ΛYΣH: Eάν T 0 είναι η κανονικη θερµοκρασία του αέριου και T η θερµοκρασία του µετά την αντιστρεπτή αδιαβατική του συµπίεση, θα ισχύουν οι σχέσεις :

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΛYΣH: Eάν T 0 είναι η κανονικη θερµοκρασία του αέριου και T η θερµοκρασία του µετά την αντιστρεπτή αδιαβατική του συµπίεση, θα ισχύουν οι σχέσεις :"

Transcript

1

2 Eάν η ενεργός ταχύτητα των µορίων ενός ιδανι κού αερίου σε κανονικές συνθήκες είναι v 0, να βρείτε την ενεργό τα χύτητα των µορίων του, όταν το αέριο συµπιεστεί αδιαβατικά και αντι στρεπτά, µέχρις ότου υποδιπλασιαστεί ο όγκος του. Δινεται ο λόγος γ των γραµµοµοριακών ειδικών θερµοτήτων C V και C P του αερίου. ΛYΣH: Eάν T 0 είναι η κανονικη θερµοκρασία του αέριου και T η θερµοκρασία του µετά την αντιστρεπτή αδιαβατική του συµπίεση, θα ισχύουν οι σχέσεις : mv r / = 3KT/ mv 0 / = 3KT 0 / $ (: ) v r v 0 = T T 0 v r = v 0 T/T 0 v r = v 0 T/T 0 (1) όπου η µάζα κάθε µορίου του αερίου, K η σταθερά του Boltzman και v r η ζητούµενη ενεργός ταχύτητα των µορίων του αερίου. Eξάλλου, εάν P 0 είναι η αρχική (κανονική) πίεση το αέριου και P η τελική του πίεση, θα ισχύει ο νόµος του Poisson, δηλαδή η σχέση: V = P V $ 0 & % P 0 0 P 0 = PV 0 P = P 0 () Όµως για το αέριο ισχύει και ο συνδυαστικός νόµος, δηλαδή η σχέση: P 0 = PV 0 T 0 T T T 0 = P P 0 () T T 0 = P 0 P 0 = -1 (3) Συνδυάζοντας τις σχέσεις (1) και (3) παίρνουµε : 1 v r = v 0-1 v r = v 0 Iδανικό µονοατοµικό αέριο θερµαίνεται ισοβαρώς, απορροφώντας θερµότητα Q από το περιβάλλον του. Nα υπολογισθεί η αύξηση της µέσης κινητικής ενέργειας των µορίων του. Δίνεται ο αριθµός N των ατόµων του αερίου.

3 ΛYΣH: Eάν n είναι ο αριθµός των mol του µονοτοµικού αερίου, C P η γραµµο µοριακή ειδική του θερµότητα υπό σταθερή πίεση και ΔT η ανύψωση της θερµοκρασίας του λόγω της ισοβαρούς θέρµανσής του, τότε για τη θερµότητα Q που απορρόφησε το αέριο ισχύει η σχέση: Q = nc P T T = Q nc P (1) Eπειδή το αέριο είναι µονοατοµικό θα ισχύει C P = 5R/, όπου R η παγκόσµια σταθερά των ιδανικών αερίων, οπότε η (1) γράφεται: T = Q 5nR () Eξάλλου, στην αυξηση ΔT της θερµοκρασίας του αερίου αντιστοιχεί αύξηση E της µέσης κινητικής ενέργειας των µορίων του, η οποία ικανοποιεί τη σχέση: E = 3KT/ ( ) E = 3K Q 5nR = 3KQ 5nR (3) όπου K η σταθερά του Boltzmann. Όµως, εάν N A είναι η σταθερά του Avogadro θα ισχύει R=N A K, οπότε η η (3) γράφεται: E = 3KQ 5nN A K = 3Q 5nN A = 3Q 5N Iδανικό µονοατοµικό αέριο περιέχεται µέσα σε δοχείο µε σταθερά και αδιαβατικά τοιχώµατα, το οποίο κινείται πάνω σε οριζόντιο επίπεδο µε σταθερή ταχύτητα v. Eάν το δοχείο σταµα τήσει απότοµα, να υπολογισθεί η αύξηση της µέσης τιµής των τετρα γώνων των ταχύτητων των µορίων του αερίου. ΛYΣH: Όταν µηδενιστεί απότοµα η ταχύτητα του δοχείου στο οποίο περιέχεται το ιδανικό αέριο, θα µηδενιστεί η µακροσκοπική κινητική ενέργεια των µορίων του αερίου και θα µετατραπεί, µέσω των κρούσεων µε τα τοιχώ µατα του δοχείου και µεταξύ των µορίων, σε αύξηση της εσωτερικής ενέργειας του αερίου, δηλαδή θα ισχύει η σχέση: Mv = U Mv = nc V T Mv = 3nR T T = Mv 3nR (1) όπου Μ η µάζα του αερίου, ΔT η αυξηση της θερµοκρασίας του, n ο αριθµός των mol που αντιστοιχεί στην µάζα Μ, C V η γραµµοµοριακή ειδική του θερµότητα υπό σταθερό όγκο και R η παγκόσµια σταθερά των αερίων. Eξάλλου,

4 η µέση τιµή v των τετραγώνων των ταχύτητων των µορίων του αερίου σε θερµοκρασία T, ικανοποιεί τη σχέση: m v = 3KT v = 3KT m () όπου K η σταθερά του Boltzmann και m η µάζα ενός µορίου του αερίου. Παρα τηρούµε από τη () ότι, η v είναι ανάλογη της απόλυτης θερµοκρασίας T του αερίου, οπότε η µεταβολή της v που αντιστοιχεί σε µεταβολή ΔT της θερµοκ ρασίας του αερίου θα ικανοποιεί τη σχέση: v = 3KT m (1) v = 3K m Mv 3nR = KMv nmr (3) Όµως εάν N A είναι η σταθερά του Avogadro, το γινόµενο N A K αποτελεί την R, οπότε η σχέση (3) γράφεται: v = Mv nn A m = v διότι το γινόµενο nn A m αποτελεί τη µάζα M του αερίου. Mέσα σε κλειστό δοχείο όγκου V, περιέχονται δύο µονοατοµικά ιδανικά αέρια α 1 και α. Tα δύο αέρια δεν αντιδρούν µε ταξύ τους το δε µίγµα τους παρουσιάζει ολική πίεση P ολ. Nα βρεθεί η κινητική ενέργεια των µορίων του µίγµατος η οφειλόµενη στην άτακ τη θερµική τους κίνηση. ΛYΣH: Σύµφωνα µε την κινητική θεωρία των αερίων η πίεση P ενός ιδανικού αερίου, δίνεται από τη σχέση: P = v 3 = m v 3V = mnv 3V (1) όπου ρ η πυκότητα του αερίου, m α η µάζα του, N ο αριθµός των µορίων του, m η µάζα ενός µορίου του αερίου και v η µέση τιµή των τετραγώνων των ταχυ τήτων των µορίων του, λόγω της µεταφορικής τους θερµικής κίνησης. Όµως ισχύει η σχέση: m v = 3KT m v = 3KT () όπου K η σταθερά του Boltzmann και T η θερµοκρασία του αερίου. Συνδυάζον τας τις σχέσεις (1) και () παίρνουµε τη σχέση:

5 P = N NKT 3KT = 3V V (3) Eφαρµόζοντας τη σχέση (3) για τις µερικές πιέσεις P 1 και P των αερίων A 1 και A που περιέχονται στο κλειστό δοχείο όγκου V, παίρνουµε: P 1 = N 1 KT/V P = N KT/V (+ ) P 1 + P = KT V ( N + N 1 ) (4) όπου Ν 1, Ν οι αριθµοί µορίων των αερίων α 1 και α αντιστοίχως. Όµως η ολική πίεση P ολ του µίγµατος είναι ίση µε το άθροισµα των µερικών πιέσεων των αερίων A 1 και A, δηλαδή ισχύει: (4 ) P = P 1 + P P = KT V ( N + N 1 ) KT = P V N 1 + N (5) Eξάλλου, η θερµική κινητική ενέργεια E K των µορίων του µίγµατος θα είναι: E K = N 1 3KT + N 3KT = 3KT ( N + N 1 ) (5 ) E K = 3P V N 1 + N % $ ' N 1 + N & = 3P V Ένα δοχείο µε σταθερά και αδιαβατικά τοιχώµατα, χωρίζεται µε θερµοµωνοτικό διάφραγµα σε δύο χώρους. Στον ένα χώρο περιέχονται n mol µονοατοµικού ιδανικού αερίου θερµοκρα σίας T 1, ενώ στον άλλο χώρο περιέχονται n mol ενός άλλου επίσης µονοατοµικού ιδανικού αερίου, θερµοκρασίας T. Aνασύρουµε το διάφραγµα και τα δύο αέρια αναµειγνύονται, χωρίς όµως να αντιδ ρούν µεταξύ τους. Nα βρείτε την κινητική ενέργεια των µορίων του µίγµατος, την οφειλόµενη στη µεταφορική θερµική τους κίνηση. Δίνεται η παγκόσµια σταθερά R των ιδανικών αερίων. ΛYΣH: Kατά την ανάµειξη των δύο αερίων, το σύστηµα δεν ανταλλάσσει έργο και θερµότητα µε το περιβάλλον του, αφού τα τοιχώµατα του δοχείου είναι σταθερά και αδιαβατικά (Q=0 και W=0), οπότε σύµφωνα µε τον πρώτο θερµοδυναµικό νόµο η εσωτερική ενέργεια του συστήµατος των δύο αερίων δεν µεταβάλλεται, δηλαδή ισχύει: U = 0 U 1 + U = 0 (1) όπου ΔU 1, ΔU οι µεταβολές της εσωτερικής ενέργειας των δύο αερίων που αποτελούν το µίγµα. Eξάλλου, εάν T κ είναι η θερµοκρασία του µίγµατος και C V η κοινή τους γραµµοµοριακή ειδική θερµότητα υπό σταθερό όγκο θα έχουµε τις σχέσεις:

6 U 1 = nc V T - T 1 U = nc V T - T ( ) = (3nR/)( T - T 1 ) ( ) = (6nR/)( T - T ) $ () Συνδυάζοντας τις σχέσεις (1) και () παίρνουµε: 3nR ( T - T 1 ) + 6nR ( T - T ) = 0 T - T 1 + ( T - T ) = 0 3T = T 1 + T T = T 1 + T 3 (3) H κινητική ενέργεια των µορίων του µίγµατος, που οφείλεται στην άτακτη µεταφορική τους θερµική κίνηση, δίνεται από τη σχέση: E K = N 1 3KT + N 3KT = 3KT (3 ) ( N + N 1 ) ( ) E K = 3K N 1 + N $ T 1 + T 3 E K = 3K( nn A + nn A ) $ E K = 9nR $ T 1 + T % ' & % ' = 3K ( N & 1 + N ) $ T 1 + T % ' = 9KnN & A $ T 1 + T T 1 + T % ' & % ' & όπου K η σταθερά του Boltzmann και N A η σταθερά του Avogadro. Mια ορισµένη µάζα ιδανικού µονοατοµικού αερίου (C V =3R/) υποβάλλεται στις εξής δύο συνεχόµενες αντιστρεπτές µεταβολές. i) Στην ισόθερµη εκτόνωση AB, κατά την οποία ο όγκος του τετρα πλασιάζεται. ii) Στην ισόχωρη θέρµανση BΓ κατά την οποία η πίεση του διπλα σιάζεται. α) Nα σχεδιάσετε το διάγραµµα P-V της όλης µεταβολής του αερίου. β) Nα εξετάσετε εάν είναι δυνατή η επαναφορά του αερίου στην κατάσταση A, µέσω µιας αντιστρεπτής αδιαβατικής µεταβολής. γ) Nα βρείτε το λόγο των ενεργών ταχυτήτων των µορίων του αερίου

7 στις καταστάσεις A και Γ. δ) Nα βρείτε την ολική θερµότητα που ανταλλάσσει το αέριο µε το περιβάλλον του. Δίνονται ο όγκος και η πίεση P 0 του αερίου στην κατάσταση A. ΛYΣH: α) Eπειδή κατά την ισόθερµη εκτόνωση AB του αερίου ό όγκος του τετραπλασιάζεται, η πίεση του σύµφωνα µε τον νόµο του Boyle υποτετρα πλα σιάζεται δηλαδή απο P 0 θα γίνεται P 0 /4. Eξάλλου κατά την ισόχωρη θέρµανση BΓ του αερίου η πίεσή του διπλασιάζεται και σύµφωνα µε το νόµο του Charles η θερµοκρασία του διπλασιάζεται, δηλαδή από T 0 γίνεται T 0. Όλα τα παρα πάνω εκφράζονται στο σχήµα (1) το οποίο αποτελεί και διάγραµµα P-V της όλης µεταβολής της θερµοδυναµικής κατάστασης του αερίου. β) Για να είναι δυνατή η επαναφορά του αερίου στην αρχική του κατάσταση A, µέσω µιας αντιστρεπτής αδιαβατικής µεταβολής, πρέπει να ισχύει η σχέση: P V = P A V A ή P 0 ( 4 ) = P 0 ή 4 = 1 ή 43/5 = Σχήµα 1 η οποία όµως δεν ισχύει, που σηµαίνει ότι δεν είναι δυνατή η επαναφορά του αερίου στην κατάσταση A µε αδιαβατική µεταβολή. γ) Eάν v A, v Γ είναι οι ενεργές ταχύτητες των µορίων του αερίου στις καταστάσεις A και Γ αντιστοίχως, θα ισχύουν οι σχέσεις: v A = 3KT A /m = 3KT 0 /m v = 3KT /m = 6KT 0 /m $ v A v = 1 όπου K η σταθερά του Boltzman και m η µάζα ενός µορίου του αερίου. δ) H ολική θερµότητα Q ολ που ανταλλάσσει το αέριο µε το περιβάλλον του κατά τη µεταβολή ABΓ είναι ίση µε το άθροισµα των επιµέρους θερµοτήτων Q AB, Q BΓ, δηλαδή ισχύει η σχέση: Q = Q AB + Q B = nrt 0 ln( 4 / ) + nc V ( T 0 - T 0 )

8 Q = nrt 0 ln4 + 3nRT 0 / = P 0 ( ln + 3/) Oρισµένη µάζα µονοατοµικού ιδανικού αερίου (C V =3R/) υποβάλλεται σε κυκλική αντιστρεπτή µεταβολή, η οποία αποτελείται από τις εξής συνεχόµενες µεταβολές: i) την αδιαβατική µεταβολή AB, κατά την οποία ο όγκος του οκταπ λασιάζεται, ii) την ισόχωρη θέρµανση BΓ, κατά την οποία η πίεσή του επανέρ χεται στην αρχική της τιµή και iii) την ισοβαρή συµπίεση ΓA, µέσω της οποίας το αέριο επανέρχεται στην αρχική του κατάσταση A. α) Nα σχεδιάσετε το διάγραµµα P-V της κυκλικής µεταβολής του αερίου. β) Nα βρείτε τον λόγο των ενεργών ταχυτήτων των µορίων του αερί ου στις καταστάσεις A και Γ. γ) Nα βρείτε την ολική θερµότητα που ανταλλάσσει το αέριο µε το περιβάλλον του. Δίνεται ο όγκος και η πίεση P 0 του αερίου στην κατάσταση A. ΛYΣH: α) Eφαρµόζοντας για την αδιαβατική εκτόνωση AB του αερίου το νόµο του Poisson, παίρνουµε τη σχέση: P 0 = P B ( ) P 0 = P B 3 (1) Όµως ισχύει: = C P C V = C V + R C V = 1 + R C V = = 5 3 Σχήµα οπότε η σχέση (1) γράφεται:

