύτητα u 0 = 8 m/s σε λείο οριζόντιο δάπεδο και συγκρούεται μετωπικά με το σώμα Β, που έχει μάζα m B = 3 kg και βρίσκεται στο άκρο αβαρούς και μη εκτατού (που δεν

Διαβάστε περισσότερα

ΦΥΣ. 211 Τελική Εξέταση 11-Μάη-2015

ΦΥΣ. 211 Τελική Εξέταση 11-Μάη-2015 ΦΥΣ. 211 Τελική Εξέταση 11-Μάη-2015 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

Μονάδες 5 1.3 β. Μονάδες 5 1.4 Μονάδες 5

Μονάδες 5 1.3 β. Μονάδες 5 1.4 Μονάδες 5 ΘΕΜΑ 1 ο ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 29 ΜΑΪΟΥ 2006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΠΤΑ (7) Για τις ημιτελείς

Διαβάστε περισσότερα

ΦΥΣ 131 - Διαλ.12 1. Μη αδρανειακά συστήµατα Φαινοµενικό βάρος

ΦΥΣ 131 - Διαλ.12 1. Μη αδρανειακά συστήµατα Φαινοµενικό βάρος ΦΥΣ 3 - Διαλ.2 Μη αδρανειακά συστήµατα Φαινοµενικό βάρος ΦΥΣ 3 - Διαλ.2 2 Μη αδρανειακά συστήµατα x Έστω ότι το S αποκτά επιτάχυνση α 0 S z 0 Α x z S y, y Ο παρατηρητής S µετρά µια επιτάχυνση: A = A +

Διαβάστε περισσότερα

Β Γυμνασίου 22/6/2015. Οι δείκτες Επιτυχίας και δείκτες Επάρκειας Β Γυμνασίου για το μάθημα της Φυσικής

Β Γυμνασίου 22/6/2015. Οι δείκτες Επιτυχίας και δείκτες Επάρκειας Β Γυμνασίου για το μάθημα της Φυσικής Β Γυμνασίου /6/05 Οι δείκτες Επιτυχίας και δείκτες Επάρκειας Β Γυμνασίου για το μάθημα της Φυσικής Β Γυμνασίου /6/05 Δείκτες Επιτυχίας (Γνώσεις και υπό έμφαση ικανότητες) Παρεμφερείς Ικανότητες (προϋπάρχουσες

Διαβάστε περισσότερα

ΘΕΜΑ Β Παράδειγμα 1. Να δικαιολογήσετε την επιλογή σας. (Μονάδες 8)

ΘΕΜΑ Β Παράδειγμα 1. Να δικαιολογήσετε την επιλογή σας. (Μονάδες 8) ΘΕΜΑ Β Παράδειγμα 1 Β1. Στο σχολικό εργαστήριο μια μαθήτρια περιεργάζεται ένα ελατήριο και λέει σε συμμαθητή της: «Θα μπορούσαμε να βαθμολογήσουμε αυτό το ελατήριο και με τον τρόπο αυτό να κατασκευάσουμε

Διαβάστε περισσότερα