9 P 0 = P B 5 P B = P 0 / 5 = P 0 /3 () Eφαρµόζοντας για την κατάσταση B την καταστατική εξίσωση έχουµε: P B = nrt B ( ) P 0 3 = nrt B nrt 0 4 = nrt B T B = T 0 4 δηλαδή κατά την αδιαβατική εκτόνωση AB η απόλυτη θερµοκρασία του αερίου υποτετραπλασιάζεται, ενώ η πίεσή του γίνεται 3 φορές µικρότερη. Kατά την ισόχωρη θέρµανση BΓ η πίεση του αερίου επανέρχεται στην αρχική της τιµή P 0, δηλαδή γίνεται 3 φορές µεγαλύτερη και σύµφωνα µε τον νόµο του Cha rles η απόλυτη θερµοκρασία του αυξάνεται 3 φορές, δηλαδή απο T 0 /4 γίνεται T 0. Mε βάση τα παραπάνω το διάγραµµα P-V της κυκλικής µεταβολής ABΓA του αερίου είναι αυτό που φαίνεται στο σχήµα (). β) Eάν v A, v Γ είναι οι ενεργές ταχύτητες των µορίων του αερίου στις κατα στάσεις A και Γ αντιστοίχως, θα ισχύουν οι σχέσεις: v A = 3KT A /m = 3KT 0 /m v = 3KT /m = 4 KT 0 /m (: ) v A v = 1 = 1 όπου K η σταθερά του Boltzmann και m η µάζα ενός µορίου του αερίου. γ) H ολική θερµότητα Q ολ που ανταλλάσσει το αέριο κατά την κυκλική µεταβολή ABΓA, είναι ίση µε το άθροισµα των επιµέρους θερµοτήτων, δηλαδή ισχύει: Q = Q AB + Q B + Q A = 0 + nc V (T - T B ) + nc P (T A - T ) Q = 3nR ( T 0 - T 0 /4 ) + 5nR ( T 0 - T 0 ) Q = 93nRT 0-35nRT 0 = - 47nRT 0 = - 47P 0 Oρισµένη µάζα µονοατοµικού αερίου (C V =3R/) υποβάλλεται στις εξής δύο συνεχόµενες αντιστρεπτές µεταβολές: i) στην αδιαβατική εκτόνωση AB, κατά την οποία ο όγκος του διπλα σιάζεται και

10 ii) στην ισόθερµη συµπίεση BΓ, κατά την οποία ο όγκος του επα νέρχεται στην αρχική του τιµή. Eάν οι θερµοδυναµικές συντεταγµέ νες της αρχικής κατάστασης του αερίου είναι P 0,,T 0 να βρεθούν: α) η τελική θερµοκρασία του αερίου, β) η µεταβολή της εσωτερικής του ενέργειας και γ) το ολικό έργο που ανταλλάσσει το αέριο µε το περιβάλλον του. ΛYΣH: α) Eφαρµόζοντας για την αδιαβατική εκτόνωση AB του αερίου τον νόµο του Poisson, παίρνουµε τη σχέση: P A = P B ( ) P A -1 = P B ( ) -1 (1) Σχήµα 3 H (1) σύµφωνα µε την καταστατική εξίσωση για τις καταστάσεις A και B γράφεται: µε nrt 0-1 = nrt B ( ) -1 T 0 = T B -1 T B = T 0 / -1 () = C P C V = C V + R C V = 1 + R C V = 1 + R 3R/ = 5 3 Eπειδή η µεταβολή BΓ είναι ισόθερµη θα ισχύει: T = T B ( ) T = T 0 / -1 (3) β) H µεταβολή ΔU ολ της εσωτερικής ενέργειας του αερίου κατά την θερµική διεργασία ABΓ είναι: U = nc V ( T $ - T A ) (3 ) U = 3nRT 0 U = 3nR ( T 0 / $-1 - T 0 ) 1 $ - 1& = 3P V $ - 1& $-1 % $-1 %

11 U = 3P $ /3 & = 3P V $ % & (4) 4 % γ) Tο ολικό έργο W ολ που ανταλλάσσει το αέριο µε το περιβάλλον του κατά τη µεταβολή ABΓ, σύµφωνα µε τον πρώτο θερµοδυναµικό νόµο για τη µεταβολή αυτή είναι: W = Q - U = Q AB + Q B$ - U (3),(4) W = 0 + nrt ln( / ) - $U W = nrt ln 1 $ & - 3P 0 % 1 $ & 4 % W = - P 0 ln - 3P $ & + 3P 0 4% W = P ln - 3 $ 3 3 & 4 4% Iδανικό µονοατοµικό αέριο (C V =3R/) όγκου υποβάλλεται στις εξής δύο συνεχόµενες µεταβολές. i) Στην ισόθερµη εκτόνωση AB κατά την οποία ο όγκος του τετρα πλασιάζεται και απορροφά θερµότητα Q από το περιβάλλον του. ii) Στην ισοβαρή συµπίεση BΓ κατά την οποία δίνει στο περιβάλλον του θερµότητα Q/ln. Nα βρεθεί σε συνάρτηση µε τον όγκο, o τελικός όγκος του αερίου και να σχεδιαστεί το διάγραµµα P-V της όλης µεταβολής της κατά στασης του αερίου. ΛYΣH: Eπειδή κατά την ισόθερµη εκτόνωση AB του ιδανικού αερίου ο όγκος του τετραπλασιάζεται, η πίεση του σύµφωνα µε τον νόµο του Boyle θα υποτετ ραπλασιάζεται, δηλαδή από P 0 θα γίνει P 0 /4. Eξάλλου, εάν T Γ είναι η απόλυτη θερµοκρασία του αερίου στην τελική του κατάσταση Γ για την θερµότητα Q BΓ που ανταλλάσσει το αέριο κατά την ισοβαρή συµπίεση BΓ θα ισχύει η σχέση: Q B = nc P (T -T 0 ) -Q ln = 5nR (T -T ) Q 0 ln = 5nR (T -T ) (1) 0 H θερµότητα Q που απορροφά το αέριο κατά την ισόθερµη εκτόνωσή του AB υπολογίζεται από τη σχέση:

12 Q = nrt 0 ln( 4 / ) = nrt 0 ln Q ln = nrt 0 () Συνδυάζοντας τις σχέσεις (1) και () παίρνουµε: 5nR( T 0 - T )/ = nrt 0 5T 0-5T = 4T 0 T = T 0 /5 (3) Σχήµα 4 Eφαρµόζοντας για την κατάσταση Γ την καταστατική εξίσωση έχουµε: P 0 V 4 = nrt (3 ) P 0 V 4 = nrt 0 5 P 0 V 4 = P 0 5 V = 4 5 όπου V Γ ο ζητούµενος τελικός όγκος του αερίου. Στο σχήµα (4) απεικονίζεται το διάγραµµα P-V της µεταβολής ABΓ της θερµοδυναµικής κατάστασης του αερίου. Iδανικό µονοατοµικό αέριο (C V =3R/) ορισµένης µάζας, υποβάλλεται σε δύο συνεχόµενες µεταβολές AB και BΓ. Kατά την AB η πίεση και ο όγκος του αερίου µεταβάλλονται σύµφωνα µε τη σχέση P=λV, όπου λ θετική και σταθερή ποσότητα, ο δε όγκος του αερίου διπλασιάζεται εκ της τιµής. Kατά την BΓ η πίεση και ο όγκος του αερίου µεταβάλλονται σύµφωνα µε τη σχέση PV=µ, όπου µ θετική και σταθερή ποσότητα, το δε έργο που αποδίδει το αέριο στο περιβάλλον είναι ίσο µε τα /3 του αντίστοιχου έργου κατά την µεταβολή AB. i) Nα σχεδιάσετε το διάγραµµα P-V της όλης µεταβολής του αερίου και να βρείτε τον τελικό του όγκο. ii) Nα βρείτε την ολική µεταβολή της εσωτερικής ενέργειας του αερίου. Δίνονται η πίεση P 0 και ό όγκος του αερίου στην αρχική του κατάσταση A.

13 ΛYΣH: i) Eφαρµόζοντας για τις καταστάσεις A και B τη σχέση P=λV έχουµε: P 0 = V P B = P B = P 0 (1) δηλαδή κατά την µεταβολή AB η πίεση του αερίου διπλασιάζεται. Eφαρµό ζοντας εξάλλου για τις καταστάσεις A και B την καταστατική εξίσωση των ιδα νικών αερίων παίρνουµε τις σχέσεις: P 0 = nrt 0 P 0 = nrt B T B = 4T 0 () δηλαδή κατά την µεταβολή AB η απόλυτη θερµοκρασία του αερίου τετραπλα σιάζεται. Το διάγραµµα P-V της µεταβολής αυτής είναι η ευθεία ΑΒ, της οποίας η προέκταση διέρχεται από την αρχή Ο των αξόνων. Εξάλλου η σχέση PV=µ εγγυάται ότι η µεταβολή ΒΓ του αερίου είναι ισόθερµη αντιστρεπτή εκτόνωση, το δε διάγραµµα P-V της µεταβολής αυτής είναι η ισοσκελής υπερβολή ΒΓ. Εξάλλου το έργο W AB που παράγει το αέριο κατά την µεταβολή AB είναι ίσο µε εµβαδόν του σκιασµένου τραπεζίου (AB ), δηλαδή ισχύει: W AB = µ(ab ) = P 0 + P 0 $ & V % 0 - ( ) = 3P 0 (3) Σχήµα 5 Tο έργο W BΓ που παράγει το αέριο κατά την ισόθερµη εκτόνωση του BΓ δίνε ται από τη σχέση: W B = nr4t 0 ln V $ & = 4P V 0 ln V $ & (4) 0 % % όπου V Γ ο ζητούµενος τελικός όγκος του αερίου. Όµως σύµφωνα µε το πρόβ ληµα ισχύει η σχέση: W B = W AB 3 (3),(4) 4 P 0 ln V $ & = % 3 'P 0

14 ln V $ & = 1 ln V $ & = lne V = e V % % V = e (5) 0 όπου e η βάση των φυσικών λογαρίθµων. Τέλος η πίεση P Γ, σύµφωνα µε την καταστατική εξίσωση, ικανοποιεί τη σχέση: P e = nr4t 0 ep = 4P 0 P = P 0 /e Στο σχήµα (5) φαίνεται το διάγραµµα P-V της όλης µεταβολής ABΓ της θερµο δυναµικής κατάστασης του αερίου. ii) H ολική µεταβολή ΔU ολ της εσωτερικής ενέργειας του αερίου θα είναι ίση µε το άθροισµα των επιµέρους µεταβολών ΔU AB και ΔU AΓ της εσωτερικής του ενέργειας, δηλαδή θα ισχύει. U = U AB + U B$ = nc V ( T B - T 0 ) + 0 U = 3nR ( 4T 0 - T 0 ) = 9nRT 0 = 9P 0 Mια ορισµένη µάζα ιδανικού αερίου υποβάλλεται σε αντιστρεπτή κυκλική µεταβολή ABΓA, της οποίας το διάγραµµα P-V φαίνεται στο σχήµα (6). Nα δείξετε ότι, το έργο που παράγει το αέριο κατά την µεταβολή αυτή είναι ανεξάρτητο από τις θέσεις των καταστάσεων A, B, Γ επί των ισόθερµων T 1, T και εξαρτάται µόνο από τις θερµοκρασίες T 1 και T. ΛYΣH: Tο έργο W ολ που παράγει το αέριο κατά την κυκλική µεταβολή ABΓA είναι ίσο µε το αλγεβρικό άθροισµα των έργων W AB, W BΓ και W ΓA που ανταλ λάσσει το αέριο µε το περιβάλλον του κατά τις επιµέρους µεταβολές AB, BΓ και ΓA, δηλαδή ισχύει η σχέση: W = W AB + W B + W A (1) Σχήµα 6 Όµως για τα επιµέρους έργα ισχύουν οι σχέσεις:

15 W AB = nrt 1 ln( V B / V A ) = nrt 1 ln( V B / V ) W B = P B ( V - V B ) και W A = 0 οπότε η (1) γράφεται: W = nrt 1 ln( V B / V ) + P B ( V - V B ) () Eφαρµόζοντας για την ισοβαρή συµπίεση BΓ το νόµο Gay-Lussac παίρνουµε τη σχέση: V B T 1 = V T V = T V B T 1 οπότε η () γράφεται: W = nrt 1 ln( V B T 1 / V B T ) + P B V B ( T 1 / T - 1) W = nrt 1 ln( T 1 / T ) + nrt 1 ( T 1 / T - 1) (3) Aπό την (3) προκύπτει ότι το έργο W ολ εξαρτάται µόνο από τις θερµοκρασίες T 1, T και όχι απο τις θέσεις των καταστάσεων A, B, Γ επί των ισόθερµων που αντιστοιχούν στις θερµοκρασίες αυτές. Oρισµένη µάζα µονοατοµικού ιδανικού αερίου (γ=5/3) υποβάλλεται σε κυκλική αντιστρεπτή µεταβολή ABΓA, της οποίας το διάγραµµα P-V φαίνεται στο σχήµα (7). Eάν κατά την ισοβαρή συµπίεση ΓA το αέριο παίρνει απο το περιβάλλον του έργο W * =00 J να βρείτε: i) τη θερµότητα Q AB που παίρνει το αέριο κατά την ισόχωρη θέρ µανση του και ii) το έργο W BΓ που δίνει το αέριο κατά την ισόθερµη εκτόνωσή του BΓ. ΛYΣH: i) H θερµότητα Q AB που παίρνει το αέριο από το περιβάλλον του κατά την ισόχωρη θέρµανσή του AB υπολογίζεται από τη σχέση: Q AB = nc P T 0 - T $ 0 & = nc PT 0 % (1) Οµως για της γραµµοµοριακές ειδικές θερµότητες C P και C V του αερίου ισχύουν οι σχέσεις: C P - C V = R C V = C P / C P - C P / = R C P = R - 1 = 5R/3 5/3-1 = 5R

16 οπότε η σχέση (1) γράφεται: Q AB = 5nRT 0 4 () Eξάλλου για το έργο W * που παίρνει το αέριο από το περιβάλλον του κατά την ισοβαρή συµπίεσή του ΓA ισχύει η σχέση: W * = P 0 ( V - 0 ) = - P 0 = - nrt 0 (3) Σχήµα 7 Συνδυάζοντας τις σχέσεις () και (3) παίρνουµε: Q AB = - 10W * 4 = - 5W * = 500 J ii) Tο έργο W BΓ που δίνει το αέριο στο περιβάλλον του κατά την ισόθερµη εκτόνωσή του BΓ δίνεται απο τη σχέση: W B = nrt 0 ln( / ) (3 ) W B = -W * ln W B = -(-00)0,7 J = 0 J Mια µάζα n= mol ιδανικού µονατοµικού αερίου (C V =3R/) µεταβαίνει από την κατάσταση A στην κατάσταση B, µέσω των εξής δύο µεταβολών: α) Της µεταβολής ANB, η οποία αποτελείται από την ισοβαρή εκτό νωση AN και την ισόχωρη ψύξη NB. Kατά την µεταβολή αυτή το αέριο παίρνει απο το περιβάλλον του θερµότητα Q ANB =16 J και δίνει σ' αυτό έργο W ANB =09 J. β) Tης µεταβολής AMB, η οποία αποτελείται απο την ισόθερµη εκτό νωση AM και την αδιαβατική εκτόνωση MB, κατά την εξέλιξη της οποίας το αέριο απορροφά θερµότητα Q AMB =10 J.

17 i) Nα σχεδιάσετε κατά προσέγγιση το διάγραµµα P-V των δύο αυτών µεταβολών. ii) Nα βρείτε το έργο εκτόνωσης του αερίου κατά την αδιαβατική µεταβολή MB και την αντίστοιχη µεταβολή της θερµοκρασίας του αερίου. Δίνεται η παγκόσµια σταθερά R=,3 J/mol.K των αερίων. ΛYΣH: i) H ισόθερµη εκτόνωση AM απεικονίζεται στο επίπεδο P-V µε τµήµα ισόθερµης καµπύλης θερµοκρασίας T A, ενώ η αδιαβατική εκτόνωση MB απεικο νίζεται µε καµπύλη, η οποία παρουσιάζει στο σηµείο M πιο απότοµη κλίση, δη λαδή βρίσκεται κάτω απο την ισόθερµη θερµοκρασίας T A. Aυτό σηµαίνει ότι η κατάσταση B βρίσκεται σε ισόθερµη καµπύλη, θερµοκρασίας T B <T A. Tέλος είναι φανερό ότι κατά την µεταβολή ANB το αέριο διέρχεται από την ενδιάµεση κα τάσταση N, η οποία βρίσκεται επί ισόθερµης καµπύλης, θερµοκρασίας T N >T A (σχήµα ). Σχήµα ii) Για τη θερµότητα Q AMB που παίρνει το αέριο απο το περιβάλλον του κατά την µεταβολή AMB ισχύει: Q AM + Q MB = W AM + 0 W AM = Q AMB = 10 J Για το έργο που δίνει το αέριο στο περιβάλλον του κατά την ίδια µεταβολή ισχύει: W AMB = W AM + W MB W MB = W AMB - W AM (1) Eφαρµόζοντας για τη µεταβολή AMB τον πρώτο θερµοδυναµικό νόµο, παίρ νουµε τη σχέση: Q AMB = U AMB + W AMB = U ANB + W AMB () Όµως η µεταβολή ΔU ANB της εσωτερικής ενέργειας του αερίου κατά το στάδιο ANB, σύµφωνα µε τον πρώτο θερµοδυναµικό νόµο, είναι: U ANB = Q ANB - W ANB = 16 J - 09 J = 3 J οπότε η σχέση () γράφεται: 10 J = -3 J + W AMB W AMB = 93 J

18 Eπιστρέφοντας στη σχέση (1) έχουµε: W MB = 93 J - 10 J = 3 J Eξάλλου για το έργο W MB, σύµφωνα µε τον πρώτο θερµοδυναµικό νόµο για την αδιαβατική µεταβολή MB, έχουµε: W MB = Q MB - U MB = 0 - nc V T MB W MB = - 3nR T MB T MB = - W MB 3nR = -3,39 K Mέσα σ ένα κυλινδρικό δοχείο µε αδιαβατικά τοιχώµατα έχει αποκλεισθεί, µε τη βοήθεια ενός θερµοµονωτικού έµβολου, µια ορισµένη µάζα ιδανικού αερίου. Tο αέριο θερµαίνεται µε τη βοήθεια ενός ηλεκτρικού αντιστάτη, που βρίσκεται µέσα στον κύλινδρο. Eάν η ηλεκτρική ισχύς του αντιστάτη είναι N, να βρεθεί το έργο εκτόνωσης του αέριου σε χρόνο t *. Στη διάρκεια της θέρµανσης του αέριου η εξωτερική πίεση στο µετακινούµενο έµβολο θα θεωρηθεί σταθερή. Δίνεται ακόµη ο λόγος γ των γραµµοµοριακών ειδικών θερ µοτήτων C V και C P του αέριου. ΛYΣH: Έστω W ηλ η ηλεκτρική ενέργεια που προσφέρεται στο σύστηµα του αερίου και του αντιστάτη σε χρόνο t * και W το αντίστοιχο έργο εκτόνωσης του αέριου. Eφαρµόζοντας για το σύστηµα αυτό τον πρώτο θερµοδυναµικό νόµο παίρνουµε τη σχέση: 0=ΔU+W-W ηλ ΔU=W ηλ -W (1) όπου ΔU η µεταβολή της εσωτερικής ενέργειας του αερίου *. Όµως ισχύουν οι σχέσεις: ΔU=nC V ΔT και W ηλ =Nt * όπου ΔT η ανύψωση της θερµοκρασίας του αερίου σε χρόνο t *, n ο αριθµός των mol του αερίου και C V η γραµµοµοριακή του ειδική θερµότητα υπό σταθερό όγκο. Έτσι η σχέση (1) γράφεται: nc V ΔT=Nt * -W () Eξάλλου, εάν P εξ είναι η σταθερή εξωτερική πίεση που επικρατεί στο έµβολο, θα ισχύει: P εξ ΔV=nRΔT W=nRΔT (3) * H µεταβολή της εσωτερικής ενέργειας του ηλεκτρικού αντιστάτη θεωρήθηκε αµελητέα.

19 όπου ΔV η αύξηση του όγκου του αέριου. Συνδυάζοντας τις σχέσεις () και (3) παίρνουµε τη σχέση: nc V T nrt = Nt * - W W C V C P - C V = Nt * - W W W C P /C V - 1 = Nt * - W W - 1 = Nt * - W W W = Nt * W + W - W - 1 = Nt * W - 1 = Pt * W = Nt *( - 1) Mιά κενή φιάλη, µε αδιαβατικά τοιχώµατα συνδέ εται διά µέσου µιας βαλβίδας µε τον ατµοσφαιρικό αέρα, του οποίου η απόλυτη θερµοκρασία είναι T 0. Aνοίγουµε τη βαλβίδα και ο ατµοσ φαιρικός αέρας εισέρχεται µέσα στη φιάλη, µέχρις ότου η πίεση στο εσωτερικό της γίνει ίση µε την ατµοσφαιρική πίεση. Eάν ο λόγος των γραµµοµοριακών ειδικών θερµοτήτων C P και C V του ατµοσφαιρικού αέρα είναι γ, να βρείτε την τελική θερµοκρασία του αέρα της φιάλης. ΛYΣH: Έστω ότι µέσα στην φιάλη εισέρχονται n mol ατµοσφαιρικού αέρα. Eφαρµόζοντας για την µάζα αυτή τον πρώτο θερµοδυναµικό νόµο παίρνουµε τη σχέση: Q=ΔU+W (1) όπου Q η θερµότητα και W το έργο που ανταλλάσσει η µάζα αυτή µε την υπόλοιπη µάζα του ατµοσφαρικού αέρα. Όµως λόγω των αδιαβατικών τοιχωµά των της φιάλης και της απότοµης εισροής της µάζας του αέρα µέσα σ αυτή ισχύει: Q=0, οπότε η σχέση (1) γράφεται: 0=ΔU+W () Eξάλλου, έαν T είναι η τελική θερµοκρασία του αέρα της φιάλης και C V η γραµµοµοριακή ειδική θερµότητα του αέρα υπό σταθερό όγκο, η µεταβολή ΔU της εσωτερικής ενέργειας της µάζας των n mol θα είναι: ΔU=nC V (T-T 0 ) (3) Tέλος για τον υπολογισµό του έργου W που ανταλλάσσει η µάζα αυτή µε τον υπόλοιπο ατµοσφαιρικό αέρα, παρατηρούµε ότι, καθώς η µάζα αυτή σπρώχ νεται µέσα στη φιάλη όγκου, ο υπόλοιπος ατµοσφαρικός αέρας παράγει έργο ίσο µε P 0 ( -0), γεγονός που σηµαίνει ότι η µάζα αυτή απορροφά έργο P 0. Δηλαδη θα ισχύει:

20 W=-P 0 (4) Συνδυάζοντας τις σχέσεις (), (3) και (4) παίρνουµε: 0=nC V (T-T 0 )-P 0 0=nC V (T-T 0 )-nrt 0 nrt 0 =nc V (T-T 0 ) T 0 (C P -C V )=C V (T-T 0 ) T 0 C P -T 0 C V =C V T-C V T 0 TC V =T 0 C P T=T 0 (C P /C V )=T 0 γ όπου C P η γραµµοµοριακή ειδική θερµότητα του ατµοσφαιρικού αέρα, υπό σταθερή πίεση. Δίνεται οριζόντιος κύλινδρος µε αδιαβατικά τοιχώ µατα, ο οποίος κλείνεται µε δύο θερµοµονωτικά έµβολα, που µπο ρούν να ολισθαίνουν χωρίς τριβή κατά µήκος του κυλίνδρου. Mε τη βοήθεια ενός ακλόνητου µεταλλικού διαγράγµατος χωρίζεται ο κύλινδρος σε δύο χώρους, που ο καθένας περιέχει n mol ιδανικού αερίου. Aρχικά σε κάθε χώρο επικρατούν κανονικές συνθήκες πιέσεως και θερµοκρασίας, η δε εξωτερική πίεση είναι ίση µε την κανονική πίεση. Συµπιέζουµε το αέριο του αριστερού χώρου µε τη βοήθεια του αντίστοιχου εµβόλου, το οποίο σταθεροποείται σε µια θέση, προσφέροντας µε τον τρόπο αυτό στο αέριο έργο W 1. Nα βρείτε: i) την τελική θερµοκρασία του συστήµατος, όταν αυτό ισορροπήσει θερµοδυναµικά και ii) την θερµότητα που µεταβιβάζεται από το ένα αέριο στο άλλο. Δίνεται η παγκόσµια σταθερά R των αερίων και η γραµµοµοριακή ειδική θερµότητα C V του αερίου, υπό σταθερό όγκο. ΛYΣH: i) Eπειδή το διάφραγµα που χωρίζει το κύλινδρο στα διαµερίσµατα A και B είναι διαθερµικό, δηλαδή επιτρέπει τη µεταβίβαση θερµότητας από τον ένα χώρο στον άλλο, τα δύο αέρια θ αποκτήσουν κοινή τελική θερµοκρασία T. Eφαρµόζοντας για το σύστηµα των δύο αερίων τον πρώτο θερµοδυναµικό νόµο παίρνουµε τη σχέση: Q ολ =ΔU ολ +W ολ (1) Σχήµα 9 Όµως η θερµότητα Q ολ που ανταλλάσσει το σύστηµα µε το περιβάλλον του είναι µηδενική, αφού τα τοιχώµατα του κύλινδρου και τα δύο έµβολα είναι αδια

21 βατικά, η δε συνολική µεταβολή ΔU ολ της εσωτερικής ενέργειας του συστή µατος είναι ίση µε το άθροισµα των µεταβολών ΔU 1 και ΔU των δύο αερίων. Tέλος το ολικό έργο W ολ, που ανταλλάσσει το σύστηµα µε το περιβάλλον του είναι W -W 1, όπου W το έργο που παράγει το αέριο του δεξιού διαµερίσµατος B και W 1 το έργο που απορροφά το άεριο του αριστερού διαµερίσµατος A. Έτσι η σχέση (1) γράφεται: 0=ΔU 1 +ΔU +W -W 1 0=nC V (T-T 0 )+nc V (T-T 0 )+W -W 1 0=nC V (T-T 0 )+W -W 1 () όπου T 0 η κανονική θερµοκρασία και n ο αριθµός των mol κάθε αερίου. Όµως το αέριο του χώρου B εκτονώνεται υπό σταθερή εξωτερική πίεση P 0 και εποµέ νως το έργο εκτόνωσής του είναι : W =P 0 (V- ) (3) όπου V τελικός και ο αρχικός όγκος του αερίου. Aλλά από την καταστα τική εξίσωση των ιδανικών αερίων έχουµε τις σχέσεις: P 0 V = nrt P 0 = nrt 0 V = nrt/p 0 = nrt 0 /P 0 ( ) ( ) V - = nr T - T 0 (4) P 0 Συνδυάζοντας τις σχέσεις (3) και (4) παίρνουµε τη σχέση: W = nrp T - T 0 ( 0 ) = nr( T - T P 0 ) (5) 0 Έτσι η () µε βάση την (5) γράφεται: 0 = nc V ( T - T 0 ) + nr( T - T 0 ) - W 1 W 1 = n( T - T 0 )( C V + R) T - T 0 = W 1 n C V + R ( ) T = T 0 + W 1 n C V + R ( ) (6) ii) Eπειδή το αέριο του χώρου B παράγει θετικό έργο και επί πλέον αυξάνει η εσωτερική του ενέργεια, σύµφωνα µε τον πρώτο θερµοδυναµικό νόµο απορρο φά θερµότητα Q από το αέριο του χώρου A και µάλιστα ισχύει η σχέση: (5 ) Q = U + W (6 ) Q = n( T - T 0 )( C V + R) Q = nc V ( T - T 0 ) + nr( T - T 0 ) ( ) ( ) Q = W 1n C V + R n C V + R

22 Q = W C 1 ( + R V ) C V + R Mέσα σε οριζόντιο κυλινδρικό δοχείο, του οποίου τα τοιχώµατα είναι καλοί αγωγοί της θερµότητας, έχει αποκλεισθεί µία µάζα n=0, mol ιδανικού µονοατοµικού αερίου µε τη βοήθεια ενός εµβόλου, που έχει εµβαδόν S= m. Όταν το έµβολο ολισθαίνει κατά µήκος του κυλίνδρου δέχεται απο τα τοιχώµατά του τριβή, της οποίας το µέτρο είναι f= Nt, ενώ όταν η ατµοσφαιρική πίεση είναι P α =10 5 Nt/m, τότε το έµβολο ισορροπεί καί η τριβή είναι µηδενική. Πρσφέρουµε στο αέριο θερµότητα µε πολύ αργό ρυθµό, µέχρις ότου η θερµοκρασία του αυξηθεί από T 0 =300 K σε T * =40 K. i) Nα σχεδιάσετε το διάγραµµα Ρ-V της µεταβολής της κατάστασης του αερίου. ii) Nα βρείτε τη θερµότητα που προσφέρθηκε στο αέριο. Δίνεται η παγκόσµια σταθερά R=,31 J/mol K των αερίων. ΛYΣH: i) Σε πρώτο στάδιο το αέριο υφίσταται ισόχωρη θέρµανση, µέχρις ότου αρχίσει η ολίσθηση του εµβόλου κατά µήκος του κυλίνδρου. Aυτό θα συµβεί, όταν η πιεστική δύναµη F που δέχεται το έµβολο από το αέριο, εξισορροπηθεί από την τριβή ολίσθησης f και από την πιεστική δύναµη F που δέχεται από τον ατµοσφαιρικό αέρα. Tη στιγµή λοιπόν που επίκειται η ολίσθηση του εµβό λου θα ισχύει: F=F α +f P 1 S=P α S+f P 1 =P α +f/s P 1 =10 5 Nt/m + Nt/ m = 1,.10 5 Nt/m Σχήµα 10 όπου P 1 η αντίστοιχη πίεση του αερίου. Στη συνέχεια το αέριο θα εκτονώνεται υπό σταθερή πίεση P 1, µέχρις ότου η θερµοκρασία του γίνει T * =40 K. Eάν V * είναι ο τελικός όγκος του αερίου, τότε σύµφωνα µε την καταστατική εξίσωση θα ισχύει η σχέση:

23 P 1 V * =nrt * V * =nrt * /P 1 V * =(0,.,31.40/1,.10 5 )m 3 =5,.10-3 m 3 Eξάλλου γιά τον αρχικό όγκο του αερίου ισχύει: P α =nrt 0 =nrt 0 /P α =(0..,31.300/10 5 )m 3 =4, m 3 Mε βάση τα παραπάνω το διάγραµµα P-V της όλης µεταβολής της κατάστασης του αερίου θα έχει τη µορφή του σχήµατος (9). Στο διάγραµµα αυτό η γραµµή ΜΒ σχεδιάστηκε πλήρης µολονότι η ισοβαρής µεταβολή είναι µη αντιστρεπή λόγω ύπαρξης τριβής και τούτο διότι η µεταβολή αυτή εξελλίσεται βραδέως ii) H ολική θερµότητα Q ολ που προσφέρθηκε στο αέριο είναι ίση µε το άθροισµα της θερµότητος Q V που απορρόφησε κατά την ισόχωρη θέρµανση του και της θερµότητας Q P που απορρόφησε κατά την ισοβαρή θέρµανση του, δηλαδή ισχύ ει: Q ολ =Q V +Q P =nc V (T 1 -T 0 )+nc P (T * -T 1 ) Q = 3Rn ( T 1 - T 0 ) + 5Rn ( T * - T 1 ) Q = nr ( 3T - 3T + 5T 1 0 * - 5T 1) Q = nr ( 5T * - 3T - T 0 1 ) (1) όπου T 1 η θερµοκρασία του αερίου τη στιγµή που ξεκινά η ολίσθηση του εµβό λου. H θερµοκρασία αυτή υπολογίζεται, µέσω της σχέσεως: P 1 = nrt 1 P = nrt 0 $ (:) T 1 T 0 = P 1 P T 1 = T 0 P 1 P T 1 =(300.1,.105/105) K=360 K Aντικαθιστώντας στην (1) τα γνωστά µεγέθη, έχουµε: Q ολ =(0,.,31/)( ) J=315,7 J Mια µάζα n mol ιδανικού µονοατοµικού αερίου (C V =3R/) περιορίζεται µέσα σε κατακόρυφο δοχείο, µε τη βοήθεια θερµοµονωτικού εµβόλου, το οποίο µπορεί να κινείται χωρίς τριβή κατά µήκος του δοχείου. Aρχικά το αέριο είναι συµπιεσµένο µέσα στο δοχείο υπό θερµοκρασία T 0 και κάποια στιγµή αρχίζουµε να ελατ τώνουµε µε πολύ αργό ρυθµό το µέτρο της πιεστικής δύναµης επί του

24 εµβόλου µέχρις ότου αυτή µηδενιστεί. Tότε διαπιστώνουµε ότι το έµβολο ισορροπεί, η δε τελική θερµοκρασία του αερίου είναι ίση µε T 0 /4. Nα βρεθεί το έργο που δίνει το αέριο στο εξωτερικό του περι βάλλον. Δίνεται η παγκόσµια σταθερά R των ιδανικών αερίων καί ότι, τα τοιχώµατα του δοχείου είναι αδιαβατικά. H ατµοσφαιρική πίεση να θεωρηθεί αµελητέα. ΛYΣH: Tο έµβολο θα ισορροπήσει στη θέση εκείνη για την οποία η πιεστική δύναµη F που δέχεται από το αέριο, εξισορροπείται από το βάρος w του εµβό λου, δηλαδή στη θέση ισορροπίας του εµβόλου θα ισχύει: F α =w P τελ S=w (1) που P τελ η τελική πίεση του αερίου καί S το εµβαδόν του εµβόλου. Eξάλλου, εφαρµόζοντας για το αέριο τον πρώτo θερµοδυναµικό νόµο παίρνουµε τη σχέ ση: 0=ΔU+W αερ 0=nC V (T 0 /4-T 0 )+W αερ 0 = 3nR - 3T 0 4 $ & + W % W = 9nRT 0 () όπου W αερ το έργο εκτόνωσης του αερίου. Όµως το έργο αυτό κατά ένα µέρος αποδίδεται στο εξωτερικό περιβάλλον, µέσω της πιεστικής δύναµης που αυτό εξασκεί επί του εµβόλου και το υπόλοιπο µετατρέπεται σε αύξηση της βαρυτι κής δυναµικής ενέργειας του εµβόλου, δηλαδή ισχύει η σχέση: Σχήµα 11 W αερ =W περ +wh W αερ =W περ +P τελ Sh (3) Συνδυάζοντας τις σχέσεις (1) καί (3) παίρνουµε τη σχέση: 9nRT 0 = W + P $% Sh W = 9nRT 0 - P $% Sh (4) Όµως το αέριο υφίσταται αντιστρεπτή αδιαβατική εκτόνωση, οπότε ισχύει ο νόµος του Poisson, δηλαδή µπορούµε να γράψουµε τη σχέση:

25 $ $ P.V = %&' %&' P.V P. V V = P %&'. V%&' V %&' $-1 $-1 $-1 nrt 0.V = nr T 0 4. $-1 V %&' V $ V %&' -1 $ & = 1 % V V $%& 3/ $ & = 1 % V V $%& = 1 6 = 1 V = V $%& (5) Eξάλλου το γινόµενο Sh εκφράζει την αύξηση του όγκου του αερίου, δηλαδή ισχύει: Sh=V τελ -V αρχ (4 ) Sh=V αρχ -V αρχ =7V αρχ (6) Έτσι η σχέση (4) µε βάση την (6) γράφεται: W = -7P $% V &' + 9nRT P $%. V $% + 9nRT 0 W = - 7nR. T nRT 0 = - 7nRT nRT 0 3 W = 9nRT 0 3 Ένα οριζόντιο κυλινδρικό δοχείο µε αδιαβατικά τοιχώµατα, χωρίζεται µε θερµοµονωτικό διάφραγµα σε δύο χώρους A και B. Στον χώρο A έχει συµπιεστεί αέριο σε πίεση 3P 0, όπου P 0 η ατµοσφαιρική πίεση, το οποίο κρατά τη βαλβίδα του διαφράγµατος κλειστή καί έτσι εµποδίζεται η είσοδός του στο χώρο B. Eξάλλου στο χώρο B έχει αποκλειστεί µε τη βοήθεια ενός αδιαβατικού εµβόλου ιδανικό µονοατοµικό αέριο (C V =3R/), όγκου και πιέσεως P 0. Nα βρεθεί το έργο της πιεστικής δύναµης F επί του εµβόλου, ώστε µόλις ν' ανοίξει η βαλβίδα. Nα δεχθείτε ότι το αέριο του χώρου B συµπιέζε ται πολύ αργά, το δε έµβολο δεν παρουσιάζει τριβές µε τα τοιχώµατα του δοχείου. ΛYΣH: H βαλβίδα θ' ανοίξει τη στιγµή που η πίεση του αερίου στο χώρο B θα γίνει ίση µε 3P 0. Eξάλλου το αέριο αυτό υφίσταται αντιστρεπτή αδιαβατική συµπίεση καί εποµένως ισχύει ο νόµος του Poisson, δηλαδή µπορούµε να γρά ψουµε τη σχέση: P0 = 3 P 0 V * = 3 V * = 3 ( ) 1/ * V = ( 5 ) 3/5 V * = 3. V * V * = / (1)

26 όπου V * ο όγκος του αερίου τη στιγµή που ανοίγει η βαλβίδα και γ=c P /C V =5/3. Eφαρµόζοντας εξάλλου γιά το αέριο τον πρώτο θερµοδυναµικό νόµο παίρνουµε τη σχέση: 0=nC V (T * -T 0 )+W αερ W = - 3Rn ( T* - T0 ) () όπου T 0, T *, η αρχική καί η τελική θερµοκρασία αντιστοίχως του αερίου, n ο αριθµός των mol αυτού καί W αερ το έργο που προσφέρεται στο αέριο µέσω της πιεστικής δύναµης F που ασκεί στο έµβολο ο ατµοσφαιρικός αέρας καί της πιεστικής δύναµης F που δέχεται το έµβολο από το εξωτερικό περιβάλλον. Όµως για το έργο W αερ ισχύει η σχέση: W = -W F - W F = -W F - P 0 Sx W = -W F - P 0 ( - V * ) (1) W = -W F - P (V / ) = -W - 7P V / (3) F 0 0 Σχήµα 1 Συνδυάζοντας τις σχέσεις (1), () καί (3) παίρνουµε τη σχέση: - 3Rn ( T* - T 0) = -W F - 7P 0 W F = 3Rn ( T* - T 0) - 7P 0 (4) Όµως από την καταστατική εξίσωση για την κατάσταση του αερίου τη στιγµή που ανοίγει η βαλβίδα έχουµε: 3P 0 V * = nrt * 3P 0 / = nr T * T * = 4P 0 /nr = 4T 0 οπότε η σχέση (4) γράφεται: W F = 3nR(4T - T ) 0 0-7P 0 = 9nRT 0-7P 0 W F = 9P 0-7P 0 = 9P 0 Tο κατακόρυφο δοχείο του σχήµατος (13) έχει δια θερµικά τοιχώµατα και περιέχει µονοατοµικό (C V =3R/) ιδανικό αέ ριο. Όταν το αέριο καταλαµβάνει το µισό όγκο του δοχείου, τότε το

27 ελατήριο έχει το φυσικό του µήκος. Θερµαίνουµε πολύ αργά το αέριο µέχρις ότου να διπλασιαστεί ο όγκος του. i) Nα σχεδιάσετε το διάγραµµα P-V της µεταβολής της κατάστασης του αερίου. ii) Nα βρείτε τη µεταβολή της εσωτερικής ενέργειας του αερίου. iii) Nα βρείτε το έργο που παράγει το αέριο κατά την εκτόνωσή του. Δίνεται το βάρος w του εµβόλου, το εµβαδόν S της διατοµής του δοχείου, το ύψος του h καί η σταθερά k του ελατηρίου. ΛYΣH: i) Eξετάζουµε το έµβολο σε µία τυχαία θέση, όπου η απόστασή του από τον πυθµένα του δοχείου είναι x. Στη θέση αυτή το έµβολο, λόγω της βραδείας κίνησής του, ισορροπεί οριακά υπό την επίδραση του βάρους του w, της πιεστικής δύναµης F που δέχεται από το αέριο, της πιεστικής δύναµης F 0 από τον ατµοσφαιρικό αέρα καί της δύναµης F από το συµπιεσµένο ελατήριο. Για τα µέτρα των δυνάµεων αυτών ισχύει η σχέση: Σχήµα 13 Σχήµα 14 F + F 0 + w - F = 0 K(x - h/) + P 0 S + w - PS = 0 P = K S x - h $ & + P 0 + w % S P = Kx S - Kh S + P 0 + w S P = P * + Kx S = P * + KSx (1) S όπου P η πίεση του αερίου καί P * η σταθερή ποσότητα P 0 +w/s-kh/s. Όµως το γινόµενο Sx εκφράζει τον όγκο V του αερίου, οπότε η σχέση (1) παίρνει τη µορφή: P = * P + KV S ()

28 H σχέση () είναι πρώτου βαθµού ανάµεσα στις µεταβλητές ποσότητες P καί V, οπότε η γραφική της παράσταση είναι µια ευθεία γραµµή (σχ. 14), η οποία αποτελεί και το διάγραµµα P-V της µεταβολής της κατάστασης του αερίου. ii) H µεταβολή ΔU της εσωτερικής ενέργειας του αερίου, υπολογίζεται από τη σχέση: U = nc V T$ - T%&' U = 3 ( ) U = 3nR ( nrt$ - nrt%&' ) = 3. P $ $ ( T - T$%& ) ( V - P %&' V%&' ) (1) U = 3 ' ) P * + ( KSh S $ & Sh - P * + % KSh S $ & % Sh *, + U = 3 P* Sh + Kh - P* Sh + Kh 4 $ & % U = 3 P* Sh + 5Kh $ & 4 % U = 3h ( P* S + 5Kh) iii) Tο έργο εκτόνωσης του αερίου είναι ίσο µε το έργο της πιεστικής δύναµης F που αυτό εξασκεί στο έµβολο. Eφαρµόζοντας γιά το έµβολο το θεώρηµα κινητικής ενέργειας-έργου, παίρνουµε τη σχέση: 0-0 = W B + W F0 + W F + W F W F = - W B - W F0 - W F W = Bh + P Sh 0 + K. h$ & % W = h B + P0 S + Kh $ & 4 % Iδανικο µονοατοµικό αέριο (C V =3R/) υποβάλλεται σε κυκλική αντιστρεπτή µεταβολή ΑΓΒΔΑ, της οποίας το διάγραµµα Τ-V εικονίζεται στο σχήµα (15). Το καµπύλο τµήµα ΑΓΒ του διαγ ράµµατος αντιστοιχεί σε εξίσωση της µορφής: T = T V + 4V $ &, ' V ' 3 (α) % όπου Τ 0, η θερµοκρασία και ο όγκος αντιστοίχως του αερίου, στην κατασταση Α. i) Nα απεικονίσετε την κυκλική µεταβολή του αερίου στο επίπεδο P-V. ii) Nα εξετάσετε µε ποιο τρόπο το αέριο ανταλλάσει θερµότητα µε το

29 περιβάλλον του κατά την εξέλιξη της µεταβολής ΑΓΒ. iii) Nα βρείτε το θερµοδυναµικό συντελεστή απόδοσης µιας θερµικής µηχανής, που το αέριο της εκτελεί την παραπάνω κυκλική µεταβολή. ΛYΣH: i) Εάν P, V, T είναι οι θερµοδυναµικές συντεταγµένες µιας τυχαίας κατάστασης του αερίου, όταν αυτό εκτελεί την µεταβολή ΑΓΒ, τότε οι συντε ταγµένες αυτές εκτός από την σχέση (α) θα ικανοποιούν και την καταστατική εξίσωση PV=nRT. Aπαλοίφωντας µεταξύ των δύο αυτών σχέσεων την θερµοκ ρασία Τ έχουµε: PV nr = T V + 4V $ & % PT 0 = T 0 P V V + 4 $ 0 V & 0 % P P 0 = - V P = - P 0V + 4P (1) Η (1) δηλώνει ότι κατά την µεταβολή ΑΓΒ η πίεση P του αερίου µειώνεται γραµµικά µε τον όγκο του V, που σηµαίνει ότι στο επίπεδο P-V η µεταβολή αυτή απεικονίζεται µε µια κατερχόµενη ευθεία γραµµή ΑΓΒ, όπως φαίνεται στο σχήµα (16). Εξάλλου η σχέση (α) γράφεται: Σχήµα 15 3T T 0 = - V + 4V V - 4V + 3T T 0 = 0 () H () αποτελεί µια εξίσωση δευτέρου βαθµού ως προς V/ και πρέπει να έχει ρίζες πραγµατικές που σηµαίνει ότι η διακρίνουσά της είναι µη αρνητική, δηλαδή ισχύει: 16-1T/T 0 0 T 4T 0 / 3 (3) Aπό την (3) προκύπτει ότι κατά την εξέλιξη της µεταβολής ΑΓΒ η µέγιστη θερ µοκρασία του αερίου είναι Τ max =4T 0 /3 και αντιστοιχεί στην κατάσταση Γ του αερίου, δηλαδή ισχύει: T = T max = 4T 0 / 3

30 Στην κατάσταση Γ µέγιστης θερµοκρασίας η () έχει µια διπλή ρίζα που δίνεται από τη σχέση: V / = 4/ V = Η πίεση του αερίου στην κατάσταση Γ θα προκύψει από την καταστατική εξί σωση, δηλαδή θα ισχύει: P V = nrt P = 4nRT 0 / 3 P = P 0 / 3 Σχήµα 16 Eξάλλου από το σχήµα (15) προκύπτει ότι η µεταβολή ΒΔ του αερίου είναι ισοβαρής ψύξη υπό πίεση P Β για την οποία ισχύει: 3P B = nrt 0 3P B = P 0 P B = P 0 / 3 απεικονίζεται δε στο επίπεδο P-V µε την ευθεία BΔ, η οποία είναι παράλληλη προς τον άξονα των όγκων (σχήµα 16). Eπειδή κατά τη µεταβολή αυτή ο όγκος του αέριου υποτριπλασιάζεται και η θερµοκρασία του υποτριπλασιάζεται (νόµος Charles), που σηµαίνει ότι η κατάσταση Δ βρίσκεται πάνω στην ισόθερµη θερµοκρασίας T 0 /3. Τέλος η µεταβολή ΔΑ, µέσω της οποίας το αέριο επανέρ χεται στην αρχική του κατάσταση Α είναι µια ισόχωρη θέρµανση που απεικο νίζεται στο επίπεδο P-V µε την παράλληλη προς τον άξονα των πιέσεων ευθεία ΔΑ. Με βάση τα όσα αναφέρθηκαν πιο πάνω το διάγραµµα P-V της κυκλικής µεταβολής ΑΓΒΔΑ είναι αυτό που εικονίζεται στο σχήµα (16). ii) Kατά τη εξέλιξη της µεταβολής ΑΓΒ διακρίνουµε το στάδιο AΓ όπου το αέριο εκτονώνεται και η θερµοκρασία του αυξάνεται και το στάδιο ΓΒ όπου το αέριο συνεχίζει να εκτονώνεται, ενώ η θερµοκρασία του µειώνεται. Eφαρ µόζοντας για τη µεταβολή ΑΓ τον πρώτο θερµοδυναµικό νόµο, παίρνουµε τη σχέση: Q A = U A + W A = nc V (T - T 0 ) + W A A Q A = 3nR 4T T % $ 0' + W A = nrt 0 & + W A (4) Όµως το έργο W AΓ εκφράζεται µε το εµβαδόν του τραπεζίου (AΓV Γ ), δηλαδή ισχύει η σχέση:

31 ( )( - ) W A = P 0 + P 0 /3 = 5P 0 6 οπότε η (4) γράφεται: Q A = nrt 0 + 5P 0 6 = P 0 + 5P 0 6 Q A = 4P 0 3 > 0 (5) δηλαδή κατά το στάδιο ΑΓ το αέριο απορροφά θερµότητα από το περιβάλλον του. Eφαρµόζοντας εκ νέου τον πρώτο θερµοδυναµικό νόµο για το στάδιο ΓΒ, παίρνουµε τη σχέση: Q B = U B + W B = nc V (T - T B ) + W B Q = 3nR T 0 3-4T & 0 % ( + W $ 3 = - nrt 0 ' + W (6) Εξάλλου το έργο W AΓ εκφράζεται µε το εµβαδόν του τραπεζίου (ΓΒ3 V Γ ), δηλαδή ισχύει: ( )( 3 - ) W A = P / 3 + P /3 0 0 οπότε η (4) γράφεται: = P 0 Q = - nrt 0 + P 0 = - P 0 + P 0 = 0 (7) δηλαδή κατά το στάδιο ΓΒ το αέριο δεν ανταλλάσει θερµότητα µε το περιβάλ λον του. ii) O θερµοδυναµικός συντελεστής απόδοσης α της θερµικής µηχανής, που λειτουργεί µε βάση τον κύκλο AΓΒΔA, είναι το πηλίκο του έργου W ολ που δίνει το αέριο, προς την αντίστοιχη θερµότητα Q πρ που προσφέρεται σ αυτό, δηλαδή ισχύει: = W Q $ () Όµως ισχύουν οι σχέσεις: και W = µ$ ( AB ) ( = 3V - 0 )( P 0 - P 0 / 3) (5) Q = Q A + Q B Q = 4P 0 3 = P nc V T 0 - T $ 0 & 3 % (9) Q = 4P n 3R T 0 3 = 4P P 0 = 7P 0 3 (10)

32 Συνδυάζοντας τις σχέσεις (), (9) και (10) έχουµε: = P 0 3 7P 0 3 = 7 Iδανικό µονοατοµικό αέριο (C V =3R/) µάζας n mol, υποβάλλεται σε κυκλική αντιστρεπτή µεταβολή ABΓA, η οποία αποτελείται από τις εξής επιµέρους µεταβολές: i) από την µεταβολή AB, κατά την εξέλιξη της οποίας η πίεση P του αερίου και ο όγκος του V µεταβάλλονται σύµφωνα µε τη σχέ ση: P = - P 0 V + 3P 0 (α) ο δε όγκος του από γίνεται, ii) από την ισοβαρή εκτόνωση BΓ και iii) από την ισόχωρη ψύξη ΓA, µέσω της οποίας το αέριο επιστρέ φει στην αρχική του κατάσταση A πιέσεως P 0. α) Nα σχεδιάσετε τα διαγράµµατα P-V και T-V της κυκλικής µετα βολής του αερίου. β) Εάν κατά την ισοβαρή εκτόνωση ΒΓ η εντροπία του αερίου µεταβάλλεται κατά: S = 5nR(ln)/ να βρείτε την µεταβολή της εντροπίας του κατά τη µεταβολή ΓΑ. γ) Να υπλογίσετε το θερµοδυναµικό συντελεστή απόδοσης της θερ µικής µηχανής, η οποία χρησιµοποιεί ως ενεργό µέσο το αέριο και ως κύκλο λειτουργίας τον ABΓA. ΛYΣH: α) Kατά τη µεταβολή AB ο όγκος του αερίου υποδιπλασιάζεται, ενώ η πίεση του αυξάνεται από την τιµή P 0 στην τιµή P B και σύµφωνα µε τη σχέση (α) θα έχουµε: P B = - P 0 + 3P 0 = P 0 Eφαρµόζοντας για τις καταστάσεις A και B την καταστατική εξίσωση των ιδανικών αερίων έχουµε τις σχέσεις:

33 P 0 = nrt A P 0 = nrt B T A = T B = T 0 µε T 0 = P 0 / nr δηλαδή οι καταστάσεις A και B βρίσκονται πάνω στην ισόθερµη καµπύλη, θερµοκρασίας T 0. Eπειδή κατά την ισοβαρή εκτόνωση BΓ ο όγκος του αερί ου διπλασιάζεται, θα διπλασιάζεται και η απόλυτη θερµοκρασία του (νόµος Cay- Lussac), δηλαδή η κατάσταση Γ βρίσκεται επί της ισόθερµης καµπύλης θερµοκρασίας T 0. Τέλος κατά την ισόχωρη ψύξη ΓΑ ο όγκος του αερίου είναι συνεχώς ίσος µε, ενώ η θερµοκρασία του µειώνεται από την τιµή Τ 0 στην τιµή T 0 και η πίεσή του από P 0 σε P 0, αποδίδεται δε η µεταβολή αυτή στο επίπεδο P-V µε την παράλληλη προς τον άξονα των πιέσεων ευθεία ΓΑ. Στο σχήµα (17) φαίνεται το διάγραµµα P-V της κυκλικής µεταβολής ABΓA του αερίου. Ας εξετάσουµε µε ποιο τρόπο µεταβάλλεται η θερµοκρασία του αερίου κατα το στάδιο της µεταβολής ΑΒ. Εάν P,V,T είναι οι θερµοδυναµικές συντε Σχήµα 17 ταγµένες µιας τυχαίας κατάστασης κατά την εξέλιξη της µεταβολής αυτής, τότε οι συντεταγµένες αυτές εκτός από τη σχέση (α) θα ικανοποιούν και την καταστατική εξίσωση PV=nRT. Απαλοίφοντας την πίεση P µεταξύ των δύο αυτών σχέσεων έχουµε: nrt V = - P 0 V + 3P 0 T = - P 0 V nr + 3P 0 V nr P T = - 0 V P 0 + 3P T 0 T = T 0 P 0 - V + 3V $ & % (β) Η σχέση (β) εκφράζει ότι η µεταβολή ΑΒ απεικονίζεται στο επίπεδο Τ-V µε µια παραβολή και µάλιστα όπως θα δείξουµε αµέσως παρακάτω το αέριο σε µια ορισ µένη κατάσταση Μ παρουσιάζει µέγιστη θερµοκρασία (σχήµα 1). Πράγµατι η σχέση (β) µπορεί να πάρει τη µορφή: T T 0 = - V + 3V V - 3V + T T 0 = 0 (1) H (1) αποτελεί µια εξίσωση δευτέρου βαθµού ως προς V/ και πρέπει να έχει

34 ρίζες πραγµατικές που σηµαίνει ότι η διακρίνουσά της είναι µη αρνητική, δηλαδή ισχύει: 9 - T/T 0 0 T 9T 0 / () Aπό την (3) προκύπτει ότι κατά την εξέλιξη της µεταβολής ΑΒ η µέγιστη θερ µοκρασία του αερίου είναι Τ max =9T 0 / και αντιστοιχεί στην κατάσταση M του αερίου, δηλαδή ισχύει: T M = T max = 9T 0 / (3) Σχήµα 1 Όµως στην κατάσταση M µέγιστης θερµοκρασίας η (1) έχει µια διπλή ρίζα που δίνεται από τη σχέση: V M / = 3/ V M = 3 / Εξάλλου η ισοβαρής θέρµανση ΒΓ του αερίου απεικονίζεται στο επίπεδο Τ-V µε ευθεία γραµµή της οποίας η προέκταση διέρχεται από την αρχή Ο των αξόνων, διότι η σχέση µεταξύ θερµοκρασίας και όγκου του αερίου κατά την µεταβολή αυτή είναι της µορφής: P 0 V = nrt T = P 0 V/nR T = T 0 V/ (4) Τέλος η ισόχωρη ψύξη απεικονίζεται στο επίπεδο Τ-V µε την παράλληλη προς τον άξονα των θερµοκρασιών ευθεία ΓΑ. Στο σχήµα (1) φαίνεται το διάγραµµα Τ-V της κυκλικής µεταβολής ABΓA του αερίου. ii) Επειδή η εντροπία είναι καταστατικό φυσικό µέγεθος η µεταβολή της S ολ όταν συµπληρωθεί η κυκλική µεταβολή ΑΒΓΑ είναι µηδενική, δηλαδή ισχύει: S o = 0 S + S $ + S $ = 0 S = - S $ - 5nR(ln)/ (5) Όµως η µεταβολή ΔS AB είναι ίση µε την µεταβολή της εντροπίας του αερίου εάν αυτή υπολογιστεί πάνω στην ισόθερµη καµπύλη που διέρχεται από τις καταστάσεις Α και Β, δηλαδή ισχύει:

35 S = S $%&' = nrln( / ) = -nrln (6) Συνδυάζοντας τις σχέσεις (5) και (6) παίρνουµε: S = nrln - 5nR(ln)/ = -3nR(ln)/ (7) iii) O θερµοδυναµικός συντελεστής απόδοσης της θερµικής µηχανής, η οποία υποβάλλει το αέριο στον κύκλο ABΓA είναι: = W /Q $ () όπου W ολ το έργο που παράγει το αέριο κατά την εξέλιξη του κύκλου και Q πρ η αντίστοιχη θερµότητα που προσφέρεται σ αυτό. Όµως το έργο W ολ είναι ίσο µε το εµβαδόν του σκιασµένου τριγώνου ABΓ, δηλαδή ισχύει: ( )( P 0 - P 0 ) W = µ$(ab% ) = - = P 0 Ας εξετάσουµε µε ποιο τρόπο ανταλλάσει θερµότητα το αέριο κατα την εξέλιξη της µεταβολής ΑΒ. Kατά το στάδιο AΜ το αέριο ανταλλάσει θερµό τητα Q AM, η οποία σύµφωνα µε τον πρώτο θερµοδυναµικό νόµο δίνεται από τη σχέση: Q AM = U AM + W AM = nc V (T M - T 0 ) + W AM (9) Q AM = 3nR 9T 0 - T $ 0& + W AM = 3nRT 0 % 16 + W AM (10) Όµως το έργο W AM εκφράζεται µέσω του εµβαδού του τραπεζίου AM V M, δηλαδή ισχύει η σχέση: ( )( 3 / - ) W AM = - P 0 + 3P 0 / οπότε η (10) γράφεται: = - 5P 0 Q AM = 6P P 0 = - P 0 4 < 0 (11) δηλαδή κατά το στάδιο ΑM το αέριο δίνει θερµότητα στο περιβάλλον του. Eφαρµόζοντας εκ νέου τον πρώτο θερµοδυναµικό νόµο για το στάδιο MΒ, παίρνουµε τη σχέση: Q MB = U MB + W MB = nc V (T B - T M ) + W MB Q M = 3nR $ T 0-9T 0 % ' + W M = - 3nRT 0 & 16 + W M (1) Εξάλλου για το έργο W MB ισχύει:

36 ( )( - 3 / ) W MB = P 0 + 3P 0 / = - 7P 0 οπότε η (1) γράφεται: Q M = - 3nRT P 0 = - 5P 0 4 < 0 (13) δηλαδή και κατά το στάδιο MΒ το αέριο δίνει θερµότητα στο περιβάλλον του. Οι παραπάνω υπολογισµοί εγγυώνται ότι κατά την µεταβολή ΑΒ το αέριο δίνει θερµότητα από το περιβάλλον, που σηµαίνει ότι κατά την εξέλιξη της κυκλικής µεταβολής ΑΒΓΑ το αέριο απορροφά θερµότητα µόνο κατά την ισοβαρή εκτόνω ση ΒΓ, δηλαδή ισχύει: Q = Q B = nc P (T - T B ) = n(c V + R)(T 0 - T 0 ) Q = 5nRT 0 / = 5 P 0 (14) Συνδυάζοντας τις σχέσεις () (9) και (14) παίρνουµε: = P 0 / 5 P 0 = 1 10 Δύο διαφορετικά ιδανικά αέρια A 1 και A της ίδιας θερµοκρασίας, βρίσκονται σε δύο δοχεία του ίδιου όγκου, που χωρίζονται µεταξύ τους µε διάφραγµα, έχουν δε ακλόνητα και αδια βατικά τοιχώµατα. Aφαιρούµε το διάφραγµα και τα δύο αέρια ανα µειγνύονται χωρίς να αντιδρούν χηµικά. i) Nα παραστήσετε τη µεταβολή της κατάστασης κάθε αερίου σε διάγ ραµµα P-V. ii) Nα βρείτε τη µεταβολή της εντροπίας του συστήµατος των δύο αερίων. Δίνεται η σταθερά K του Boltzmann και οι αριθµοί N 1, N των µορίων των αερίων A 1 και A αντιστοίχως. ΛYΣH: i) Mε την αφαίρεση του διαφράγµατος τα δύο αέρια εκτονώνονται ελεύθερα χωρίς να µεταβάλλεται η θερµοκρασία τους. Kάθε αέριο υποβάλλεται σε µη αντιστρεπτη µεταβολή, η οποία σε διάγραµµα P-V απεικονίζεται µε δύο σηµεία, τα οποία αντιστοιχούν στην αρχική και την τελική κατάσταση του αερί ου, βρίσκονται δε πάνω στην ίδια ισόθερµη καµπύλη. Aν δεχτούµε ότι ισχύει N 1 >N, τότε η ισόθερµη καµπύλη που αντι στοιχεί στο αέριο A 1 βρίσκεται υψηλότερα από την αντίστοιχη καµπύλη του αερίου A, διότι ναι µεν οι δύο ισόθερµες καµπύλες αντιστοιχούν στην ίδια θερµοκρασία T, αλλά αναφέρονται σε δια φορετιικούς αριθµούς mol n 1 και n και µάλιστα ισχύουν:

37 n 1 = N 1 N A n 1 = N 1 N A $ (: ) n 1 n = N 1 N > 1 n 1 > n Σχήµα 19 όπου N A η σταθερά του Avogadrο. Eάν ΔS 1, ΔS είναι οι µεταβολές της εντρο πίας των αερίων A 1 και A αντιστοίχως, τότε αυτές θα είναι ίσες µε τις αντί στοιχες µεταβολές της εντροπίας τους, αν τα δύο αέρια έφθαναν στις τελικές τους καταστάσεις ισόθερµα και αντιστρεπτά. Έτσι θα έχουµε: S 1 = n 1 Rln S = n Rln $ (+ ) S 1 + S = (n 1 + n )Rln (1) H ολική µεταβολή ΔS ολ της εντροπίας του συστήµατος των δύο αερίων είναι: S = S 1 + S (1) S = (n 1 + n )Rln N S = 1 + N $ N & A % Rln S N A = (N 1 + N ) Rln N A S = (N 1 + N )Kln Ένα σώµα µε πεπερασµένη µάζα βρίσκεται σε θερ µοκρασία T, που είναι µεγαλύτερη από τη θερµοκρασία T 0 µιας δεξα µενής θερµότητας. Yποθέτουµε ότι µεταξύ του σώµατος και της δεξα µενής παρεµβάλλεται µια θερµικη µηχανή, η οποία λειτουργώντας κυκλικά µεταφέρει θερµότητα Q από το σώµα στη δεξαµενή, µέχρις ότου η θερµοκρασία του σώµατος εξισωθεί µε τη θερµοκρασία T 0 της δεξαµενής. Eάν ΔS είναι µεταβολή της εντροπίας του σώµατος, να δειχτεί ότι το µέγιστο έργο που παρέχει η θερµική µηχανή στο περι βάλλον της δίνεται από τη σχέση: W max = Q + T 0 ΔS ΛYΣH: Eάν ΔS ολ είναι η ολική µεταβολή της εντροπίας του συστήµατος σώµα -δεξαµενή-θερµική µηχανή, τότε σύµφωνα µε την εντροπική διατύπωση του

38 δεύτερου θερµοδυναµικού νόµου θα ισχύει: ΔS ολ 0 ΔS σωµ + ΔS µηχ + ΔS δεξ 0 (1) Όµως ΔS µηχ =0, διότι το υλικό µέσο της µηχανής εκτελεί κατά την λειτουργία της συνεχόµενες κυκλικές µεταβολές. Eξάλλου η µεταβολή ΔS δεξ της εντροπί ας της δεξαµενής είναι ίση µε Q 0 /T 0, όπου Q 0 η θερµότητα που µεταφέρεται στη δεξαµενή, υπό σταθερή θερµοκρασία T 0. Έτσι η σχέση (1) γράφεται: ΔS σωµ Q 0 /T 0 0 ΔS + Q 0 /T 0 0 () Eφαρµόζοντας για τη θερµική µηχανή τον πρώτο θερµοδυναµικό νόµο έχουµε: Q - Q 0 = ΔU + W Q - Q 0 = 0 + W Q 0 = Q - W (3) Σχήµα 0 όπου W το έργο που παρέχει η θερµική µηχανή στο περιβάλλον της και ΔU η µεταβολή της εσωτερικής της ενέργειας, που είναι όµως µηδενική, αφού το υλικό της µέσο εκτελεί κυκλικές µεταβολές. Aπό () και (3) παίρνουµε τη σχέση: ΔST 0 + Q - W 0 Q + T 0 ΔS W W max = Q + T 0 ΔS Παρατήρηση: H µεταβολή ΔS της εντροπίας του σώµατος είναι αρνητική, διότι καθώς αυτό ψύχεται η θερµική αταξία των δοµικών του λίθων µειώνεται, µε αποτέλεσµα να µειώνεται και η εντροπία του, αφού είναι γνωστό ότι, η εντροπία αποτελεί µέτρο της θερµικής αταξίας των δοµικών του λίθων. Tεµάχιο πάγου, µάζας m και θερµοκρασίας 0 0 C, τήκεται υπό σταθερή ατµοσφαιρική πίεση P ατµ, µέχρις ότου µετατρα πεί σε νερό θερµοκρασίας 0 0 C. Eάν ΔS είναι η µεταβολή της εντρο πίας της µάζας m, να βρεθεί η αντίστοιχη µεταβολή της εσωτερικής της ενέργειας. Δίνονται οι πυκνότητες d π και d υ του πάγου και του νερού αντιστοίχως, µε d υ > d π.

. ΠΡΩΤΟΣ ΘΕΡΜΟ ΥΝΑΜΙΚΟΣ ΝΟΜΟΣ

. ΠΡΩΤΟΣ ΘΕΡΜΟ ΥΝΑΜΙΚΟΣ ΝΟΜΟΣ . ΠΡΩΤΟΣ ΘΕΡΜΟ ΥΝΑΜΙΚΟΣ ΝΟΜΟΣ 1. Σε µια ισόθερµη µεταβολή : α) Το αέριο µεταβάλλεται µε σταθερή θερµότητα β) Η µεταβολή της εσωτερικής ενέργειας είναι µηδέν V W = PV ln V γ) Το έργο που παράγεται δίνεται

Διαβάστε περισσότερα

ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ-2 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ

ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ-2 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ-2 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ Θερμικες μηχανες 1. Το ωφελιμο εργο μπορει να υπολογιστει με ένα από τους παρακατω τροπους: Α.Υπολογιζουμε το αλγεβρικο αθροισμα των εργων ( μαζι με τα προσημα

Διαβάστε περισσότερα

EΡΓΟ-ΘΕΡΜΟΤΗΤΑ-ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ

EΡΓΟ-ΘΕΡΜΟΤΗΤΑ-ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ EΡΓΟ-ΘΕΡΜΟΤΗΤΑ-ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ ΠΑΡΑΤΗΡΗΣΕΙΣ 1. Διαδοση θερμοτητας και εργο είναι δυο τροποι με τους οποιους η ενεργεια ενός θερμοδυναμικου συστηματος μπορει να αυξηθει ή να ελαττωθει. Δεν εχει εννοια

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ 23-10-11 ΣΕΙΡΑ Α ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ

ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ 1. Τι εννοούµε λέγοντας θερµοδυναµικό σύστηµα; Είναι ένα κοµµάτι ύλης που αποµονώνουµε νοητά από το περιβάλλον. Περιβάλλον του συστήµατος είναι το σύνολο των

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ 31-10-10 ΣΕΙΡΑ Α ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ Α. και d B οι πυκνότητα του αερίου στις καταστάσεις Α και Β αντίστοιχα, τότε

ΔΙΑΓΩΝΙΣΜΑ Α. και d B οι πυκνότητα του αερίου στις καταστάσεις Α και Β αντίστοιχα, τότε ΔΙΑΓΩΝΙΣΜΑ Α Θέµα ο Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση Σύµφωνα µε την κινητική θεωρία των ιδανικών αερίων, η πίεση

Διαβάστε περισσότερα

E. ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ. 2. Β2.26 Με ποιόν τρόπο αποβάλλεται θερµότητα κατά τη λειτουργία της µηχανής του αυτοκινήτου;

E. ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ. 2. Β2.26 Με ποιόν τρόπο αποβάλλεται θερµότητα κατά τη λειτουργία της µηχανής του αυτοκινήτου; E. ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ 1. Β2.25 Θερµική µηχανή είναι, α) το τρόλεϊ; β) ο φούρνος; γ) το ποδήλατο; δ) ο κινητήρας του αεροπλάνου; Επιλέξτε τη σωστή απάντηση. 2. Β2.26 Με ποιόν τρόπο αποβάλλεται θερµότητα κατά

Διαβάστε περισσότερα

ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ- ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ- ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ- ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 1. Ποιες από τις επόµενες προτάσεις που αναφέρονται στο έργο αερίου, είναι σωστές; α. Όταν το αέριο εκτονώνεται, το έργο του είναι θετικό.

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014 ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1 Α4 και δίπλα το γράμμα

Διαβάστε περισσότερα

8 2.ΘΕΜΑ B 2-16138 Β.1

8 2.ΘΕΜΑ B 2-16138 Β.1 1 ΘΕΜΑ B Καταστατική εξίσωση των ιδανικών αερίων 1.ΘΕΜΑ Β 2-16146 Β.1 Μια ποσότητα ιδανικού αερίου βρίσκεται σε κατάσταση θερμοδυναμικής ισορροπίας, καταλαμβάνει όγκο V, έχει απόλυτη θερμοκρασία Τ, ενώ

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / ΣΕΙΡΑ: 1η ΗΜΕΡΟΜΗΝΙΑ: 29/12/12 ΛΥΣΕΙΣ

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / ΣΕΙΡΑ: 1η ΗΜΕΡΟΜΗΝΙΑ: 29/12/12 ΛΥΣΕΙΣ ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / ΣΕΙΡΑ: 1η ΗΜΕΡΟΜΗΝΙΑ: 29/12/12 B ΛΥΚΕΙΟΥ ΘΕΜΑ A Σελίδα 1 από 6 ΛΥΣΕΙΣ Στις ημιτελείς προτάσεις Α 1 -Α 4 να γράψετε στο τετράδιο σας τον αριθμό της πρότασης και δίπλα

Διαβάστε περισσότερα

Α. ΝΟΜΟΙ ΑΕΡΙΩΝ. 1. Β1.3 Να αντιστοιχίσετε τις µεταβολές της αριστερής στήλης σε σχέσεις τις δεξιάς στήλης. 1) Ισόθερµη µεταβολή α)

Α. ΝΟΜΟΙ ΑΕΡΙΩΝ. 1. Β1.3 Να αντιστοιχίσετε τις µεταβολές της αριστερής στήλης σε σχέσεις τις δεξιάς στήλης. 1) Ισόθερµη µεταβολή α) Α. ΝΟΜΟΙ ΑΕΡΙΩΝ 1. Β1.3 Να αντιστοιχίσετε τις µεταβολές της αριστερής στήλης σε σχέσεις τις δεξιάς στήλης. 1) Ισόθερµη µεταβολή α) P = σταθ. V P 2) Ισόχωρη µεταβολή β) = σταθ. 3) Ισοβαρής µεταβολή γ) V

Διαβάστε περισσότερα

Θέµα 1 ο. iv) πραγµατοποιεί αντιστρεπτές µεταβολές.

Θέµα 1 ο. iv) πραγµατοποιεί αντιστρεπτές µεταβολές. ΜΑΘΗΜΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ Θέµα 1 ο α) Ορισµένη ποσότητα ιδανικού αερίου πραγµατοποιεί µεταβολή AB από την κατάσταση A (p, V, T ) στην κατάσταση B (p, V 1, T ). i) Ισχύει V 1 = V. ii) Η µεταβολή παριστάνεται

Διαβάστε περισσότερα

β) διπλασιάζεται. γ) υποδιπλασιάζεται. δ) υποτετραπλασιάζεται. Μονάδες 4

β) διπλασιάζεται. γ) υποδιπλασιάζεται. δ) υποτετραπλασιάζεται. Μονάδες 4 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΟΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΠΡΟΣΟΜΟΙΩΣΗΣ B ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 5 ΙΑΝΟΥΑΡΙΟΥ 009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ

Διαβάστε περισσότερα

Να γράψετε στο τετράδιο σας την σωστή απάντηση στις παρακάτω ερωτήσεις.

Να γράψετε στο τετράδιο σας την σωστή απάντηση στις παρακάτω ερωτήσεις. ΘΕΜΑ 1 Να γράψετε στο τετράδιο σας την σωστή απάντηση στις παρακάτω ερωτήσεις. 1. Αέριο συμπιέζεται ισόθερμα στο μισό του αρχικού όγκου.η ενεργός ταχύτητα των μορίων του: α) διπλασιάζεται. β) παραμένει

Διαβάστε περισσότερα

Επαναληπτικό Χριστουγέννων Β Λυκείου

Επαναληπτικό Χριστουγέννων Β Λυκείου Επαναληπτικό Χριστουγέννων Β Λυκείου 1.Ποιά από τις παρακάτω προτάσεις είναι σωστή ; Σύµφωνα µε τον 1ο θερµοδυναµικό νόµο το ποσό της θερµότητας που απορροφά η αποβάλει ένα θερµοδυναµικό σύστηµα είναι

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 Ο Ένα κλειστό δοχείο µε ανένδοτα τοιχώµατα περιέχει ποσότητα η=0,4mol ιδανικού αερίου σε θερµοκρασία θ 1 =17 ο C. Να βρεθούν: α) το παραγόµενο έργο, β) η θερµότητα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο ΝΟΜΟΙ ΑΕΡΙΩΝ - ΘΕΡΜΟ ΥΝΑΜΙΚΗ

ΚΕΦΑΛΑΙΟ 1ο ΝΟΜΟΙ ΑΕΡΙΩΝ - ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΚΕΦΑΛΑΙΟ ο ΝΟΜΟΙ ΑΕΡΙΩΝ -ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΝΟΜΟΙ ΑΕΡΙΩΝ - ΘΕΡΜΟ ΥΝΑΜΙΚΗ Τι γνωρίζετε για την καταστατική εξίσωση των ιδανικών αερίων; Η καταστατική εξίσωση των αερίων είναι µια σχέση που συνδέει µεταξύ

Διαβάστε περισσότερα

: Μιγαδικοί Συναρτήσεις έως και αντίστροφη συνάρτηση. 1. Ποιο από τα παρακάτω διαγράμματα παριστάνει γραφικά το νόμο του Gay-Lussac;

: Μιγαδικοί Συναρτήσεις έως και αντίστροφη συνάρτηση. 1. Ποιο από τα παρακάτω διαγράμματα παριστάνει γραφικά το νόμο του Gay-Lussac; Τάξη : Β ΛΥΚΕΙΟΥ Μάθημα : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Εξεταστέα Ύλη : Μιγαδικοί Συναρτήσεις έως και αντίστροφη συνάρτηση Καθηγητής : Mάρθα Μπαμπαλιούτα Ημερομηνία : 14/10/2012 ΘΕΜΑ 1 ο 1. Ποιο από τα παρακάτω διαγράμματα

Διαβάστε περισσότερα

2. Ασκήσεις Θερμοδυναμικής. Ομάδα Γ.

2. Ασκήσεις Θερμοδυναμικής. Ομάδα Γ. . σκήσεις ς. Ομάδα..1. Ισοβαρής θέρμανση και έργο. Ένα αέριο θερμαίνεται ισοβαρώς από θερμοκρασία Τ 1 σε θερμοκρασία Τ, είτε κατά την μεταβολή, είτε κατά την μεταβολή Δ. i) Σε ποια μεταβολή παράγεται περισσότερο

Διαβάστε περισσότερα

PV=nRT : (p), ) ) ) : :

PV=nRT  : (p), ) ) ) :     : Μιχαήλ Π. Μιχαήλ 1 ΘΕΡΜΟ ΥΝΑΜΙΚΟ ΣΥΣΤΗΜΑ 1.Τι ονοµάζουµε σύστηµα και τι περιβάλλον ενός φυσικού συστήµατος; Σύστηµα είναι ένα τµήµα του φυσικού κόσµου που διαχωρίζεται από τον υπόλοιπο κόσµο µε πραγµατικά

Διαβάστε περισσότερα

B' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ÅÐÉËÏÃÇ

B' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ÅÐÉËÏÃÇ 1 B' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΘΕΜΑ 1 ο ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό κάθε µιας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 2 ΕΡΓΟ ΑΕΡΙΟΥ

ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 2 ΕΡΓΟ ΑΕΡΙΟΥ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ ΕΡΓΟ ΑΕΡΙΟΥ Κατά την εκτόνωση ενός αερίου, το έρο του είναι θετικό ( δηλαδή παραόμενο). Κατά την συμπίεση ενός

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1 έως Α5 και δίπλα το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ÊÏÑÕÖÇ ÊÁÂÁËÁ Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ. U 1 = + 0,4 J. Τα φορτία µετατοπίζονται έτσι ώστε η ηλεκτρική δυναµική ενέργεια

ÊÏÑÕÖÇ ÊÁÂÁËÁ Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ. U 1 = + 0,4 J. Τα φορτία µετατοπίζονται έτσι ώστε η ηλεκτρική δυναµική ενέργεια 1 ΘΕΜΑ 1 ο Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ 1. οχείο σταθερού όγκου περιέχει ορισµένη ποσότητα ιδανικού αερίου. Αν θερµάνουµε το αέριο µέχρι να τετραπλασιαστεί η απόλυτη θερµοκρασία

Διαβάστε περισσότερα

1. Eσωτερική ενέργεια σώµατος

1. Eσωτερική ενέργεια σώµατος 1. Eσωτερική ενέργεια σώµατος H εσωτερική ενέργεια αποτελεί σηµαντική έννοια για την κατανόηση πολλών φυσικών διεργασιών και για το λόγο αυτό επιβάλλεται η αυστηρή αποσαφήνισή της. Eίναι γνωστό ότι, οι

Διαβάστε περισσότερα

Β' τάξη Γενικού Λυκείου. Κεφάλαιο 1 Κινητική θεωρία αερίων

Β' τάξη Γενικού Λυκείου. Κεφάλαιο 1 Κινητική θεωρία αερίων Β' τάξη Γενικού Λυκείου Κεφάλαιο 1 Κινητική θεωρία αερίων Κεφάλαιο 1 Κινητική θεωρία αερίων Χιωτέλης Ιωάννης Γενικό Λύκειο Πελοπίου 1.1 Ποιο από τα παρακάτω διαγράμματα αντιστοιχεί σε ισοβαρή μεταβολή;

Διαβάστε περισσότερα

Ι < Ι. Οπότε ο λαμπτήρας θα φωτοβολεί περισσότερο. Ο λαμπτήρα λειτουργεί κανονικά. συνεπώς το ρεύμα που τον διαρρέει είναι 1 Α.

Ι < Ι. Οπότε ο λαμπτήρας θα φωτοβολεί περισσότερο. Ο λαμπτήρα λειτουργεί κανονικά. συνεπώς το ρεύμα που τον διαρρέει είναι 1 Α. ΘΕΜΑ Α. Σωστή απάντηση είναι η α. Πριν το κλείσιμο του διακόπτη η αντίσταση του κυκλώματος είναι: λ, = Λ +. Μετά το κλείσιμο του διακόπτη η ολική αντίσταση είναι: λ, = Λ. Έτσι,,,, Ι < Ι. Οπότε ο λαμπτήρας

Διαβάστε περισσότερα

ΘΕΜΑΤΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΚAMΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ-ΟΡΜΗ-ΝΟΜΟΙ ΑΕΡΙΩΝ 5/1/2015

ΘΕΜΑΤΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΚAMΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ-ΟΡΜΗ-ΝΟΜΟΙ ΑΕΡΙΩΝ 5/1/2015 ΘΕΜΑΤΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΚMΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ-ΟΡΜΗ-ΝΟΜΟΙ ΑΕΡΙΩΝ ΘΕΜΑ 1 ο 5/1/2015 Στις ερωτήσεις 1-5 να γράψετε στο φύλλο απαντήσεων τον αριθμό της ερώτησης και δίπλα

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Θετ.- τεχ. κατεύθυνσης

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Θετ.- τεχ. κατεύθυνσης 1 ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Θετ.- τεχ. κατεύθυνσης ΘΕΜΑ 1 ο : Σε κάθε μια από τις παρακάτω προτάσεις να βρείτε τη μια σωστή απάντηση: 1. Μια ποσότητα ιδανικού αέριου εκτονώνεται ισόθερμα μέχρι τετραπλασιασμού

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Φυσική Κατεύθυνσης Β Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ κ ΙΑΓΩΝΙΣΜΑ Β Θέµα ο Να επιλέξετε τη σωστή απάντηση σε κάθε µία από τις παρακάτω ερωτήσεις: Σε ισόχωρη αντιστρεπτή θέρµανση ιδανικού αερίου, η

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Β ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Β ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 1ο ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 18 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) Στις ερωτήσεις 1-4 να γράψετε

Διαβάστε περισσότερα

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ 1 Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ερωτήσεις 1 έως 4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ

Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 15 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις ερωτήσεις

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια:

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια: ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια (όπως ορίζεται στη μελέτη της μηχανικής τέτοιων σωμάτων): Η ενέργεια που οφείλεται σε αλληλεπιδράσεις και κινήσεις ολόκληρου του μακροσκοπικού σώματος, όπως η μετατόπιση

Διαβάστε περισσότερα

1. Θερµοδυναµικό σύστηµα Αντιστρεπτές και µη αντιστρεπτές µεταβολές

1. Θερµοδυναµικό σύστηµα Αντιστρεπτές και µη αντιστρεπτές µεταβολές Θερµοδυναµική Φυσική Θετικής & εχνολοικής Κατεύθυνσης Λυκείου ο Κεφάλαιο Θερµοδυναµική. Θερµοδυναµικό σύστηµα ντιστρεπτές και µη αντιστρεπτές µεταβολές Σύστηµα είναι ένα τµήµα του φυσικού κόσµου που διαχωρίζεται

Διαβάστε περισσότερα

Ι Α Γ Ω Ν Ι Σ Μ Α ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. Θέµα 1 ο. α. Το σύστηµα των ηλεκτρικών φορτίων έχει δυναµική ενέργεια

Ι Α Γ Ω Ν Ι Σ Μ Α ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. Θέµα 1 ο. α. Το σύστηµα των ηλεκτρικών φορτίων έχει δυναµική ενέργεια Ι Α Γ Ω Ν Ι Σ Μ Α ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΙΚΗΣ & ΕΧΝΟΛΟΓΙΚΗΣ ΚΑΕΥΘΥΝΣΗΣ Θέµα ο Στις παρακάτω ερωτήσεις να ράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το ράµµα που αντιστοιχεί στη σωστή απάντηση..

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΤΕΛΕΙΩΝ ΑΕΡΙΩΝ

ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΤΕΛΕΙΩΝ ΑΕΡΙΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΤΕΛΕΙΩΝ ΑΕΡΙΩΝ Η εξίσωση αυτή εκφράζει μια σχέση μεταξύ της πίεσης, της θερμοκρασίας και του ειδικού όγκου. P v = R Όπου P = πίεση σε Pascal v = Ο ειδικός

Διαβάστε περισσότερα

m A m B Δ4) Να υπολογιστεί το ποσό θερμικής ενέργειας (θερμότητας) που ελευθερώνεται εξ αιτίας της κρούσης των δύο σωμάτων.

m A m B Δ4) Να υπολογιστεί το ποσό θερμικής ενέργειας (θερμότητας) που ελευθερώνεται εξ αιτίας της κρούσης των δύο σωμάτων. Το σώμα Α μάζας m A = 1 kg κινείται με ταχύτητα u 0 = 8 m/s σε λείο οριζόντιο δάπεδο και συγκρούεται μετωπικά με το σώμα Β, που έχει μάζα m B = 3 kg και βρίσκεται στο άκρο αβαρούς και μη εκτατού (που δεν

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ/ΜΑΘΗΤΡΙΑΣ: ΘΕΜΑ Α Εξεταστέα ύλη: ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΟΡΜΗ ΑΕΡΙΑ Στις ερωτήσεις Α1 Α4 να επιλέξετε τη σωστή απάντηση. Α1. Όταν η πίεση ορισμένης ποσότητας

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Β ΤΑΞΗ.

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Β ΤΑΞΗ. ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 27 ΜΑΪΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ (7) ΘΕΜΑ 1ο Στις ερωτήσεις

Διαβάστε περισσότερα

1. Τι είναι οι ΜΕΚ και πώς παράγουν το μηχανικό έργο ; 8

1. Τι είναι οι ΜΕΚ και πώς παράγουν το μηχανικό έργο ; 8 ΚΕΦΑΛΑΙΟ 1 ο 1. Τι είναι οι ΜΕΚ και πώς παράγουν το μηχανικό έργο ; 8 Είναι θερμικές μηχανές που μετατρέπουν την χημική ενέργεια του καυσίμου σε θερμική και μέρος αυτής για την παραγωγή μηχανικού έργου,

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤ-ΤΕΧΝ ΚΑΤΕΥΘΥΝΣΗΣ

ΤΥΠΟΛΟΓΙΟ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤ-ΤΕΧΝ ΚΑΤΕΥΘΥΝΣΗΣ ΥΠΟΛΟΓΙΟ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕ-ΕΧΝ ΚΑΕΥΘΥΝΣΗΣ Κινητική θεωρία των ιδανικών αερίων. Νόμος του Boyle (ισόθερμη μεταβή).σταθ. για σταθ.. Νόμος του hales (ισόχωρη μεταβή) p σταθ. για σταθ. 3. Νόμος του Gay-Lussac

Διαβάστε περισσότερα

ΘΕΜΑΤΑ : ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ 17/4/2015

ΘΕΜΑΤΑ : ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ 17/4/2015 ΘΕΜΑΤΑ : ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ ΘΕΜΑ 1 ο 17/4/2015 Στις ερωτήσεις 1-5 να γράψετε στο φύλλο απαντήσεων τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ. Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα που αντιστοιχεί στην σωστή απάντηση

ΕΚΦΩΝΗΣΕΙΣ. Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα που αντιστοιχεί στην σωστή απάντηση B' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΖΗΤΗΜΑ 1 ΕΚΦΩΝΗΣΕΙΣ Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα που αντιστοιχεί στην σωστή απάντηση

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 1 ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο 1. Aν ο ρυθμός μεταβολής της ταχύτητας ενός σώματος είναι σταθερός, τότε το σώμα: (i) Ηρεμεί. (ii) Κινείται με σταθερή ταχύτητα. (iii) Κινείται με μεταβαλλόμενη

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Β ΤΑΞΗ.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Β ΤΑΞΗ. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 8 ΜΑΪΟΥ 00 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις ερωτήσεις 1-4 να γράψετε

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΗ ΣΤΙΣ Μ.Ε.Κ. Μ.Ε.Κ. Ι (Θ)

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΗ ΣΤΙΣ Μ.Ε.Κ. Μ.Ε.Κ. Ι (Θ) ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΗ ΣΤΙΣ Μ.Ε.Κ. Μ.Ε.Κ. Ι (Θ) Διαλέξεις Μ4, ΤΕΙ Χαλκίδας Επικ. Καθηγ. Δρ. Μηχ. Α. Φατσής ΣΚΟΠΟΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ Το «φρεσκάρισμα» των γνώσεων από τη Θερμοδυναμική με σκοπό

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή Απριλίου 01 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις από 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ

ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ 1. Ένα κιλό νερού σε θερμοκρασία 0 C έρχεται σε επαφή με μιά μεγάλη θερμική δεξαμενή θερμοκρασίας 100 C. Όταν το νερό φτάσει στη θερμοκρασία της δεξαμενής,

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΗ ΛΥΕΙΟΥ ΘΕΤΙΗΣ Ι ΤΕΧ/ΗΣ ΤΕΥΘΥΝΣΗΣ ΘΕΜ : Στις ερωτήσεις - να γράψετε στο φύλλο απαντήσεων τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. Στις ερωτήσεις -5 να γράψετε

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ 28-2-2010

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ 28-2-2010 ΕΠΩΝΥΜΟ:... ΤΣΙΜΙΣΚΗ &ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ: 270727 222594 ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΗΜΕΡΟΜΗΝΙΑ:... ΑΡΤΑΚΗΣ 12 - Κ. ΤΟΥΜΠΑ THΛ: 919113 949422 ΖΗΤΗΜΑ 1 ο ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ 28-2-2010 Να γράψετε στο

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΟΥ ΗΡΑΚΛΕΙΟΥ Τρίτη 19/5/2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ -ΙΟΥΝΙΟΥ 2015 ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΟΥ ΗΡΑΚΛΕΙΟΥ Τρίτη 19/5/2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ -ΙΟΥΝΙΟΥ 2015 ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΟΥ ΗΡΑΚΛΕΙΟΥ Τρίτη 19/5/015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ -ΙΟΥΝΙΟΥ 015 ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΘΕΜΑ Α 1 Για τις επόμενες τέσσερες ερωτήσεις από την Α1 έως

Διαβάστε περισσότερα

Ισόθερμη, εάν κατά τη διάρκειά της η θερμοκρασία του αερίου παραμένει σταθερή

Ισόθερμη, εάν κατά τη διάρκειά της η θερμοκρασία του αερίου παραμένει σταθερή Με βάση το δίχρονο βενζινοκινητήρα που απεικονίζεται στο παρακάτω σχήμα, να γράψετε στο τετράδιό σας τους αριθμούς 1,2,3,4,5 από τη στήλη Α και δίπλα ένα από τα γράμματα α, β, γ, δ, ε, στ της στήλης Β,

Διαβάστε περισσότερα

ΜΕΤΑΒΟΛΕΣ ΚΑΤΑΣΤΑΣΗΣ ΑΕΡΙΩΝ. 1. Δώστε τον ορισμό τον τύπο και το διάγραμμα σε άξονες P v της ισόθερμης μεταβολής. σελ. 10. και

ΜΕΤΑΒΟΛΕΣ ΚΑΤΑΣΤΑΣΗΣ ΑΕΡΙΩΝ. 1. Δώστε τον ορισμό τον τύπο και το διάγραμμα σε άξονες P v της ισόθερμης μεταβολής. σελ. 10. και ΜΕΤΑΒΟΛΕΣ ΚΑΤΑΣΤΑΣΗΣ ΑΕΡΙΩΝ 1. Δώστε τον ορισμό τον τύπο και το διάγραμμα σε άξονες P v της ισόθερμης μεταβολής. σελ. 10 ορισμός : Ισόθερμη, ονομάζεται η μεταβολή κατά τη διάρκεια της οποίας η θερμοκρασία

Διαβάστε περισσότερα

ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ ΑΣΚΗΣΕΙΣ

ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ ΑΣΚΗΣΕΙΣ Νικήτα Μ Ριζόπολο «Ασκήσεις Φσικής» ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ ΑΣΚΗΣΕΙΣ Ιδανικό αέριο έχει θερμοκρασία 7 ο C και όγκο 3L Θερμαίνομε το αέριο με σταθερή πίεση στος 7 ο C Πόσος είναι ο νέος όγκος Ιδανικό αέριο

Διαβάστε περισσότερα

EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Ο Να επιλέξετε τη σωστή απάντηση σε κάθε μία από τις ερωτήσεις - που ακολουθούν: Η ενεργός ταχύτητα των μορίων ορισμένης ποσότητας

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ 23/4/2009

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ 23/4/2009 ΕΠΩΝΥΜΟ:........................ ΟΝΟΜΑ:........................... ΤΜΗΜΑ:........................... ΤΣΙΜΙΣΚΗ & ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ : 7077 594 ΑΡΤΑΚΗΣ 1 Κ. ΤΟΥΜΠΑ THΛ : 919113 9494 www.syghrono.gr ΗΜΕΡΟΜΗΝΙΑ:.....................

Διαβάστε περισσότερα

6.2. ΤΗΞΗ ΚΑΙ ΠΗΞΗ, ΛΑΝΘΑΝΟΥΣΕΣ ΘΕΡΜΟΤΗΤΕΣ

6.2. ΤΗΞΗ ΚΑΙ ΠΗΞΗ, ΛΑΝΘΑΝΟΥΣΕΣ ΘΕΡΜΟΤΗΤΕΣ 45 6.1. ΓΕΝΙΚΑ ΠΕΡΙ ΦΑΣΕΩΝ ΜΕΤΑΤΡΟΠΕΣ ΦΑΣΕΩΝ Όλα τα σώµατα,στερεά -ά-αέρια, που υπάρχουν στη φύση βρίσκονται σε µια από τις τρεις φάσεις ή σε δύο ή και τις τρεις. Όλα τα σώµατα µπορεί να αλλάξουν φάση

Διαβάστε περισσότερα

όπου Α το πλάτος της ταλάντωσης, φ η αρχική της φάση και ω η γωνιακή της συχνότητα. Οι σχέσεις (2) εφαρµοζόµενες τη χρονική στιγµή t=0 δίνουν:

όπου Α το πλάτος της ταλάντωσης, φ η αρχική της φάση και ω η γωνιακή της συχνότητα. Οι σχέσεις (2) εφαρµοζόµενες τη χρονική στιγµή t=0 δίνουν: Tο ένα άκρο κατακόρυφου ιδανικού ελατηρίου είναι στερεωµένο στο οριζόντιο έδαφος, ενώ το άλλο του άκρο είναι ελεύθερο. Mικρό σφαιρίδιο, µάζας m, αφήνεται σε ύψος h από το άκρο Β. Το σφαιρίδιο πέφτοντας

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Β ΤΑΞΗ.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Β ΤΑΞΗ. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 27 ΜΑΪΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΠΤΑ (7) ΘΕΜΑ 1ο Στις ερωτήσεις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 ΕΝΕΡΓΕΙΑ ΚΑΙ ΘΕΡΜΟΤΗΤΑ

ΚΕΦΑΛΑΙΟ 5 ΕΝΕΡΓΕΙΑ ΚΑΙ ΘΕΡΜΟΤΗΤΑ ΚΕΦΑΛΑΙΟ 5 ΕΝΕΡΓΕΙΑ ΚΑΙ ΘΕΡΜΟΤΗΤΑ 5. Η εσωτερική ενέργεια Τα υλικά σώµατα αποτελούνται από δοµικούς λίθους, δηλαδή άτοµα, ιόντα ή µόρια. Kάθε δοµικός λίθος σώµατος διαθέτει δυναµική και κινητική ενέργεια.

Διαβάστε περισσότερα

ιαγώνισµα για το σπίτι

ιαγώνισµα για το σπίτι ιαγώνισµα για το σπίτι p 2 V Θέµα 1 ο Να εξηγήσετε γιατί στη µεταβολή 1 2 η γραµµοµοριακή θερµοχωρητικότητα του αερίου είναι µικρότερη από το µέγεθος C p και µεγαλύτερη από το C V Για τη δικαιολόγηση θα

Διαβάστε περισσότερα

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Οι ιδιότητες των αερίων και καταστατικές εξισώσεις Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Τι είναι αέριο; Λέμε ότι μία ουσία βρίσκεται στην αέρια κατάσταση όταν αυθόρμητα

Διαβάστε περισσότερα

Α Θερμοδυναμικός Νόμος

Α Θερμοδυναμικός Νόμος Α Θερμοδυναμικός Νόμος Θερμότητα Έχουμε ήδη αναφέρει ότι πρόκειται για έναν τρόπο μεταφορά ενέργειας που βασίζεται στη διαφορά θερμοκρασιών μεταξύ των σωμάτων. Ορίζεται από τη σχέση: Έργο dw F dx F dx

Διαβάστε περισσότερα

Για τα μέτρα της μεταβολής της ορμής και τις μεταβολές της κινητικής ενέργειας ισχύει: Μονάδες 4. Μονάδες 9

Για τα μέτρα της μεταβολής της ορμής και τις μεταβολές της κινητικής ενέργειας ισχύει: Μονάδες 4. Μονάδες 9 Β.1 Προσφέρουμε ένα ποσό θερμότητας σε ένα αέριο. α. Η θερμοκρασία του αερίου μειώνεται πάντα. β. Υπάρχει περίπτωση να μειωθεί η θερμοκρασία του αερίου. γ. Δεν υπάρχει περίπτωση να μειωθεί η θερμοκρασία

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια:

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια: Εσωτερική ενέργεια: Το άθροισμα της κινητικής (εσωτερική κινητική ενέργεια ή θερμική ενέργεια τυχαία, μη συλλογική κίνηση) και δυναμικής ενέργειας (δεσμών κλπ) όλων των σωματιδίων (ατόμων ή μορίων) του

Διαβάστε περισσότερα

από τον κατακόρυφο τοίχο, της οποίας ο φορέας είναι οριζόντιος και την δύναµη επα φής N!

από τον κατακόρυφο τοίχο, της οποίας ο φορέας είναι οριζόντιος και την δύναµη επα φής N! Οµογενής συµπαγής κύβος ακµής α και µάζας m, ισορροπεί ακουµπώντας µε µια ακµή του σε κατακόρυφο τοίχο και µε µια του έδρα σε κεκλιµένο επίπεδο γωνίας κλίσεως φ ως προς τον ορίζοντα, όπως φαίνεται στο

Διαβάστε περισσότερα

Σχολικό έτος 2012-2013 Πελόπιο, 30 Μαΐου 2013

Σχολικό έτος 2012-2013 Πελόπιο, 30 Μαΐου 2013 Σχολικό έτος 0-03 Πελόπιο, 30 Μαΐου 03 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΛΥΚΕΙΟΥ ΠΕΡIΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 03 ΣΤΟ ΜΑΘΗΜΑ:ΦΥΣΙΚΗ ΘΕΤ. ΚΑΙ ΤΕΧ. ΚΑΤΕΥΘΥΝΣΗΣ ΕΙΣΗΓΗΤΕΣ: ΖΑΦΕΙΡΟΠΟΥΛΟΥ Ε., ΧΙΩΤΕΛΗΣ Ι. ΘΕΜΑ. Να σημειώσετε

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2.

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ 1. Η δύναμη επαναφοράς που ασκείται σε ένα σώμα μάζας m που εκτελεί απλή αρμονική

Διαβάστε περισσότερα

2 ο Επαναληπτικό διαγώνισμα στο 1 ο κεφάλαιο Φυσικής Θετικής Τεχνολογικής Κατεύθυνσης (Μηχανικές και Ηλεκτρικές ταλαντώσεις)

2 ο Επαναληπτικό διαγώνισμα στο 1 ο κεφάλαιο Φυσικής Θετικής Τεχνολογικής Κατεύθυνσης (Μηχανικές και Ηλεκτρικές ταλαντώσεις) ο Επαναληπτικό διαγώνισμα στο 1 ο κεφάλαιο Φυσικής Θετικής Τεχνολογικής Κατεύθυνσης (Μηχανικές και Ηλεκτρικές ταλαντώσεις) ΘΕΜΑ 1 ο Στις παρακάτω ερωτήσεις 1 4 επιλέξτε τη σωστή πρόταση 1. Ένα σώμα μάζας

Διαβάστε περισσότερα

Ένα κυβικό δοχείο ακµής α, είναι γεµάτο νερό και τοποθετείται πάνω σε οριζόντιο έδαφος (σχ. 13).

Ένα κυβικό δοχείο ακµής α, είναι γεµάτο νερό και τοποθετείται πάνω σε οριζόντιο έδαφος (σχ. 13). Ένα κυβικό δοχείο ακµής α, είναι γεµάτο νερό και τοποθετείται πάνω σε οριζόντιο έδαφος σχ. 3). i) Εάν στο κέντρο Ο µιας έδρας του δοχείου ανοίξουµε µικρή κυκλική οπή εµβαδού S, ποιο πρέπει να είναι το

Διαβάστε περισσότερα

Παραγωγή Ηλεκτρικής Ενέργειας 6ο Εξάμηνο Ηλεκτρολόγων Μηχανικών και Μηχανικών Ηλεκτρονικών Υπολογιστών Ροή Ε. 1η Σειρά Ασκήσεων

Παραγωγή Ηλεκτρικής Ενέργειας 6ο Εξάμηνο Ηλεκτρολόγων Μηχανικών και Μηχανικών Ηλεκτρονικών Υπολογιστών Ροή Ε. 1η Σειρά Ασκήσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχ. και Μηχ. Υπολογιστών Ακαδ. Έτος 0- Τομέας Ηλεκτρικής Ισχύος Αθήνα, 0 Μαρτίου 0 Καθηγητής Κ.Βουρνάς Παράδοση,,5: 8// Λέκτωρ Σ. Καβατζά 6,,4: /4/ Παραγωγή

Διαβάστε περισσότερα

ΘΕΜΑ Δ Δύο σφαίρες ίδιας μάζας, m = 0,2 kg, κινούνται ευθύγραμμα και ομαλά σε λείο οριζόντιο επίπεδο σε αντίθετες κατευθύνσεις και με ταχύτητες

ΘΕΜΑ Δ Δύο σφαίρες ίδιας μάζας, m = 0,2 kg, κινούνται ευθύγραμμα και ομαλά σε λείο οριζόντιο επίπεδο σε αντίθετες κατευθύνσεις και με ταχύτητες Δύο σφαίρες ίδιας μάζας, m = 0,2 kg, κινούνται ευθύγραμμα και ομαλά σε λείο οριζόντιο επίπεδο σε αντίθετες κατευθύνσεις και με ταχύτητες μέτρων υ 1 = 6 m s -1, υ 2 = 2 m s -1 αντίστοιχα, ώστε να πλησιάζουν

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Θέμα Α ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Στις παρακάτω ερωτήσεις πολλαπλής ιλογής Α-Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που

Διαβάστε περισσότερα

ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1

ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 ΘΕΜΑ 1 0 Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Το

Διαβάστε περισσότερα

i) τον λόγο των µαζών των δύο σφαιριδίων, ώστε αυτά µετά την κρού ση τους να φθάνουν στις αρχικές τους θέσεις και

i) τον λόγο των µαζών των δύο σφαιριδίων, ώστε αυτά µετά την κρού ση τους να φθάνουν στις αρχικές τους θέσεις και Δύο αβαρή και µη εκτατά νήµατα του ίδιου µή κους είναι στερεωµένα στο ίδιο σηµείο Ο, ενώ στις ελεύθερες άκρες των νηµάτων είναι δεµένα δύο σφαιρίδια, µε µάζες 1 και. Eκτρέ πουµε τα σφαιρίδια από την θέση

Διαβάστε περισσότερα

ΘΕΡΜΟΧΗΜΕΙΑ. Είδη ενέργειας ΘΕΡΜΟΔΥΝΑΜΙΚΟΙ ΟΡΙΣΜΟΙ

ΘΕΡΜΟΧΗΜΕΙΑ. Είδη ενέργειας ΘΕΡΜΟΔΥΝΑΜΙΚΟΙ ΟΡΙΣΜΟΙ ΘΕΡΜΟΧΗΜΕΙΑ Όλες οι χημικές αντιδράσεις περιλαμβάνουν έκλυση ή απορρόφηση ενέργειας υπό μορφή θερμότητας. Η γνώση του ποσού θερμότητας που συνδέεται με μια χημική αντίδραση έχει και πρακτική και θεωρητική

Διαβάστε περισσότερα

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα.

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. ΘΕΜΑ Α Παράδειγμα 1 Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. Α2. Για τον προσδιορισμό μιας δύναμης που ασκείται σε ένα σώμα απαιτείται να

Διαβάστε περισσότερα

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΑΠΟ ΤΟ ΒΙΒΛΙΟ: ΚΡΙΤΗΡΙΑ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΣΥΓΓΡΑΦΕΙΣ: ΤΣΙΤΣΑΣ ΓΡΗΓΟΡΗΣ- ΠΑΠΑΤΣΑΚΩΝΑΣ ΗΜΗΤΡΗΣ ΘΕΜΑ 1 ο Επιλέξτε τη σωστή απάντηση

Διαβάστε περισσότερα

ΠΕΝΤΕΛΗ ΒΡΙΛΗΣΣΙΑ. 1. Ένα σώμα εκτελεί απλή αρμονική ταλάντωση. Αν διπλασιάσουμε το πλάτος της

ΠΕΝΤΕΛΗ ΒΡΙΛΗΣΣΙΑ. 1. Ένα σώμα εκτελεί απλή αρμονική ταλάντωση. Αν διπλασιάσουμε το πλάτος της Τάξη Μάθημα Εξεταστέα ύλη Γ Λυκείου Φυσικη κατευθυνσης ΠΕΝΤΕΛΗ Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ Καθηγητής

Διαβάστε περισσότερα

ΠΕΝΤΕΛΗ. Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ

ΠΕΝΤΕΛΗ. Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ Τάξη Μάθημα Εξεταστέα ύλη Γ Λυκείου Φυσικη κατευθυνσης ΠΕΝΤΕΛΗ Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ Καθηγητής

Διαβάστε περισσότερα

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014 minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/014 minimath.eu Περιεχόμενα Κινηση 3 Ευθύγραμμη ομαλή κίνηση 4 Ευθύγραμμη ομαλά μεταβαλλόμενη κίνηση 5 Δυναμικη 7 Οι νόμοι του Νεύτωνα 7 Τριβή 8 Ομαλη κυκλικη

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός)

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) 4 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) Κυριακή, 5 Απριλίου, 00, Ώρα:.00 4.00 Προτεινόμενες Λύσεις Άσκηση ( 5 μονάδες) Δύο σύγχρονες πηγές, Π και Π, που απέχουν μεταξύ τους

Διαβάστε περισσότερα

2.2. Ασκήσεις Έργου-Ενέργειας. Οµάδα Γ.

2.2. Ασκήσεις Έργου-Ενέργειας. Οµάδα Γ. 2.2. Ασκήσεις Έργου-Ενέργειας. Οµάδα Γ. 2.2.21. Έργο και µέγιστη Κινητική Ενέργεια. Ένα σώµα µάζας 2kg κινείται σε οριζόντιο επίπεδο και σε µια στιγµή περνά από την θέση x=0 έχοντας ταχύτητα υ 0 =8m/s,

Διαβάστε περισσότερα

ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) Α. ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ

ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) Α. ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής

Διαβάστε περισσότερα

Κίνηση σε Ηλεκτρικό Πεδίο.

Κίνηση σε Ηλεκτρικό Πεδίο. Κίνηση σε Ηλεκτρικό Πεδίο. 3.01. Έργο κατά την μετακίνηση φορτίου. Στις κορυφές Β και Γ ενόςισοπλεύρου τριγώνου ΑΒΓ πλευράς α= 2cm, βρίσκονται ακλόνητα δύο σηµειακά ηλεκτρικά φορτία q 1 =2µC και q 2 αντίστοιχα.

Διαβάστε περισσότερα

Θερμοκρασία - Θερμότητα. (Θερμοκρασία / Θερμική διαστολή / Ποσότητα θερμότητας / Θερμοχωρητικότητα / Θερμιδομετρία / Αλλαγή φάσης)

Θερμοκρασία - Θερμότητα. (Θερμοκρασία / Θερμική διαστολή / Ποσότητα θερμότητας / Θερμοχωρητικότητα / Θερμιδομετρία / Αλλαγή φάσης) Θερμοκρασία - Θερμότητα (Θερμοκρασία / Θερμική διαστολή / Ποσότητα θερμότητας / Θερμοχωρητικότητα / Θερμιδομετρία / Αλλαγή φάσης) Θερμοκρασία Ποσοτικοποιεί την αντίληψή μας για το πόσο ζεστό ή κρύο είναι

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2014 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2014 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 04 Β Λυκείου 9 Μαρτίου 04 ΟΔΗΓΙΕΣ:. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε χαρτί Α4 ή σε Τετράδιο το οποίο θα σας δοθεί και το οποίο θα παραδώσετε

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 01 Ε_3.ΦλΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή

Διαβάστε περισσότερα

ΦΥΣΙΚΗ-Ι ΘΕΡΜΟ ΥΝΑΜΙΚΗ

ΦΥΣΙΚΗ-Ι ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΦΥΣΙΚΗ-Ι ΘΕΡΜΟ ΥΝΑΜΙΚΗ Η έννοια της ερμοκρασίας Τι είναι ερμοκρασία; η ερμοκρασία αποτελεί ένα μέτρο του πόσο ερμό ή ψυχρό είναι ένα σώμα Υποκειμενική παρατήρηση: Ένα σώμα Α είναι ερμότερο ή ψυχρότερο

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ 1 ο δείγμα Α. Θεωρία Α) Πότε ένα πολύγωνο λέγεται κανονικό; Β) Να δώσετε τον ορισμό της εγγεγραμμένης γωνίας σε κύκλο (Ο, ρ). (Να γίνει σχήμα) Γ) Ποια

Διαβάστε περισσότερα

που δέχονται οι τροχοί αυτοί αποτελούν κινητήριες δυνάµεις για το αυτοκί νητο, δηλαδή είναι δυνάµεις οµόρροπες προς την κίνησή του, ένω οι τριβές T!

που δέχονται οι τροχοί αυτοί αποτελούν κινητήριες δυνάµεις για το αυτοκί νητο, δηλαδή είναι δυνάµεις οµόρροπες προς την κίνησή του, ένω οι τριβές T! Tο κέντρο µάζας ενός επιβατηγού αυτοκινήτου απέχει από το οριζόντιο έδαφος απόσταση h. Δίνεται η µάζα Μ του αυτοκινήτου η µάζα m και η ακτίνα R κάθε τροχού, η επιτάχυνση g της βαρύτητας και οι αποστάσεις

Διαβάστε περισσότερα

Όλα τα θέματα των πανελληνίων στις μηχανικές ταλαντώσεις έως και το 2014 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ. Ερωτήσεις Πολλαπλής Επιλογής

Όλα τα θέματα των πανελληνίων στις μηχανικές ταλαντώσεις έως και το 2014 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ. Ερωτήσεις Πολλαπλής Επιλογής έως και το 04 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ Ερωτήσεις Πολλαπλής Επιλογής. Να μεταφέρετε στο τετράδιό σας τον παρακάτω πίνακα που αναφέρεται στην απλή αρμονική ταλάντωση και να συμπληρώσετε

Διαβάστε περισσότερα

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΑΣΚΗΣΕΙΣ

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ 1. Στο παρακάτω διάγραμμα απομάκρυνσης-χρόνου φαίνονται οι γραφικές παραστάσεις για δύο σώματα 1 και 2 τα οποία εκτελούν Α.Α.Τ. Να βρείτε τη σχέση που συνδέει τις μέγιστες επιταχύνσεις

Διαβάστε περισσότερα

i) Nα βρείτε το δυναµικό ενός τυχαίου σηµείου M του επιπέδου Oyz, σε συνάρτηση µε τις συντεταγµένες y,z του σηµείου.

i) Nα βρείτε το δυναµικό ενός τυχαίου σηµείου M του επιπέδου Oyz, σε συνάρτηση µε τις συντεταγµένες y,z του σηµείου. Eυθύγραµµο µεταλλικό σύρµα µήκους L τοποθετείται στον άξονα τρισορθογώνιου συστήµατος αξόνων Oxz ώστε το µέσο του να συµπί πτει µε την αρχή O των αξόνων. Tο σύρµα φέρει θετικό ηλεκτρικό φορτίο οµοιόµορφα

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1 Θέµα 1 ο 1. Το διάγραµµα του διπλανού σχήµατος παριστάνει τη χρονική µεταβολή της αποµάκρυνσης ενός σώµατος που εκτελεί απλή αρµονική ταλάντωση. Ποια από

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 IAΣTOΛH KAI ΣYΣTOΛH

ΚΕΦΑΛΑΙΟ 8 IAΣTOΛH KAI ΣYΣTOΛH ΚΕΦΑΛΑΙΟ 8 IAΣTOΛH KAI ΣYΣTOΛH 8.1 Γραµµική διαστολή των στερεών Ένα στερεό σώµα θεωρείται µονοδιάστατο, όταν οι δύο διαστάσεις του είναι αµελητέες σε σχέση µε την τρίτη, το µήκος, όπως συµβαίνει στην

Διαβάστε περισσότερα